1
0
forked from M-Labs/nac3

modified the with_context api and add error_stack

This commit is contained in:
CrescentonC 2021-07-26 13:01:47 +08:00
parent bf675e0863
commit 132bc101b0
2 changed files with 96 additions and 73 deletions

View File

@ -56,8 +56,17 @@ impl<'a> InferenceContext<'a> {
where where
F: FnOnce(&mut Self) -> R, F: FnOnce(&mut Self) -> R,
{ {
self.stack.level += 1; self.start_scope();
let result = f(self); let result = f(self);
let poped_names = self.end_scope();
(poped_names, result)
}
pub fn start_scope(&mut self) {
self.stack.level += 1;
}
pub fn end_scope(&mut self) -> Vec<(String, Type, Location)> {
self.stack.level -= 1; self.stack.level -= 1;
let mut poped_names = Vec::new(); let mut poped_names = Vec::new();
while !self.stack.sym_def.is_empty() { while !self.stack.sym_def.is_empty() {
@ -72,7 +81,7 @@ impl<'a> InferenceContext<'a> {
break; break;
} }
} }
(poped_names, result) poped_names
} }
/// assign a type to an identifier. /// assign a type to an identifier.

View File

@ -8,7 +8,12 @@ use crate::typecheck::primitives;
use rustpython_parser::ast; use rustpython_parser::ast;
use rustpython_parser::ast::fold::Fold; use rustpython_parser::ast::fold::Fold;
impl<'a> ast::fold::Fold<()> for InferenceContext<'a> { pub struct TypeInferencer<'a> {
pub ctx: InferenceContext<'a>,
pub error_stack: Vec<(String, ast::Location)>
}
impl<'a> ast::fold::Fold<()> for TypeInferencer<'a> {
type TargetU = Option<Type>; type TargetU = Option<Type>;
type Error = String; type Error = String;
@ -17,8 +22,8 @@ impl<'a> ast::fold::Fold<()> for InferenceContext<'a> {
} }
fn fold_expr(&mut self, node: ast::Expr<()>) -> Result<ast::Expr<Self::TargetU>, Self::Error> { fn fold_expr(&mut self, node: ast::Expr<()>) -> Result<ast::Expr<Self::TargetU>, Self::Error> {
// assert_eq!(node.custom, None); self.error_stack.push((node.node.name().into(), node.location));
let expr = match &node.node { let expr = match &node.node {
ast::ExprKind::ListComp { .. } => return self.fold_listcomp(node), ast::ExprKind::ListComp { .. } => return self.fold_listcomp(node),
_ => rustpython_parser::ast::fold::fold_expr(self, node)? _ => rustpython_parser::ast::fold::fold_expr(self, node)?
@ -28,7 +33,7 @@ impl<'a> ast::fold::Fold<()> for InferenceContext<'a> {
// compute type info and store in the custom field // compute type info and store in the custom field
custom: match &expr.node { custom: match &expr.node {
ast::ExprKind::Constant {value, kind: _} => self.infer_constant(value), ast::ExprKind::Constant {value, kind: _} => self.infer_constant(value),
ast::ExprKind::Name {id, ctx: _} => Ok(Some(self.resolve(id)?)), ast::ExprKind::Name {id, ctx: _} => Ok(Some(self.ctx.resolve(id)?)),
ast::ExprKind::List {elts, ctx: _} => self.infer_list(elts), ast::ExprKind::List {elts, ctx: _} => self.infer_list(elts),
ast::ExprKind::Tuple {elts, ctx: _} => self.infer_tuple(elts), ast::ExprKind::Tuple {elts, ctx: _} => self.infer_tuple(elts),
ast::ExprKind::Attribute {value, attr, ctx: _} => self.infer_attribute(value, attr), ast::ExprKind::Attribute {value, attr, ctx: _} => self.infer_attribute(value, attr),
@ -49,27 +54,27 @@ impl<'a> ast::fold::Fold<()> for InferenceContext<'a> {
} }
} }
impl<'a> InferenceContext<'a> { impl<'a> TypeInferencer<'a> {
fn infer_constant(&self, constant: &ast::Constant) -> Result<Option<Type>, String> { fn infer_constant(&self, constant: &ast::Constant) -> Result<Option<Type>, String> {
match constant { match constant {
ast::Constant::Bool(_) => ast::Constant::Bool(_) =>
Ok(Some(self.get_primitive(primitives::BOOL_TYPE))), Ok(Some(self.ctx.get_primitive(primitives::BOOL_TYPE))),
ast::Constant::Int(val) => { ast::Constant::Int(val) => {
let int32: Result<i32, _> = val.try_into(); let int32: Result<i32, _> = val.try_into();
let int64: Result<i64, _> = val.try_into(); let int64: Result<i64, _> = val.try_into();
if int32.is_ok() { if int32.is_ok() {
Ok(Some(self.get_primitive(primitives::INT32_TYPE))) Ok(Some(self.ctx.get_primitive(primitives::INT32_TYPE)))
} else if int64.is_ok() { } else if int64.is_ok() {
Ok(Some(self.get_primitive(primitives::INT64_TYPE))) Ok(Some(self.ctx.get_primitive(primitives::INT64_TYPE)))
} else { } else {
Err("Integer out of bound".into()) Err("Integer out of bound".into())
} }
}, },
ast::Constant::Float(_) => ast::Constant::Float(_) =>
Ok(Some(self.get_primitive(primitives::FLOAT_TYPE))), Ok(Some(self.ctx.get_primitive(primitives::FLOAT_TYPE))),
ast::Constant::Tuple(vals) => { ast::Constant::Tuple(vals) => {
let result = vals let result = vals
@ -134,16 +139,16 @@ impl<'a> InferenceContext<'a> {
fn infer_attribute(&self, value: &ast::Expr<Option<Type>>, attr: &str) -> Result<Option<Type>, String> { fn infer_attribute(&self, value: &ast::Expr<Option<Type>>, attr: &str) -> Result<Option<Type>, String> {
let ty = value.custom.clone().ok_or_else(|| "no value".to_string())?; let ty = value.custom.clone().ok_or_else(|| "no value".to_string())?;
if let TypeEnum::TypeVariable(id) = ty.as_ref() { if let TypeEnum::TypeVariable(id) = ty.as_ref() {
let v = self.get_variable_def(*id); let v = self.ctx.get_variable_def(*id);
if v.bound.is_empty() { if v.bound.is_empty() {
return Err("no fields on unbounded type variable".into()); return Err("no fields on unbounded type variable".into());
} }
let ty = v.bound[0].get_base(&self).and_then(|v| v.fields.get(attr)); let ty = v.bound[0].get_base(&self.ctx).and_then(|v| v.fields.get(attr));
if ty.is_none() { if ty.is_none() {
return Err("unknown field".into()); return Err("unknown field".into());
} }
for x in v.bound[1..].iter() { for x in v.bound[1..].iter() {
let ty1 = x.get_base(&self).and_then(|v| v.fields.get(attr)); let ty1 = x.get_base(&self.ctx).and_then(|v| v.fields.get(attr));
if ty1 != ty { if ty1 != ty {
return Err("unknown field (type mismatch between variants)".into()); return Err("unknown field (type mismatch between variants)".into());
} }
@ -151,7 +156,7 @@ impl<'a> InferenceContext<'a> {
return Ok(Some(ty.unwrap().clone())); return Ok(Some(ty.unwrap().clone()));
} }
match ty.get_base(&self) { match ty.get_base(&self.ctx) {
Some(b) => match b.fields.get(attr) { Some(b) => match b.fields.get(attr) {
Some(t) => Ok(Some(t.clone())), Some(t) => Ok(Some(t.clone())),
None => Err("no such field".into()), None => Err("no such field".into()),
@ -164,7 +169,7 @@ impl<'a> InferenceContext<'a> {
assert_eq!(values.len(), 2); assert_eq!(values.len(), 2);
let left = values[0].custom.clone().ok_or_else(|| "no value".to_string())?; let left = values[0].custom.clone().ok_or_else(|| "no value".to_string())?;
let right = values[1].custom.clone().ok_or_else(|| "no value".to_string())?; let right = values[1].custom.clone().ok_or_else(|| "no value".to_string())?;
let b = self.get_primitive(primitives::BOOL_TYPE); let b = self.ctx.get_primitive(primitives::BOOL_TYPE);
if left == b && right == b { if left == b && right == b {
Ok(Some(b)) Ok(Some(b))
} else { } else {
@ -174,7 +179,7 @@ impl<'a> InferenceContext<'a> {
fn infer_bin_ops(&self, left: &ast::Expr<Option<Type>>, op: &ast::Operator, right: &ast::Expr<Option<Type>>) -> Result<Option<Type>, String> { fn infer_bin_ops(&self, left: &ast::Expr<Option<Type>>, op: &ast::Operator, right: &ast::Expr<Option<Type>>) -> Result<Option<Type>, String> {
inference_core::resolve_call( inference_core::resolve_call(
&self, &self.ctx,
Some(left.custom.clone().ok_or_else(|| "no value".to_string())?), Some(left.custom.clone().ok_or_else(|| "no value".to_string())?),
magic_methods::binop_name(op), magic_methods::binop_name(op),
&[right.custom.clone().ok_or_else(|| "no value".to_string())?]) &[right.custom.clone().ok_or_else(|| "no value".to_string())?])
@ -182,13 +187,13 @@ impl<'a> InferenceContext<'a> {
fn infer_unary_ops(&self, op: &ast::Unaryop, operand: &ast::Expr<Option<Type>>) -> Result<Option<Type>, String> { fn infer_unary_ops(&self, op: &ast::Unaryop, operand: &ast::Expr<Option<Type>>) -> Result<Option<Type>, String> {
if let ast::Unaryop::Not = op { if let ast::Unaryop::Not = op {
if operand.custom == Some(self.get_primitive(primitives::BOOL_TYPE)) { if operand.custom == Some(self.ctx.get_primitive(primitives::BOOL_TYPE)) {
Ok(Some(self.get_primitive(primitives::BOOL_TYPE))) Ok(Some(self.ctx.get_primitive(primitives::BOOL_TYPE)))
} else { } else {
Err("logical not must be applied to bool".into()) Err("logical not must be applied to bool".into())
} }
} else { } else {
inference_core::resolve_call(&self, operand.custom.clone(), magic_methods::unaryop_name(op), &[]) inference_core::resolve_call(&self.ctx, operand.custom.clone(), magic_methods::unaryop_name(op), &[])
} }
} }
@ -196,9 +201,9 @@ impl<'a> InferenceContext<'a> {
if left.custom.is_none() || (!comparators.iter().all(|x| x.custom.is_some())) { if left.custom.is_none() || (!comparators.iter().all(|x| x.custom.is_some())) {
Err("comparison operands must have type".into()) Err("comparison operands must have type".into())
} else { } else {
let bool_type = Some(self.get_primitive(primitives::BOOL_TYPE)); let bool_type = Some(self.ctx.get_primitive(primitives::BOOL_TYPE));
let ty_first = inference_core::resolve_call( let ty_first = inference_core::resolve_call(
&self, &self.ctx,
Some(left.custom.clone().ok_or_else(|| "comparator must be able to be typed".to_string())?), Some(left.custom.clone().ok_or_else(|| "comparator must be able to be typed".to_string())?),
magic_methods::comparison_name(&ops[0]).ok_or_else(|| "unsupported comparison".to_string())?, magic_methods::comparison_name(&ops[0]).ok_or_else(|| "unsupported comparison".to_string())?,
&[comparators[0].custom.clone().ok_or_else(|| "comparator must be able to be typed".to_string())?])?; &[comparators[0].custom.clone().ok_or_else(|| "comparator must be able to be typed".to_string())?])?;
@ -212,7 +217,7 @@ impl<'a> InferenceContext<'a> {
.zip(comparators[1..].iter()) .zip(comparators[1..].iter())
.zip(ops[1..].iter()) { .zip(ops[1..].iter()) {
let ty = inference_core::resolve_call( let ty = inference_core::resolve_call(
&self, &self.ctx,
Some(a.custom.clone().ok_or_else(|| "comparator must be able to be typed".to_string())?.clone()), Some(a.custom.clone().ok_or_else(|| "comparator must be able to be typed".to_string())?.clone()),
magic_methods::comparison_name(op).ok_or_else(|| "unsupported comparison".to_string())?, magic_methods::comparison_name(op).ok_or_else(|| "unsupported comparison".to_string())?,
&[b.custom.clone().ok_or_else(|| "comparator must be able to be typed".to_string())?.clone()])?; &[b.custom.clone().ok_or_else(|| "comparator must be able to be typed".to_string())?.clone()])?;
@ -229,14 +234,14 @@ impl<'a> InferenceContext<'a> {
match &func.node { match &func.node {
ast::ExprKind::Name {id, ctx: _} ast::ExprKind::Name {id, ctx: _}
=> inference_core::resolve_call( => inference_core::resolve_call(
&self, &self.ctx,
None, None,
id, id,
&args.iter().map(|x| x.custom.clone().unwrap()).collect::<Vec<_>>()), &args.iter().map(|x| x.custom.clone().unwrap()).collect::<Vec<_>>()),
ast::ExprKind::Attribute {value, attr, ctx: _} ast::ExprKind::Attribute {value, attr, ctx: _}
=> inference_core::resolve_call( => inference_core::resolve_call(
&self, &self.ctx,
Some(value.custom.clone().ok_or_else(|| "no value".to_string())?), Some(value.custom.clone().ok_or_else(|| "no value".to_string())?),
&attr, &attr,
&args.iter().map(|x| x.custom.clone().unwrap()).collect::<Vec<_>>()), &args.iter().map(|x| x.custom.clone().unwrap()).collect::<Vec<_>>()),
@ -252,7 +257,7 @@ impl<'a> InferenceContext<'a> {
let val_type = value.custom.as_ref().ok_or_else(|| "no value".to_string())?.as_ref(); let val_type = value.custom.as_ref().ok_or_else(|| "no value".to_string())?.as_ref();
if let TypeEnum::ParametricType(primitives::LIST_TYPE, ls) = val_type { if let TypeEnum::ParametricType(primitives::LIST_TYPE, ls) = val_type {
if let ast::ExprKind::Slice {lower, upper, step} = &slice.node { if let ast::ExprKind::Slice {lower, upper, step} = &slice.node {
let int32_type = self.get_primitive(primitives::INT32_TYPE); let int32_type = self.ctx.get_primitive(primitives::INT32_TYPE);
let l = lower.as_ref().map_or( let l = lower.as_ref().map_or(
Ok(&int32_type), Ok(&int32_type),
|x| x.custom.as_ref().ok_or_else(|| "lower bound cannot be typped".to_string()))?; |x| x.custom.as_ref().ok_or_else(|| "lower bound cannot be typped".to_string()))?;
@ -268,7 +273,7 @@ impl<'a> InferenceContext<'a> {
} else { } else {
Err("slice must be int32 type".into()) Err("slice must be int32 type".into())
} }
} else if slice.custom == Some(self.get_primitive(primitives::INT32_TYPE)) { } else if slice.custom == Some(self.ctx.get_primitive(primitives::INT32_TYPE)) {
Ok(Some(ls[0].clone())) Ok(Some(ls[0].clone()))
} else { } else {
Err("slice or index must be int32 type".into()) Err("slice or index must be int32 type".into())
@ -290,7 +295,7 @@ impl<'a> InferenceContext<'a> {
} }
fn infer_if_expr(&self, test: &ast::Expr<Option<Type>>, body: &ast::Expr<Option<Type>>, orelse: &ast::Expr<Option<Type>>) -> Result<Option<Type>, String> { fn infer_if_expr(&self, test: &ast::Expr<Option<Type>>, body: &ast::Expr<Option<Type>>, orelse: &ast::Expr<Option<Type>>) -> Result<Option<Type>, String> {
if test.custom != Some(self.get_primitive(primitives::BOOL_TYPE)) { if test.custom != Some(self.ctx.get_primitive(primitives::BOOL_TYPE)) {
Err("test should be bool".into()) Err("test should be bool".into())
} else if body.custom == orelse.custom { } else if body.custom == orelse.custom {
Ok(body.custom.clone()) Ok(body.custom.clone())
@ -303,7 +308,7 @@ impl<'a> InferenceContext<'a> {
if generators[0] if generators[0]
.ifs .ifs
.iter() .iter()
.all(|x| x.custom == Some(self.get_primitive(primitives::BOOL_TYPE))) { .all(|x| x.custom == Some(self.ctx.get_primitive(primitives::BOOL_TYPE))) {
Ok(Some(TypeEnum::ParametricType( Ok(Some(TypeEnum::ParametricType(
primitives::LIST_TYPE, primitives::LIST_TYPE,
vec![elt.custom.clone().ok_or_else(|| "elements should have value".to_string())?]).into())) vec![elt.custom.clone().ok_or_else(|| "elements should have value".to_string())?]).into()))
@ -343,40 +348,43 @@ impl<'a> InferenceContext<'a> {
.ok_or_else(|| "no value".to_string())? .ok_or_else(|| "no value".to_string())?
.as_ref() .as_ref()
.clone() { .clone() {
self.with_scope(|ctx| -> Result<ast::Expr<Option<Type>>, String> {
ctx.infer_simple_binding(&target, ls[0].clone())?; self.ctx.start_scope();
let elt_folded = Box::new(ctx.fold_expr(*elt)?); self.infer_simple_binding(&target, ls[0].clone())?;
let target_folded = Box::new(ctx.fold_expr(*target)?); let elt_folded = Box::new(self.fold_expr(*elt)?);
let ifs_folded = ifs let target_folded = Box::new(self.fold_expr(*target)?);
.into_iter() let ifs_folded = ifs
.map(|x| ctx.fold_expr(x)) .into_iter()
.collect::<Result<Vec<ast::Expr<Option<Type>>>, _>>()?; .map(|x| self.fold_expr(x))
.collect::<Result<Vec<ast::Expr<Option<Type>>>, _>>()?;
let result =
if ifs_folded if ifs_folded
.iter() .iter()
.all(|x| x.custom == Some(ctx.get_primitive(primitives::BOOL_TYPE))) { .all(|x| x.custom == Some(self.ctx.get_primitive(primitives::BOOL_TYPE))) {
Ok(ast::Expr { Ok(ast::Expr {
location, location,
custom: Some(TypeEnum::ParametricType( custom: Some(TypeEnum::ParametricType(
primitives::LIST_TYPE, primitives::LIST_TYPE,
vec![elt_folded vec![elt_folded
.custom .custom
.clone() .clone()
.ok_or_else(|| "elements cannot be typped".to_string())?]).into()), .ok_or_else(|| "elements cannot be typped".to_string())?]).into()),
node: ast::ExprKind::ListComp { node: ast::ExprKind::ListComp {
elt: elt_folded, elt: elt_folded,
generators: vec![ast::Comprehension { generators: vec![ast::Comprehension {
target: target_folded, target: target_folded,
ifs: ifs_folded, ifs: ifs_folded,
iter: iter_folded, iter: iter_folded,
is_async is_async
}] }]
} }
}) })
} else { } else {
Err("test must be bool".into()) Err("test must be bool".into())
} };
}).1 self.ctx.end_scope();
result
} else { } else {
Err("iteration is supported for list only".into()) Err("iteration is supported for list only".into())
} }
@ -390,10 +398,10 @@ impl<'a> InferenceContext<'a> {
ast::ExprKind::Name {id, ctx: _} => { ast::ExprKind::Name {id, ctx: _} => {
if id == "_" { if id == "_" {
Ok(()) Ok(())
} else if self.defined(id) { } else if self.ctx.defined(id) {
Err("duplicated naming".into()) Err("duplicated naming".into())
} else { } else {
self.assign(id.clone(), ty, name.location)?; self.ctx.assign(id.clone(), ty, name.location)?;
Ok(()) Ok(())
} }
} }
@ -415,14 +423,13 @@ impl<'a> InferenceContext<'a> {
_ => Err("not supported".into()) _ => Err("not supported".into())
} }
} }
}
pub struct ExpressionInferencer<'a> { fn fold_expr(&mut self, node: ast::Expr<()>) -> Result<ast::Expr<Option<Type>>, String> {
pub ctx: InferenceContext<'a> let result = <Self as ast::fold::Fold<()>>::fold_expr(self, node);
} if result.is_err() {
impl<'a> ExpressionInferencer<'a> { println!("{:?}", self.error_stack.pop().unwrap());
pub fn fold_expr(&mut self, expr: ast::Expr) -> Result<ast::Expr<Option<Type>>, String> { }
self.ctx.fold_expr(expr) result
} }
} }
@ -432,7 +439,7 @@ pub mod test {
use rustpython_parser::ast::Expr; use rustpython_parser::ast::Expr;
use super::*; use super::*;
pub fn new_ctx<'a>() -> ExpressionInferencer<'a> { pub fn new_ctx<'a>() -> TypeInferencer<'a> {
struct S; struct S;
impl SymbolResolver for S { impl SymbolResolver for S {
fn get_symbol_location(&self, _str: &str) -> Option<Location> { None } fn get_symbol_location(&self, _str: &str) -> Option<Location> { None }
@ -440,7 +447,10 @@ pub mod test {
fn get_symbol_value(&self, _str: &str) -> Option<SymbolValue> { None } fn get_symbol_value(&self, _str: &str) -> Option<SymbolValue> { None }
} }
ExpressionInferencer {ctx: InferenceContext::new(primitives::basic_ctx(), Box::new(S{}), FileID(3))} TypeInferencer {
ctx: InferenceContext::new(primitives::basic_ctx(), Box::new(S{}), FileID(3)),
error_stack: Vec::new()
}
} }
#[test] #[test]
@ -627,6 +637,8 @@ pub mod test {
let ast10 = rustpython_parser::parser::parse_expression("4 if False and True else 8").unwrap(); let ast10 = rustpython_parser::parser::parse_expression("4 if False and True else 8").unwrap();
let ast11 = rustpython_parser::parser::parse_expression("(1, 2, 3, 4)[1]").unwrap(); let ast11 = rustpython_parser::parser::parse_expression("(1, 2, 3, 4)[1]").unwrap();
let ast12 = rustpython_parser::parser::parse_expression("(1, True, 3, False)[1]").unwrap(); let ast12 = rustpython_parser::parser::parse_expression("(1, True, 3, False)[1]").unwrap();
let ast13 = rustpython_parser::parser::parse_expression("[1, True, 2]").unwrap();
let folded = inf.fold_expr(ast1).unwrap(); let folded = inf.fold_expr(ast1).unwrap();
let folded_2 = inf.fold_expr(ast2).unwrap(); let folded_2 = inf.fold_expr(ast2).unwrap();
@ -640,9 +652,11 @@ pub mod test {
let folded_10 = inf.fold_expr(ast10).unwrap(); let folded_10 = inf.fold_expr(ast10).unwrap();
let folded_11 = inf.fold_expr(ast11).unwrap(); let folded_11 = inf.fold_expr(ast11).unwrap();
let folded_12 = inf.fold_expr(ast12).unwrap(); let folded_12 = inf.fold_expr(ast12).unwrap();
println!("{:?}", folded.custom); println!("{:?}", folded.custom);
println!("{:?}", folded_2.custom); println!("{:?}", folded_2.custom);
let folded_13 = inf.fold_expr(ast13);
println!("{:?}", folded_3.custom); println!("{:?}", folded_3.custom);
println!("{:?}", folded_4.custom); println!("{:?}", folded_4.custom);
println!("{:?}", folded_5.custom); println!("{:?}", folded_5.custom);