1
0
forked from M-Labs/artiq
artiq/artiq/language/environment.py

318 lines
11 KiB
Python

from collections import OrderedDict
from inspect import isclass
__all__ = ["NoDefault",
"FreeValue", "BooleanValue", "EnumerationValue",
"NumberValue", "StringValue",
"HasEnvironment",
"Experiment", "EnvExperiment", "is_experiment"]
class NoDefault:
"""Represents the absence of a default value."""
pass
class DefaultMissing(Exception):
"""Raised by the ``default`` method of argument processors when no default
value is available."""
pass
class _SimpleArgProcessor:
def __init__(self, default=NoDefault):
if default is not NoDefault:
self.default_value = default
def default(self):
if not hasattr(self, "default_value"):
raise DefaultMissing
return self.default_value
def process(self, x):
return x
def describe(self):
d = {"ty": self.__class__.__name__}
if hasattr(self, "default_value"):
d["default"] = self.default_value
return d
class FreeValue(_SimpleArgProcessor):
"""An argument that can be an arbitrary Python value."""
pass
class BooleanValue(_SimpleArgProcessor):
"""A boolean argument."""
pass
class EnumerationValue(_SimpleArgProcessor):
"""An argument that can take a string value among a predefined set of
values.
:param choices: A list of string representing the possible values of the
argument.
"""
def __init__(self, choices, default=NoDefault):
_SimpleArgProcessor.__init__(self, default)
assert default is NoDefault or default in choices
self.choices = choices
def describe(self):
d = _SimpleArgProcessor.describe(self)
d["choices"] = self.choices
return d
class NumberValue(_SimpleArgProcessor):
"""An argument that can take a numerical value (typically floating point).
:param unit: A string representing the unit of the value, for user
interface (UI) purposes.
:param scale: The scale of value for UI purposes. The displayed value is
divided by the scale.
:param step: The step with which the value should be modified by up/down
buttons in a UI. The default is the scale divided by 10.
:param min: The minimum value of the argument.
:param max: The maximum value of the argument.
:param ndecimals: The number of decimals a UI should use.
"""
def __init__(self, default=NoDefault, unit="", scale=1.0,
step=None, min=None, max=None, ndecimals=2):
if step is None:
step = scale/10.0
_SimpleArgProcessor.__init__(self, default)
self.unit = unit
self.scale = scale
self.step = step
self.min = min
self.max = max
self.ndecimals = ndecimals
def describe(self):
d = _SimpleArgProcessor.describe(self)
d["unit"] = self.unit
d["scale"] = self.scale
d["step"] = self.step
d["min"] = self.min
d["max"] = self.max
d["ndecimals"] = self.ndecimals
return d
class StringValue(_SimpleArgProcessor):
"""A string argument."""
pass
class HasEnvironment:
"""Provides methods to manage the environment of an experiment (devices,
parameters, results, arguments)."""
def __init__(self, device_mgr=None, dataset_mgr=None, *, parent=None,
default_arg_none=False, **kwargs):
self.requested_args = OrderedDict()
self.__device_mgr = device_mgr
self.__dataset_mgr = dataset_mgr
self.__parent = parent
self.__default_arg_none = default_arg_none
self.__kwargs = kwargs
self.__in_build = True
self.build()
self.__in_build = False
for key in self.__kwargs.keys():
if key not in self.requested_args:
raise TypeError("Got unexpected argument: " + key)
del self.__kwargs
def build(self):
"""Must be implemented by the user to request arguments.
Other initialization steps such as requesting devices and parameters
or initializing real-time results may also be performed here.
When the repository is scanned, any requested devices and parameters
are set to ``None``."""
raise NotImplementedError
def managers(self):
"""Returns the device manager and the dataset manager, in this order.
This is the same order that the constructor takes them, allowing
sub-objects to be created with this idiom to pass the environment
around: ::
sub_object = SomeLibrary(*self.managers())
"""
return self.__device_mgr, self.__dataset_mgr
def get_argument(self, key, processor=None, group=None):
"""Retrieves and returns the value of an argument.
:param key: Name of the argument.
:param processor: A description of how to process the argument, such
as instances of ``BooleanValue`` and ``NumberValue``.
:param group: An optional string that defines what group the argument
belongs to, for user interface purposes.
"""
if not self.__in_build:
raise TypeError("get_argument() should only "
"be called from build()")
if self.__parent is not None and key not in self.__kwargs:
return self.__parent.get_argument(key, processor, group)
if processor is None:
processor = FreeValue()
self.requested_args[key] = processor, group
try:
argval = self.__kwargs[key]
except KeyError:
try:
return processor.default()
except DefaultMissing:
if self.__default_arg_none:
return None
else:
raise
return processor.process(argval)
def setattr_argument(self, key, processor=None, group=None):
"""Sets an argument as attribute. The names of the argument and of the
attribute are the same."""
setattr(self, key, self.get_argument(key, processor, group))
def get_device_db(self):
"""Returns the full contents of the device database."""
if self.__parent is not None:
return self.__parent.get_device_db()
return self.__device_mgr.get_device_db()
def get_device(self, key):
"""Creates and returns a device driver."""
if self.__parent is not None:
return self.__parent.get_device(key)
if self.__device_mgr is None:
raise ValueError("Device manager not present")
return self.__device_mgr.get(key)
def setattr_device(self, key):
"""Sets a device driver as attribute. The names of the device driver
and of the attribute are the same."""
setattr(self, key, self.get_device(key))
def set_dataset(self, key, value,
broadcast=False, persist=False, save=True):
"""Sets the contents and handling modes of a dataset.
If the dataset is broadcasted, it must be PYON-serializable.
If the dataset is saved, it must be a scalar (``bool``, ``int``,
``float`` or NumPy scalar) or a NumPy array.
:param broadcast: the data is sent in real-time to the master, which
dispatches it. Returns a Notifier that can be used to mutate the
dataset.
:param persist: the master should store the data on-disk. Implies
broadcast.
:param save: the data is saved into the local storage of the current
run (archived as a HDF5 file).
"""
if self.__parent is not None:
self.__parent.set_dataset(key, value, broadcast, persist, save)
return
if self.__dataset_mgr is None:
raise ValueError("Dataset manager not present")
return self.__dataset_mgr.set(key, value, broadcast, persist, save)
def get_dataset(self, key, default=NoDefault):
"""Returns the contents of a dataset.
The local storage is searched first, followed by the master storage
(which contains the broadcasted datasets from all experiments) if the
key was not found initially.
If the dataset does not exist, returns the default value. If no default
is provided, raises ``KeyError``.
"""
if self.__parent is not None:
return self.__parent.get_dataset(key, default)
if self.__dataset_mgr is None:
raise ValueError("Dataset manager not present")
try:
return self.__dataset_mgr.get(key)
except KeyError:
if default is NoDefault:
raise
else:
return default
def setattr_dataset(self, key, default=NoDefault):
"""Sets the contents of a dataset as attribute. The names of the
dataset and of the attribute are the same."""
setattr(self, key, self.get_dataset(key, default))
class Experiment:
"""Base class for experiments.
Deriving from this class enables automatic experiment discovery in
Python modules.
"""
def prepare(self):
"""Entry point for pre-computing data necessary for running the
experiment.
Doing such computations outside of ``run`` enables more efficient
scheduling of multiple experiments that need to access the shared
hardware during part of their execution.
This method must not interact with the hardware.
"""
pass
def run(self):
"""The main entry point of the experiment.
This method must be overloaded by the user to implement the main
control flow of the experiment.
This method may interact with the hardware.
The experiment may call the scheduler's ``pause`` method while in
``run``.
"""
raise NotImplementedError
def analyze(self):
"""Entry point for analyzing the results of the experiment.
This method may be overloaded by the user to implement the analysis
phase of the experiment, for example fitting curves.
Splitting this phase from ``run`` enables tweaking the analysis
algorithm on pre-existing data, and CPU-bound analyses to be run
overlapped with the next experiment in a pipelined manner.
This method must not interact with the hardware.
"""
pass
class EnvExperiment(Experiment, HasEnvironment):
"""Base class for experiments that use the ``HasEnvironment`` environment
manager.
Most experiment should derive from this class."""
pass
def is_experiment(o):
"""Checks if a Python object is an instantiable user experiment."""
return (isclass(o)
and issubclass(o, Experiment)
and o is not Experiment
and o is not EnvExperiment)