1
0
forked from M-Labs/nac3

core: support tuple and int32 input for np_empty, np_ones, and more

This commit is contained in:
lyken 2024-06-25 15:35:02 +08:00
parent b21df53e0d
commit 5b11a1dbdd
9 changed files with 298 additions and 82 deletions

View File

@ -163,10 +163,11 @@ fn create_ndarray_const_shape<'ctx, G: CodeGenerator + ?Sized>(
) -> Result<NDArrayValue<'ctx>, String> {
let llvm_usize = generator.get_size_type(ctx.ctx);
for shape_dim in shape {
for &shape_dim in shape {
let shape_dim = ctx.builder.build_int_z_extend(shape_dim, llvm_usize, "").unwrap();
let shape_dim_gez = ctx
.builder
.build_int_compare(IntPredicate::SGE, *shape_dim, llvm_usize.const_zero(), "")
.build_int_compare(IntPredicate::SGE, shape_dim, llvm_usize.const_zero(), "")
.unwrap();
ctx.make_assert(
@ -189,7 +190,8 @@ fn create_ndarray_const_shape<'ctx, G: CodeGenerator + ?Sized>(
let ndarray_num_dims = ndarray.load_ndims(ctx);
ndarray.create_dim_sizes(ctx, llvm_usize, ndarray_num_dims);
for (i, shape_dim) in shape.iter().enumerate() {
for (i, &shape_dim) in shape.iter().enumerate() {
let shape_dim = ctx.builder.build_int_z_extend(shape_dim, llvm_usize, "").unwrap();
let ndarray_dim = unsafe {
ndarray.dim_sizes().ptr_offset_unchecked(
ctx,
@ -199,7 +201,7 @@ fn create_ndarray_const_shape<'ctx, G: CodeGenerator + ?Sized>(
)
};
ctx.builder.build_store(ndarray_dim, *shape_dim).unwrap();
ctx.builder.build_store(ndarray_dim, shape_dim).unwrap();
}
let ndarray = ndarray_init_data(generator, ctx, elem_ty, ndarray);
@ -286,22 +288,68 @@ fn ndarray_one_value<'ctx, G: CodeGenerator + ?Sized>(
///
/// * `elem_ty` - The element type of the `NDArray`.
/// * `shape` - The `shape` parameter used to construct the `NDArray`.
///
/// ### Notes on `shape`
///
/// Just like numpy, the `shape` argument can be:
/// 1. A list of `int32`; e.g., `np.empty([600, 800, 3])`
/// 2. A tuple of `int32`; e.g., `np.empty((600, 800, 3))`
/// 3. A scalar `int32`; e.g., `np.empty(3)`, this is functionally equivalent to `np.empty([3])`
///
/// See also [`typecheck::type_inferencer::fold_numpy_function_call_shape_argument`] to
/// learn how `shape` gets from being a Python user expression to here.
fn call_ndarray_empty_impl<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
elem_ty: Type,
shape: ListValue<'ctx>,
shape: BasicValueEnum<'ctx>,
) -> Result<NDArrayValue<'ctx>, String> {
let llvm_usize = generator.get_size_type(ctx.ctx);
match shape {
BasicValueEnum::PointerValue(shape_list_ptr)
if ListValue::is_instance(shape_list_ptr, llvm_usize).is_ok() =>
{
// 1. A list of ints; e.g., `np.empty([600, 800, 3])`
let shape_list = ListValue::from_ptr_val(shape_list_ptr, llvm_usize, None);
create_ndarray_dyn_shape(
generator,
ctx,
elem_ty,
&shape,
|_, ctx, shape| Ok(shape.load_size(ctx, None)),
|generator, ctx, shape, idx| {
Ok(shape.data().get(ctx, generator, &idx, None).into_int_value())
&shape_list,
|_, ctx, shape_list| Ok(shape_list.load_size(ctx, None)),
|generator, ctx, shape_list, idx| {
Ok(shape_list.data().get(ctx, generator, &idx, None).into_int_value())
},
)
}
BasicValueEnum::StructValue(shape_tuple) => {
// 2. A tuple of ints; e.g., `np.empty((600, 800, 3))`
// Read [`codegen::expr::gen_expr`] to see how `nac3core` translates a Python tuple into LLVM.
// Get the length/size of the tuple, which also happens to be the value of `ndims`.
let ndims = shape_tuple.get_type().count_fields();
let mut shape = Vec::with_capacity(ndims as usize);
for dim_i in 0..ndims {
let dim = ctx
.builder
.build_extract_value(shape_tuple, dim_i, format!("dim{dim_i}").as_str())
.unwrap()
.into_int_value();
shape.push(dim);
}
create_ndarray_const_shape(generator, ctx, elem_ty, shape.as_slice())
}
BasicValueEnum::IntValue(shape_int) => {
// 3. A scalar int; e.g., `np.empty(3)`, this is functionally equivalent to `np.empty([3])`
create_ndarray_const_shape(generator, ctx, elem_ty, &[shape_int])
}
_ => unreachable!(),
}
}
/// Generates LLVM IR for populating the entire `NDArray` using a lambda with its flattened index as
@ -486,7 +534,7 @@ fn call_ndarray_zeros_impl<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
elem_ty: Type,
shape: ListValue<'ctx>,
shape: BasicValueEnum<'ctx>,
) -> Result<NDArrayValue<'ctx>, String> {
let supported_types = [
ctx.primitives.int32,
@ -517,7 +565,7 @@ fn call_ndarray_ones_impl<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
elem_ty: Type,
shape: ListValue<'ctx>,
shape: BasicValueEnum<'ctx>,
) -> Result<NDArrayValue<'ctx>, String> {
let supported_types = [
ctx.primitives.int32,
@ -548,7 +596,7 @@ fn call_ndarray_full_impl<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
elem_ty: Type,
shape: ListValue<'ctx>,
shape: BasicValueEnum<'ctx>,
fill_value: BasicValueEnum<'ctx>,
) -> Result<NDArrayValue<'ctx>, String> {
let ndarray = call_ndarray_empty_impl(generator, ctx, elem_ty, shape)?;
@ -1674,16 +1722,10 @@ pub fn gen_ndarray_empty<'ctx>(
assert!(obj.is_none());
assert_eq!(args.len(), 1);
let llvm_usize = generator.get_size_type(context.ctx);
let shape_ty = fun.0.args[0].ty;
let shape_arg = args[0].1.clone().to_basic_value_enum(context, generator, shape_ty)?;
call_ndarray_empty_impl(
generator,
context,
context.primitives.float,
ListValue::from_ptr_val(shape_arg.into_pointer_value(), llvm_usize, None),
)
call_ndarray_empty_impl(generator, context, context.primitives.float, shape_arg)
.map(NDArrayValue::into)
}
@ -1698,16 +1740,10 @@ pub fn gen_ndarray_zeros<'ctx>(
assert!(obj.is_none());
assert_eq!(args.len(), 1);
let llvm_usize = generator.get_size_type(context.ctx);
let shape_ty = fun.0.args[0].ty;
let shape_arg = args[0].1.clone().to_basic_value_enum(context, generator, shape_ty)?;
call_ndarray_zeros_impl(
generator,
context,
context.primitives.float,
ListValue::from_ptr_val(shape_arg.into_pointer_value(), llvm_usize, None),
)
call_ndarray_zeros_impl(generator, context, context.primitives.float, shape_arg)
.map(NDArrayValue::into)
}
@ -1722,16 +1758,10 @@ pub fn gen_ndarray_ones<'ctx>(
assert!(obj.is_none());
assert_eq!(args.len(), 1);
let llvm_usize = generator.get_size_type(context.ctx);
let shape_ty = fun.0.args[0].ty;
let shape_arg = args[0].1.clone().to_basic_value_enum(context, generator, shape_ty)?;
call_ndarray_ones_impl(
generator,
context,
context.primitives.float,
ListValue::from_ptr_val(shape_arg.into_pointer_value(), llvm_usize, None),
)
call_ndarray_ones_impl(generator, context, context.primitives.float, shape_arg)
.map(NDArrayValue::into)
}
@ -1746,20 +1776,13 @@ pub fn gen_ndarray_full<'ctx>(
assert!(obj.is_none());
assert_eq!(args.len(), 2);
let llvm_usize = generator.get_size_type(context.ctx);
let shape_ty = fun.0.args[0].ty;
let shape_arg = args[0].1.clone().to_basic_value_enum(context, generator, shape_ty)?;
let fill_value_ty = fun.0.args[1].ty;
let fill_value_arg =
args[1].1.clone().to_basic_value_enum(context, generator, fill_value_ty)?;
call_ndarray_full_impl(
generator,
context,
fill_value_ty,
ListValue::from_ptr_val(shape_arg.into_pointer_value(), llvm_usize, None),
fill_value_arg,
)
call_ndarray_full_impl(generator, context, fill_value_ty, shape_arg, fill_value_arg)
.map(NDArrayValue::into)
}

View File

@ -324,6 +324,9 @@ struct BuiltinBuilder<'a> {
num_or_ndarray_ty: TypeVar,
num_or_ndarray_var_map: VarMap,
/// See [`BuiltinBuilder::build_ndarray_from_shape_factory_function`]
ndarray_factory_fn_shape_arg_tvar: TypeVar,
}
impl<'a> BuiltinBuilder<'a> {
@ -394,6 +397,8 @@ impl<'a> BuiltinBuilder<'a> {
let list_int32 = unifier.add_ty(TypeEnum::TList { ty: int32 });
let ndarray_factory_fn_shape_arg_tvar = unifier.get_fresh_var(Some("Shape".into()), None);
BuiltinBuilder {
unifier,
primitives,
@ -421,6 +426,8 @@ impl<'a> BuiltinBuilder<'a> {
num_or_ndarray_ty,
num_or_ndarray_var_map,
ndarray_factory_fn_shape_arg_tvar,
}
}
@ -959,21 +966,46 @@ impl<'a> BuiltinBuilder<'a> {
)
}
/// Build ndarray factory functions that only take in an argument `shape` of type `list[int32]` and return an ndarray.
/// Build ndarray factory functions that only take in an argument `shape`.
///
/// `shape` can be a tuple of int32s, a list of int32s, or a scalar int32.
fn build_ndarray_from_shape_factory_function(&mut self, prim: PrimDef) -> TopLevelDef {
debug_assert_prim_is_allowed(
prim,
&[PrimDef::FunNpNDArray, PrimDef::FunNpEmpty, PrimDef::FunNpZeros, PrimDef::FunNpOnes],
);
// NOTE: on `ndarray_factory_fn_shape_arg_tvar` and
// the `param_ty` for `create_fn_by_codegen`.
//
// Ideally, we should have created a [`TypeVar`] to define all possible input
// types for the parameter "shape" like so:
// ```rust
// self.unifier.get_fresh_var_with_range(
// &[int32, list_int32, /* and more... */],
// Some("T".into()), None)
// )
// ```
//
// However, there is (currently) no way to type a tuple of arbitrary length in `nac3core`.
//
// And this is the best we could do:
// ```rust
// &[ int32, list_int32, tuple_1_int32, tuple_2_int32, tuple_3_int32, ... ],
// ```
//
// But this is not ideal.
//
// Instead, we delegate the responsibility of typechecking
// to [`typecheck::type_inferencer::Inferencer::fold_numpy_function_call_shape_argument`],
// and use a dummy [`TypeVar`] `ndarray_factory_fn_shape_arg_tvar` as a placeholder for `param_ty`.
create_fn_by_codegen(
self.unifier,
&VarMap::new(),
prim.name(),
self.ndarray_float,
// We are using List[int32] here, as I don't know a way to specify an n-tuple bound on a
// type variable
&[(self.list_int32, "shape")],
&[(self.ndarray_factory_fn_shape_arg_tvar.ty, "shape")],
Box::new(move |ctx, obj, fun, args, generator| {
let func = match prim {
PrimDef::FunNpNDArray | PrimDef::FunNpEmpty => gen_ndarray_empty,

View File

@ -5,7 +5,7 @@ expression: res_vec
[
"Class {\nname: \"Generic_A\",\nancestors: [\"Generic_A[V]\", \"B\"],\nfields: [\"aa\", \"a\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"foo\", \"fn[[b:T], none]\"), (\"fun\", \"fn[[a:int32], V]\")],\ntype_vars: [\"V\"]\n}\n",
"Function {\nname: \"Generic_A.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n",
"Function {\nname: \"Generic_A.fun\",\nsig: \"fn[[a:int32], V]\",\nvar_id: [TypeVarId(239)]\n}\n",
"Function {\nname: \"Generic_A.fun\",\nsig: \"fn[[a:int32], V]\",\nvar_id: [TypeVarId(240)]\n}\n",
"Class {\nname: \"B\",\nancestors: [\"B\"],\nfields: [\"aa\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"foo\", \"fn[[b:T], none]\")],\ntype_vars: []\n}\n",
"Function {\nname: \"B.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n",
"Function {\nname: \"B.foo\",\nsig: \"fn[[b:T], none]\",\nvar_id: []\n}\n",

View File

@ -7,7 +7,7 @@ expression: res_vec
"Function {\nname: \"A.__init__\",\nsig: \"fn[[t:T], none]\",\nvar_id: []\n}\n",
"Function {\nname: \"A.fun\",\nsig: \"fn[[a:int32, b:T], list[virtual[B[bool]]]]\",\nvar_id: []\n}\n",
"Function {\nname: \"A.foo\",\nsig: \"fn[[c:C], none]\",\nvar_id: []\n}\n",
"Class {\nname: \"B\",\nancestors: [\"B[typevar228]\", \"A[float]\"],\nfields: [\"a\", \"b\", \"c\", \"d\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[a:int32, b:T], list[virtual[B[bool]]]]\"), (\"foo\", \"fn[[c:C], none]\")],\ntype_vars: [\"typevar228\"]\n}\n",
"Class {\nname: \"B\",\nancestors: [\"B[typevar229]\", \"A[float]\"],\nfields: [\"a\", \"b\", \"c\", \"d\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[a:int32, b:T], list[virtual[B[bool]]]]\"), (\"foo\", \"fn[[c:C], none]\")],\ntype_vars: [\"typevar229\"]\n}\n",
"Function {\nname: \"B.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n",
"Function {\nname: \"B.fun\",\nsig: \"fn[[a:int32, b:T], list[virtual[B[bool]]]]\",\nvar_id: []\n}\n",
"Class {\nname: \"C\",\nancestors: [\"C\", \"B[bool]\", \"A[float]\"],\nfields: [\"a\", \"b\", \"c\", \"d\", \"e\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[a:int32, b:T], list[virtual[B[bool]]]]\"), (\"foo\", \"fn[[c:C], none]\")],\ntype_vars: []\n}\n",

View File

@ -5,8 +5,8 @@ expression: res_vec
[
"Function {\nname: \"foo\",\nsig: \"fn[[a:list[int32], b:tuple[T, float]], A[B, bool]]\",\nvar_id: []\n}\n",
"Class {\nname: \"A\",\nancestors: [\"A[T, V]\"],\nfields: [\"a\", \"b\"],\nmethods: [(\"__init__\", \"fn[[v:V], none]\"), (\"fun\", \"fn[[a:T], V]\")],\ntype_vars: [\"T\", \"V\"]\n}\n",
"Function {\nname: \"A.__init__\",\nsig: \"fn[[v:V], none]\",\nvar_id: [TypeVarId(241)]\n}\n",
"Function {\nname: \"A.fun\",\nsig: \"fn[[a:T], V]\",\nvar_id: [TypeVarId(246)]\n}\n",
"Function {\nname: \"A.__init__\",\nsig: \"fn[[v:V], none]\",\nvar_id: [TypeVarId(242)]\n}\n",
"Function {\nname: \"A.fun\",\nsig: \"fn[[a:T], V]\",\nvar_id: [TypeVarId(247)]\n}\n",
"Function {\nname: \"gfun\",\nsig: \"fn[[a:A[list[float], int32]], none]\",\nvar_id: []\n}\n",
"Class {\nname: \"B\",\nancestors: [\"B\"],\nfields: [],\nmethods: [(\"__init__\", \"fn[[], none]\")],\ntype_vars: []\n}\n",
"Function {\nname: \"B.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n",

View File

@ -3,7 +3,7 @@ source: nac3core/src/toplevel/test.rs
expression: res_vec
---
[
"Class {\nname: \"A\",\nancestors: [\"A[typevar227, typevar228]\"],\nfields: [\"a\", \"b\"],\nmethods: [(\"__init__\", \"fn[[a:A[float, bool], b:B], none]\"), (\"fun\", \"fn[[a:A[float, bool]], A[bool, int32]]\")],\ntype_vars: [\"typevar227\", \"typevar228\"]\n}\n",
"Class {\nname: \"A\",\nancestors: [\"A[typevar228, typevar229]\"],\nfields: [\"a\", \"b\"],\nmethods: [(\"__init__\", \"fn[[a:A[float, bool], b:B], none]\"), (\"fun\", \"fn[[a:A[float, bool]], A[bool, int32]]\")],\ntype_vars: [\"typevar228\", \"typevar229\"]\n}\n",
"Function {\nname: \"A.__init__\",\nsig: \"fn[[a:A[float, bool], b:B], none]\",\nvar_id: []\n}\n",
"Function {\nname: \"A.fun\",\nsig: \"fn[[a:A[float, bool]], A[bool, int32]]\",\nvar_id: []\n}\n",
"Class {\nname: \"B\",\nancestors: [\"B\", \"A[int64, bool]\"],\nfields: [\"a\", \"b\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[a:A[float, bool]], A[bool, int32]]\"), (\"foo\", \"fn[[b:B], B]\"), (\"bar\", \"fn[[a:A[list[B], int32]], tuple[A[virtual[A[B, int32]], bool], B]]\")],\ntype_vars: []\n}\n",

View File

@ -6,12 +6,12 @@ expression: res_vec
"Class {\nname: \"A\",\nancestors: [\"A\"],\nfields: [\"a\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[b:B], none]\"), (\"foo\", \"fn[[a:T, b:V], none]\")],\ntype_vars: []\n}\n",
"Function {\nname: \"A.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n",
"Function {\nname: \"A.fun\",\nsig: \"fn[[b:B], none]\",\nvar_id: []\n}\n",
"Function {\nname: \"A.foo\",\nsig: \"fn[[a:T, b:V], none]\",\nvar_id: [TypeVarId(247)]\n}\n",
"Function {\nname: \"A.foo\",\nsig: \"fn[[a:T, b:V], none]\",\nvar_id: [TypeVarId(248)]\n}\n",
"Class {\nname: \"B\",\nancestors: [\"B\", \"C\", \"A\"],\nfields: [\"a\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[b:B], none]\"), (\"foo\", \"fn[[a:T, b:V], none]\")],\ntype_vars: []\n}\n",
"Function {\nname: \"B.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n",
"Class {\nname: \"C\",\nancestors: [\"C\", \"A\"],\nfields: [\"a\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[b:B], none]\"), (\"foo\", \"fn[[a:T, b:V], none]\")],\ntype_vars: []\n}\n",
"Function {\nname: \"C.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n",
"Function {\nname: \"C.fun\",\nsig: \"fn[[b:B], none]\",\nvar_id: []\n}\n",
"Function {\nname: \"foo\",\nsig: \"fn[[a:A], none]\",\nvar_id: []\n}\n",
"Function {\nname: \"ff\",\nsig: \"fn[[a:T], V]\",\nvar_id: [TypeVarId(255)]\n}\n",
"Function {\nname: \"ff\",\nsig: \"fn[[a:T], V]\",\nvar_id: [TypeVarId(256)]\n}\n",
]

View File

@ -814,6 +814,150 @@ impl<'a> Inferencer<'a> {
})
}
/// Fold an ndarray `shape` argument. This function aims to fold `shape` arguments like that of
/// <https://numpy.org/doc/stable/reference/generated/numpy.zeros.html> (for `np_zeros`).
///
/// Arguments:
/// * `id` - The name of the function of the function call this `shape` argument is in. Used for error reporting.
/// * `arg_index` - The position (0-based) of this argument in the function call. Used for error reporting.
/// * `shape_expr` - [`Located<ExprKind>`] of the input argument.
///
/// On success, it returns a tuple of
/// 1) the `ndims` value inferred from the input `shape`,
/// 2) and the elaborated expression. Like what other fold functions of [`Inferencer`] would normally return.
fn fold_numpy_function_call_shape_argument(
&mut self,
id: StrRef,
arg_index: usize,
shape_expr: Located<ExprKind>,
) -> Result<(u64, ast::Expr<Option<Type>>), HashSet<String>> {
/*
### Further explanation
As said, this function aims to fold `shape` arguments, but this is *not* trivial.
The root of the issue is that `nac3core` has to deduce the `ndims`
of the created (for in the case of `np_zeros`) ndarray statically - i.e., during inference time.
There are three types of valid input to `shape`:
1. A python `List` (all `int32s`); e.g., `np_zeros([600, 800, 3])`
2. A python `Tuple` (all `int32s`); e.g., `np_zeros((600, 800, 3))`
3. An `int32`; e.g., `np_zeros(256)` - this is functionally equivalent to `np_zeros([256])`
For 2. and 3., `ndims` can be deduce immediately from the inferred type of the input:
- For 2. `ndims` is simply the number of elements found in [`TypeEnum::TTuple`] after typechecking the `shape` argument.
- For 3. `ndims` is simply 1.
For 1., `ndims` is supposedly the length of the input list. However, the length of the input list
is a runtime property. Therefore (as a hack) we resort to analyzing the argument expression [`ExprKind::List`]
itself to extract the input list length statically.
This implies that the user could only write:
```python
my_rgba_image = np_zeros([600, 800, 4])
# the shape argument is directly written as a list literal.
# and `nac3core` could therefore tell that ndims is `3` by
# looking at the raw AST expression itself.
```
But not:
```python
my_image_dimension = [600, 800, 4]
mystery_function_that_mutates_my_list(my_image_dimension)
my_image = np_zeros(my_image_dimension)
# what is the length now? what is `ndims`?
# it is *basically impossible* to generally determine the
# length of `my_image_dimension` statically for `ndims`!!
```
*/
// Fold `shape`
let shape = self.fold_expr(shape_expr)?;
let shape_ty = shape.custom.unwrap(); // The inferred type of `shape`
// Check `shape_ty` to see if its a list of int32s, a tuple of int32s, or just int32.
// Otherwise throw an error as that would mean the user wrote an ill-typed `shape_expr`.
//
// Here, we also take the opportunity to deduce `ndims` statically for 2. and 3.
let shape_ty_enum = &*self.unifier.get_ty(shape_ty);
let ndims = match shape_ty_enum {
TypeEnum::TList { ty } => {
// Handle 1. A list of int32s
// Typecheck
self.unifier.unify(*ty, self.primitives.int32).map_err(|err| {
HashSet::from([err
.at(Some(shape.location))
.to_display(self.unifier)
.to_string()])
})?;
// Special handling for (1. A python `List` (all `int32s`)).
// Read the doc above this function to see what is going on here.
if let ExprKind::List { elts, .. } = &shape.node {
// The user wrote a List literal as the input argument
elts.len() as u64
} else {
// This means the user is passing an expression of type `List`,
// but it is done so indirectly (like putting a variable referencing a `List`)
// rather than writing a List literal. We need to report an error.
return Err(HashSet::from([
format!(
"Expected list literal, tuple, or int32 for argument {arg_num} of {id} at {location}. Input argument is of type list but not a list literal.",
arg_num = arg_index + 1,
location = shape.location
)
]));
}
}
TypeEnum::TTuple { ty: tuple_element_types } => {
// Handle 2. A tuple of int32s
// Typecheck
// The expected type is just the tuple but with all its elements being int32.
let expected_ty = self.unifier.add_ty(TypeEnum::TTuple {
ty: tuple_element_types.iter().map(|_| self.primitives.int32).collect_vec(),
});
self.unifier.unify(shape_ty, expected_ty).map_err(|err| {
HashSet::from([err
.at(Some(shape.location))
.to_display(self.unifier)
.to_string()])
})?;
// `ndims` can be deduced statically from the inferred Tuple type.
tuple_element_types.len() as u64
}
TypeEnum::TObj { .. } => {
// Handle 3. An integer (generalized as [`TypeEnum::TObj`])
// Typecheck
self.unify(self.primitives.int32, shape_ty, &shape.location)?;
// Deduce `ndims`
1
}
_ => {
// The user wrote an ill-typed `shape_expr`,
// so throw an error.
let shape_ty_str = self.unifier.stringify(shape_ty);
return report_error(
format!(
"Expected list literal, tuple, or int32 for argument {arg_num} of {id}, got {shape_expr_name} of type {shape_ty_str}",
arg_num = arg_index + 1,
shape_expr_name = shape.node.name(),
)
.as_str(),
shape.location,
);
}
};
Ok((ndims, shape))
}
/// Tries to fold a special call. Returns [`Some`] if the call expression `func` is a special call, otherwise
/// returns [`None`].
fn try_fold_special_call(
@ -1141,25 +1285,15 @@ impl<'a> Inferencer<'a> {
}));
}
// 1-argument ndarray n-dimensional creation functions
// 1-argument ndarray n-dimensional factory functions
if ["np_ndarray".into(), "np_empty".into(), "np_zeros".into(), "np_ones".into()]
.contains(id)
&& args.len() == 1
{
let ExprKind::List { elts, .. } = &args[0].node else {
return report_error(
format!(
"Expected List literal for first argument of {id}, got {}",
args[0].node.name()
)
.as_str(),
args[0].location,
);
};
let shape_expr = args.remove(0);
let (ndims, shape) =
self.fold_numpy_function_call_shape_argument(*id, 0, shape_expr)?; // Special handling the `shape`
let ndims = elts.len() as u64;
let arg0 = self.fold_expr(args.remove(0))?;
let ndims = self.unifier.get_fresh_literal(vec![SymbolValue::U64(ndims)], None);
let ret = make_ndarray_ty(
self.unifier,
@ -1170,7 +1304,7 @@ impl<'a> Inferencer<'a> {
let custom = self.unifier.add_ty(TypeEnum::TFunc(FunSignature {
args: vec![FuncArg {
name: "shape".into(),
ty: arg0.custom.unwrap(),
ty: shape.custom.unwrap(),
default_value: None,
}],
ret,
@ -1186,7 +1320,7 @@ impl<'a> Inferencer<'a> {
location: func.location,
node: ExprKind::Name { id: *id, ctx: *ctx },
}),
args: vec![arg0],
args: vec![shape],
keywords: vec![],
},
}));

View File

@ -71,17 +71,44 @@ def output_ndarray_float_2(n: ndarray[float, Literal[2]]):
def consume_ndarray_1(n: ndarray[float, Literal[1]]):
pass
def consume_ndarray_2(n: ndarray[float, Literal[2]]):
pass
def test_ndarray_ctor():
n: ndarray[float, Literal[1]] = np_ndarray([1])
consume_ndarray_1(n)
def test_ndarray_empty():
n: ndarray[float, 1] = np_empty([1])
consume_ndarray_1(n)
n1: ndarray[float, 1] = np_empty([1])
consume_ndarray_1(n1)
n2: ndarray[float, 1] = np_empty(10)
consume_ndarray_1(n2)
n3: ndarray[float, 1] = np_empty((2,))
consume_ndarray_1(n3)
n4: ndarray[float, 2] = np_empty((4, 4))
consume_ndarray_2(n4)
dim4 = (5, 2)
n5: ndarray[float, 2] = np_empty(dim4)
consume_ndarray_2(n5)
def test_ndarray_zeros():
n: ndarray[float, 1] = np_zeros([1])
output_ndarray_float_1(n)
n1: ndarray[float, 1] = np_zeros([1])
output_ndarray_float_1(n1)
k = 3 + int32(n1[0]) # to test variable shape inputs
n2: ndarray[float, 1] = np_zeros(k * k)
output_ndarray_float_1(n2)
n3: ndarray[float, 1] = np_zeros((k * 2,))
output_ndarray_float_1(n3)
dim4 = (3, 2 * k)
n4: ndarray[float, 2] = np_zeros(dim4)
output_ndarray_float_2(n4)
def test_ndarray_ones():
n: ndarray[float, 1] = np_ones([1])