forked from M-Labs/nac3
[core] codegen: Implement NDArray functions from a0a1f35b
This commit is contained in:
parent
624e943cd6
commit
57da0f67d1
@ -732,7 +732,7 @@ fn format_rpc_ret<'ctx>(
|
|||||||
);
|
);
|
||||||
}
|
}
|
||||||
|
|
||||||
ndarray.create_data(generator, ctx, llvm_elem_ty, num_elements);
|
unsafe { ndarray.create_data(generator, ctx) };
|
||||||
|
|
||||||
let ndarray_data = ndarray.data().base_ptr(ctx, generator);
|
let ndarray_data = ndarray.data().base_ptr(ctx, generator);
|
||||||
let ndarray_data_i8 =
|
let ndarray_data_i8 =
|
||||||
|
@ -2560,7 +2560,7 @@ fn gen_ndarray_subscript_expr<'ctx, G: CodeGenerator>(
|
|||||||
generator: &mut G,
|
generator: &mut G,
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
ty: Type,
|
ty: Type,
|
||||||
ndims: Type,
|
ndims_ty: Type,
|
||||||
v: NDArrayValue<'ctx>,
|
v: NDArrayValue<'ctx>,
|
||||||
slice: &Expr<Option<Type>>,
|
slice: &Expr<Option<Type>>,
|
||||||
) -> Result<Option<ValueEnum<'ctx>>, String> {
|
) -> Result<Option<ValueEnum<'ctx>>, String> {
|
||||||
@ -2568,7 +2568,7 @@ fn gen_ndarray_subscript_expr<'ctx, G: CodeGenerator>(
|
|||||||
let llvm_i32 = ctx.ctx.i32_type();
|
let llvm_i32 = ctx.ctx.i32_type();
|
||||||
let llvm_usize = generator.get_size_type(ctx.ctx);
|
let llvm_usize = generator.get_size_type(ctx.ctx);
|
||||||
|
|
||||||
let TypeEnum::TLiteral { values, .. } = &*ctx.unifier.get_ty_immutable(ndims) else {
|
let TypeEnum::TLiteral { values, .. } = &*ctx.unifier.get_ty_immutable(ndims_ty) else {
|
||||||
codegen_unreachable!(ctx)
|
codegen_unreachable!(ctx)
|
||||||
};
|
};
|
||||||
|
|
||||||
@ -2601,10 +2601,6 @@ fn gen_ndarray_subscript_expr<'ctx, G: CodeGenerator>(
|
|||||||
_ => 1,
|
_ => 1,
|
||||||
};
|
};
|
||||||
|
|
||||||
let ndarray_ndims_ty = ctx.unifier.get_fresh_literal(
|
|
||||||
ndims.iter().map(|v| SymbolValue::U64(v - subscripted_dims)).collect(),
|
|
||||||
None,
|
|
||||||
);
|
|
||||||
let llvm_ndarray_data_t = ctx.get_llvm_type(generator, ty).as_basic_type_enum();
|
let llvm_ndarray_data_t = ctx.get_llvm_type(generator, ty).as_basic_type_enum();
|
||||||
let sizeof_elem = llvm_ndarray_data_t.size_of().unwrap();
|
let sizeof_elem = llvm_ndarray_data_t.size_of().unwrap();
|
||||||
|
|
||||||
@ -2798,27 +2794,18 @@ fn gen_ndarray_subscript_expr<'ctx, G: CodeGenerator>(
|
|||||||
// Accessing an element from a multi-dimensional `ndarray`
|
// Accessing an element from a multi-dimensional `ndarray`
|
||||||
let Some(index_addr) = make_indices_arr(generator, ctx)? else { return Ok(None) };
|
let Some(index_addr) = make_indices_arr(generator, ctx)? else { return Ok(None) };
|
||||||
|
|
||||||
|
let num_dims = extract_ndims(&ctx.unifier, ndims_ty) - 1;
|
||||||
|
|
||||||
// Create a new array, remove the top dimension from the dimension-size-list, and copy the
|
// Create a new array, remove the top dimension from the dimension-size-list, and copy the
|
||||||
// elements over
|
// elements over
|
||||||
let ndarray = NDArrayType::new(
|
let ndarray =
|
||||||
generator,
|
NDArrayType::new(generator, ctx.ctx, llvm_ndarray_data_t, Some(num_dims))
|
||||||
ctx.ctx,
|
.construct_uninitialized(
|
||||||
llvm_ndarray_data_t,
|
generator,
|
||||||
Some(extract_ndims(&ctx.unifier, ndarray_ndims_ty)),
|
ctx,
|
||||||
)
|
llvm_usize.const_int(num_dims, false),
|
||||||
.alloca(generator, ctx, None);
|
None,
|
||||||
|
);
|
||||||
let num_dims = v.load_ndims(ctx);
|
|
||||||
ndarray.store_ndims(
|
|
||||||
ctx,
|
|
||||||
generator,
|
|
||||||
ctx.builder
|
|
||||||
.build_int_sub(num_dims, llvm_usize.const_int(1, false), "")
|
|
||||||
.unwrap(),
|
|
||||||
);
|
|
||||||
|
|
||||||
let ndarray_num_dims = ndarray.load_ndims(ctx);
|
|
||||||
ndarray.create_shape(ctx, llvm_usize, ndarray_num_dims);
|
|
||||||
|
|
||||||
let ndarray_num_dims = ctx
|
let ndarray_num_dims = ctx
|
||||||
.builder
|
.builder
|
||||||
@ -2857,7 +2844,7 @@ fn gen_ndarray_subscript_expr<'ctx, G: CodeGenerator>(
|
|||||||
.builder
|
.builder
|
||||||
.build_int_z_extend_or_bit_cast(ndarray_num_elems, sizeof_elem.get_type(), "")
|
.build_int_z_extend_or_bit_cast(ndarray_num_elems, sizeof_elem.get_type(), "")
|
||||||
.unwrap();
|
.unwrap();
|
||||||
ndarray.create_data(generator, ctx, llvm_ndarray_data_t, ndarray_num_elems);
|
unsafe { ndarray.create_data(generator, ctx) };
|
||||||
|
|
||||||
let v_data_src_ptr = v.data().ptr_offset(ctx, generator, &index_addr, None);
|
let v_data_src_ptr = v.data().ptr_offset(ctx, generator, &index_addr, None);
|
||||||
call_memcpy_generic(
|
call_memcpy_generic(
|
||||||
|
@ -40,25 +40,6 @@ use crate::{
|
|||||||
},
|
},
|
||||||
};
|
};
|
||||||
|
|
||||||
/// Creates an uninitialized `NDArray` instance.
|
|
||||||
fn create_ndarray_uninitialized<'ctx, G: CodeGenerator + ?Sized>(
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
||||||
elem_ty: Type,
|
|
||||||
) -> Result<NDArrayValue<'ctx>, String> {
|
|
||||||
let llvm_elem_ty = ctx.get_llvm_type(generator, elem_ty);
|
|
||||||
let llvm_usize = generator.get_size_type(ctx.ctx);
|
|
||||||
|
|
||||||
let llvm_ndarray_t = NDArrayType::new(generator, ctx.ctx, llvm_elem_ty, None)
|
|
||||||
.as_base_type()
|
|
||||||
.get_element_type()
|
|
||||||
.into_struct_type();
|
|
||||||
|
|
||||||
let ndarray = generator.gen_var_alloc(ctx, llvm_ndarray_t.into(), None)?;
|
|
||||||
|
|
||||||
Ok(NDArrayValue::from_pointer_value(ndarray, llvm_elem_ty, None, llvm_usize, None))
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Creates an `NDArray` instance from a dynamic shape.
|
/// Creates an `NDArray` instance from a dynamic shape.
|
||||||
///
|
///
|
||||||
/// * `elem_ty` - The element type of the `NDArray`.
|
/// * `elem_ty` - The element type of the `NDArray`.
|
||||||
@ -84,6 +65,7 @@ where
|
|||||||
) -> Result<IntValue<'ctx>, String>,
|
) -> Result<IntValue<'ctx>, String>,
|
||||||
{
|
{
|
||||||
let llvm_usize = generator.get_size_type(ctx.ctx);
|
let llvm_usize = generator.get_size_type(ctx.ctx);
|
||||||
|
let llvm_elem_ty = ctx.get_llvm_type(generator, elem_ty);
|
||||||
|
|
||||||
// Assert that all dimensions are non-negative
|
// Assert that all dimensions are non-negative
|
||||||
let shape_len = shape_len_fn(generator, ctx, shape)?;
|
let shape_len = shape_len_fn(generator, ctx, shape)?;
|
||||||
@ -123,13 +105,10 @@ where
|
|||||||
llvm_usize.const_int(1, false),
|
llvm_usize.const_int(1, false),
|
||||||
)?;
|
)?;
|
||||||
|
|
||||||
let ndarray = create_ndarray_uninitialized(generator, ctx, elem_ty)?;
|
|
||||||
|
|
||||||
let num_dims = shape_len_fn(generator, ctx, shape)?;
|
let num_dims = shape_len_fn(generator, ctx, shape)?;
|
||||||
ndarray.store_ndims(ctx, generator, num_dims);
|
|
||||||
|
|
||||||
let ndarray_num_dims = ndarray.load_ndims(ctx);
|
let ndarray = NDArrayType::new(generator, ctx.ctx, llvm_elem_ty, None)
|
||||||
ndarray.create_shape(ctx, llvm_usize, ndarray_num_dims);
|
.construct_uninitialized(generator, ctx, num_dims, None);
|
||||||
|
|
||||||
// Copy the dimension sizes from shape to ndarray.dims
|
// Copy the dimension sizes from shape to ndarray.dims
|
||||||
let shape_len = shape_len_fn(generator, ctx, shape)?;
|
let shape_len = shape_len_fn(generator, ctx, shape)?;
|
||||||
@ -154,7 +133,7 @@ where
|
|||||||
llvm_usize.const_int(1, false),
|
llvm_usize.const_int(1, false),
|
||||||
)?;
|
)?;
|
||||||
|
|
||||||
let ndarray = ndarray_init_data(generator, ctx, elem_ty, ndarray);
|
unsafe { ndarray.create_data(generator, ctx) };
|
||||||
|
|
||||||
Ok(ndarray)
|
Ok(ndarray)
|
||||||
}
|
}
|
||||||
@ -194,32 +173,11 @@ pub fn create_ndarray_const_shape<'ctx, G: CodeGenerator + ?Sized>(
|
|||||||
|
|
||||||
let ndarray = NDArrayType::new(generator, ctx.ctx, llvm_dtype, Some(shape.len() as u64))
|
let ndarray = NDArrayType::new(generator, ctx.ctx, llvm_dtype, Some(shape.len() as u64))
|
||||||
.construct_dyn_shape(generator, ctx, shape, None);
|
.construct_dyn_shape(generator, ctx, shape, None);
|
||||||
let ndarray = ndarray_init_data(generator, ctx, elem_ty, ndarray);
|
unsafe { ndarray.create_data(generator, ctx) };
|
||||||
|
|
||||||
Ok(ndarray)
|
Ok(ndarray)
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Initializes the `data` field of [`NDArrayValue`] based on the `ndims` and `dim_sz` fields.
|
|
||||||
fn ndarray_init_data<'ctx, G: CodeGenerator + ?Sized>(
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
||||||
elem_ty: Type,
|
|
||||||
ndarray: NDArrayValue<'ctx>,
|
|
||||||
) -> NDArrayValue<'ctx> {
|
|
||||||
let llvm_ndarray_data_t = ctx.get_llvm_type(generator, elem_ty).as_basic_type_enum();
|
|
||||||
assert!(llvm_ndarray_data_t.is_sized());
|
|
||||||
|
|
||||||
let ndarray_num_elems = call_ndarray_calc_size(
|
|
||||||
generator,
|
|
||||||
ctx,
|
|
||||||
&ndarray.shape().as_slice_value(ctx, generator),
|
|
||||||
(None, None),
|
|
||||||
);
|
|
||||||
ndarray.create_data(generator, ctx, llvm_ndarray_data_t, ndarray_num_elems);
|
|
||||||
|
|
||||||
ndarray
|
|
||||||
}
|
|
||||||
|
|
||||||
fn ndarray_zero_value<'ctx, G: CodeGenerator + ?Sized>(
|
fn ndarray_zero_value<'ctx, G: CodeGenerator + ?Sized>(
|
||||||
generator: &mut G,
|
generator: &mut G,
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
@ -1263,6 +1221,7 @@ pub fn ndarray_sliced_copy<'ctx, G: CodeGenerator + ?Sized>(
|
|||||||
) -> Result<NDArrayValue<'ctx>, String> {
|
) -> Result<NDArrayValue<'ctx>, String> {
|
||||||
let llvm_i32 = ctx.ctx.i32_type();
|
let llvm_i32 = ctx.ctx.i32_type();
|
||||||
let llvm_usize = generator.get_size_type(ctx.ctx);
|
let llvm_usize = generator.get_size_type(ctx.ctx);
|
||||||
|
let llvm_elem_ty = ctx.get_llvm_type(generator, elem_ty);
|
||||||
|
|
||||||
let ndarray = if slices.is_empty() {
|
let ndarray = if slices.is_empty() {
|
||||||
create_ndarray_dyn_shape(
|
create_ndarray_dyn_shape(
|
||||||
@ -1276,8 +1235,8 @@ pub fn ndarray_sliced_copy<'ctx, G: CodeGenerator + ?Sized>(
|
|||||||
},
|
},
|
||||||
)?
|
)?
|
||||||
} else {
|
} else {
|
||||||
let ndarray = create_ndarray_uninitialized(generator, ctx, elem_ty)?;
|
let ndarray = NDArrayType::new(generator, ctx.ctx, llvm_elem_ty, None)
|
||||||
ndarray.store_ndims(ctx, generator, this.load_ndims(ctx));
|
.construct_uninitialized(generator, ctx, this.load_ndims(ctx), None);
|
||||||
|
|
||||||
let ndims = this.load_ndims(ctx);
|
let ndims = this.load_ndims(ctx);
|
||||||
ndarray.create_shape(ctx, llvm_usize, ndims);
|
ndarray.create_shape(ctx, llvm_usize, ndims);
|
||||||
@ -1340,7 +1299,9 @@ pub fn ndarray_sliced_copy<'ctx, G: CodeGenerator + ?Sized>(
|
|||||||
)
|
)
|
||||||
.unwrap();
|
.unwrap();
|
||||||
|
|
||||||
ndarray_init_data(generator, ctx, elem_ty, ndarray)
|
unsafe { ndarray.create_data(generator, ctx) };
|
||||||
|
|
||||||
|
ndarray
|
||||||
};
|
};
|
||||||
|
|
||||||
ndarray_sliced_copyto_impl(
|
ndarray_sliced_copyto_impl(
|
||||||
|
@ -214,7 +214,7 @@ impl<'ctx> NDArrayType<'ctx> {
|
|||||||
|
|
||||||
let itemsize = ctx
|
let itemsize = ctx
|
||||||
.builder
|
.builder
|
||||||
.build_int_z_extend_or_bit_cast(self.dtype.size_of().unwrap(), self.llvm_usize, "")
|
.build_int_truncate_or_bit_cast(self.dtype.size_of().unwrap(), self.llvm_usize, "")
|
||||||
.unwrap();
|
.unwrap();
|
||||||
ndarray.store_itemsize(ctx, generator, itemsize);
|
ndarray.store_itemsize(ctx, generator, itemsize);
|
||||||
|
|
||||||
|
@ -10,7 +10,7 @@ use super::{
|
|||||||
};
|
};
|
||||||
use crate::codegen::{
|
use crate::codegen::{
|
||||||
irrt,
|
irrt,
|
||||||
llvm_intrinsics::call_int_umin,
|
llvm_intrinsics::{call_int_umin, call_memcpy_generic_array},
|
||||||
stmt::gen_for_callback_incrementing,
|
stmt::gen_for_callback_incrementing,
|
||||||
type_aligned_alloca,
|
type_aligned_alloca,
|
||||||
types::{structure::StructField, NDArrayType},
|
types::{structure::StructField, NDArrayType},
|
||||||
@ -186,21 +186,23 @@ impl<'ctx> NDArrayValue<'ctx> {
|
|||||||
|
|
||||||
/// Convenience method for creating a new array storing data elements with the given element
|
/// Convenience method for creating a new array storing data elements with the given element
|
||||||
/// type `elem_ty` and `size`.
|
/// type `elem_ty` and `size`.
|
||||||
pub fn create_data<G: CodeGenerator + ?Sized>(
|
///
|
||||||
|
/// The data buffer will be allocated on the stack, and is considered to be owned by this ndarray instance.
|
||||||
|
///
|
||||||
|
/// # Safety
|
||||||
|
///
|
||||||
|
/// The caller must ensure that `shape` and `itemsize` of this ndarray instance is initialized.
|
||||||
|
pub unsafe fn create_data<G: CodeGenerator + ?Sized>(
|
||||||
&self,
|
&self,
|
||||||
generator: &mut G,
|
generator: &mut G,
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
elem_ty: BasicTypeEnum<'ctx>,
|
|
||||||
size: IntValue<'ctx>,
|
|
||||||
) {
|
) {
|
||||||
let itemsize = ctx
|
let nbytes = self.nbytes(generator, ctx);
|
||||||
.builder
|
|
||||||
.build_int_z_extend_or_bit_cast(elem_ty.size_of().unwrap(), size.get_type(), "")
|
|
||||||
.unwrap();
|
|
||||||
let nbytes = ctx.builder.build_int_mul(size, itemsize, "").unwrap();
|
|
||||||
|
|
||||||
let data = type_aligned_alloca(generator, ctx, elem_ty, nbytes, None);
|
let data = type_aligned_alloca(generator, ctx, self.dtype, nbytes, None);
|
||||||
self.store_data(ctx, data);
|
self.store_data(ctx, data);
|
||||||
|
|
||||||
|
self.set_strides_contiguous(generator, ctx);
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Returns a proxy object to the field storing the data of this `NDArray`.
|
/// Returns a proxy object to the field storing the data of this `NDArray`.
|
||||||
@ -208,6 +210,173 @@ impl<'ctx> NDArrayValue<'ctx> {
|
|||||||
pub fn data(&self) -> NDArrayDataProxy<'ctx, '_> {
|
pub fn data(&self) -> NDArrayDataProxy<'ctx, '_> {
|
||||||
NDArrayDataProxy(self)
|
NDArrayDataProxy(self)
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/// Copy shape dimensions from an array.
|
||||||
|
pub fn copy_shape_from_array<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &G,
|
||||||
|
ctx: &CodeGenContext<'ctx, '_>,
|
||||||
|
shape: PointerValue<'ctx>,
|
||||||
|
) {
|
||||||
|
let num_items = self.load_ndims(ctx);
|
||||||
|
|
||||||
|
call_memcpy_generic_array(
|
||||||
|
ctx,
|
||||||
|
self.shape().base_ptr(ctx, generator),
|
||||||
|
shape,
|
||||||
|
num_items,
|
||||||
|
ctx.ctx.bool_type().const_zero(),
|
||||||
|
);
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Copy shape dimensions from an ndarray.
|
||||||
|
/// Panics if `ndims` mismatches.
|
||||||
|
pub fn copy_shape_from_ndarray<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
src_ndarray: NDArrayValue<'ctx>,
|
||||||
|
) {
|
||||||
|
if self.ndims.is_some() && src_ndarray.ndims.is_some() {
|
||||||
|
assert_eq!(self.ndims, src_ndarray.ndims);
|
||||||
|
} else {
|
||||||
|
let self_ndims = self.load_ndims(ctx);
|
||||||
|
let src_ndims = src_ndarray.load_ndims(ctx);
|
||||||
|
|
||||||
|
ctx.make_assert(
|
||||||
|
generator,
|
||||||
|
ctx.builder.build_int_compare(
|
||||||
|
IntPredicate::EQ,
|
||||||
|
self_ndims,
|
||||||
|
src_ndims,
|
||||||
|
""
|
||||||
|
).unwrap(),
|
||||||
|
"0:AssertionError",
|
||||||
|
"NDArrayValue::copy_shape_from_ndarray: Expected self.ndims ({0}) == src_ndarray.ndims ({1})",
|
||||||
|
[Some(self_ndims), Some(src_ndims), None],
|
||||||
|
ctx.current_loc
|
||||||
|
);
|
||||||
|
}
|
||||||
|
|
||||||
|
let src_shape = src_ndarray.shape().base_ptr(ctx, generator);
|
||||||
|
self.copy_shape_from_array(generator, ctx, src_shape);
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Copy strides dimensions from an array.
|
||||||
|
pub fn copy_strides_from_array<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &G,
|
||||||
|
ctx: &CodeGenContext<'ctx, '_>,
|
||||||
|
strides: PointerValue<'ctx>,
|
||||||
|
) {
|
||||||
|
let num_items = self.load_ndims(ctx);
|
||||||
|
|
||||||
|
call_memcpy_generic_array(
|
||||||
|
ctx,
|
||||||
|
self.strides().base_ptr(ctx, generator),
|
||||||
|
strides,
|
||||||
|
num_items,
|
||||||
|
ctx.ctx.bool_type().const_zero(),
|
||||||
|
);
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Copy strides dimensions from an ndarray.
|
||||||
|
/// Panics if `ndims` mismatches.
|
||||||
|
pub fn copy_strides_from_ndarray<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
src_ndarray: NDArrayValue<'ctx>,
|
||||||
|
) {
|
||||||
|
if self.ndims.is_some() && src_ndarray.ndims.is_some() {
|
||||||
|
assert_eq!(self.ndims, src_ndarray.ndims);
|
||||||
|
} else {
|
||||||
|
let self_ndims = self.load_ndims(ctx);
|
||||||
|
let src_ndims = src_ndarray.load_ndims(ctx);
|
||||||
|
|
||||||
|
ctx.make_assert(
|
||||||
|
generator,
|
||||||
|
ctx.builder.build_int_compare(
|
||||||
|
IntPredicate::EQ,
|
||||||
|
self_ndims,
|
||||||
|
src_ndims,
|
||||||
|
""
|
||||||
|
).unwrap(),
|
||||||
|
"0:AssertionError",
|
||||||
|
"NDArrayValue::copy_shape_from_ndarray: Expected self.ndims ({0}) == src_ndarray.ndims ({1})",
|
||||||
|
[Some(self_ndims), Some(src_ndims), None],
|
||||||
|
ctx.current_loc
|
||||||
|
);
|
||||||
|
}
|
||||||
|
|
||||||
|
let src_strides = src_ndarray.strides().base_ptr(ctx, generator);
|
||||||
|
self.copy_strides_from_array(generator, ctx, src_strides);
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Get the `np.size()` of this ndarray.
|
||||||
|
pub fn size<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &G,
|
||||||
|
ctx: &CodeGenContext<'ctx, '_>,
|
||||||
|
) -> IntValue<'ctx> {
|
||||||
|
irrt::ndarray::call_nac3_ndarray_size(generator, ctx, *self)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Get the `ndarray.nbytes` of this ndarray.
|
||||||
|
pub fn nbytes<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &G,
|
||||||
|
ctx: &CodeGenContext<'ctx, '_>,
|
||||||
|
) -> IntValue<'ctx> {
|
||||||
|
irrt::ndarray::call_nac3_ndarray_nbytes(generator, ctx, *self)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Get the `len()` of this ndarray.
|
||||||
|
pub fn len<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &G,
|
||||||
|
ctx: &CodeGenContext<'ctx, '_>,
|
||||||
|
) -> IntValue<'ctx> {
|
||||||
|
irrt::ndarray::call_nac3_ndarray_len(generator, ctx, *self)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Check if this ndarray is C-contiguous.
|
||||||
|
///
|
||||||
|
/// See NumPy's `flags["C_CONTIGUOUS"]`: <https://numpy.org/doc/stable/reference/generated/numpy.ndarray.flags.html#numpy.ndarray.flags>
|
||||||
|
pub fn is_c_contiguous<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &G,
|
||||||
|
ctx: &CodeGenContext<'ctx, '_>,
|
||||||
|
) -> IntValue<'ctx> {
|
||||||
|
irrt::ndarray::call_nac3_ndarray_is_c_contiguous(generator, ctx, *self)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Call [`call_nac3_ndarray_set_strides_by_shape`] on this ndarray to update `strides`.
|
||||||
|
///
|
||||||
|
/// Update the ndarray's strides to make the ndarray contiguous.
|
||||||
|
pub fn set_strides_contiguous<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &G,
|
||||||
|
ctx: &CodeGenContext<'ctx, '_>,
|
||||||
|
) {
|
||||||
|
irrt::ndarray::call_nac3_ndarray_set_strides_by_shape(generator, ctx, *self);
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Copy data from another ndarray.
|
||||||
|
///
|
||||||
|
/// This ndarray and `src` is that their `np.size()` should be the same. Their shapes
|
||||||
|
/// do not matter. The copying order is determined by how their flattened views look.
|
||||||
|
///
|
||||||
|
/// Panics if the `dtype`s of ndarrays are different.
|
||||||
|
pub fn copy_data_from<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &G,
|
||||||
|
ctx: &CodeGenContext<'ctx, '_>,
|
||||||
|
src: NDArrayValue<'ctx>,
|
||||||
|
) {
|
||||||
|
assert_eq!(self.dtype, src.dtype, "self and src dtype should match");
|
||||||
|
irrt::ndarray::call_nac3_ndarray_copy_data(generator, ctx, src, *self);
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
impl<'ctx> ProxyValue<'ctx> for NDArrayValue<'ctx> {
|
impl<'ctx> ProxyValue<'ctx> for NDArrayValue<'ctx> {
|
||||||
|
Loading…
Reference in New Issue
Block a user