1
0
forked from M-Labs/artiq

Compare commits

..

1 Commits

Author SHA1 Message Date
ea5346f884 RangeScan: remove minimum/fixed size
Signed-off-by: Robert Jördens <rj@quartiq.de>
2018-11-15 23:41:34 +01:00
652 changed files with 40137 additions and 57668 deletions

1
.gitattributes vendored Normal file
View File

@ -0,0 +1 @@
artiq/_version.py export-subst

View File

@ -8,9 +8,9 @@ about: Report a bug in ARTIQ
# Bug Report
<!-- Thanks for reporting a bug report to ARTIQ! You can also discuss issues and ask questions on IRC (the [#m-labs channel on freenode](https://webchat.freenode.net/?channels=m-labs) or on the [forum](https://forum.m-labs.hk). Please check Github/those forums to avoid posting a repeat issue.
<!-- Thanks for reporting a bug report to ARTIQ! You can also discuss issues and ask questions on IRC (the [#m-labs channel on freenode](https://webchat.freenode.net/?channels=m-labs) or on the [ARTIQ mailing list](https://ssl.serverraum.org/lists/listinfo/artiq). Please check Github/those forums to avoid posting a repeat issue.
Context helps us fix issues faster, so please include the following when relevant:
Context helps us fix issues faster, so please include the following:
-->
## One-Line Summary
@ -34,12 +34,11 @@ Behavior
* Text description
* Log message, tracebacks, screen shots where relevant
### Your System (omit irrelevant parts)
### Your System
* Operating System:
* ARTIQ version: (with recent versions of ARTIQ, run ``artiq_client --version``)
* Version of the gateware and runtime loaded in the core device: (in the output of ``artiq_coremgmt -D .... log``)
* If using Conda, output of `conda list` (please submit as a file attachment, as this tends to be long)
* Conda version:
* ARTIQ version: (package or git commit id, versions for bitstream, bootloader, runtime and host software). Run `conda list`
* Hardware involved:
<!--

View File

@ -1,23 +1,19 @@
---
name: Support question
about: Questions about ARTIQ that are not covered in the documentation
about: Questions about ARTIQ that are not covered in the documentation. (Latest = https://m-labs.hk/artiq/manual-master/ or Stable = https://m-labs.hk/artiq/manual/)
---
# Question
<!--
Make sure you check the ARTIQ documentation before posting a question.
Don't forget you can search it!
<!--
Make sure you check the ARTIQ documentation before posting a question.
Don't forget you can search it!
Latest docs: https://m-labs.hk/artiq/manual-master/
Stable branch docs: https://m-labs.hk/artiq/manual/
Beta version: https://m-labs.hk/artiq/manual-beta/
Stable version: https://m-labs.hk/artiq/manual/
The forum is also a very good place for questions: https://forum.m-labs.hk/
Can also ask on IRC: https://webchat.freenode.net/?channels=m-labs or
check mailing list archives: https://ssl.serverraum.org/lists-archive/artiq/
Remember: if you have this question then others probably do too! The best way of thanking the people who help you with this issue is to contribute to ARTIQ by submitting a pull request to update the documentation.
Can also ask on IRC: https://webchat.freenode.net/?channels=m-labs or
check mailing list archives: https://ssl.serverraum.org/lists-archive/artiq/
-->
## Category: FILL_IN

View File

@ -38,7 +38,7 @@ Closes #XXX
### All Pull Requests
- [x] Use correct spelling and grammar.
- [ ] Update [RELEASE_NOTES.rst](../RELEASE_NOTES.rst) if there are noteworthy changes, especially if there are changes to existing APIs.
- [ ] Update [RELEASE_NOTES.md](../RELEASE_NOTES.md) if there are noteworthy changes, especially if there are changes to existing APIs.
- [ ] Close/update issues.
- [ ] Check the copyright situation of your changes and sign off your patches (`git commit --signoff`, see [copyright](../CONTRIBUTING.rst#copyright-and-sign-off)).
@ -47,11 +47,12 @@ Closes #XXX
- [ ] Run `flake8` to check code style (follow PEP-8 style). `flake8` has issues with parsing Migen/gateware code, ignore as necessary.
- [ ] Test your changes or have someone test them. Mention what was tested and how.
- [ ] Add and check docstrings and comments
- [ ] Check, test, and update the conda recipes in [conda/](../doc/)
- [ ] Check, test, and update the [unittests in /artiq/test/](../artiq/test/) or [gateware simulations in /artiq/gateware/test](../artiq/gateware/test)
### Documentation Changes
- [ ] Check, test, and update the documentation in [doc/](../doc/). Build documentation (`nix build .#artiq-manual-html; nix build .#artiq-manual-pdf`) to ensure no errors.
- [ ] Check, test, and update the documentation in [doc/](../doc/). Build documentation (`cd doc/manual/; make html`) to ensure no errors.
### Git Logistics

7
.gitignore vendored
View File

@ -11,7 +11,6 @@ __pycache__/
.ipynb_checkpoints
/doc/manual/_build
/build
/result
/dist
/*.egg-info
/.coverage
@ -24,14 +23,12 @@ __pycache__/
/artiq/test/results
/artiq/examples/*/results
/artiq/examples/*/last_rid.pyon
/artiq/examples/*/dataset_db.mdb
/artiq/examples/*/dataset_db.mdb-lock
/artiq/examples/*/dataset_db.pyon
# when testing ad-hoc experiments at the root:
/repository/
/results
/last_rid.pyon
/dataset_db.mdb
/dataset_db.mdb-lock
/dataset_db.pyon
/device_db*.py
/test*

View File

@ -7,26 +7,27 @@ Reporting Issues/Bugs
Thanks for `reporting issues to ARTIQ
<https://github.com/m-labs/artiq/issues/new>`_! You can also discuss issues and
ask questions on IRC (the #m-labs channel on OFTC), the `Mattermost chat
<https://chat.m-labs.hk>`_, or in the `forum <https://forum.m-labs.hk>`_.
ask questions on IRC (the `#m-labs channel on freenode
<https://webchat.freenode.net/?channels=m-labs>`_) or on the `mailing list
<https://ssl.serverraum.org/lists/listinfo/artiq>`_.
The best bug reports are those which contain sufficient information. With
accurate and comprehensive context, an issue can be resolved quickly and
efficiently. Please consider adding the following data to your issue
report if possible:
* A clear and unique summary that fits into one line. Check that this
issue has not yet been reported; if it has, add additional information there.
* Precise steps to reproduce (a list of actions that leads to the issue)
* A clear and unique summary that fits into one line. Also check that
this issue has not jet been reported. If it has, add additional information there.
* Precise steps to reproduce (list of actions that leads to the issue)
* Expected behavior (what should happen)
* Actual behavior (what happens instead)
* Logging message, tracebacks, screenshots, where applicable
* Components involved (omit irrelevant parts):
* Logging message, trace backs, screen shots where relevant
* Components involved:
* Operating system used
* ARTIQ version (run any command in the form of ``artiq_client --version``)
* Gateware and firmware loaded to the core device (in the output of
``artiq_coremgmt [-D ....] log``)
* Operating system
* Conda version
* ARTIQ version (package or git commit id, versions for bitstream, BIOS,
runtime and host software)
* Hardware involved
For in-depth information on bug reporting, see:
@ -38,11 +39,13 @@ https://developer.mozilla.org/en-US/docs/Mozilla/QA/Bug_writing_guidelines
Contributing Code
=================
ARTIQ welcomes contributions. Write bite-size patches that can stand alone,
clean them up, write proper commit messages, add docstrings and unit tests;
ARTIQ welcomes contributions. Write bite-sized patches that can stand alone,
clean them up, write proper commit messages, add docstrings and unittests. Then
``git rebase`` them onto the current master or merge the current master. Verify
that the test suite passes. Then submit a pull request. Expect your contribution
to be held up to coding standards (e.g. use ``flake8`` to check yourself).
that the testsuite passes. Then prepare a pull request or send patches to the
`mailing list <https://ssl.serverraum.org/lists/listinfo/artiq>`_ to be
discussed. Expect your contribution to be held up to coding standards (e.g. use
``flake8`` to check yourself).
Checklist for Code Contributions
--------------------------------
@ -51,7 +54,7 @@ Checklist for Code Contributions
- Use correct spelling and grammar. Use your code editor to help you with
syntax, spelling, and style
- Style: PEP-8 (``flake8``)
- Add or update docstrings and comments
- Add, check docstrings and comments
- Split your contribution into logically separate changes (``git rebase
--interactive``). Merge (squash, fixup) commits that just fix previous commits
or amend them. Remove unintended changes. Clean up your commits.
@ -63,37 +66,13 @@ Checklist for Code Contributions
- Review each of your commits for the above items (``git show``)
- Update ``RELEASE_NOTES.md`` if there are noteworthy changes, especially if
there are changes to existing APIs
- Check, test, and update the documentation in ``doc/``
- Check, test, and update the unit tests
- Check, test, and update the documentation in `doc/`
- Check, test, and update the conda recipes in `conda/`
- Check, test, and update the unittests
- Close and/or update issues
Contributing Documentation
==========================
ARTIQ welcomes documentation contributions. The ARTIQ manual is hosted online in HTML
form `here <https://m-labs.hk/artiq/manual/>`__ and in PDF form
`here <https://m-labs.hk/artiq/manual.pdf>`__. It is generated from source files
in ``doc/manual``, written in a variant of the
`reStructured Text <https://www.sphinx-doc.org/en/master/usage/restructuredtext/basics.html>`_
markup language processed by `Sphinx <https://www.sphinx-doc.org/en/master/>`_, with
some of the additional reference material processed from inline documentation
in the ARTIQ source itself.
Write bite-size patches that can stand alone, clean them up, write proper commit
messages. Check that your edits render properly and compile without errors: ::
$ nix build .#artiq-manual-pdf
$ nix build .#artiq-manual-html
Elaborations, improvements, clarifications and corrections to any of the material
are happily accepted, but special attention is drawn to the manual
`FAQ <https://m-labs.hk/artiq/manual/faq.html>`_, where tips and solutions
are especially easy to add. See also the FAQ's own
`section on the subject <https://m-labs.hk/artiq/manual/faq.html#build-documentation>`_.
Copyright and Sign-Off
======================
----------------------
Authors retain copyright of their contributions to ARTIQ, but whenever possible
should use the GNU LGPL version 3 license for them to be merged.
@ -133,7 +112,7 @@ can certify the below:
maintained indefinitely and may be redistributed consistent with
this project or the open source license(s) involved.
then add a line saying
then you just add a line saying
Signed-off-by: Random J Developer <random@developer.example.org>

View File

@ -1,17 +1,94 @@
Release process
===============
Maintain ``RELEASE_NOTES.rst`` with a list of new features and API changes in each major release.
Major releases
--------------
1. Create branch release-X from master.
2. Tag the next commit in master X+1.0.dev.
3. Ensure that release versions of all packages required are available under the ``main`` label in conda. Ensure that new packages in ``main`` do not break older ARTIQ releases.
4. In the release-X branch, remove any unfinished features.
5. Test and fix any problems found. Apply fixes to both master and release-X.
6. If you have willing testers for release candidates, tag X.0rc1 in the release-X branch (generally use signed annotated tags, i.e. ``git tag -sa X.0rc1``), have it build, and point testers there. Iterate over the previous points with new release candidates if necessary.
7. Tag X.0 in the release-X branch, build it, and copy its packages to ``main`` channel.
8. Mint a new DOI from Zenodo and update the README/introduction.
9. Update the m-labs.hk/artiq/manual redirect to point to m-labs.hk/artiq/manual-release-X (edit /artiq/.htaccess).
10. "Draft a new release" and close the milestone on GitHub.
11. Deprecate the old release documentation with a banner in
doc/manual/_templates/layout.html in the old ``release-(X-1)`` branch.
Minor (bugfix) releases
-----------------------
1. Backport bugfixes from the master branch or fix bugs specific to old releases into the currently maintained release-X branch(es).
2. When significant bugs have been fixed, tag X.Y+1.
3. To help dealing with regressions, no new features or refactorings should be implemented in release-X branches. Those happen in the master branch, and then a new release-X+1 branch is created.
4. "Draft a new release" and close the milestone on GitHub.
Sharing development boards
==========================
To avoid conflicts for development boards on the server, while using a board you must hold the corresponding lock file present in the ``/tmp`` folder of the machine to which the board is connected. Holding the lock file grants you exclusive access to the board.
To avoid conflicts for development boards on the server, while using a board you must hold the corresponding lock file present in ``/var/lib/artiq/boards``. Holding the lock file grants you exclusive access to the board.
For example, to lock the KC705 until ENTER is pressed:
To lock the KC705 for 30 minutes or until Ctrl-C is pressed:
::
ssh rpi-1.m-labs.hk "flock /tmp/board_lock-kc705-1 -c 'echo locked; read; echo unlocked'"
flock --verbose /var/lib/artiq/boards/kc705-1 sleep 1800
Check that the command acquires the lock, i.e. prints something such as:
::
flock: getting lock took 0.000003 seconds
flock: executing sleep
To lock the KC705 for the duration of the execution of a shell:
::
flock /var/lib/artiq/boards/kc705-1 bash
You may also use this script:
::
#!/bin/bash
exec flock /var/lib/artiq/boards/$1 bash --rcfile <(cat ~/.bashrc; echo PS1=\"[$1\ lock]\ \$PS1\")
If the board is already locked by another user, the ``flock`` commands above will wait for the lock to be released.
To determine which user is locking a board, use a command such as:
To determine which user is locking a board, use:
::
ssh rpi-1.m-labs.hk "fuser -v /tmp/board_lock-kc705-1"
fuser -v /var/lib/artiq/boards/kc705-1
Selecting a development board with artiq_flash
==============================================
The board lock file also contains the openocd commands for selecting the corresponding developer board:
::
artiq_flash -I "$(cat /var/lib/artiq/boards/sayma-1)"
Using developer tools
=====================
ARTIQ ships with an ``artiq_devtool`` binary, which automates common actions arising when developing the board gateware and firmware on a machine other than the one to which the board is connected.
.. argparse::
:ref: artiq.frontend.artiq_devtool.get_argparser
:prog: artiq_devtool
To build and flash the firmware for ``sayma_amc_standalone`` target:
::
artiq_devtool -t sayma_amc_standalone build flash+log
To build the same target, flash it to the 3rd connected board, and forward the core device ports (1380, 1381, ...) as well as logs on the serial port:
::
artiq_devtool -t sayma_amc_standalone -b sayma-3 build flash connect
While the previous command is running, to build a new firmware and hotswap it, i.e. run without reflashing the board:
::
artiq_devtool -t sayma_amc_standalone build hotswap
While the previous command is running, to reset a board, e.g. if it became unresponsive:
::
artiq_devtool -t sayma_amc_standalone reset
Deleting git branches

View File

@ -3,6 +3,3 @@ graft artiq/examples
include artiq/gui/logo*.svg
include versioneer.py
include artiq/_version.py
include artiq/coredevice/coredevice_generic.schema.json
include artiq/compiler/kernel.ld
include artiq/afws.pem

View File

@ -4,28 +4,32 @@
.. image:: https://raw.githubusercontent.com/m-labs/artiq/master/doc/logo/artiq.png
:target: https://m-labs.hk/artiq
ARTIQ (Advanced Real-Time Infrastructure for Quantum physics) is a leading-edge control and data acquisition system for quantum information experiments.
It is maintained and developed by `M-Labs <https://m-labs.hk>`_ and the initial development was for and in partnership with the `Ion Storage Group at NIST <https://www.nist.gov/pml/time-and-frequency-division/ion-storage>`_. ARTIQ is free software and offered to the entire research community as a solution equally applicable to other challenging control tasks, including outside the field of ion trapping. Many laboratories around the world have adopted ARTIQ as their control system and some have `contributed <https://m-labs.hk/experiment-control/funding/>`_ to it.
ARTIQ (Advanced Real-Time Infrastructure for Quantum physics) is the next-generation control system for quantum information experiments.
It is maintained and developed by `M-Labs <https://m-labs.hk>`_ and the initial development was for and in partnership with the `Ion Storage Group at NIST <https://www.nist.gov/pml/time-and-frequency-division/ion-storage>`_. ARTIQ is free software and offered to the entire research community as a solution equally applicable to other challenging control tasks, including outside the field of ion trapping. Several other laboratories (e.g. at the University of Oxford, the Army Research Lab, and the University of Maryland) have later adopted ARTIQ as their control system and have contributed to it.
The system features a high-level programming language, capable of describing complex experiments, which is compiled and executed on dedicated hardware with nanosecond timing resolution and sub-microsecond latency. It includes graphical user interfaces to parametrize and schedule experiments and to visualize and explore the results.
The system features a high-level programming language that helps describing complex experiments, which is compiled and executed on dedicated hardware with nanosecond timing resolution and sub-microsecond latency. It includes graphical user interfaces to parametrize and schedule experiments and to visualize and explore the results.
ARTIQ uses FPGA hardware to perform its time-critical tasks. The `Sinara hardware <https://github.com/sinara-hw>`_, and in particular the Kasli FPGA carrier, are designed to work with ARTIQ. ARTIQ is designed to be portable to hardware platforms from different vendors and FPGA manufacturers. Several different configurations of a `FPGA evaluation kit <https://www.xilinx.com/products/boards-and-kits/ek-k7-kc705-g.html>`_ and a `Zynq evaluation kit <https://www.xilinx.com/products/boards-and-kits/ek-z7-zc706-g.html>`_ are also used and supported. FPGA platforms can be combined with any number of additional peripherals, either already accessible from ARTIQ or made accessible with little effort.
ARTIQ uses FPGA hardware to perform its time-critical tasks. The `Sinara hardware <https://github.com/sinara-hw>`_, and in particular the Kasli FPGA carrier, is designed to work with ARTIQ.
ARTIQ is designed to be portable to hardware platforms from different vendors and FPGA manufacturers.
Several different configurations of a `high-end FPGA evaluation kit <http://www.xilinx.com/products/boards-and-kits/ek-k7-kc705-g.html>`_ are also used and supported. FPGA platforms can be combined with any number of additional peripherals, either already accessible from ARTIQ or made accessible with little effort.
ARTIQ and its dependencies are available in the form of Nix packages (for Linux) and MSYS2 packages (for Windows). See `the manual <https://m-labs.hk/experiment-control/resources/>`_ for installation instructions. Packages containing pre-compiled binary images to be loaded onto the hardware platforms are supplied for each configuration. Like any open-source software ARTIQ can equally be built and installed directly from `source <https://github.com/m-labs/artiq>`_.
ARTIQ and its dependencies are available in the form of `conda packages <https://conda.anaconda.org/m-labs/label/main>`_ for both Linux and Windows.
Packages containing pre-compiled binary images to be loaded onto the hardware platforms are supplied for each configuration.
Like any open source software ARTIQ can equally be built and installed directly from `source <https://github.com/m-labs/artiq>`_.
ARTIQ is supported by M-Labs and developed openly. Components, features, fixes, improvements, and extensions are often `funded <https://m-labs.hk/experiment-control/funding/>`_ by and developed for the partnering research groups.
ARTIQ is supported by M-Labs and developed openly.
Components, features, fixes, improvements, and extensions are funded by and developed for the partnering research groups.
Core technologies employed include `Python <https://www.python.org/>`_, `Migen <https://github.com/m-labs/migen>`_, `Migen-AXI <https://github.com/peteut/migen-axi>`_, `Rust <https://www.rust-lang.org/>`_, `MiSoC <https://github.com/m-labs/misoc>`_/`VexRiscv <https://github.com/SpinalHDL/VexRiscv>`_, `LLVM <https://llvm.org/>`_/`llvmlite <https://github.com/numba/llvmlite>`_, and `Qt6 <https://www.qt.io/>`_.
Technologies employed include `Python <https://www.python.org/>`_, `Migen <https://github.com/m-labs/migen>`_, `MiSoC <https://github.com/m-labs/misoc>`_/`mor1kx <https://github.com/openrisc/mor1kx>`_, `LLVM <http://llvm.org/>`_/`llvmlite <https://github.com/numba/llvmlite>`_, and `Qt5 <http://www.qt.io/>`_.
| Website: https://m-labs.hk/experiment-control/artiq
| (US-hosted mirror: https://m-labs-intl.com/experiment-control/artiq)
Website: https://m-labs.hk/artiq
`Cite ARTIQ <http://dx.doi.org/10.5281/zenodo.51303>`_ as ``Bourdeauducq, Sébastien et al. (2016). ARTIQ 1.0. Zenodo. 10.5281/zenodo.51303``.
License
=======
Copyright (C) 2014-2025 M-Labs Limited.
Copyright (C) 2014-2018 M-Labs Limited.
ARTIQ is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
@ -44,10 +48,9 @@ The ARTIQ manifesto
===================
The free and open dissemination of methods and results is central to scientific progress.
The ARTIQ and Sinara authors, contributors, and supporters consider the free and open exchange of scientific tools to be equally important and have chosen the licensing terms of ARTIQ and Sinara accordingly. ARTIQ, including its gateware, the firmware, and the ARTIQ tools and libraries are licensed as LGPLv3+. The Sinara hardware designs are licensed under CERN OHL.
This ensures that a user of ARTIQ or Sinara hardware designs obtains broad rights to use, redistribute, study, and modify them.
The ARTIQ authors, contributors, and supporters consider the free and open exchange of scientific tools to be equally important and have chosen the licensing terms of ARTIQ accordingly.
ARTIQ, including its gateware, the firmware, and the ARTIQ tools and libraries are licensed as LGPLv3+.
This ensures that a user of ARTIQ obtains broad rights to use, redistribute, and modify it.
The following statements are intended to clarify the interpretation and application of the licensing terms:
* There is no requirement to distribute any unmodified, modified, or extended versions of ARTIQ. Only when distributing ARTIQ the source needs to be made available.

View File

@ -3,358 +3,13 @@
Release notes
=============
ARTIQ-9 (Unreleased)
--------------------
* Dashboard:
- Experiment windows can have different colors, selected by the user.
- Zotino monitoring now displays the values in volts.
- Schedule display columns can now be reordered and shown/hidden using the table
header context menu.
- State files are now automatically backed up upon successful loading.
* afws_client now uses the "happy eyeballs" algorithm (RFC 6555) for a faster and more
reliable connection to the server.
* The Zadig driver installer was added to the MSYS2 offline installer.
* Fastino monitoring with Moninj is now supported.
* Qt6 support.
* Python 3.12 support.
* Compiler can now give automatic suggestions for ``kernel_invariants``.
* Idle kernels now restart when written with ``artiq_coremgmt`` and stop when erased/removed from config.
* New support for the EBAZ4205 Zynq-SoC control card.
* New core device driver for the AD9834 DDS, tested with the ZonRi Technology Co., Ltd. AD9834-Module.
* Support for coredevice reflashing through the new ``flash`` tool in ``artiq_coremgmt``.
* ``artiq_coremgmt`` now supports configuring satellites.
* ``artiq.coredevice.fmcdio_vhdci_eem`` has been removed.
ARTIQ-8
-------
Highlights:
* New hardware support:
- Support for Shuttler, a 16-channel 125MSPS DAC card intended for ion transport.
Waveform generator and user API are similar to the NIST PDQ.
- Implemented Phaser-servo. This requires recent gateware on Phaser.
- Almazny v1.2 with finer RF switch control.
- Metlino and Sayma support has been dropped due to complications with synchronous RTIO clocking.
- More user LEDs are exposed to RTIO on Kasli.
- Implemented Phaser-MIQRO support. This requires the proprietary Phaser MIQRO gateware
variant from QUARTIQ.
- Sampler: fixed ADC MU to Volt conversion factor for Sampler v2.2+.
For earlier hardware versions, specify the hardware version in the device
database file (e.g. ``"hw_rev": "v2.1"``) to use the correct conversion factor.
* Support for distributed DMA, where DMA is run directly on satellites for corresponding
RTIO events, increasing bandwidth in scenarios with heavy satellite usage.
* Support for subkernels, where kernels are run on satellite device CPUs to offload some
of the processing and RTIO operations.
* CPU (on softcore platforms) and AXI bus (on Zynq) are now clocked synchronously with the RTIO
clock, to facilitate implementation of local processing on DRTIO satellites, and to slightly
reduce RTIO latency.
* Support for DRTIO-over-EEM, used with Shuttler.
* Support for WRPLL low-noise clock recovery.
* Enabled event spreading on DRTIO satellites, using high watermark for lane switching.
* Added channel names to RTIO error messages.
* The RTIO analyzer is now proxied by ``aqctl_coreanalyzer_proxy`` typically running on the master
machine, similarly to ``aqctl_moninj_proxy``.
* GUI:
- Integrated waveform analyzer, removing the need for external VCD viewers such as GtkWave.
- Implemented Applet Request Interfaces which allow applets to modify datasets and set the
current values of widgets in the dashboard's experiment windows.
- Implemented a new ``EntryArea`` widget which allows argument entry widgets to be used in applets.
- The "Close all applets" command (shortcut: Ctrl-Alt-W) now ignores docked applets,
making it a convenient way to clean up after exploratory work without destroying a
carefully arranged default workspace.
- Hotkeys now organize experiment windows in the order they were last interacted with:
+ CTRL+SHIFT+T tiles experiment windows
+ CTRL+SHIFT+C cascades experiment windows
- By enabling the ``quickstyle`` option, ``EnumerationValue`` entry widgets can now alternatively display
its choices as buttons that submit the experiment on click.
* Datasets can now be associated with units and scale factors, and displayed accordingly in the dashboard
including applets, like widgets such as ``NumberValue`` already did in earlier ARTIQ versions.
* Experiments can now request arguments interactively from the user at any time.
* Persistent datasets are now stored in a LMDB database for improved performance.
* Python's built-in types (such as ``float``, or ``List[...]``) can now be used in type annotations on
kernel functions.
* MSYS2 packaging for Windows, which replaces Conda. Conda packages are still available to
support legacy installations, but may be removed in a future release.
* Experiments can now be submitted with revisions set to a branch / tag name instead of only git hashes.
* Grabber image input now has an optional timeout.
* On NAR3-supported devices (Kasli-SoC, ZC706), when a Rust panic occurs, a minimal environment is started
where the network and ``artiq_coremgmt`` can be used. This allows the user to inspect logs, change
configuration options, update the firmware, and reboot the device.
* Full Python 3.11 support.
Breaking changes:
* ``SimpleApplet`` now calls widget constructors with an additional ``ctl`` parameter for control
operations, which includes dataset operations. It can be ignored if not needed. For an example usage,
refer to the ``big_number.py`` applet.
* ``SimpleApplet`` and ``TitleApplet`` now call ``data_changed`` with additional parameters. Derived applets
should change the function signature as below:
::
# SimpleApplet
def data_changed(self, value, metadata, persist, mods)
# SimpleApplet (old version)
def data_changed(self, data, mods)
# TitleApplet
def data_changed(self, value, metadata, persist, mods, title)
# TitleApplet (old version)
def data_changed(self, data, mods, title)
Accesses to the data argument should be replaced as below:
::
data[key][0] ==> persist[key]
data[key][1] ==> value[key]
* The ``ndecimals`` parameter in ``NumberValue`` and ``Scannable`` has been renamed to ``precision``.
Parameters after and including ``scale`` in both constructors are now keyword-only.
Refer to the updated ``no_hardware/arguments_demo.py`` example for current usage.
* Almazny v1.2 is incompatible with the legacy versions and is the default.
To use legacy versions, specify ``almazny_hw_rev`` in the JSON description.
* kasli_generic.py has been merged into kasli.py, and the demonstration designs without JSON descriptions
have been removed. The base classes remain present in kasli.py to support third-party flows without
JSON descriptions.
* Legacy PYON databases should be converted to LMDB with the script below:
::
from sipyco import pyon
import lmdb
old = pyon.load_file("dataset_db.pyon")
new = lmdb.open("dataset_db.mdb", subdir=False, map_size=2**30)
with new.begin(write=True) as txn:
for key, value in old.items():
txn.put(key.encode(), pyon.encode((value, {})).encode())
new.close()
* ``artiq.wavesynth`` has been removed.
ARTIQ-7
-------
Highlights:
* New hardware support:
- Kasli-SoC, a new EEM carrier based on a Zynq SoC, enabling much faster kernel execution
(see: https://arxiv.org/abs/2111.15290).
- DRTIO support on Zynq-based devices (Kasli-SoC and ZC706).
- DRTIO support on KC705.
- HVAMP_8CH 8 channel HV amplifier for Fastino / Zotinos
- Almazny mezzanine board for Mirny
- Phaser: improved documentation, exposed the DAC coarse mixer and ``sif_sync``, exposed upconverter calibration
and enabling/disabling of upconverter LO & RF outputs, added helpers to align Phaser updates to the
RTIO timeline (``get_next_frame_mu()``).
- Urukul: ``get()``, ``get_mu()``, ``get_att()``, and ``get_att_mu()`` functions added for AD9910 and AD9912.
* Softcore targets now use the RISC-V architecture (VexRiscv) instead of OR1K (mor1kx).
* Gateware FPU is supported on KC705 and Kasli 2.0.
* Faster compilation for large arrays/lists.
* Faster exception handling.
* Several exception handling bugs fixed.
* Support for a simpler shared library system with faster calls into the runtime. This is only used by the NAC3
compiler (nac3ld) and improves RTIO output performance (test_pulse_rate) by 9-10%.
* Moninj improvements:
- Urukul monitoring and frequency setting (through dashboard) is now supported.
- Core device moninj is now proxied via the ``aqctl_moninj_proxy`` controller.
* The configuration entry ``rtio_clock`` supports multiple clocking settings, deprecating the usage
of compile-time options.
* Added support for 100MHz RTIO clock in DRTIO.
* Previously detected RTIO async errors are reported to the host after each kernel terminates and a
warning is logged. The warning is additional to the one already printed in the core device log
immediately upon detection of the error.
* Extended Kasli gateware JSON description with configuration for SPI over DIO.
* TTL outputs can be now configured to work as a clock generator from the JSON.
* On Kasli, the number of FIFO lanes in the scalable events dispatcher (SED) can now be configured in
the JSON.
* ``artiq_ddb_template`` generates edge-counter keys that start with the key of the corresponding
TTL device (e.g. ``ttl_0_counter`` for the edge counter on TTL device ``ttl_0``).
* ``artiq_master`` now has an ``--experiment-subdir`` option to scan only a subdirectory of the
repository when building the list of experiments.
* Experiments can now be submitted by-content.
* The master can now optionally log all experiments submitted into a CSV file.
* Removed worker DB warning for writing a dataset that is also in the archive.
* Experiments can now call ``scheduler.check_termination()`` to test if the user
has requested graceful termination.
* ARTIQ command-line programs and controllers now exit cleanly on Ctrl-C.
* ``artiq_coremgmt reboot`` now reloads gateware as well, providing a more thorough and reliable
device reset (7-series FPGAs only).
* Firmware and gateware can now be built on-demand on the M-Labs server using ``afws_client``
(subscribers only). Self-compilation remains possible.
* Easier-to-use packaging via Nix Flakes.
* Python 3.10 support (experimental).
Breaking changes:
* Due to the new RISC-V CPU, the device database entry for the core device needs to be updated.
The ``target`` parameter needs to be set to ``rv32ima`` for Kasli 1.x and to ``rv32g`` for all
other boards. Freshly generated device database templates already contain this update.
* Updated Phaser-Upconverter default frequency 2.875 GHz. The new default uses the target PFD
frequency of the hardware design.
* ``Phaser.init()`` now disables all Kasli-oscillators. This avoids full power RF output being
generated for some configurations.
* Phaser: fixed coarse mixer frequency configuration
* Mirny: Added extra delays in ``ADF5356.sync()``. This avoids the need of an extra delay before
calling ``ADF5356.init()``.
* The deprecated ``set_dataset(..., save=...)`` is no longer supported.
* The ``PCA9548`` I2C switch class was renamed to ``I2CSwitch``, to accommodate support for PCA9547,
and possibly other switches in future. Readback has been removed, and now only one channel per
switch is supported.
ARTIQ-6
-------
Highlights:
* New hardware support:
- Phaser, a quad channel 1GS/s RF generator card with dual IQ upconverter and dual 5MS/s
ADC and FPGA.
- Zynq SoC core device (ZC706), enabling kernels to run on 1 GHz CPU core with a floating-point
unit for faster computations. This currently requires an external
repository (https://git.m-labs.hk/m-labs/artiq-zynq).
- Mirny 4-channel wide-band PLL/VCO-based microwave frequency synthesiser
- Fastino 32-channel, 3MS/s per channel, 16-bit DAC EEM
- Kasli 2.0, an improved core device with 12 built-in EEM slots, faster FPGA, 4 SFPs, and
high-precision clock recovery circuitry for DRTIO (to be supported in ARTIQ-7).
* ARTIQ Python (core device kernels):
- Multidimensional arrays are now available on the core device, using NumPy syntax.
Elementwise operations (e.g. ``+``, ``/``), matrix multiplication (``@``) and
multidimensional indexing are supported; slices and views are not yet.
- Trigonometric and other common math functions from NumPy are now available on the
core device (e.g. ``numpy.sin``), both for scalar arguments and implicitly
broadcast across multidimensional arrays.
- Failed assertions now raise ``AssertionError``\ s instead of aborting kernel
execution.
* Performance improvements:
- SERDES TTL inputs can now detect edges on pulses that are shorter
than the RTIO period (https://github.com/m-labs/artiq/issues/1432)
- Improved performance for kernel RPC involving list and array.
* Coredevice SI to mu conversions now always return valid codes, or raise a ``ValueError``.
* Zotino now exposes ``voltage_to_mu()``
* ``ad9910``:
- The maximum amplitude scale factor is now ``0x3fff`` (was ``0x3ffe`` before).
- The default single-tone profile is now 7 (was 0).
- Added option to ``set_mu()`` that affects the ASF, FTW and POW registers
instead of the single-tone profile register.
* Mirny now supports HW revision independent, human readable ``clk_sel`` parameters:
"XO", "SMA", and "MMCX". Passing an integer is backwards compatible.
* Dashboard:
- Applets now restart if they are running and a ccb call changes their spec
- A "Quick Open" dialog to open experiments by typing part of their name can
be brought up Ctrl-P (Ctrl+Return to immediately submit the selected entry
with the default arguments).
- The Applets dock now has a context menu command to quickly close all open
applets (shortcut: Ctrl-Alt-W).
* Experiment results are now always saved to HDF5, even if ``run()`` fails.
* Core device: ``panic_reset 1`` now correctly resets the kernel CPU as well if
communication CPU panic occurs.
* NumberValue accepts a ``type`` parameter specifying the output as ``int`` or ``float``
* A parameter ``--identifier-str`` has been added to many targets to aid
with reproducible builds.
* Python 3.7 support in Conda packages.
* `kasli_generic` JSON descriptions are now validated against a
schema. Description defaults have moved from Python to the
schema. Warns if ARTIQ version is too old.
Breaking changes:
* ``artiq_netboot`` has been moved to its own repository at
https://git.m-labs.hk/m-labs/artiq-netboot
* Core device watchdogs have been removed.
* The ARTIQ compiler now implements arrays following NumPy semantics, rather than as a
thin veneer around lists. Most prior use cases of NumPy arrays in kernels should work
unchanged with the new implementation, but the behavior might differ slightly in some
cases (for instance, non-rectangular arrays are not currently supported).
* ``quamash`` has been replaced with ``qasync``.
* Protocols are updated to use device endian.
* Analyzer dump format includes a byte for device endianness.
* To support variable numbers of Urukul cards in the future, the
``artiq.coredevice.suservo.SUServo`` constructor now accepts two device name lists,
``cpld_devices`` and ``dds_devices``, rather than four individual arguments.
* Experiment classes with underscore-prefixed names are now ignored when ``artiq_client``
determines which experiment to submit (consistent with ``artiq_run``).
ARTIQ-5
-------
Highlights:
* Performance improvements:
- Faster RTIO event submission (1.5x improvement in pulse rate test)
See: https://github.com/m-labs/artiq/issues/636
- Faster compilation times (3 seconds saved on kernel compilation time on a typical
medium-size experiment)
See: https://github.com/m-labs/artiq/commit/611bcc4db4ed604a32d9678623617cd50e968cbf
* Improved packaging and build system:
- new continuous integration/delivery infrastructure based on Nix and Hydra,
providing reproducibility, speed and independence.
- rolling release process (https://github.com/m-labs/artiq/issues/1326).
- firmware, gateware and device database templates are automatically built for all
supported Kasli variants.
- new JSON description format for generic Kasli systems.
- Nix packages are now supported.
- many Conda problems worked around.
- controllers are now out-of-tree.
- split packages that enable lightweight applications that communicate with ARTIQ,
e.g. controllers running on non-x86 single-board computers.
* Improved Urukul support:
- AD9910 RAM mode.
- Configurable refclk divider and PLL bypass.
- More reliable phase synchronization at high sample rates.
- Synchronization calibration data can be read from EEPROM.
* A gateware-level input edge counter has been added, which offers higher
throughput and increased flexibility over the usual TTL input PHYs where
edge timestamps are not required. See ``artiq.coredevice.edge_counter`` for
the core device driver and ``artiq.gateware.rtio.phy.edge_counter``/
``artiq.gateware.eem.DIO.add_std`` for the gateware components.
* With DRTIO, Siphaser uses a better calibration mechanism.
See: https://github.com/m-labs/artiq/commit/cc58318500ecfa537abf24127f2c22e8fe66e0f8
* Schedule updates can be sent to influxdb (artiq_influxdb_schedule).
* Experiments can now programatically set their default pipeline, priority, and flush flag.
* List datasets can now be efficiently appended to from experiments using
``artiq.language.environment.HasEnvironment.append_to_dataset``.
* The core device now supports IPv6.
* To make development easier, the bootloader can receive firmware and secondary FPGA
gateware from the network.
* Python 3.7 compatibility (Nix and source builds only, no Conda).
* Various other bugs from 4.0 fixed.
* Preliminary Sayma v2 and Metlino hardware support.
Breaking changes:
* The ``artiq.coredevice.ad9910.AD9910`` and
``artiq.coredevice.ad9914.AD9914`` phase reference timestamp parameters
have been renamed to ``ref_time_mu`` for consistency, as they are in machine
units.
* The controller manager now ignores device database entries without the
``command`` key set to facilitate sharing of devices between multiple
masters.
* The meaning of the ``-d/--dir`` and ``--srcbuild`` options of ``artiq_flash``
has changed.
* Controllers for third-party devices are now out-of-tree.
* ``aqctl_corelog`` now filters log messages below the ``WARNING`` level by default.
This behavior can be changed using the ``-v`` and ``-q`` options like the other
programs.
* On Kasli the firmware now starts with a unique default MAC address
from EEPROM if `mac` is absent from the flash config.
* The ``-e/--experiment`` switch of ``artiq_run`` and ``artiq_compile``
has been renamed ``-c/--class-name``.
* ``artiq_devtool`` has been removed.
* Much of ``artiq.protocols`` has been moved to a separate package ``sipyco``.
``artiq_rpctool`` has been renamed to ``sipyco_rpctool``.
ARTIQ-4
-------
4.0
***
* The ``artiq.coredevice.ttl`` drivers no longer track the timestamps of
* The ``artiq.coredevice.ttl`` drivers no longer track the timestamps of
submitted events in software, requiring the user to explicitly specify the
timeout for ``count()``/``timestamp_mu()``. Support for ``sync()`` has been dropped.
@ -412,11 +67,6 @@ ARTIQ-4
clocks dynamically (i.e. without device restart) is no longer supported.
* ``set_dataset(..., save=True)`` has been renamed
``set_dataset(..., archive=True)``.
* On the AD9914 DDS, when switching to ``PHASE_MODE_CONTINUOUS`` from another mode,
use the returned value of the last ``set_mu`` call as the phase offset for
``PHASE_MODE_CONTINUOUS`` to avoid a phase discontinuity. This is no longer done
automatically. If one phase glitch when entering ``PHASE_MODE_CONTINUOUS`` is not
an issue, this recommendation can be ignored.
ARTIQ-3

View File

@ -1,7 +1,11 @@
from ._version import get_version
__version__ = get_version()
del get_version
from ._version import get_versions
__version__ = get_versions()['version']
del get_versions
import os
__artiq_dir__ = os.path.dirname(os.path.abspath(__file__))
del os
from ._version import get_versions
__version__ = get_versions()['version']
del get_versions

View File

@ -1,7 +1,520 @@
# This file helps to compute a version number in source trees obtained from
# git-archive tarball (such as those provided by githubs download-from-tag
# feature). Distribution tarballs (built by setup.py sdist) and build
# directories (produced by setup.py build) will contain a much shorter file
# that just contains the computed version number.
# This file is released into the public domain. Generated by
# versioneer-0.18 (https://github.com/warner/python-versioneer)
"""Git implementation of _version.py."""
import errno
import os
import re
import subprocess
import sys
def get_rev():
return os.getenv("VERSIONEER_REV", default="unknown")
def get_version():
return os.getenv("VERSIONEER_OVERRIDE", default="9.0+unknown.beta")
def get_keywords():
"""Get the keywords needed to look up the version information."""
# these strings will be replaced by git during git-archive.
# setup.py/versioneer.py will grep for the variable names, so they must
# each be defined on a line of their own. _version.py will just call
# get_keywords().
git_refnames = "$Format:%d$"
git_full = "$Format:%H$"
git_date = "$Format:%ci$"
keywords = {"refnames": git_refnames, "full": git_full, "date": git_date}
return keywords
class VersioneerConfig:
"""Container for Versioneer configuration parameters."""
def get_config():
"""Create, populate and return the VersioneerConfig() object."""
# these strings are filled in when 'setup.py versioneer' creates
# _version.py
cfg = VersioneerConfig()
cfg.VCS = "git"
cfg.style = "pep440"
cfg.tag_prefix = ""
cfg.parentdir_prefix = "artiq-"
cfg.versionfile_source = "artiq/_version.py"
cfg.verbose = False
return cfg
class NotThisMethod(Exception):
"""Exception raised if a method is not valid for the current scenario."""
LONG_VERSION_PY = {}
HANDLERS = {}
def register_vcs_handler(vcs, method): # decorator
"""Decorator to mark a method as the handler for a particular VCS."""
def decorate(f):
"""Store f in HANDLERS[vcs][method]."""
if vcs not in HANDLERS:
HANDLERS[vcs] = {}
HANDLERS[vcs][method] = f
return f
return decorate
def run_command(commands, args, cwd=None, verbose=False, hide_stderr=False,
env=None):
"""Call the given command(s)."""
assert isinstance(commands, list)
p = None
for c in commands:
try:
dispcmd = str([c] + args)
# remember shell=False, so use git.cmd on windows, not just git
p = subprocess.Popen([c] + args, cwd=cwd, env=env,
stdout=subprocess.PIPE,
stderr=(subprocess.PIPE if hide_stderr
else None))
break
except EnvironmentError:
e = sys.exc_info()[1]
if e.errno == errno.ENOENT:
continue
if verbose:
print("unable to run %s" % dispcmd)
print(e)
return None, None
else:
if verbose:
print("unable to find command, tried %s" % (commands,))
return None, None
stdout = p.communicate()[0].strip()
if sys.version_info[0] >= 3:
stdout = stdout.decode()
if p.returncode != 0:
if verbose:
print("unable to run %s (error)" % dispcmd)
print("stdout was %s" % stdout)
return None, p.returncode
return stdout, p.returncode
def versions_from_parentdir(parentdir_prefix, root, verbose):
"""Try to determine the version from the parent directory name.
Source tarballs conventionally unpack into a directory that includes both
the project name and a version string. We will also support searching up
two directory levels for an appropriately named parent directory
"""
rootdirs = []
for i in range(3):
dirname = os.path.basename(root)
if dirname.startswith(parentdir_prefix):
return {"version": dirname[len(parentdir_prefix):],
"full-revisionid": None,
"dirty": False, "error": None, "date": None}
else:
rootdirs.append(root)
root = os.path.dirname(root) # up a level
if verbose:
print("Tried directories %s but none started with prefix %s" %
(str(rootdirs), parentdir_prefix))
raise NotThisMethod("rootdir doesn't start with parentdir_prefix")
@register_vcs_handler("git", "get_keywords")
def git_get_keywords(versionfile_abs):
"""Extract version information from the given file."""
# the code embedded in _version.py can just fetch the value of these
# keywords. When used from setup.py, we don't want to import _version.py,
# so we do it with a regexp instead. This function is not used from
# _version.py.
keywords = {}
try:
f = open(versionfile_abs, "r")
for line in f.readlines():
if line.strip().startswith("git_refnames ="):
mo = re.search(r'=\s*"(.*)"', line)
if mo:
keywords["refnames"] = mo.group(1)
if line.strip().startswith("git_full ="):
mo = re.search(r'=\s*"(.*)"', line)
if mo:
keywords["full"] = mo.group(1)
if line.strip().startswith("git_date ="):
mo = re.search(r'=\s*"(.*)"', line)
if mo:
keywords["date"] = mo.group(1)
f.close()
except EnvironmentError:
pass
return keywords
@register_vcs_handler("git", "keywords")
def git_versions_from_keywords(keywords, tag_prefix, verbose):
"""Get version information from git keywords."""
if not keywords:
raise NotThisMethod("no keywords at all, weird")
date = keywords.get("date")
if date is not None:
# git-2.2.0 added "%cI", which expands to an ISO-8601 -compliant
# datestamp. However we prefer "%ci" (which expands to an "ISO-8601
# -like" string, which we must then edit to make compliant), because
# it's been around since git-1.5.3, and it's too difficult to
# discover which version we're using, or to work around using an
# older one.
date = date.strip().replace(" ", "T", 1).replace(" ", "", 1)
refnames = keywords["refnames"].strip()
if refnames.startswith("$Format"):
if verbose:
print("keywords are unexpanded, not using")
raise NotThisMethod("unexpanded keywords, not a git-archive tarball")
refs = set([r.strip() for r in refnames.strip("()").split(",")])
# starting in git-1.8.3, tags are listed as "tag: foo-1.0" instead of
# just "foo-1.0". If we see a "tag: " prefix, prefer those.
TAG = "tag: "
tags = set([r[len(TAG):] for r in refs if r.startswith(TAG)])
if not tags:
# Either we're using git < 1.8.3, or there really are no tags. We use
# a heuristic: assume all version tags have a digit. The old git %d
# expansion behaves like git log --decorate=short and strips out the
# refs/heads/ and refs/tags/ prefixes that would let us distinguish
# between branches and tags. By ignoring refnames without digits, we
# filter out many common branch names like "release" and
# "stabilization", as well as "HEAD" and "master".
tags = set([r for r in refs if re.search(r'\d', r)])
if verbose:
print("discarding '%s', no digits" % ",".join(refs - tags))
if verbose:
print("likely tags: %s" % ",".join(sorted(tags)))
for ref in sorted(tags):
# sorting will prefer e.g. "2.0" over "2.0rc1"
if ref.startswith(tag_prefix):
r = ref[len(tag_prefix):]
if verbose:
print("picking %s" % r)
return {"version": r,
"full-revisionid": keywords["full"].strip(),
"dirty": False, "error": None,
"date": date}
# no suitable tags, so version is "0+unknown", but full hex is still there
if verbose:
print("no suitable tags, using unknown + full revision id")
return {"version": "0+unknown",
"full-revisionid": keywords["full"].strip(),
"dirty": False, "error": "no suitable tags", "date": None}
@register_vcs_handler("git", "pieces_from_vcs")
def git_pieces_from_vcs(tag_prefix, root, verbose, run_command=run_command):
"""Get version from 'git describe' in the root of the source tree.
This only gets called if the git-archive 'subst' keywords were *not*
expanded, and _version.py hasn't already been rewritten with a short
version string, meaning we're inside a checked out source tree.
"""
GITS = ["git"]
if sys.platform == "win32":
GITS = ["git.cmd", "git.exe"]
out, rc = run_command(GITS, ["rev-parse", "--git-dir"], cwd=root,
hide_stderr=True)
if rc != 0:
if verbose:
print("Directory %s not under git control" % root)
raise NotThisMethod("'git rev-parse --git-dir' returned error")
# if there is a tag matching tag_prefix, this yields TAG-NUM-gHEX[-dirty]
# if there isn't one, this yields HEX[-dirty] (no NUM)
describe_out, rc = run_command(GITS, ["describe", "--tags", "--dirty",
"--always", "--long", "--abbrev=8",
"--match", "%s*" % tag_prefix],
cwd=root)
# --long was added in git-1.5.5
if describe_out is None:
raise NotThisMethod("'git describe' failed")
describe_out = describe_out.strip()
full_out, rc = run_command(GITS, ["rev-parse", "HEAD"], cwd=root)
if full_out is None:
raise NotThisMethod("'git rev-parse' failed")
full_out = full_out.strip()
pieces = {}
pieces["long"] = full_out
pieces["short"] = full_out[:8] # maybe improved later
pieces["error"] = None
# parse describe_out. It will be like TAG-NUM-gHEX[-dirty] or HEX[-dirty]
# TAG might have hyphens.
git_describe = describe_out
# look for -dirty suffix
dirty = git_describe.endswith("-dirty")
pieces["dirty"] = dirty
if dirty:
git_describe = git_describe[:git_describe.rindex("-dirty")]
# now we have TAG-NUM-gHEX or HEX
if "-" in git_describe:
# TAG-NUM-gHEX
mo = re.search(r'^(.+)-(\d+)-g([0-9a-f]+)$', git_describe)
if not mo:
# unparseable. Maybe git-describe is misbehaving?
pieces["error"] = ("unable to parse git-describe output: '%s'"
% describe_out)
return pieces
# tag
full_tag = mo.group(1)
if not full_tag.startswith(tag_prefix):
if verbose:
fmt = "tag '%s' doesn't start with prefix '%s'"
print(fmt % (full_tag, tag_prefix))
pieces["error"] = ("tag '%s' doesn't start with prefix '%s'"
% (full_tag, tag_prefix))
return pieces
pieces["closest-tag"] = full_tag[len(tag_prefix):]
# distance: number of commits since tag
pieces["distance"] = int(mo.group(2))
# commit: short hex revision ID
pieces["short"] = mo.group(3)
else:
# HEX: no tags
pieces["closest-tag"] = None
count_out, rc = run_command(GITS, ["rev-list", "HEAD", "--count"],
cwd=root)
pieces["distance"] = int(count_out) # total number of commits
# commit date: see ISO-8601 comment in git_versions_from_keywords()
date = run_command(GITS, ["show", "-s", "--format=%ci", "HEAD"],
cwd=root)[0].strip()
pieces["date"] = date.strip().replace(" ", "T", 1).replace(" ", "", 1)
return pieces
def plus_or_dot(pieces):
"""Return a + if we don't already have one, else return a ."""
if "+" in pieces.get("closest-tag", ""):
return "."
return "+"
def render_pep440(pieces):
"""Build up version string, with post-release "local version identifier".
Our goal: TAG[+DISTANCE.gHEX[.dirty]] . Note that if you
get a tagged build and then dirty it, you'll get TAG+0.gHEX.dirty
Exceptions:
1: no tags. git_describe was just HEX. 0+untagged.DISTANCE.gHEX[.dirty]
"""
if pieces["closest-tag"]:
rendered = pieces["closest-tag"]
if pieces["distance"] or pieces["dirty"]:
rendered += plus_or_dot(pieces)
rendered += "%d.g%s" % (pieces["distance"], pieces["short"])
if pieces["dirty"]:
rendered += ".dirty"
else:
# exception #1
rendered = "0+untagged.%d.g%s" % (pieces["distance"],
pieces["short"])
if pieces["dirty"]:
rendered += ".dirty"
return rendered
def render_pep440_pre(pieces):
"""TAG[.post.devDISTANCE] -- No -dirty.
Exceptions:
1: no tags. 0.post.devDISTANCE
"""
if pieces["closest-tag"]:
rendered = pieces["closest-tag"]
if pieces["distance"]:
rendered += ".post.dev%d" % pieces["distance"]
else:
# exception #1
rendered = "0.post.dev%d" % pieces["distance"]
return rendered
def render_pep440_post(pieces):
"""TAG[.postDISTANCE[.dev0]+gHEX] .
The ".dev0" means dirty. Note that .dev0 sorts backwards
(a dirty tree will appear "older" than the corresponding clean one),
but you shouldn't be releasing software with -dirty anyways.
Exceptions:
1: no tags. 0.postDISTANCE[.dev0]
"""
if pieces["closest-tag"]:
rendered = pieces["closest-tag"]
if pieces["distance"] or pieces["dirty"]:
rendered += ".post%d" % pieces["distance"]
if pieces["dirty"]:
rendered += ".dev0"
rendered += plus_or_dot(pieces)
rendered += "g%s" % pieces["short"]
else:
# exception #1
rendered = "0.post%d" % pieces["distance"]
if pieces["dirty"]:
rendered += ".dev0"
rendered += "+g%s" % pieces["short"]
return rendered
def render_pep440_old(pieces):
"""TAG[.postDISTANCE[.dev0]] .
The ".dev0" means dirty.
Eexceptions:
1: no tags. 0.postDISTANCE[.dev0]
"""
if pieces["closest-tag"]:
rendered = pieces["closest-tag"]
if pieces["distance"] or pieces["dirty"]:
rendered += ".post%d" % pieces["distance"]
if pieces["dirty"]:
rendered += ".dev0"
else:
# exception #1
rendered = "0.post%d" % pieces["distance"]
if pieces["dirty"]:
rendered += ".dev0"
return rendered
def render_git_describe(pieces):
"""TAG[-DISTANCE-gHEX][-dirty].
Like 'git describe --tags --dirty --always'.
Exceptions:
1: no tags. HEX[-dirty] (note: no 'g' prefix)
"""
if pieces["closest-tag"]:
rendered = pieces["closest-tag"]
if pieces["distance"]:
rendered += "-%d-g%s" % (pieces["distance"], pieces["short"])
else:
# exception #1
rendered = pieces["short"]
if pieces["dirty"]:
rendered += "-dirty"
return rendered
def render_git_describe_long(pieces):
"""TAG-DISTANCE-gHEX[-dirty].
Like 'git describe --tags --dirty --always -long'.
The distance/hash is unconditional.
Exceptions:
1: no tags. HEX[-dirty] (note: no 'g' prefix)
"""
if pieces["closest-tag"]:
rendered = pieces["closest-tag"]
rendered += "-%d-g%s" % (pieces["distance"], pieces["short"])
else:
# exception #1
rendered = pieces["short"]
if pieces["dirty"]:
rendered += "-dirty"
return rendered
def render(pieces, style):
"""Render the given version pieces into the requested style."""
if pieces["error"]:
return {"version": "unknown",
"full-revisionid": pieces.get("long"),
"dirty": None,
"error": pieces["error"],
"date": None}
if not style or style == "default":
style = "pep440" # the default
if style == "pep440":
rendered = render_pep440(pieces)
elif style == "pep440-pre":
rendered = render_pep440_pre(pieces)
elif style == "pep440-post":
rendered = render_pep440_post(pieces)
elif style == "pep440-old":
rendered = render_pep440_old(pieces)
elif style == "git-describe":
rendered = render_git_describe(pieces)
elif style == "git-describe-long":
rendered = render_git_describe_long(pieces)
else:
raise ValueError("unknown style '%s'" % style)
return {"version": rendered, "full-revisionid": pieces["long"],
"dirty": pieces["dirty"], "error": None,
"date": pieces.get("date")}
def get_versions():
"""Get version information or return default if unable to do so."""
# I am in _version.py, which lives at ROOT/VERSIONFILE_SOURCE. If we have
# __file__, we can work backwards from there to the root. Some
# py2exe/bbfreeze/non-CPython implementations don't do __file__, in which
# case we can only use expanded keywords.
cfg = get_config()
verbose = cfg.verbose
try:
return git_versions_from_keywords(get_keywords(), cfg.tag_prefix,
verbose)
except NotThisMethod:
pass
try:
root = os.path.realpath(__file__)
# versionfile_source is the relative path from the top of the source
# tree (where the .git directory might live) to this file. Invert
# this to find the root from __file__.
for i in cfg.versionfile_source.split('/'):
root = os.path.dirname(root)
except NameError:
return {"version": "0+unknown", "full-revisionid": None,
"dirty": None,
"error": "unable to find root of source tree",
"date": None}
try:
pieces = git_pieces_from_vcs(cfg.tag_prefix, root, verbose)
return render(pieces, cfg.style)
except NotThisMethod:
pass
try:
if cfg.parentdir_prefix:
return versions_from_parentdir(cfg.parentdir_prefix, root, verbose)
except NotThisMethod:
pass
return {"version": "0+unknown", "full-revisionid": None,
"dirty": None,
"error": "unable to compute version", "date": None}

557
artiq/appdirs.py Normal file
View File

@ -0,0 +1,557 @@
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Copyright (c) 2005-2010 ActiveState Software Inc.
# Copyright (c) 2013 Eddy Petrișor
"""Utilities for determining application-specific dirs.
See <http://github.com/ActiveState/appdirs> for details and usage.
"""
# Dev Notes:
# - MSDN on where to store app data files:
# http://support.microsoft.com/default.aspx?scid=kb;en-us;310294#XSLTH3194121123120121120120
# - Mac OS X: http://developer.apple.com/documentation/MacOSX/Conceptual/BPFileSystem/index.html
# - XDG spec for Un*x: http://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html
__version_info__ = (1, 4, 1)
__version__ = '.'.join(map(str, __version_info__))
import sys
import os
PY3 = sys.version_info[0] == 3
if PY3:
unicode = str
if sys.platform.startswith('java'):
import platform
os_name = platform.java_ver()[3][0]
if os_name.startswith('Windows'): # "Windows XP", "Windows 7", etc.
system = 'win32'
elif os_name.startswith('Mac'): # "Mac OS X", etc.
system = 'darwin'
else: # "Linux", "SunOS", "FreeBSD", etc.
# Setting this to "linux2" is not ideal, but only Windows or Mac
# are actually checked for and the rest of the module expects
# *sys.platform* style strings.
system = 'linux2'
else:
system = sys.platform
def user_data_dir(appname=None, appauthor=None, version=None, roaming=False):
r"""Return full path to the user-specific data dir for this application.
"appname" is the name of application.
If None, just the system directory is returned.
"appauthor" (only used on Windows) is the name of the
appauthor or distributing body for this application. Typically
it is the owning company name. This falls back to appname. You may
pass False to disable it.
"version" is an optional version path element to append to the
path. You might want to use this if you want multiple versions
of your app to be able to run independently. If used, this
would typically be "<major>.<minor>".
Only applied when appname is present.
"roaming" (boolean, default False) can be set True to use the Windows
roaming appdata directory. That means that for users on a Windows
network setup for roaming profiles, this user data will be
sync'd on login. See
<http://technet.microsoft.com/en-us/library/cc766489(WS.10).aspx>
for a discussion of issues.
Typical user data directories are:
Mac OS X: ~/Library/Application Support/<AppName>
Unix: ~/.local/share/<AppName> # or in $XDG_DATA_HOME, if defined
Win XP (not roaming): C:\Documents and Settings\<username>\Application Data\<AppAuthor>\<AppName>
Win XP (roaming): C:\Documents and Settings\<username>\Local Settings\Application Data\<AppAuthor>\<AppName>
Win 7 (not roaming): C:\Users\<username>\AppData\Local\<AppAuthor>\<AppName>
Win 7 (roaming): C:\Users\<username>\AppData\Roaming\<AppAuthor>\<AppName>
For Unix, we follow the XDG spec and support $XDG_DATA_HOME.
That means, by default "~/.local/share/<AppName>".
"""
if system == "win32":
if appauthor is None:
appauthor = appname
const = roaming and "CSIDL_APPDATA" or "CSIDL_LOCAL_APPDATA"
path = os.path.normpath(_get_win_folder(const))
if appname:
if appauthor is not False:
path = os.path.join(path, appauthor, appname)
else:
path = os.path.join(path, appname)
elif system == 'darwin':
path = os.path.expanduser('~/Library/Application Support/')
if appname:
path = os.path.join(path, appname)
else:
path = os.getenv('XDG_DATA_HOME', os.path.expanduser("~/.local/share"))
if appname:
path = os.path.join(path, appname)
if appname and version:
path = os.path.join(path, version)
return path
def site_data_dir(appname=None, appauthor=None, version=None, multipath=False):
"""Return full path to the user-shared data dir for this application.
"appname" is the name of application.
If None, just the system directory is returned.
"appauthor" (only used on Windows) is the name of the
appauthor or distributing body for this application. Typically
it is the owning company name. This falls back to appname. You may
pass False to disable it.
"version" is an optional version path element to append to the
path. You might want to use this if you want multiple versions
of your app to be able to run independently. If used, this
would typically be "<major>.<minor>".
Only applied when appname is present.
"multipath" is an optional parameter only applicable to *nix
which indicates that the entire list of data dirs should be
returned. By default, the first item from XDG_DATA_DIRS is
returned, or '/usr/local/share/<AppName>',
if XDG_DATA_DIRS is not set
Typical user data directories are:
Mac OS X: /Library/Application Support/<AppName>
Unix: /usr/local/share/<AppName> or /usr/share/<AppName>
Win XP: C:\Documents and Settings\All Users\Application Data\<AppAuthor>\<AppName>
Vista: (Fail! "C:\ProgramData" is a hidden *system* directory on Vista.)
Win 7: C:\ProgramData\<AppAuthor>\<AppName> # Hidden, but writeable on Win 7.
For Unix, this is using the $XDG_DATA_DIRS[0] default.
WARNING: Do not use this on Windows. See the Vista-Fail note above for why.
"""
if system == "win32":
if appauthor is None:
appauthor = appname
path = os.path.normpath(_get_win_folder("CSIDL_COMMON_APPDATA"))
if appname:
if appauthor is not False:
path = os.path.join(path, appauthor, appname)
else:
path = os.path.join(path, appname)
elif system == 'darwin':
path = os.path.expanduser('/Library/Application Support')
if appname:
path = os.path.join(path, appname)
else:
# XDG default for $XDG_DATA_DIRS
# only first, if multipath is False
path = os.getenv('XDG_DATA_DIRS',
os.pathsep.join(['/usr/local/share', '/usr/share']))
pathlist = [os.path.expanduser(x.rstrip(os.sep)) for x in path.split(os.pathsep)]
if appname:
if version:
appname = os.path.join(appname, version)
pathlist = [os.sep.join([x, appname]) for x in pathlist]
if multipath:
path = os.pathsep.join(pathlist)
else:
path = pathlist[0]
return path
if appname and version:
path = os.path.join(path, version)
return path
def user_config_dir(appname=None, appauthor=None, version=None, roaming=False):
r"""Return full path to the user-specific config dir for this application.
"appname" is the name of application.
If None, just the system directory is returned.
"appauthor" (only used on Windows) is the name of the
appauthor or distributing body for this application. Typically
it is the owning company name. This falls back to appname. You may
pass False to disable it.
"version" is an optional version path element to append to the
path. You might want to use this if you want multiple versions
of your app to be able to run independently. If used, this
would typically be "<major>.<minor>".
Only applied when appname is present.
"roaming" (boolean, default False) can be set True to use the Windows
roaming appdata directory. That means that for users on a Windows
network setup for roaming profiles, this user data will be
sync'd on login. See
<http://technet.microsoft.com/en-us/library/cc766489(WS.10).aspx>
for a discussion of issues.
Typical user data directories are:
Mac OS X: same as user_data_dir
Unix: ~/.config/<AppName> # or in $XDG_CONFIG_HOME, if defined
Win *: same as user_data_dir
For Unix, we follow the XDG spec and support $XDG_CONFIG_HOME.
That means, by deafult "~/.config/<AppName>".
"""
if system in ["win32", "darwin"]:
path = user_data_dir(appname, appauthor, None, roaming)
else:
path = os.getenv('XDG_CONFIG_HOME', os.path.expanduser("~/.config"))
if appname:
path = os.path.join(path, appname)
if appname and version:
path = os.path.join(path, version)
return path
def site_config_dir(appname=None, appauthor=None, version=None, multipath=False):
"""Return full path to the user-shared data dir for this application.
"appname" is the name of application.
If None, just the system directory is returned.
"appauthor" (only used on Windows) is the name of the
appauthor or distributing body for this application. Typically
it is the owning company name. This falls back to appname. You may
pass False to disable it.
"version" is an optional version path element to append to the
path. You might want to use this if you want multiple versions
of your app to be able to run independently. If used, this
would typically be "<major>.<minor>".
Only applied when appname is present.
"multipath" is an optional parameter only applicable to *nix
which indicates that the entire list of config dirs should be
returned. By default, the first item from XDG_CONFIG_DIRS is
returned, or '/etc/xdg/<AppName>', if XDG_CONFIG_DIRS is not set
Typical user data directories are:
Mac OS X: same as site_data_dir
Unix: /etc/xdg/<AppName> or $XDG_CONFIG_DIRS[i]/<AppName> for each value in
$XDG_CONFIG_DIRS
Win *: same as site_data_dir
Vista: (Fail! "C:\ProgramData" is a hidden *system* directory on Vista.)
For Unix, this is using the $XDG_CONFIG_DIRS[0] default, if multipath=False
WARNING: Do not use this on Windows. See the Vista-Fail note above for why.
"""
if system in ["win32", "darwin"]:
path = site_data_dir(appname, appauthor)
if appname and version:
path = os.path.join(path, version)
else:
# XDG default for $XDG_CONFIG_DIRS
# only first, if multipath is False
path = os.getenv('XDG_CONFIG_DIRS', '/etc/xdg')
pathlist = [os.path.expanduser(x.rstrip(os.sep)) for x in path.split(os.pathsep)]
if appname:
if version:
appname = os.path.join(appname, version)
pathlist = [os.sep.join([x, appname]) for x in pathlist]
if multipath:
path = os.pathsep.join(pathlist)
else:
path = pathlist[0]
return path
def user_cache_dir(appname=None, appauthor=None, version=None, opinion=True):
r"""Return full path to the user-specific cache dir for this application.
"appname" is the name of application.
If None, just the system directory is returned.
"appauthor" (only used on Windows) is the name of the
appauthor or distributing body for this application. Typically
it is the owning company name. This falls back to appname. You may
pass False to disable it.
"version" is an optional version path element to append to the
path. You might want to use this if you want multiple versions
of your app to be able to run independently. If used, this
would typically be "<major>.<minor>".
Only applied when appname is present.
"opinion" (boolean) can be False to disable the appending of
"Cache" to the base app data dir for Windows. See
discussion below.
Typical user cache directories are:
Mac OS X: ~/Library/Caches/<AppName>
Unix: ~/.cache/<AppName> (XDG default)
Win XP: C:\Documents and Settings\<username>\Local Settings\Application Data\<AppAuthor>\<AppName>\Cache
Vista: C:\Users\<username>\AppData\Local\<AppAuthor>\<AppName>\Cache
On Windows the only suggestion in the MSDN docs is that local settings go in
the `CSIDL_LOCAL_APPDATA` directory. This is identical to the non-roaming
app data dir (the default returned by `user_data_dir` above). Apps typically
put cache data somewhere *under* the given dir here. Some examples:
...\Mozilla\Firefox\Profiles\<ProfileName>\Cache
...\Acme\SuperApp\Cache\1.0
OPINION: This function appends "Cache" to the `CSIDL_LOCAL_APPDATA` value.
This can be disabled with the `opinion=False` option.
"""
if system == "win32":
if appauthor is None:
appauthor = appname
path = os.path.normpath(_get_win_folder("CSIDL_LOCAL_APPDATA"))
if appname:
if appauthor is not False:
path = os.path.join(path, appauthor, appname)
else:
path = os.path.join(path, appname)
if opinion:
path = os.path.join(path, "Cache")
elif system == 'darwin':
path = os.path.expanduser('~/Library/Caches')
if appname:
path = os.path.join(path, appname)
else:
path = os.getenv('XDG_CACHE_HOME', os.path.expanduser('~/.cache'))
if appname:
path = os.path.join(path, appname)
if appname and version:
path = os.path.join(path, version)
return path
def user_log_dir(appname=None, appauthor=None, version=None, opinion=True):
r"""Return full path to the user-specific log dir for this application.
"appname" is the name of application.
If None, just the system directory is returned.
"appauthor" (only used on Windows) is the name of the
appauthor or distributing body for this application. Typically
it is the owning company name. This falls back to appname. You may
pass False to disable it.
"version" is an optional version path element to append to the
path. You might want to use this if you want multiple versions
of your app to be able to run independently. If used, this
would typically be "<major>.<minor>".
Only applied when appname is present.
"opinion" (boolean) can be False to disable the appending of
"Logs" to the base app data dir for Windows, and "log" to the
base cache dir for Unix. See discussion below.
Typical user cache directories are:
Mac OS X: ~/Library/Logs/<AppName>
Unix: ~/.cache/<AppName>/log # or under $XDG_CACHE_HOME if defined
Win XP: C:\Documents and Settings\<username>\Local Settings\Application Data\<AppAuthor>\<AppName>\Logs
Vista: C:\Users\<username>\AppData\Local\<AppAuthor>\<AppName>\Logs
On Windows the only suggestion in the MSDN docs is that local settings
go in the `CSIDL_LOCAL_APPDATA` directory. (Note: I'm interested in
examples of what some windows apps use for a logs dir.)
OPINION: This function appends "Logs" to the `CSIDL_LOCAL_APPDATA`
value for Windows and appends "log" to the user cache dir for Unix.
This can be disabled with the `opinion=False` option.
"""
if system == "darwin":
path = os.path.join(
os.path.expanduser('~/Library/Logs'),
appname)
elif system == "win32":
path = user_data_dir(appname, appauthor, version)
version = False
if opinion:
path = os.path.join(path, "Logs")
else:
path = user_cache_dir(appname, appauthor, version)
version = False
if opinion:
path = os.path.join(path, "log")
if appname and version:
path = os.path.join(path, version)
return path
class AppDirs(object):
"""Convenience wrapper for getting application dirs."""
def __init__(self, appname, appauthor=None, version=None, roaming=False,
multipath=False):
self.appname = appname
self.appauthor = appauthor
self.version = version
self.roaming = roaming
self.multipath = multipath
@property
def user_data_dir(self):
return user_data_dir(self.appname, self.appauthor,
version=self.version, roaming=self.roaming)
@property
def site_data_dir(self):
return site_data_dir(self.appname, self.appauthor,
version=self.version, multipath=self.multipath)
@property
def user_config_dir(self):
return user_config_dir(self.appname, self.appauthor,
version=self.version, roaming=self.roaming)
@property
def site_config_dir(self):
return site_config_dir(self.appname, self.appauthor,
version=self.version, multipath=self.multipath)
@property
def user_cache_dir(self):
return user_cache_dir(self.appname, self.appauthor,
version=self.version)
@property
def user_log_dir(self):
return user_log_dir(self.appname, self.appauthor,
version=self.version)
#---- internal support stuff
def _get_win_folder_from_registry(csidl_name):
"""This is a fallback technique at best. I'm not sure if using the
registry for this guarantees us the correct answer for all CSIDL_*
names.
"""
if PY3:
import winreg as _winreg
else:
import _winreg
shell_folder_name = {
"CSIDL_APPDATA": "AppData",
"CSIDL_COMMON_APPDATA": "Common AppData",
"CSIDL_LOCAL_APPDATA": "Local AppData",
}[csidl_name]
key = _winreg.OpenKey(
_winreg.HKEY_CURRENT_USER,
r"Software\Microsoft\Windows\CurrentVersion\Explorer\Shell Folders"
)
dir, type = _winreg.QueryValueEx(key, shell_folder_name)
return dir
def _get_win_folder_with_pywin32(csidl_name):
from win32com.shell import shellcon, shell
dir = shell.SHGetFolderPath(0, getattr(shellcon, csidl_name), 0, 0)
# Try to make this a unicode path because SHGetFolderPath does
# not return unicode strings when there is unicode data in the
# path.
try:
dir = unicode(dir)
# Downgrade to short path name if have highbit chars. See
# <http://bugs.activestate.com/show_bug.cgi?id=85099>.
has_high_char = False
for c in dir:
if ord(c) > 255:
has_high_char = True
break
if has_high_char:
try:
import win32api
dir = win32api.GetShortPathName(dir)
except ImportError:
pass
except UnicodeError:
pass
return dir
def _get_win_folder_with_ctypes(csidl_name):
import ctypes
csidl_const = {
"CSIDL_APPDATA": 26,
"CSIDL_COMMON_APPDATA": 35,
"CSIDL_LOCAL_APPDATA": 28,
}[csidl_name]
buf = ctypes.create_unicode_buffer(1024)
ctypes.windll.shell32.SHGetFolderPathW(None, csidl_const, None, 0, buf)
# Downgrade to short path name if have highbit chars. See
# <http://bugs.activestate.com/show_bug.cgi?id=85099>.
has_high_char = False
for c in buf:
if ord(c) > 255:
has_high_char = True
break
if has_high_char:
buf2 = ctypes.create_unicode_buffer(1024)
if ctypes.windll.kernel32.GetShortPathNameW(buf.value, buf2, 1024):
buf = buf2
return buf.value
def _get_win_folder_with_jna(csidl_name):
import array
from com.sun import jna
from com.sun.jna.platform import win32
buf_size = win32.WinDef.MAX_PATH * 2
buf = array.zeros('c', buf_size)
shell = win32.Shell32.INSTANCE
shell.SHGetFolderPath(None, getattr(win32.ShlObj, csidl_name), None, win32.ShlObj.SHGFP_TYPE_CURRENT, buf)
dir = jna.Native.toString(buf.tostring()).rstrip("\0")
# Downgrade to short path name if have highbit chars. See
# <http://bugs.activestate.com/show_bug.cgi?id=85099>.
has_high_char = False
for c in dir:
if ord(c) > 255:
has_high_char = True
break
if has_high_char:
buf = array.zeros('c', buf_size)
kernel = win32.Kernel32.INSTANCE
if kernel.GetShortPathName(dir, buf, buf_size):
dir = jna.Native.toString(buf.tostring()).rstrip("\0")
return dir
if system == "win32":
try:
import win32com.shell
_get_win_folder = _get_win_folder_with_pywin32
except ImportError:
try:
from ctypes import windll
_get_win_folder = _get_win_folder_with_ctypes
except ImportError:
try:
import com.sun.jna
_get_win_folder = _get_win_folder_with_jna
except ImportError:
_get_win_folder = _get_win_folder_from_registry
#---- self test code
if __name__ == "__main__":
appname = "MyApp"
appauthor = "MyCompany"
props = ("user_data_dir", "site_data_dir",
"user_config_dir", "site_config_dir",
"user_cache_dir", "user_log_dir")
print("-- app dirs %s --" % __version__)
print("-- app dirs (with optional 'version')")
dirs = AppDirs(appname, appauthor, version="1.0")
for prop in props:
print("%s: %s" % (prop, getattr(dirs, prop)))
print("\n-- app dirs (without optional 'version')")
dirs = AppDirs(appname, appauthor)
for prop in props:
print("%s: %s" % (prop, getattr(dirs, prop)))
print("\n-- app dirs (without optional 'appauthor')")
dirs = AppDirs(appname)
for prop in props:
print("%s: %s" % (prop, getattr(dirs, prop)))
print("\n-- app dirs (with disabled 'appauthor')")
dirs = AppDirs(appname, appauthor=False)
for prop in props:
print("%s: %s" % (prop, getattr(dirs, prop)))

View File

@ -1,96 +1,22 @@
#!/usr/bin/env python3
from PyQt6 import QtWidgets, QtCore, QtGui
from PyQt5 import QtWidgets
from artiq.applets.simple import SimpleApplet
from artiq.tools import scale_from_metadata
from artiq.gui.tools import LayoutWidget
class QResponsiveLCDNumber(QtWidgets.QLCDNumber):
doubleClicked = QtCore.pyqtSignal()
def mouseDoubleClickEvent(self, event):
self.doubleClicked.emit()
class QCancellableLineEdit(QtWidgets.QLineEdit):
editCancelled = QtCore.pyqtSignal()
def keyPressEvent(self, event):
if event.key() == QtCore.Qt.Key.Key_Escape:
self.editCancelled.emit()
else:
super().keyPressEvent(event)
class NumberWidget(LayoutWidget):
def __init__(self, args, req):
LayoutWidget.__init__(self)
class NumberWidget(QtWidgets.QLCDNumber):
def __init__(self, args):
QtWidgets.QLCDNumber.__init__(self)
self.setDigitCount(args.digit_count)
self.dataset_name = args.dataset
self.req = req
self.metadata = dict()
self.number_area = QtWidgets.QStackedWidget()
self.addWidget(self.number_area, 0, 0)
self.unit_area = QtWidgets.QLabel()
self.unit_area.setAlignment(QtCore.Qt.AlignmentFlag.AlignRight | QtCore.Qt.AlignmentFlag.AlignTop)
self.addWidget(self.unit_area, 0, 1)
self.lcd_widget = QResponsiveLCDNumber()
self.lcd_widget.setDigitCount(args.digit_count)
self.lcd_widget.doubleClicked.connect(self.start_edit)
self.number_area.addWidget(self.lcd_widget)
self.edit_widget = QCancellableLineEdit()
self.edit_widget.setValidator(QtGui.QDoubleValidator())
self.edit_widget.setAlignment(QtCore.Qt.AlignmentFlag.AlignRight | QtCore.Qt.AlignmentFlag.AlignVCenter)
self.edit_widget.editCancelled.connect(self.cancel_edit)
self.edit_widget.returnPressed.connect(self.confirm_edit)
self.number_area.addWidget(self.edit_widget)
font = QtGui.QFont()
font.setPointSize(60)
self.edit_widget.setFont(font)
unit_font = QtGui.QFont()
unit_font.setPointSize(20)
self.unit_area.setFont(unit_font)
self.number_area.setCurrentWidget(self.lcd_widget)
def start_edit(self):
# QLCDNumber value property contains the value of zero
# if the displayed value is not a number.
self.edit_widget.setText(str(self.lcd_widget.value()))
self.edit_widget.selectAll()
self.edit_widget.setFocus()
self.number_area.setCurrentWidget(self.edit_widget)
def confirm_edit(self):
scale = scale_from_metadata(self.metadata)
val = float(self.edit_widget.text())
val *= scale
self.req.set_dataset(self.dataset_name, val, **self.metadata)
self.number_area.setCurrentWidget(self.lcd_widget)
def cancel_edit(self):
self.number_area.setCurrentWidget(self.lcd_widget)
def data_changed(self, value, metadata, persist, mods):
def data_changed(self, data, mods):
try:
self.metadata = metadata[self.dataset_name]
# This applet will degenerate other scalar types to native float on edit
# Use the dashboard ChangeEditDialog for consistent type casting
val = float(value[self.dataset_name])
scale = scale_from_metadata(self.metadata)
val /= scale
n = float(data[self.dataset_name][1])
except (KeyError, ValueError, TypeError):
val = "---"
unit = self.metadata.get("unit", "")
self.unit_area.setText(unit)
self.lcd_widget.display(val)
n = "---"
self.display(n)
def main():

View File

@ -1,19 +1,19 @@
#!/usr/bin/env python3
import PyQt6 # make sure pyqtgraph imports Qt6
import PyQt5 # make sure pyqtgraph imports Qt5
import pyqtgraph
from artiq.applets.simple import SimpleApplet
class Image(pyqtgraph.ImageView):
def __init__(self, args, req):
def __init__(self, args):
pyqtgraph.ImageView.__init__(self)
self.args = args
def data_changed(self, value, metadata, persist, mods):
def data_changed(self, data, mods):
try:
img = value[self.args.img]
img = data[self.args.img][1]
except KeyError:
return
self.setImage(img)

View File

@ -1,47 +1,33 @@
#!/usr/bin/env python3
import PyQt6 # make sure pyqtgraph imports Qt6
from PyQt6.QtCore import QTimer
import PyQt5 # make sure pyqtgraph imports Qt5
import pyqtgraph
from artiq.applets.simple import TitleApplet
class HistogramPlot(pyqtgraph.PlotWidget):
def __init__(self, args, req):
def __init__(self, args):
pyqtgraph.PlotWidget.__init__(self)
self.args = args
self.timer = QTimer()
self.timer.setSingleShot(True)
self.timer.timeout.connect(self.length_warning)
def data_changed(self, value, metadata, persist, mods, title):
def data_changed(self, data, mods, title):
try:
y = value[self.args.y]
y = data[self.args.y][1]
if self.args.x is None:
x = None
else:
x = value[self.args.x]
x = data[self.args.x][1]
except KeyError:
return
if x is None:
x = list(range(len(y)+1))
if len(y) and len(x) == len(y) + 1:
self.timer.stop()
self.clear()
self.plot(x, y, stepMode=True, fillLevel=0,
brush=(0, 0, 255, 150))
self.setTitle(title)
else:
if not self.timer.isActive():
self.timer.start(1000)
def length_warning(self):
self.clear()
text = "⚠️ dataset lengths mismatch:\n"\
"There should be one more bin boundaries than there are Y values"
self.addItem(pyqtgraph.TextItem(text))
def main():

View File

@ -1,59 +1,40 @@
#!/usr/bin/env python3
import numpy as np
import PyQt6 # make sure pyqtgraph imports Qt6
from PyQt6.QtCore import QTimer
import PyQt5 # make sure pyqtgraph imports Qt5
import pyqtgraph
from artiq.applets.simple import TitleApplet
class XYPlot(pyqtgraph.PlotWidget):
def __init__(self, args, req):
def __init__(self, args):
pyqtgraph.PlotWidget.__init__(self)
self.args = args
self.timer = QTimer()
self.timer.setSingleShot(True)
self.timer.timeout.connect(self.length_warning)
self.mismatch = {'X values': False,
'Error bars': False,
'Fit values': False}
def data_changed(self, value, metadata, persist, mods, title):
def data_changed(self, data, mods, title):
try:
y = value[self.args.y]
y = data[self.args.y][1]
except KeyError:
return
x = value.get(self.args.x)
x = data.get(self.args.x, (False, None))[1]
if x is None:
x = np.arange(len(y))
error = value.get(self.args.error)
fit = value.get(self.args.fit)
error = data.get(self.args.error, (False, None))[1]
fit = data.get(self.args.fit, (False, None))[1]
if not len(y) or len(y) != len(x):
self.mismatch['X values'] = True
else:
self.mismatch['X values'] = False
return
if error is not None and hasattr(error, "__len__"):
if not len(error):
error = None
elif len(error) != len(y):
self.mismatch['Error bars'] = True
else:
self.mismatch['Error bars'] = False
return
if fit is not None:
if not len(fit):
fit = None
elif len(fit) != len(y):
self.mismatch['Fit values'] = True
else:
self.mismatch['Fit values'] = False
if not any(self.mismatch.values()):
self.timer.stop()
else:
if not self.timer.isActive():
self.timer.start(1000)
return
return
self.clear()
self.plot(x, y, pen=None, symbol="x")
@ -69,13 +50,6 @@ class XYPlot(pyqtgraph.PlotWidget):
xi = np.argsort(x)
self.plot(x[xi], fit[xi])
def length_warning(self):
self.clear()
text = "⚠️ dataset lengths mismatch:\n"
errors = ', '.join([k for k, v in self.mismatch.items() if v])
text = ' '.join([errors, "should have the same length as Y values"])
self.addItem(pyqtgraph.TextItem(text))
def main():
applet = TitleApplet(XYPlot)

View File

@ -1,8 +1,7 @@
#!/usr/bin/env python3
import numpy as np
from PyQt6 import QtWidgets
from PyQt6.QtCore import QTimer
from PyQt5 import QtWidgets
import pyqtgraph
from artiq.applets.simple import SimpleApplet
@ -22,7 +21,7 @@ def _compute_ys(histogram_bins, histograms_counts):
# pyqtgraph.GraphicsWindow fails to behave like a regular Qt widget
# and breaks embedding. Do not use as top widget.
class XYHistPlot(QtWidgets.QSplitter):
def __init__(self, args, req):
def __init__(self, args):
QtWidgets.QSplitter.__init__(self)
self.resize(1000, 600)
self.setWindowTitle("XY/Histogram")
@ -38,10 +37,6 @@ class XYHistPlot(QtWidgets.QSplitter):
self.hist_plot_data = None
self.args = args
self.timer = QTimer()
self.timer.setSingleShot(True)
self.timer.timeout.connect(self.length_warning)
self.mismatch = {'bins': False, 'xs': False}
def _set_full_data(self, xs, histogram_bins, histograms_counts):
self.xy_plot.clear()
@ -64,9 +59,9 @@ class XYHistPlot(QtWidgets.QSplitter):
point.histogram_index = index
point.histogram_counts = counts
text = "click on a data point at the left\n"\
"to see the corresponding histogram"
self.hist_plot.addItem(pyqtgraph.TextItem(text))
self.hist_plot_data = self.hist_plot.plot(
stepMode=True, fillLevel=0,
brush=(0, 0, 255, 150))
def _set_partial_data(self, xs, histograms_counts):
ys = _compute_ys(self.histogram_bins, histograms_counts)
@ -92,17 +87,8 @@ class XYHistPlot(QtWidgets.QSplitter):
else:
self.arrow.setPos(position)
self.selected_index = spot_item.histogram_index
if self.hist_plot_data is None:
self.hist_plot.clear()
self.hist_plot_data = self.hist_plot.plot(
x=self.histogram_bins,
y=spot_item.histogram_counts,
stepMode=True, fillLevel=0,
brush=(0, 0, 255, 150))
else:
self.hist_plot_data.setData(x=self.histogram_bins,
y=spot_item.histogram_counts)
self.hist_plot_data.setData(x=self.histogram_bins,
y=spot_item.histogram_counts)
def _can_use_partial(self, mods):
if self.hist_plot_data is None:
@ -124,48 +110,18 @@ class XYHistPlot(QtWidgets.QSplitter):
return False
return True
def data_changed(self, value, metadata, persist, mods):
def data_changed(self, data, mods):
try:
xs = value[self.args.xs]
histogram_bins = value[self.args.histogram_bins]
histograms_counts = value[self.args.histograms_counts]
xs = data[self.args.xs][1]
histogram_bins = data[self.args.histogram_bins][1]
histograms_counts = data[self.args.histograms_counts][1]
except KeyError:
return
if len(xs) != histograms_counts.shape[0]:
self.mismatch['xs'] = True
else:
self.mismatch['xs'] = False
if histograms_counts.shape[1] != len(histogram_bins) - 1:
self.mismatch['bins'] = True
else:
self.mismatch['bins'] = False
if any(self.mismatch.values()):
if not self.timer.isActive():
self.timer.start(1000)
return
else:
self.timer.stop()
if self._can_use_partial(mods):
self._set_partial_data(xs, histograms_counts)
else:
self._set_full_data(xs, histogram_bins, histograms_counts)
def length_warning(self):
self.xy_plot.clear()
self.hist_plot.clear()
text = "⚠️ dataset lengths mismatch:\n\n"
if self.mismatch['bins']:
text = ''.join([text,
"bin boundaries should have the same length\n"
"as the first dimension of histogram counts."])
if self.mismatch['bins'] and self.mismatch['xs']:
text = ''.join([text, '\n\n'])
if self.mismatch['xs']:
text = ''.join([text,
"point abscissas should have the same length\n"
"as the second dimension of histogram counts."])
self.xy_plot.addItem(pyqtgraph.TextItem(text))
def main():
applet = SimpleApplet(XYHistPlot)

View File

@ -1,34 +0,0 @@
#!/usr/bin/env python3
from PyQt6 import QtWidgets
from artiq.applets.simple import SimpleApplet
class ProgressWidget(QtWidgets.QProgressBar):
def __init__(self, args, req):
QtWidgets.QProgressBar.__init__(self)
self.setMinimum(args.min)
self.setMaximum(args.max)
self.dataset_value = args.value
def data_changed(self, value, metadata, persist, mods):
try:
val = round(value[self.dataset_value])
except (KeyError, ValueError, TypeError):
val = 0
self.setValue(val)
def main():
applet = SimpleApplet(ProgressWidget)
applet.add_dataset("value", "counter")
applet.argparser.add_argument("--min", type=int, default=0,
help="minimum (left) value of the bar")
applet.argparser.add_argument("--max", type=int, default=100,
help="maximum (right) value of the bar")
applet.run()
if __name__ == "__main__":
main()

View File

@ -4,116 +4,16 @@ import asyncio
import os
import string
from qasync import QEventLoop, QtWidgets, QtCore
from quamash import QEventLoop, QtWidgets, QtCore
from sipyco.sync_struct import Subscriber, process_mod
from sipyco.pc_rpc import AsyncioClient as RPCClient
from sipyco import pyon
from sipyco.pipe_ipc import AsyncioChildComm
from artiq.language.scan import ScanObject
from artiq.protocols.sync_struct import Subscriber, process_mod
from artiq.protocols import pyon
from artiq.protocols.pipe_ipc import AsyncioChildComm
logger = logging.getLogger(__name__)
class _AppletRequestInterface:
def __init__(self):
raise NotImplementedError
def set_dataset(self, key, value, unit=None, scale=None, precision=None, persist=None):
"""
Set a dataset.
See documentation of :meth:`~artiq.language.environment.HasEnvironment.set_dataset`.
"""
raise NotImplementedError
def mutate_dataset(self, key, index, value):
"""
Mutate a dataset.
See documentation of :meth:`~artiq.language.environment.HasEnvironment.mutate_dataset`.
"""
raise NotImplementedError
def append_to_dataset(self, key, value):
"""
Append to a dataset.
See documentation of :meth:`~artiq.language.environment.HasEnvironment.append_to_dataset`.
"""
raise NotImplementedError
def set_argument_value(self, expurl, key, value):
"""
Temporarily set the value of an argument in a experiment in the dashboard.
The value resets to default value when recomputing the argument.
:param expurl: Experiment URL identifying the experiment in the dashboard. Example: 'repo:ArgumentsDemo'.
:param key: Name of the argument in the experiment.
:param value: Object representing the new temporary value of the argument. For :class:`~artiq.language.scan.Scannable` arguments,
this parameter should be a :class:`~artiq.language.scan.ScanObject`. The type of the :class:`~artiq.language.scan.ScanObject`
will be set as the selected type when this function is called.
"""
raise NotImplementedError
class AppletRequestIPC(_AppletRequestInterface):
def __init__(self, ipc):
self.ipc = ipc
def set_dataset(self, key, value, unit=None, scale=None, precision=None, persist=None):
metadata = {}
if unit is not None:
metadata["unit"] = unit
if scale is not None:
metadata["scale"] = scale
if precision is not None:
metadata["precision"] = precision
self.ipc.set_dataset(key, value, metadata, persist)
def mutate_dataset(self, key, index, value):
mod = {"action": "setitem", "path": [key, 1], "key": index, "value": value}
self.ipc.update_dataset(mod)
def append_to_dataset(self, key, value):
mod = {"action": "append", "path": [key, 1], "x": value}
self.ipc.update_dataset(mod)
def set_argument_value(self, expurl, key, value):
if isinstance(value, ScanObject):
value = value.describe()
self.ipc.set_argument_value(expurl, key, value)
class AppletRequestRPC(_AppletRequestInterface):
def __init__(self, loop, dataset_ctl):
self.loop = loop
self.dataset_ctl = dataset_ctl
self.background_tasks = set()
def _background(self, coro, *args, **kwargs):
task = self.loop.create_task(coro(*args, **kwargs))
self.background_tasks.add(task)
task.add_done_callback(self.background_tasks.discard)
def set_dataset(self, key, value, unit=None, scale=None, precision=None, persist=None):
metadata = {}
if unit is not None:
metadata["unit"] = unit
if scale is not None:
metadata["scale"] = scale
if precision is not None:
metadata["precision"] = precision
self._background(self.dataset_ctl.set, key, value, metadata=metadata, persist=persist)
def mutate_dataset(self, key, index, value):
mod = {"action": "setitem", "path": [key, 1], "key": index, "value": value}
self._background(self.dataset_ctl.update, mod)
def append_to_dataset(self, key, value):
mod = {"action": "append", "path": [key, 1], "x": value}
self._background(self.dataset_ctl.update, mod)
class AppletIPCClient(AsyncioChildComm):
def set_close_cb(self, close_cb):
self.close_cb = close_cb
@ -137,8 +37,9 @@ class AppletIPCClient(AsyncioChildComm):
logger.error("unexpected action reply to embed request: %s",
reply["action"])
self.close_cb()
else:
return reply["size_w"], reply["size_h"]
def fix_initial_size(self):
self.write_pyon({"action": "fix_initial_size"})
async def listen(self):
data = None
@ -163,30 +64,12 @@ class AppletIPCClient(AsyncioChildComm):
exc_info=True)
self.close_cb()
def subscribe(self, datasets, init_cb, mod_cb, dataset_prefixes=[], *, loop):
def subscribe(self, datasets, init_cb, mod_cb):
self.write_pyon({"action": "subscribe",
"datasets": datasets,
"dataset_prefixes": dataset_prefixes})
"datasets": datasets})
self.init_cb = init_cb
self.mod_cb = mod_cb
self.listen_task = loop.create_task(self.listen())
def set_dataset(self, key, value, metadata, persist=None):
self.write_pyon({"action": "set_dataset",
"key": key,
"value": value,
"metadata": metadata,
"persist": persist})
def update_dataset(self, mod):
self.write_pyon({"action": "update_dataset",
"mod": mod})
def set_argument_value(self, expurl, key, value):
self.write_pyon({"action": "set_argument_value",
"expurl": expurl,
"key": key,
"value": value})
asyncio.ensure_future(self.listen())
class SimpleApplet:
@ -208,11 +91,8 @@ class SimpleApplet:
"for dataset notifications "
"(ignored in embedded mode)")
group.add_argument(
"--port-notify", default=3250, type=int,
help="TCP port to connect to for notifications (ignored in embedded mode)")
group.add_argument(
"--port-control", default=3251, type=int,
help="TCP port to connect to for control (ignored in embedded mode)")
"--port", default=3250, type=int,
help="TCP port to connect to")
self._arggroup_datasets = self.argparser.add_argument_group("datasets")
@ -233,11 +113,8 @@ class SimpleApplet:
self.embed = os.getenv("ARTIQ_APPLET_EMBED")
self.datasets = {getattr(self.args, arg.replace("-", "_"))
for arg in self.dataset_args}
# Optional prefixes (dataset sub-trees) to match subscriptions against;
# currently only used by out-of-tree subclasses (ndscan).
self.dataset_prefixes = []
def qasync_init(self):
def quamash_init(self):
app = QtWidgets.QApplication([])
self.loop = QEventLoop(app)
asyncio.set_event_loop(self.loop)
@ -251,28 +128,15 @@ class SimpleApplet:
if self.embed is not None:
self.ipc.close()
def req_init(self):
if self.embed is None:
dataset_ctl = RPCClient()
self.loop.run_until_complete(dataset_ctl.connect_rpc(
self.args.server, self.args.port_control, "dataset_db"))
self.req = AppletRequestRPC(self.loop, dataset_ctl)
else:
self.req = AppletRequestIPC(self.ipc)
def req_close(self):
if self.embed is None:
self.req.dataset_ctl.close_rpc()
def create_main_widget(self):
self.main_widget = self.main_widget_class(self.args, self.req)
self.main_widget = self.main_widget_class(self.args)
if self.embed is not None:
self.ipc.set_close_cb(self.main_widget.close)
if os.name == "nt":
# HACK: if the window has a frame, there will be garbage
# (usually white) displayed at its right and bottom borders
# after it is embedded.
self.main_widget.setWindowFlags(QtCore.Qt.WindowType.FramelessWindowHint)
self.main_widget.setWindowFlags(QtCore.Qt.FramelessWindowHint)
self.main_widget.show()
win_id = int(self.main_widget.winId())
self.loop.run_until_complete(self.ipc.embed(win_id))
@ -285,13 +149,12 @@ class SimpleApplet:
# 2. applet creates native window without showing it, and
# gets its ID
# 3. applet sends the ID to host, host embeds the widget
# and returns embedded size
# 4. applet is resized to that given size
# 5. applet shows the widget
# 4. applet shows the widget
# 5. parent resizes the widget
win_id = int(self.main_widget.winId())
size_w, size_h = self.loop.run_until_complete(self.ipc.embed(win_id))
self.main_widget.resize(size_w, size_h)
self.loop.run_until_complete(self.ipc.embed(win_id))
self.main_widget.show()
self.ipc.fix_initial_size()
else:
self.main_widget.show()
@ -299,14 +162,6 @@ class SimpleApplet:
self.data = data
return data
def is_dataset_subscribed(self, key):
if key in self.datasets:
return True
for prefix in self.dataset_prefixes:
if key.startswith(prefix):
return True
return False
def filter_mod(self, mod):
if self.embed is not None:
# the parent already filters for us
@ -315,19 +170,14 @@ class SimpleApplet:
if mod["action"] == "init":
return True
if mod["path"]:
return self.is_dataset_subscribed(mod["path"][0])
return mod["path"][0] in self.datasets
elif mod["action"] in {"setitem", "delitem"}:
return self.is_dataset_subscribed(mod["key"])
return mod["key"] in self.datasets
else:
return False
def emit_data_changed(self, data, mod_buffer):
persist = dict()
value = dict()
metadata = dict()
for k, d in data.items():
persist[k], value[k], metadata[k] = d
self.main_widget.data_changed(value, metadata, persist, mod_buffer)
self.main_widget.data_changed(data, mod_buffer)
def flush_mod_buffer(self):
self.emit_data_changed(self.data, self.mod_buffer)
@ -342,8 +192,8 @@ class SimpleApplet:
self.mod_buffer.append(mod)
else:
self.mod_buffer = [mod]
self.loop.call_later(self.args.update_delay,
self.flush_mod_buffer)
asyncio.get_event_loop().call_later(self.args.update_delay,
self.flush_mod_buffer)
else:
self.emit_data_changed(self.data, [mod])
@ -352,11 +202,9 @@ class SimpleApplet:
self.subscriber = Subscriber("datasets",
self.sub_init, self.sub_mod)
self.loop.run_until_complete(self.subscriber.connect(
self.args.server, self.args.port_notify))
self.args.server, self.args.port))
else:
self.ipc.subscribe(self.datasets, self.sub_init, self.sub_mod,
dataset_prefixes=self.dataset_prefixes,
loop=self.loop)
self.ipc.subscribe(self.datasets, self.sub_init, self.sub_mod)
def unsubscribe(self):
if self.embed is None:
@ -364,20 +212,16 @@ class SimpleApplet:
def run(self):
self.args_init()
self.qasync_init()
self.quamash_init()
try:
self.ipc_init()
try:
self.req_init()
self.create_main_widget()
self.subscribe()
try:
self.create_main_widget()
self.subscribe()
try:
self.loop.run_forever()
finally:
self.unsubscribe()
self.loop.run_forever()
finally:
self.req_close()
self.unsubscribe()
finally:
self.ipc_close()
finally:
@ -416,9 +260,4 @@ class TitleApplet(SimpleApplet):
title = self.args.title
else:
title = None
persist = dict()
value = dict()
metadata = dict()
for k, d in data.items():
persist[k], value[k], metadata[k] = d
self.main_widget.data_changed(value, metadata, persist, mod_buffer, title)
self.main_widget.data_changed(data, mod_buffer, title)

View File

@ -1,13 +1,12 @@
import logging
import asyncio
from PyQt6 import QtCore, QtGui, QtWidgets
from sipyco.pc_rpc import AsyncioClient as RPCClient
from PyQt5 import QtCore, QtWidgets
from artiq.tools import short_format
from artiq.gui.tools import LayoutWidget
from artiq.gui.tools import LayoutWidget, QRecursiveFilterProxyModel
from artiq.gui.models import DictSyncTreeSepModel
from artiq.protocols.pc_rpc import AsyncioClient as RPCClient
# reduced read-only version of artiq.dashboard.datasets
@ -20,50 +19,15 @@ class Model(DictSyncTreeSepModel):
DictSyncTreeSepModel.__init__(self, ".", ["Dataset", "Value"], init)
def convert(self, k, v, column):
return short_format(v[1], v[2])
class DatasetCtl:
def __init__(self, master_host, master_port):
self.master_host = master_host
self.master_port = master_port
async def _execute_rpc(self, op_name, key_or_mod, value=None, persist=None, metadata=None):
logger.info("Starting %s operation on %s", op_name, key_or_mod)
try:
remote = RPCClient()
await remote.connect_rpc(self.master_host, self.master_port,
"dataset_db")
try:
if op_name == "set":
await remote.set(key_or_mod, value, persist, metadata)
elif op_name == "update":
await remote.update(key_or_mod)
else:
logger.error("Invalid operation: %s", op_name)
return
finally:
remote.close_rpc()
except:
logger.error("Failed %s operation on %s", op_name,
key_or_mod, exc_info=True)
else:
logger.info("Finished %s operation on %s", op_name,
key_or_mod)
async def set(self, key, value, persist=None, metadata=None):
await self._execute_rpc("set", key, value, persist, metadata)
async def update(self, mod):
await self._execute_rpc("update", mod)
return short_format(v[1])
class DatasetsDock(QtWidgets.QDockWidget):
def __init__(self, dataset_sub, dataset_ctl):
def __init__(self, datasets_sub, master_host, master_port):
QtWidgets.QDockWidget.__init__(self, "Datasets")
self.setObjectName("Datasets")
self.setFeatures(self.DockWidgetFeature.DockWidgetMovable |
self.DockWidgetFeature.DockWidgetFloatable)
self.setFeatures(QtWidgets.QDockWidget.DockWidgetMovable |
QtWidgets.QDockWidget.DockWidgetFloatable)
grid = LayoutWidget()
self.setWidget(grid)
@ -74,9 +38,9 @@ class DatasetsDock(QtWidgets.QDockWidget):
grid.addWidget(self.search, 0, 0)
self.table = QtWidgets.QTreeView()
self.table.setSelectionBehavior(QtWidgets.QAbstractItemView.SelectionBehavior.SelectRows)
self.table.setSelectionBehavior(QtWidgets.QAbstractItemView.SelectRows)
self.table.setSelectionMode(
QtWidgets.QAbstractItemView.SelectionMode.SingleSelection)
QtWidgets.QAbstractItemView.SingleSelection)
grid.addWidget(self.table, 1, 0)
metadata_grid = LayoutWidget()
@ -85,21 +49,22 @@ class DatasetsDock(QtWidgets.QDockWidget):
"rid start_time".split()):
metadata_grid.addWidget(QtWidgets.QLabel(label), i, 0)
v = QtWidgets.QLabel()
v.setTextInteractionFlags(QtCore.Qt.TextInteractionFlag.TextSelectableByMouse)
v.setTextInteractionFlags(QtCore.Qt.TextSelectableByMouse)
metadata_grid.addWidget(v, i, 1)
self.metadata[label] = v
grid.addWidget(metadata_grid, 2, 0)
self.table.setContextMenuPolicy(QtCore.Qt.ContextMenuPolicy.ActionsContextMenu)
upload_action = QtGui.QAction("Upload dataset to master",
self.table.setContextMenuPolicy(QtCore.Qt.ActionsContextMenu)
upload_action = QtWidgets.QAction("Upload dataset to master",
self.table)
upload_action.triggered.connect(self.upload_clicked)
self.table.addAction(upload_action)
self.set_model(Model(dict()))
dataset_sub.add_setmodel_callback(self.set_model)
datasets_sub.add_setmodel_callback(self.set_model)
self.dataset_ctl = dataset_ctl
self.master_host = master_host
self.master_port = master_port
def _search_datasets(self):
if hasattr(self, "table_model_filter"):
@ -112,19 +77,34 @@ class DatasetsDock(QtWidgets.QDockWidget):
def set_model(self, model):
self.table_model = model
self.table_model_filter = QtCore.QSortFilterProxyModel()
self.table_model_filter.setRecursiveFilteringEnabled(True)
self.table_model_filter = QRecursiveFilterProxyModel()
self.table_model_filter.setSourceModel(self.table_model)
self.table.setModel(self.table_model_filter)
async def _upload_dataset(self, name, value,):
logger.info("Uploading dataset '%s' to master...", name)
try:
remote = RPCClient()
await remote.connect_rpc(self.master_host, self.master_port,
"master_dataset_db")
try:
await remote.set(name, value)
finally:
remote.close_rpc()
except:
logger.error("Failed uploading dataset '%s'",
name, exc_info=True)
else:
logger.info("Finished uploading dataset '%s'", name)
def upload_clicked(self):
idx = self.table.selectedIndexes()
if idx:
idx = self.table_model_filter.mapToSource(idx[0])
key = self.table_model.index_to_key(idx)
if key is not None:
persist, value, metadata = self.table_model.backing_store[key]
asyncio.ensure_future(self.dataset_ctl.set(key, value, metadata=metadata))
persist, value = self.table_model.backing_store[key]
asyncio.ensure_future(self._upload_dataset(key, value))
def save_state(self):
return bytes(self.table.header().saveState())

View File

@ -4,42 +4,110 @@ import os
from functools import partial
from collections import OrderedDict
from PyQt6 import QtCore, QtGui, QtWidgets
from PyQt5 import QtCore, QtGui, QtWidgets
import h5py
from sipyco import pyon
from artiq import __artiq_dir__ as artiq_dir
from artiq.gui.tools import (LayoutWidget, log_level_to_name, get_open_file_name)
from artiq.gui.entries import procdesc_to_entry, EntryTreeWidget
from artiq.gui.tools import LayoutWidget, log_level_to_name, get_open_file_name
from artiq.gui.entries import procdesc_to_entry
from artiq.protocols import pyon
from artiq.master.worker import Worker, log_worker_exception
logger = logging.getLogger(__name__)
class _ArgumentEditor(EntryTreeWidget):
class _WheelFilter(QtCore.QObject):
def eventFilter(self, obj, event):
if (event.type() == QtCore.QEvent.Wheel and
event.modifiers() != QtCore.Qt.NoModifier):
event.ignore()
return True
return False
class _ArgumentEditor(QtWidgets.QTreeWidget):
def __init__(self, dock):
EntryTreeWidget.__init__(self)
QtWidgets.QTreeWidget.__init__(self)
self.setColumnCount(3)
self.header().setStretchLastSection(False)
try:
set_resize_mode = self.header().setSectionResizeMode
except AttributeError:
set_resize_mode = self.header().setResizeMode
set_resize_mode(0, QtWidgets.QHeaderView.ResizeToContents)
set_resize_mode(1, QtWidgets.QHeaderView.Stretch)
set_resize_mode(2, QtWidgets.QHeaderView.ResizeToContents)
self.header().setVisible(False)
self.setSelectionMode(self.NoSelection)
self.setHorizontalScrollMode(self.ScrollPerPixel)
self.setVerticalScrollMode(self.ScrollPerPixel)
self.setStyleSheet("QTreeWidget {background: " +
self.palette().midlight().color().name() + " ;}")
self.viewport().installEventFilter(_WheelFilter(self.viewport()))
self._groups = dict()
self._arg_to_widgets = dict()
self._dock = dock
if not self._dock.arguments:
self.insertTopLevelItem(0, QtWidgets.QTreeWidgetItem(["No arguments"]))
self.addTopLevelItem(QtWidgets.QTreeWidgetItem(["No arguments"]))
gradient = QtGui.QLinearGradient(
0, 0, 0, QtGui.QFontMetrics(self.font()).lineSpacing()*2.5)
gradient.setColorAt(0, self.palette().base().color())
gradient.setColorAt(1, self.palette().midlight().color())
for name, argument in self._dock.arguments.items():
self.set_argument(name, argument)
widgets = dict()
self._arg_to_widgets[name] = widgets
self.quickStyleClicked.connect(self._dock._run_clicked)
entry = procdesc_to_entry(argument["desc"])(argument)
widget_item = QtWidgets.QTreeWidgetItem([name])
if argument["tooltip"]:
widget_item.setToolTip(0, argument["tooltip"])
widgets["entry"] = entry
widgets["widget_item"] = widget_item
for col in range(3):
widget_item.setBackground(col, gradient)
font = widget_item.font(0)
font.setBold(True)
widget_item.setFont(0, font)
if argument["group"] is None:
self.addTopLevelItem(widget_item)
else:
self._get_group(argument["group"]).addChild(widget_item)
fix_layout = LayoutWidget()
widgets["fix_layout"] = fix_layout
fix_layout.addWidget(entry)
self.setItemWidget(widget_item, 1, fix_layout)
recompute_argument = QtWidgets.QToolButton()
recompute_argument.setToolTip("Re-run the experiment's build "
"method and take the default value")
recompute_argument.setIcon(
QtWidgets.QApplication.style().standardIcon(
QtWidgets.QStyle.SP_BrowserReload))
recompute_argument.clicked.connect(
partial(self._recompute_argument_clicked, name))
fix_layout = LayoutWidget()
fix_layout.addWidget(recompute_argument)
self.setItemWidget(widget_item, 2, fix_layout)
widget_item = QtWidgets.QTreeWidgetItem()
self.addTopLevelItem(widget_item)
recompute_arguments = QtWidgets.QPushButton("Recompute all arguments")
recompute_arguments.setIcon(
QtWidgets.QApplication.style().standardIcon(
QtWidgets.QStyle.StandardPixmap.SP_BrowserReload))
QtWidgets.QStyle.SP_BrowserReload))
recompute_arguments.clicked.connect(self._recompute_arguments_clicked)
load = QtWidgets.QPushButton("Set arguments from HDF5")
load.setToolTip("Set arguments from currently selected HDF5 file")
load.setIcon(QtWidgets.QApplication.style().standardIcon(
QtWidgets.QStyle.StandardPixmap.SP_DialogApplyButton))
QtWidgets.QStyle.SP_DialogApplyButton))
load.clicked.connect(self._load_clicked)
buttons = LayoutWidget()
@ -47,7 +115,21 @@ class _ArgumentEditor(EntryTreeWidget):
buttons.addWidget(load, 1, 2)
for i, s in enumerate((1, 0, 0, 1)):
buttons.layout.setColumnStretch(i, s)
self.setItemWidget(self.bottom_item, 1, buttons)
self.setItemWidget(widget_item, 1, buttons)
def _get_group(self, name):
if name in self._groups:
return self._groups[name]
group = QtWidgets.QTreeWidgetItem([name])
for col in range(3):
group.setBackground(col, self.palette().mid())
group.setForeground(col, self.palette().brightText())
font = group.font(col)
font.setBold(True)
group.setFont(col, font)
self.addTopLevelItem(group)
self._groups[name] = group
return group
def _load_clicked(self):
asyncio.ensure_future(self._dock.load_hdf5_task())
@ -55,8 +137,8 @@ class _ArgumentEditor(EntryTreeWidget):
def _recompute_arguments_clicked(self):
asyncio.ensure_future(self._dock._recompute_arguments())
def reset_entry(self, key):
asyncio.ensure_future(self._recompute_argument(key))
def _recompute_argument_clicked(self, name):
asyncio.ensure_future(self._recompute_argument(name))
async def _recompute_argument(self, name):
try:
@ -71,7 +153,29 @@ class _ArgumentEditor(EntryTreeWidget):
state = procdesc_to_entry(procdesc).default_state(procdesc)
argument["desc"] = procdesc
argument["state"] = state
self.update_argument(name, argument)
widgets = self._arg_to_widgets[name]
widgets["entry"].deleteLater()
widgets["entry"] = procdesc_to_entry(procdesc)(argument)
widgets["fix_layout"] = LayoutWidget()
widgets["fix_layout"].addWidget(widgets["entry"])
self.setItemWidget(widgets["widget_item"], 1, widgets["fix_layout"])
self.updateGeometries()
def save_state(self):
expanded = []
for k, v in self._groups.items():
if v.isExpanded():
expanded.append(k)
return {"expanded": expanded}
def restore_state(self, state):
for e in state["expanded"]:
try:
self._groups[e].setExpanded(True)
except KeyError:
pass
log_levels = ["DEBUG", "INFO", "WARNING", "ERROR", "CRITICAL"]
@ -86,7 +190,7 @@ class _ExperimentDock(QtWidgets.QMdiSubWindow):
self.resize(100*qfm.averageCharWidth(), 30*qfm.lineSpacing())
self.setWindowTitle(expurl)
self.setWindowIcon(QtWidgets.QApplication.style().standardIcon(
QtWidgets.QStyle.StandardPixmap.SP_FileDialogContentsView))
QtWidgets.QStyle.SP_FileDialogContentsView))
self.setAcceptDrops(True)
self.layout = QtWidgets.QGridLayout()
@ -126,22 +230,22 @@ class _ExperimentDock(QtWidgets.QMdiSubWindow):
run = QtWidgets.QPushButton("Analyze")
run.setIcon(QtWidgets.QApplication.style().standardIcon(
QtWidgets.QStyle.StandardPixmap.SP_DialogOkButton))
QtWidgets.QStyle.SP_DialogOkButton))
run.setToolTip("Run analysis stage (Ctrl+Return)")
run.setShortcut("CTRL+RETURN")
run.setSizePolicy(QtWidgets.QSizePolicy.Policy.Expanding,
QtWidgets.QSizePolicy.Policy.Expanding)
run.setSizePolicy(QtWidgets.QSizePolicy.Expanding,
QtWidgets.QSizePolicy.Expanding)
self.layout.addWidget(run, 2, 4)
run.clicked.connect(self._run_clicked)
self._run = run
terminate = QtWidgets.QPushButton("Terminate")
terminate.setIcon(QtWidgets.QApplication.style().standardIcon(
QtWidgets.QStyle.StandardPixmap.SP_DialogCancelButton))
QtWidgets.QStyle.SP_DialogCancelButton))
terminate.setToolTip("Terminate analysis (Ctrl+Backspace)")
terminate.setShortcut("CTRL+BACKSPACE")
terminate.setSizePolicy(QtWidgets.QSizePolicy.Policy.Expanding,
QtWidgets.QSizePolicy.Policy.Expanding)
terminate.setSizePolicy(QtWidgets.QSizePolicy.Expanding,
QtWidgets.QSizePolicy.Expanding)
self.layout.addWidget(terminate, 3, 4)
terminate.clicked.connect(self._terminate_clicked)
terminate.setEnabled(False)
@ -180,8 +284,8 @@ class _ExperimentDock(QtWidgets.QMdiSubWindow):
state = self.argeditor.save_state()
self.argeditor.deleteLater()
self.argeditor = _ArgumentEditor(self)
self.layout.addWidget(self.argeditor, 0, 0, 1, 5)
self.argeditor.restore_state(state)
self.layout.addWidget(self.argeditor, 0, 0, 1, 5)
async def load_hdf5_task(self, filename=None):
if filename is None:
@ -273,9 +377,9 @@ class _ExperimentDock(QtWidgets.QMdiSubWindow):
class LocalDatasetDB:
def __init__(self, dataset_sub):
self.dataset_sub = dataset_sub
dataset_sub.add_setmodel_callback(self.init)
def __init__(self, datasets_sub):
self.datasets_sub = datasets_sub
datasets_sub.add_setmodel_callback(self.init)
def init(self, data):
self._data = data
@ -284,11 +388,11 @@ class LocalDatasetDB:
return self._data.backing_store[key][1]
def update(self, mod):
self.dataset_sub.update(mod)
self.datasets_sub.update(mod)
class ExperimentsArea(QtWidgets.QMdiArea):
def __init__(self, root, dataset_sub):
def __init__(self, root, datasets_sub):
QtWidgets.QMdiArea.__init__(self)
self.pixmap = QtGui.QPixmap(os.path.join(
artiq_dir, "gui", "logo_ver.svg"))
@ -297,11 +401,11 @@ class ExperimentsArea(QtWidgets.QMdiArea):
self.open_experiments = []
self._ddb = LocalDatasetDB(dataset_sub)
self._ddb = LocalDatasetDB(datasets_sub)
self.worker_handlers = {
"get_device_db": lambda: {},
"get_device": lambda key, resolve_alias=False: {"type": "dummy"},
"get_device": lambda k: {"type": "dummy"},
"get_dataset": self._ddb.get,
"update_dataset": self._ddb.update,
}
@ -316,7 +420,7 @@ class ExperimentsArea(QtWidgets.QMdiArea):
asyncio.ensure_future(sub.load_hdf5_task(path))
def mousePressEvent(self, ev):
if ev.button() == QtCore.Qt.MouseButton.LeftButton:
if ev.button() == QtCore.Qt.LeftButton:
self.select_experiment()
def paintEvent(self, event):
@ -369,8 +473,6 @@ class ExperimentsArea(QtWidgets.QMdiArea):
def initialize_submission_arguments(self, arginfo):
arguments = OrderedDict()
for name, (procdesc, group, tooltip) in arginfo.items():
if procdesc["ty"] == "EnumerationValue" and procdesc["quickstyle"]:
procdesc["quickstyle"] = False
state = procdesc_to_entry(procdesc).default_state(procdesc)
arguments[name] = {
"desc": procdesc,
@ -406,16 +508,12 @@ class ExperimentsArea(QtWidgets.QMdiArea):
exc_info=True)
dock = _ExperimentDock(self, expurl, {})
asyncio.ensure_future(dock._recompute_arguments())
dock.setAttribute(QtCore.Qt.WidgetAttribute.WA_DeleteOnClose)
dock.setAttribute(QtCore.Qt.WA_DeleteOnClose)
self.addSubWindow(dock)
dock.show()
dock.sigClosed.connect(partial(self.on_dock_closed, dock))
self.open_experiments.append(dock)
return dock
def set_argument_value(self, expurl, name, value):
logger.warning("Unable to set argument '%s', dropping change. "
"'set_argument_value' not supported in browser.", name)
def on_dock_closed(self, dock):
self.open_experiments.remove(dock)

View File

@ -3,10 +3,9 @@ import os
from datetime import datetime
import h5py
from PyQt6 import QtCore, QtWidgets, QtGui
from sipyco import pyon
from PyQt5 import QtCore, QtWidgets, QtGui
from artiq.protocols import pyon
logger = logging.getLogger(__name__)
@ -42,7 +41,7 @@ class ThumbnailIconProvider(QtWidgets.QFileIconProvider):
except KeyError:
return
try:
img = QtGui.QImage.fromData(t[()])
img = QtGui.QImage.fromData(t.value)
except:
logger.warning("unable to read thumbnail from %s",
info.filePath(), exc_info=True)
@ -69,52 +68,51 @@ class ZoomIconView(QtWidgets.QListView):
def __init__(self):
QtWidgets.QListView.__init__(self)
self._char_width = QtGui.QFontMetrics(self.font()).averageCharWidth()
self.setViewMode(self.ViewMode.IconMode)
self.setViewMode(self.IconMode)
w = self._char_width*self.default_size
self.setIconSize(QtCore.QSize(w, int(w*self.aspect)))
self.setFlow(self.Flow.LeftToRight)
self.setResizeMode(self.ResizeMode.Adjust)
self.setIconSize(QtCore.QSize(w, w*self.aspect))
self.setFlow(self.LeftToRight)
self.setResizeMode(self.Adjust)
self.setWrapping(True)
def wheelEvent(self, ev):
if ev.modifiers() & QtCore.Qt.KeyboardModifier.ControlModifier:
if ev.modifiers() & QtCore.Qt.ControlModifier:
a = self._char_width*self.min_size
b = self._char_width*self.max_size
w = self.iconSize().width()*self.zoom_step**(
ev.angleDelta().y()/120.)
if a <= w <= b:
self.setIconSize(QtCore.QSize(int(w), int(w*self.aspect)))
self.setIconSize(QtCore.QSize(w, w*self.aspect))
else:
QtWidgets.QListView.wheelEvent(self, ev)
class Hdf5FileSystemModel(QtGui.QFileSystemModel):
class Hdf5FileSystemModel(QtWidgets.QFileSystemModel):
def __init__(self):
QtGui.QFileSystemModel.__init__(self)
self.setFilter(QtCore.QDir.Filter.Drives | QtCore.QDir.Filter.NoDotAndDotDot |
QtCore.QDir.Filter.AllDirs | QtCore.QDir.Filter.Files)
QtWidgets.QFileSystemModel.__init__(self)
self.setFilter(QtCore.QDir.Drives | QtCore.QDir.NoDotAndDotDot |
QtCore.QDir.AllDirs | QtCore.QDir.Files)
self.setNameFilterDisables(False)
self.setIconProvider(ThumbnailIconProvider())
def data(self, idx, role):
if role == QtCore.Qt.ItemDataRole.ToolTipRole:
if role == QtCore.Qt.ToolTipRole:
info = self.fileInfo(idx)
h5 = open_h5(info)
if h5 is not None:
try:
expid = pyon.decode(h5["expid"][()]) if "expid" in h5 else dict()
start_time = datetime.fromtimestamp(h5["start_time"][()]) if "start_time" in h5 else "<none>"
expid = pyon.decode(h5["expid"].value)
start_time = datetime.fromtimestamp(h5["start_time"].value)
v = ("artiq_version: {}\nrepo_rev: {}\nfile: {}\n"
"class_name: {}\nrid: {}\nstart_time: {}").format(
h5["artiq_version"].asstr()[()] if "artiq_version" in h5 else "<none>",
expid.get("repo_rev", "<none>"),
expid.get("file", "<none>"), expid.get("class_name", "<none>"),
h5["rid"][()] if "rid" in h5 else "<none>", start_time)
h5["artiq_version"].value, expid["repo_rev"],
expid["file"], expid["class_name"],
h5["rid"].value, start_time)
return v
except:
logger.warning("unable to read metadata from %s",
info.filePath(), exc_info=True)
return QtGui.QFileSystemModel.data(self, idx, role)
return QtWidgets.QFileSystemModel.data(self, idx, role)
class FilesDock(QtWidgets.QDockWidget):
@ -125,7 +123,7 @@ class FilesDock(QtWidgets.QDockWidget):
def __init__(self, datasets, browse_root=""):
QtWidgets.QDockWidget.__init__(self, "Files")
self.setObjectName("Files")
self.setFeatures(self.DockWidgetFeature.DockWidgetMovable | self.DockWidgetFeature.DockWidgetFloatable)
self.setFeatures(self.DockWidgetMovable | self.DockWidgetFloatable)
self.splitter = QtWidgets.QSplitter()
self.setWidget(self.splitter)
@ -147,8 +145,8 @@ class FilesDock(QtWidgets.QDockWidget):
self.rt.setRootIndex(rt_model.mapFromSource(
self.model.setRootPath(browse_root)))
self.rt.setHeaderHidden(True)
self.rt.setSelectionBehavior(self.rt.SelectionBehavior.SelectRows)
self.rt.setSelectionMode(self.rt.SelectionMode.SingleSelection)
self.rt.setSelectionBehavior(self.rt.SelectRows)
self.rt.setSelectionMode(self.rt.SingleSelection)
self.rt.selectionModel().currentChanged.connect(
self.tree_current_changed)
self.rt.setRootIsDecorated(False)
@ -175,45 +173,31 @@ class FilesDock(QtWidgets.QDockWidget):
logger.debug("loading datasets from %s", info.filePath())
with f:
try:
expid = pyon.decode(f["expid"][()]) if "expid" in f else dict()
start_time = datetime.fromtimestamp(f["start_time"][()]) if "start_time" in f else "<none>"
expid = pyon.decode(f["expid"].value)
start_time = datetime.fromtimestamp(f["start_time"].value)
v = {
"artiq_version": f["artiq_version"].asstr()[()] if "artiq_version" in f else "<none>",
"repo_rev": expid.get("repo_rev", "<none>"),
"file": expid.get("file", "<none>"),
"class_name": expid.get("class_name", "<none>"),
"rid": f["rid"][()] if "rid" in f else "<none>",
"artiq_version": f["artiq_version"].value,
"repo_rev": expid["repo_rev"],
"file": expid["file"],
"class_name": expid["class_name"],
"rid": f["rid"].value,
"start_time": start_time,
}
self.metadata_changed.emit(v)
except:
logger.warning("unable to read metadata from %s",
info.filePath(), exc_info=True)
rd = {}
rd = dict()
if "archive" in f:
def visitor(k, v):
if isinstance(v, h5py.Dataset):
# v.attrs is a non-serializable h5py.AttributeManager, need to convert to dict
# See https://docs.h5py.org/en/stable/high/attr.html#h5py.AttributeManager
rd[k] = (True, v[()], dict(v.attrs))
f["archive"].visititems(visitor)
rd = {k: (True, v.value) for k, v in f["archive"].items()}
if "datasets" in f:
def visitor(k, v):
if isinstance(v, h5py.Dataset):
if k in rd:
logger.warning("dataset '%s' is both in archive "
"and outputs", k)
# v.attrs is a non-serializable h5py.AttributeManager, need to convert to dict
# See https://docs.h5py.org/en/stable/high/attr.html#h5py.AttributeManager
rd[k] = (True, v[()], dict(v.attrs))
f["datasets"].visititems(visitor)
self.datasets.init(rd)
for k, v in f["datasets"].items():
if k in rd:
logger.warning("dataset '%s' is both in archive and "
"outputs", k)
rd[k] = (True, v.value)
if rd:
self.datasets.init(rd)
self.dataset_changed.emit(info.filePath())
def list_activated(self, idx):
@ -252,7 +236,7 @@ class FilesDock(QtWidgets.QDockWidget):
100,
lambda: self.rt.scrollTo(
self.rt.model().mapFromSource(self.model.index(path)),
self.rt.ScrollHint.PositionAtCenter)
self.rt.PositionAtCenter)
)
self.model.directoryLoaded.connect(scroll_when_loaded)
idx = self.rt.model().mapFromSource(idx)

View File

@ -1,9 +1,7 @@
import os
import subprocess
from migen import *
from migen.build.platforms.sinara import kasli
from misoc.interconnect.csr import *
from misoc.cores import identifier
from misoc.integration.builder import *
from artiq.gateware.amp import AMPSoC
@ -19,58 +17,33 @@ def get_identifier_string(soc, suffix="", add_class_name=True):
if suffix or add_class_name:
r += ";"
if add_class_name:
r += getattr(soc, "class_name_override", soc.__class__.__name__.lower())
r += soc.__class__.__name__.lower()
r += suffix
return r
class ReprogrammableIdentifier(Module, AutoCSR):
def __init__(self, ident):
self.address = CSRStorage(8)
self.data = CSRStatus(8)
contents = list(ident.encode())
l = len(contents)
if l > 255:
raise ValueError("Identifier string must be 255 characters or less")
contents.insert(0, l)
for i in range(8):
self.specials += Instance("ROM256X1", name="identifier_str"+str(i),
i_A0=self.address.storage[0], i_A1=self.address.storage[1],
i_A2=self.address.storage[2], i_A3=self.address.storage[3],
i_A4=self.address.storage[4], i_A5=self.address.storage[5],
i_A6=self.address.storage[6], i_A7=self.address.storage[7],
o_O=self.data.status[i],
p_INIT=sum(1 << j if c & (1 << i) else 0 for j, c in enumerate(contents)))
def add_identifier(soc, *args, gateware_identifier_str=None, **kwargs):
def add_identifier(soc, *args, **kwargs):
if hasattr(soc, "identifier"):
raise ValueError
identifier_str = get_identifier_string(soc, *args, **kwargs)
soc.submodules.identifier = ReprogrammableIdentifier(gateware_identifier_str or identifier_str)
soc.submodules.identifier = identifier.Identifier(identifier_str)
soc.config["IDENTIFIER_STR"] = identifier_str
def build_artiq_soc(soc, argdict):
firmware_dir = os.path.join(artiq_dir, "firmware")
builder = Builder(soc, **argdict)
builder.software_packages = []
builder.add_software_package("bootloader", os.path.join(firmware_dir, "bootloader"))
is_kasli_v1 = isinstance(soc.platform, kasli.Platform) and soc.platform.hw_rev in ("v1.0", "v1.1")
kernel_cpu_type = "vexriscv" if is_kasli_v1 else "vexriscv-g"
builder.add_software_package("libm", cpu_type=kernel_cpu_type)
builder.add_software_package("libprintf", cpu_type=kernel_cpu_type)
builder.add_software_package("libunwind", cpu_type=kernel_cpu_type)
builder.add_software_package("ksupport", os.path.join(firmware_dir, "ksupport"), cpu_type=kernel_cpu_type)
# Generate unwinder for soft float target (ARTIQ runtime)
# If the kernel lacks FPU, then the runtime unwinder is already generated
if not is_kasli_v1:
if isinstance(soc, AMPSoC):
builder.add_software_package("libm")
builder.add_software_package("libprintf")
builder.add_software_package("libunwind")
if not soc.config["DRTIO_ROLE"] == "satellite":
builder.add_software_package("ksupport", os.path.join(firmware_dir, "ksupport"))
builder.add_software_package("runtime", os.path.join(firmware_dir, "runtime"))
else:
# Assume DRTIO satellite.
builder.add_software_package("satman", os.path.join(firmware_dir, "satman"))
try:
builder.build()

View File

@ -21,19 +21,13 @@ class scoped(object):
set of variables resolved as globals
"""
class remote(object):
"""
:ivar remote_fn: (bool) whether function is ran on a remote device,
meaning arguments are received remotely and return is sent remotely
"""
# Typed versions of untyped nodes
class argT(ast.arg, commontyped):
pass
class ClassDefT(ast.ClassDef):
_types = ("constructor_type",)
class FunctionDefT(ast.FunctionDef, scoped, remote):
class FunctionDefT(ast.FunctionDef, scoped):
_types = ("signature_type",)
class QuotedFunctionDefT(FunctionDefT):
"""
@ -64,7 +58,7 @@ class BinOpT(ast.BinOp, commontyped):
pass
class BoolOpT(ast.BoolOp, commontyped):
pass
class CallT(ast.Call, commontyped, remote):
class CallT(ast.Call, commontyped):
"""
:ivar iodelay: (:class:`iodelay.Expr`)
:ivar arg_exprs: (dict of str to :class:`iodelay.Expr`)

View File

@ -38,9 +38,6 @@ class TInt(types.TMono):
def one():
return 1
def TInt8():
return TInt(types.TValue(8))
def TInt32():
return TInt(types.TValue(32))
@ -85,27 +82,13 @@ class TList(types.TMono):
super().__init__("list", {"elt": elt})
class TArray(types.TMono):
def __init__(self, elt=None, num_dims=1):
def __init__(self, elt=None):
if elt is None:
elt = types.TVar()
if isinstance(num_dims, int):
# Make TArray more convenient to instantiate from (ARTIQ) user code.
num_dims = types.TValue(num_dims)
# For now, enforce number of dimensions to be known, as we'd otherwise
# need to implement custom unification logic for the type of `shape`.
# Default to 1 to keep compatibility with old user code from before
# multidimensional array support.
assert isinstance(num_dims.value, int), "Number of dimensions must be resolved"
super().__init__("array", {"elt": elt, "num_dims": num_dims})
self.attributes = OrderedDict([
("buffer", types._TPointer(elt)),
("shape", types.TTuple([TInt32()] * num_dims.value)),
])
super().__init__("array", {"elt": elt})
def _array_printer(typ, printer, depth, max_depth):
return "numpy.array(elt={}, num_dims={})".format(
printer.name(typ["elt"], depth, max_depth), typ["num_dims"].value)
return "numpy.array(elt={})".format(printer.name(typ["elt"], depth, max_depth))
types.TypePrinter.custom_printers["array"] = _array_printer
class TRange(types.TMono):
@ -126,23 +109,18 @@ class TException(types.TMono):
# * File, line and column where it was raised (str, int, int).
# * Message, which can contain substitutions {0}, {1} and {2} (str).
# * Three 64-bit integers, parameterizing the message (numpy.int64).
# These attributes are prefixed with `#` so that users cannot access them,
# and we don't have to do string allocation in the runtime.
# #__name__ is now a string key in the host. TStr may not be an actual
# CSlice in the runtime, they might be a CSlice with length = i32::MAX and
# ptr = string key in the host.
# Keep this in sync with the function ARTIQIRGenerator.alloc_exn.
attributes = OrderedDict([
("#__name__", TInt32()),
("#__file__", TStr()),
("#__line__", TInt32()),
("#__col__", TInt32()),
("#__func__", TStr()),
("#__message__", TStr()),
("#__param0__", TInt64()),
("#__param1__", TInt64()),
("#__param2__", TInt64()),
("__name__", TStr()),
("__file__", TStr()),
("__line__", TInt32()),
("__col__", TInt32()),
("__func__", TStr()),
("__message__", TStr()),
("__param0__", TInt64()),
("__param1__", TInt64()),
("__param2__", TInt64()),
])
def __init__(self, name="Exception", id=0):
@ -177,9 +155,7 @@ def fn_list():
return types.TConstructor(TList())
def fn_array():
# numpy.array() is actually a "magic" macro that is expanded in-place, but
# just as for builtin functions, we do not want to quote it, etc.
return types.TBuiltinFunction("array")
return types.TConstructor(TArray())
def fn_Exception():
return types.TExceptionConstructor(TException("Exception"))
@ -205,9 +181,6 @@ def fn_len():
def fn_round():
return types.TBuiltinFunction("round")
def fn_abs():
return types.TBuiltinFunction("abs")
def fn_min():
return types.TBuiltinFunction("min")
@ -232,6 +205,9 @@ def obj_interleave():
def obj_sequential():
return types.TBuiltin("sequential")
def fn_watchdog():
return types.TBuiltinFunction("watchdog")
def fn_delay():
return types.TBuiltinFunction("delay")
@ -247,18 +223,6 @@ def fn_at_mu():
def fn_rtio_log():
return types.TBuiltinFunction("rtio_log")
def fn_subkernel_await():
return types.TBuiltinFunction("subkernel_await")
def fn_subkernel_preload():
return types.TBuiltinFunction("subkernel_preload")
def fn_subkernel_send():
return types.TBuiltinFunction("subkernel_send")
def fn_subkernel_recv():
return types.TBuiltinFunction("subkernel_recv")
# Accessors
def is_none(typ):
@ -337,12 +301,9 @@ def is_iterable(typ):
return is_listish(typ) or is_range(typ)
def get_iterable_elt(typ):
# TODO: Arrays count as listish, but this returns the innermost element type for
# n-dimensional arrays, rather than the n-1 dimensional result of iterating over
# the first axis, which makes the name a bit misleading.
if is_str(typ) or is_bytes(typ) or is_bytearray(typ):
return TInt8()
elif types._is_pointer(typ) or is_iterable(typ):
return TInt(types.TValue(8))
elif is_iterable(typ):
return typ.find()["elt"].find()
else:
assert False
@ -356,6 +317,6 @@ def is_allocated(typ):
return not (is_none(typ) or is_bool(typ) or is_int(typ) or
is_float(typ) or is_range(typ) or
types._is_pointer(typ) or types.is_function(typ) or
types.is_external_function(typ) or types.is_rpc(typ) or
types.is_subkernel(typ) or types.is_method(typ) or
types.is_tuple(typ) or types.is_value(typ))
types.is_c_function(typ) or types.is_rpc(typ) or
types.is_method(typ) or types.is_tuple(typ) or
types.is_value(typ))

View File

@ -5,8 +5,7 @@ the references to the host objects and translates the functions
annotated as ``@kernel`` when they are referenced.
"""
import typing
import os, re, linecache, inspect, textwrap, types as pytypes, numpy
import sys, os, re, linecache, inspect, textwrap, types as pytypes, numpy
from collections import OrderedDict, defaultdict
from pythonparser import ast, algorithm, source, diagnostic, parse_buffer
@ -15,17 +14,10 @@ from pythonparser import lexer as source_lexer, parser as source_parser
from Levenshtein import ratio as similarity, jaro_winkler
from ..language import core as language_core
from . import types, builtins, asttyped, math_fns, prelude
from . import types, builtins, asttyped, prelude
from .transforms import ASTTypedRewriter, Inferencer, IntMonomorphizer, TypedtreePrinter
from .transforms.asttyped_rewriter import LocalExtractor
try:
# From numpy=1.25.0 dispatching for `__array_function__` is done via
# a C wrapper: https://github.com/numpy/numpy/pull/23020
from numpy.core._multiarray_umath import _ArrayFunctionDispatcher
except ImportError:
_ArrayFunctionDispatcher = None
class SpecializedFunction:
def __init__(self, instance_type, host_function):
@ -47,93 +39,14 @@ class SpecializedFunction:
return hash((self.instance_type, self.host_function))
class SubkernelMessageType:
def __init__(self, name, value_type):
self.name = name
self.value_type = value_type
self.send_loc = None
self.recv_loc = None
class EmbeddingMap:
def __init__(self, old_embedding_map=None):
def __init__(self):
self.object_current_key = 0
self.object_forward_map = {}
self.object_reverse_map = {}
self.module_map = {}
# type_map connects the host Python `type` to the pair of associated
# `(TInstance, TConstructor)`s. The `used_…_names` sets cache the
# respective `.name`s for O(1) collision avoidance.
self.type_map = {}
self.used_instance_type_names = set()
self.used_constructor_type_names = set()
self.function_map = {}
self.str_forward_map = {}
self.str_reverse_map = {}
# mapping `name` to object ID
self.subkernel_message_map = {}
# subkernels: dict of ID: function, just like object_forward_map
# allow the embedding map to be aware of subkernels from other kernels
if not old_embedding_map is None:
for key, obj_ref in old_embedding_map.subkernels().items():
self.object_forward_map[key] = obj_ref
obj_id = id(obj_ref)
self.object_reverse_map[obj_id] = key
for msg_id, msg_type in old_embedding_map.subkernel_messages().items():
self.object_forward_map[msg_id] = msg_type
obj_id = id(msg_type)
self.subkernel_message_map[msg_type.name] = msg_id
self.object_reverse_map[obj_id] = msg_id
# Keep this list of exceptions in sync with `EXCEPTION_ID_LOOKUP` in `artiq::firmware::ksupport::eh_artiq`
# The exceptions declared here must be defined in `artiq.coredevice.exceptions`
# Verify synchronization by running the test cases in `artiq.test.coredevice.test_exceptions`
self.preallocate_runtime_exception_names([
"RTIOUnderflow",
"RTIOOverflow",
"RTIODestinationUnreachable",
"DMAError",
"I2CError",
"CacheError",
"SPIError",
"SubkernelError",
"0:AssertionError",
"0:AttributeError",
"0:IndexError",
"0:IOError",
"0:KeyError",
"0:NotImplementedError",
"0:OverflowError",
"0:RuntimeError",
"0:TimeoutError",
"0:TypeError",
"0:ValueError",
"0:ZeroDivisionError",
"0:LinAlgError",
"UnwrapNoneError",
])
def preallocate_runtime_exception_names(self, names):
for i, name in enumerate(names):
if ":" not in name:
name = "0:artiq.coredevice.exceptions." + name
exn_id = self.store_str(name)
assert exn_id == i
def store_str(self, s):
if s in self.str_forward_map:
return self.str_forward_map[s]
str_id = len(self.str_forward_map)
self.str_forward_map[s] = str_id
self.str_reverse_map[str_id] = s
return str_id
def retrieve_str(self, str_id):
return self.str_reverse_map[str_id]
# Modules
def store_module(self, module, module_type):
@ -147,6 +60,16 @@ class EmbeddingMap:
# Types
def store_type(self, host_type, instance_type, constructor_type):
self._rename_type(instance_type)
self.type_map[host_type] = (instance_type, constructor_type)
def retrieve_type(self, host_type):
return self.type_map[host_type]
def has_type(self, host_type):
return host_type in self.type_map
def _rename_type(self, new_instance_type):
# Generally, user-defined types that have exact same name (which is to say, classes
# defined inside functions) do not pose a problem to the compiler. The two places which
# cannot handle this are:
@ -155,29 +78,12 @@ class EmbeddingMap:
# Since handling #2 requires renaming on ARTIQ side anyway, it's more straightforward
# to do it once when embedding (since non-embedded code cannot define classes in
# functions). Also, easier to debug.
suffix = 0
new_instance_name = instance_type.name
new_constructor_name = constructor_type.name
while True:
if (new_instance_name not in self.used_instance_type_names
and new_constructor_name not in self.used_constructor_type_names):
break
suffix += 1
new_instance_name = f"{instance_type.name}.{suffix}"
new_constructor_name = f"{constructor_type.name}.{suffix}"
self.used_instance_type_names.add(new_instance_name)
instance_type.name = new_instance_name
self.used_constructor_type_names.add(new_constructor_name)
constructor_type.name = new_constructor_name
self.type_map[host_type] = (instance_type, constructor_type)
def retrieve_type(self, host_type):
return self.type_map[host_type]
def has_type(self, host_type):
return host_type in self.type_map
n = 0
for host_type in self.type_map:
instance_type, constructor_type = self.type_map[host_type]
if instance_type.name == new_instance_type.name:
n += 1
new_instance_type.name = "{}.{}".format(new_instance_type.name, n)
def attribute_count(self):
count = 0
@ -204,11 +110,6 @@ class EmbeddingMap:
return self.object_reverse_map[obj_id]
self.object_current_key += 1
while self.object_forward_map.get(self.object_current_key):
# make sure there's no collisions with previously inserted subkernels
# their identifiers must be consistent across all kernels/subkernels
self.object_current_key += 1
self.object_forward_map[self.object_current_key] = obj_ref
self.object_reverse_map[obj_id] = self.object_current_key
return self.object_current_key
@ -221,7 +122,7 @@ class EmbeddingMap:
obj_ref = self.object_forward_map[obj_id]
if isinstance(obj_ref, (pytypes.FunctionType, pytypes.MethodType,
pytypes.BuiltinFunctionType, pytypes.ModuleType,
SpecializedFunction, SubkernelMessageType)):
SpecializedFunction)):
continue
elif isinstance(obj_ref, type):
_, obj_typ = self.type_map[obj_ref]
@ -229,55 +130,14 @@ class EmbeddingMap:
obj_typ, _ = self.type_map[type(obj_ref)]
yield obj_id, obj_ref, obj_typ
def subkernels(self):
subkernels = {}
for k, v in self.object_forward_map.items():
if hasattr(v, "artiq_embedded"):
if v.artiq_embedded.destination is not None:
subkernels[k] = v
return subkernels
def store_subkernel_message(self, name, value_type, function_type, function_loc):
if name in self.subkernel_message_map:
msg_id = self.subkernel_message_map[name]
else:
msg_id = self.store_object(SubkernelMessageType(name, value_type))
self.subkernel_message_map[name] = msg_id
subkernel_msg = self.retrieve_object(msg_id)
if function_type == "send":
subkernel_msg.send_loc = function_loc
elif function_type == "recv":
subkernel_msg.recv_loc = function_loc
else:
assert False
return msg_id, subkernel_msg
def subkernel_messages(self):
messages = {}
for msg_id in self.subkernel_message_map.values():
messages[msg_id] = self.retrieve_object(msg_id)
return messages
def subkernel_messages_unpaired(self):
unpaired = []
for msg_id in self.subkernel_message_map.values():
msg_obj = self.retrieve_object(msg_id)
if msg_obj.send_loc is None or msg_obj.recv_loc is None:
unpaired.append(msg_obj)
return unpaired
def has_rpc(self):
return any(filter(
lambda x: (inspect.isfunction(x) or inspect.ismethod(x)) and \
(not hasattr(x, "artiq_embedded") or x.artiq_embedded.destination is None),
self.object_forward_map.values()
))
return any(filter(lambda x: inspect.isfunction(x) or inspect.ismethod(x),
self.object_forward_map.values()))
class ASTSynthesizer:
def __init__(self, embedding_map, value_map, quote_function=None, expanded_from=None):
self.source = ""
self.source_last_new_line = 0
self.source_buffer = source.Buffer(self.source, "<synthesized>")
self.embedding_map = embedding_map
self.value_map = value_map
@ -296,90 +156,16 @@ class ASTSynthesizer:
return source.Range(self.source_buffer, range_from, range_to,
expanded_from=self.expanded_from)
def _add_iterable(self, fragment):
# Since DILocation points on the beginning of the piece of source
# we don't care if the fragment's end will overflow LLVM's limit.
if len(self.source) - self.source_last_new_line >= 2**16:
fragment = "\\\n" + fragment
self.source_last_new_line = len(self.source) + 2
return self._add(fragment)
def fast_quote_list(self, value):
elts = [None] * len(value)
is_T = False
if len(value) > 0:
v = value[0]
is_T = True
if isinstance(v, int):
T = int
elif isinstance(v, float):
T = float
elif isinstance(v, numpy.int32):
T = numpy.int32
elif isinstance(v, numpy.int64):
T = numpy.int64
else:
is_T = False
if is_T:
for v in value:
if not isinstance(v, T):
is_T = False
break
if is_T:
is_int = T != float
if T == int:
typ = builtins.TInt()
elif T == float:
typ = builtins.TFloat()
elif T == numpy.int32:
typ = builtins.TInt32()
elif T == numpy.int64:
typ = builtins.TInt64()
else:
assert False
text = [repr(elt) for elt in value]
start = len(self.source)
self.source += ", ".join(text)
if is_int:
for i, (v, t) in enumerate(zip(value, text)):
l = len(t)
elts[i] = asttyped.NumT(
n=int(v), ctx=None, type=typ,
loc=source.Range(
self.source_buffer, start, start + l,
expanded_from=self.expanded_from))
start += l + 2
else:
for i, (v, t) in enumerate(zip(value, text)):
l = len(t)
elts[i] = asttyped.NumT(
n=v, ctx=None, type=typ,
loc=source.Range(
self.source_buffer, start, start + l,
expanded_from=self.expanded_from))
start += l + 2
else:
for index, elt in enumerate(value):
elts[index] = self.quote(elt)
if index < len(value) - 1:
self._add_iterable(", ")
return elts
def quote(self, value):
"""Construct an AST fragment equal to `value`."""
if value is None:
typ = builtins.TNone()
return asttyped.NameConstantT(value=value, type=typ,
loc=self._add(repr(value)))
elif isinstance(value, (bool, numpy.bool_)):
elif value is True or value is False:
typ = builtins.TBool()
coerced = bool(value)
return asttyped.NameConstantT(value=coerced, type=typ,
loc=self._add(repr(coerced)))
elif value is float:
typ = builtins.fn_float()
return asttyped.NameConstantT(value=None, type=typ,
loc=self._add("float"))
return asttyped.NameConstantT(value=value, type=typ,
loc=self._add(repr(value)))
elif value is numpy.int32:
typ = builtins.fn_int32()
return asttyped.NameConstantT(value=None, type=typ,
@ -413,40 +199,43 @@ class ASTSynthesizer:
loc=self._add(repr(value)))
elif isinstance(value, str):
return asttyped.StrT(s=value, ctx=None, type=builtins.TStr(),
loc=self._add_iterable(repr(value)))
loc=self._add(repr(value)))
elif isinstance(value, bytes):
return asttyped.StrT(s=value, ctx=None, type=builtins.TBytes(),
loc=self._add_iterable(repr(value)))
loc=self._add(repr(value)))
elif isinstance(value, bytearray):
quote_loc = self._add_iterable('`')
repr_loc = self._add_iterable(repr(value))
unquote_loc = self._add_iterable('`')
quote_loc = self._add('`')
repr_loc = self._add(repr(value))
unquote_loc = self._add('`')
loc = quote_loc.join(unquote_loc)
return asttyped.QuoteT(value=value, type=builtins.TByteArray(), loc=loc)
elif isinstance(value, list):
begin_loc = self._add_iterable("[")
elts = self.fast_quote_list(value)
end_loc = self._add_iterable("]")
begin_loc = self._add("[")
elts = []
for index, elt in enumerate(value):
elts.append(self.quote(elt))
if index < len(value) - 1:
self._add(", ")
end_loc = self._add("]")
return asttyped.ListT(elts=elts, ctx=None, type=builtins.TList(),
begin_loc=begin_loc, end_loc=end_loc,
loc=begin_loc.join(end_loc))
elif isinstance(value, tuple):
begin_loc = self._add_iterable("(")
elts = self.fast_quote_list(value)
end_loc = self._add_iterable(")")
return asttyped.TupleT(elts=elts, ctx=None,
type=types.TTuple([e.type for e in elts]),
begin_loc=begin_loc, end_loc=end_loc,
loc=begin_loc.join(end_loc))
elif isinstance(value, numpy.ndarray):
return self.call(numpy.array, [list(value)], {})
begin_loc = self._add("numpy.array([")
elts = []
for index, elt in enumerate(value):
elts.append(self.quote(elt))
if index < len(value) - 1:
self._add(", ")
end_loc = self._add("])")
return asttyped.ListT(elts=elts, ctx=None, type=builtins.TArray(),
begin_loc=begin_loc, end_loc=end_loc,
loc=begin_loc.join(end_loc))
elif inspect.isfunction(value) or inspect.ismethod(value) or \
isinstance(value, pytypes.BuiltinFunctionType) or \
isinstance(value, SpecializedFunction) or \
isinstance(value, numpy.ufunc) or \
(isinstance(value, _ArrayFunctionDispatcher) if
_ArrayFunctionDispatcher is not None else False):
isinstance(value, SpecializedFunction):
if inspect.ismethod(value):
quoted_self = self.quote(value.__self__)
function_type = self.quote_function(value.__func__, self.expanded_from)
@ -555,7 +344,7 @@ class ASTSynthesizer:
return asttyped.QuoteT(value=value, type=instance_type,
loc=loc)
def call(self, callee, args, kwargs, callback=None, remote_fn=False):
def call(self, callee, args, kwargs, callback=None):
"""
Construct an AST fragment calling a function specified by
an AST node `function_node`, with given arguments.
@ -599,7 +388,7 @@ class ASTSynthesizer:
starargs=None, kwargs=None,
type=types.TVar(), iodelay=None, arg_exprs={},
begin_loc=begin_loc, end_loc=end_loc, star_loc=None, dstar_loc=None,
loc=callee_node.loc.join(end_loc), remote_fn=remote_fn)
loc=callee_node.loc.join(end_loc))
if callback is not None:
node = asttyped.CallT(
@ -634,7 +423,7 @@ class StitchingASTTypedRewriter(ASTTypedRewriter):
arg=node.arg, annotation=None,
arg_loc=node.arg_loc, colon_loc=node.colon_loc, loc=node.loc)
def visit_quoted_function(self, node, function, remote_fn):
def visit_quoted_function(self, node, function):
extractor = LocalExtractor(env_stack=self.env_stack, engine=self.engine)
extractor.visit(node)
@ -651,11 +440,11 @@ class StitchingASTTypedRewriter(ASTTypedRewriter):
node = asttyped.QuotedFunctionDefT(
typing_env=extractor.typing_env, globals_in_scope=extractor.global_,
signature_type=types.TVar(), return_type=types.TVar(),
name=node.name, args=node.args, returns=None,
name=node.name, args=node.args, returns=node.returns,
body=node.body, decorator_list=node.decorator_list,
keyword_loc=node.keyword_loc, name_loc=node.name_loc,
arrow_loc=node.arrow_loc, colon_loc=node.colon_loc, at_locs=node.at_locs,
loc=node.loc, remote_fn=remote_fn)
loc=node.loc)
try:
self.env_stack.append(node.typing_env)
@ -727,7 +516,7 @@ class StitchingInferencer(Inferencer):
self.engine.process(diag)
return
# Figure out the ARTIQ type of the value of the attribute.
# Figure out what ARTIQ type does the value of the attribute have.
# We do this by quoting it, as if to serialize. This has some
# overhead (i.e. synthesizing a source buffer), but has the advantage
# of having the host-to-ARTIQ mapping code in only one place and
@ -763,9 +552,9 @@ class StitchingInferencer(Inferencer):
if elt.__class__ == float:
state |= IS_FLOAT
elif elt.__class__ == int:
if -2**31 <= elt <= 2**31-1:
if -2**31 < elt < 2**31-1:
state |= IS_INT32
elif -2**63 <= elt <= 2**63-1:
elif -2**63 < elt < 2**63-1:
state |= IS_INT64
else:
state = -1
@ -863,7 +652,7 @@ class TypedtreeHasher(algorithm.Visitor):
return hash(tuple(freeze(getattr(node, field_name)) for field_name in fields))
class Stitcher:
def __init__(self, core, dmgr, engine=None, print_as_rpc=True, destination=0, subkernel_arg_types=[], old_embedding_map=None):
def __init__(self, core, dmgr, engine=None, print_as_rpc=True):
self.core = core
self.dmgr = dmgr
if engine is None:
@ -885,23 +674,14 @@ class Stitcher:
self.functions = {}
self.embedding_map = EmbeddingMap(old_embedding_map)
self.embedding_map = EmbeddingMap()
self.value_map = defaultdict(lambda: [])
self.definitely_changed = False
self.destination = destination
self.first_call = True
# for non-annotated subkernels:
# main kernel inferencer output with types of arguments
self.subkernel_arg_types = subkernel_arg_types
def stitch_call(self, function, args, kwargs, callback=None):
# We synthesize source code for the initial call so that
# diagnostics would have something meaningful to display to the user.
synthesizer = self._synthesizer(self._function_loc(function.artiq_embedded.function))
# first call of a subkernel will get its arguments from remote (DRTIO)
remote_fn = self.destination != 0
call_node = synthesizer.call(function, args, kwargs, callback, remote_fn=remote_fn)
call_node = synthesizer.call(function, args, kwargs, callback)
synthesizer.finalize()
self.typedtree.append(call_node)
@ -916,19 +696,13 @@ class Stitcher:
old_attr_count = None
while True:
inferencer.visit(self.typedtree)
if self.definitely_changed:
changed = True
self.definitely_changed = False
else:
typedtree_hash = typedtree_hasher.visit(self.typedtree)
attr_count = self.embedding_map.attribute_count()
changed = old_attr_count != attr_count or \
old_typedtree_hash != typedtree_hash
old_typedtree_hash = typedtree_hash
old_attr_count = attr_count
typedtree_hash = typedtree_hasher.visit(self.typedtree)
attr_count = self.embedding_map.attribute_count()
if not changed:
if old_typedtree_hash == typedtree_hash and old_attr_count == attr_count:
break
old_typedtree_hash = typedtree_hash
old_attr_count = attr_count
# After we've discovered every referenced attribute, check if any kernel_invariant
# specifications refers to ones we didn't encounter.
@ -980,9 +754,6 @@ class Stitcher:
if hasattr(function, 'artiq_embedded') and function.artiq_embedded.function:
function = function.artiq_embedded.function
if isinstance(function, str):
return source.Range(source.Buffer(function, "<string>"), 0, 0)
filename = function.__code__.co_filename
line = function.__code__.co_firstlineno
name = function.__code__.co_name
@ -1013,10 +784,6 @@ class Stitcher:
return [diagnostic.Diagnostic("note",
"in kernel function here", {},
call_loc)]
elif fn_kind == 'subkernel':
return [diagnostic.Diagnostic("note",
"in subkernel call here", {},
call_loc)]
else:
assert False
else:
@ -1036,7 +803,7 @@ class Stitcher:
self._function_loc(function),
notes=self._call_site_note(loc, fn_kind))
self.engine.process(diag)
elif fn_kind == 'rpc' or fn_kind == 'subkernel' and param.default is not inspect.Parameter.empty:
elif fn_kind == 'rpc' and param.default is not inspect.Parameter.empty:
notes = []
notes.append(diagnostic.Diagnostic("note",
"expanded from here while trying to infer a type for an"
@ -1055,21 +822,11 @@ class Stitcher:
Inferencer(engine=self.engine).visit(ast)
IntMonomorphizer(engine=self.engine).visit(ast)
return ast.type
elif fn_kind == 'kernel' and self.first_call and self.destination != 0:
# subkernels do not have access to the main kernel code to infer
# arg types - so these are cached and passed onto subkernel
# compilation, to avoid having to annotate them fully
for name, typ in self.subkernel_arg_types:
if param.name == name:
return typ
# Let the rest of the program decide.
return types.TVar()
def _quote_embedded_function(self, function, flags, remote_fn=False):
# we are now parsing new functions... definitely changed the type
self.definitely_changed = True
else:
# Let the rest of the program decide.
return types.TVar()
def _quote_embedded_function(self, function, flags):
if isinstance(function, SpecializedFunction):
host_function = function.host_function
else:
@ -1080,20 +837,10 @@ class Stitcher:
# Extract function source.
embedded_function = host_function.artiq_embedded.function
if isinstance(embedded_function, str):
# This is a function to be eval'd from the given source code in string form.
# Mangle the host function's id() into the fully qualified name to make sure
# there are no collisions.
source_code = embedded_function
embedded_function = host_function
filename = "<string>"
module_name = "__eval_{}".format(id(host_function))
first_line = 1
else:
source_code = inspect.getsource(embedded_function)
filename = embedded_function.__code__.co_filename
module_name = embedded_function.__globals__['__name__']
first_line = embedded_function.__code__.co_firstlineno
source_code = inspect.getsource(embedded_function)
filename = embedded_function.__code__.co_filename
module_name = embedded_function.__globals__['__name__']
first_line = embedded_function.__code__.co_firstlineno
# Extract function annotation.
signature = inspect.signature(embedded_function)
@ -1136,11 +883,13 @@ class Stitcher:
# Parse.
source_buffer = source.Buffer(source_code, filename, first_line)
lexer = source_lexer.Lexer(source_buffer, version=(3, 6), diagnostic_engine=self.engine)
lexer = source_lexer.Lexer(source_buffer, version=sys.version_info[0:2],
diagnostic_engine=self.engine)
lexer.indent = [(initial_indent,
source.Range(source_buffer, 0, len(initial_whitespace)),
initial_whitespace)]
parser = source_parser.Parser(lexer, version=(3, 6), diagnostic_engine=self.engine)
parser = source_parser.Parser(lexer, version=sys.version_info[0:2],
diagnostic_engine=self.engine)
function_node = parser.file_input().body[0]
# Mangle the name, since we put everything into a single module.
@ -1165,7 +914,7 @@ class Stitcher:
engine=self.engine, prelude=self.prelude,
globals=self.globals, host_environment=host_environment,
quote=self._quote)
function_node = asttyped_rewriter.visit_quoted_function(function_node, embedded_function, remote_fn)
function_node = asttyped_rewriter.visit_quoted_function(function_node, embedded_function)
function_node.flags = flags
# Add it into our typedtree so that it gets inferenced and codegen'd.
@ -1177,108 +926,23 @@ class Stitcher:
return function_node
def _extract_annot(self, function, annot, kind, call_loc, fn_kind):
if isinstance(function, SpecializedFunction):
host_function = function.host_function
if not isinstance(annot, types.Type):
diag = diagnostic.Diagnostic("error",
"type annotation for {kind}, '{annot}', is not an ARTIQ type",
{"kind": kind, "annot": repr(annot)},
self._function_loc(function),
notes=self._call_site_note(call_loc, fn_kind))
self.engine.process(diag)
return types.TVar()
else:
host_function = function
if hasattr(host_function, 'artiq_embedded'):
embedded_function = host_function.artiq_embedded.function
else:
embedded_function = host_function
if isinstance(embedded_function, str):
embedded_function = host_function
return self._to_artiq_type(
annot,
function=function,
kind=kind,
eval_in_scope=lambda x: eval(x, embedded_function.__globals__),
call_loc=call_loc,
fn_kind=fn_kind)
def _to_artiq_type(
self, annot, *, function, kind: str, eval_in_scope, call_loc: str, fn_kind: str
) -> types.Type:
if isinstance(annot, str):
try:
annot = eval_in_scope(annot)
except Exception:
diag = diagnostic.Diagnostic(
"error",
"type annotation for {kind}, {annot}, cannot be evaluated",
{"kind": kind, "annot": repr(annot)},
self._function_loc(function),
notes=self._call_site_note(call_loc, fn_kind))
self.engine.process(diag)
if isinstance(annot, types.Type):
return annot
# Convert built-in Python types to ARTIQ ones.
if annot is None:
return builtins.TNone()
elif annot is numpy.int64:
return builtins.TInt64()
elif annot is numpy.int32:
return builtins.TInt32()
elif annot is float:
return builtins.TFloat()
elif annot is bool:
return builtins.TBool()
elif annot is str:
return builtins.TStr()
elif annot is bytes:
return builtins.TBytes()
elif annot is bytearray:
return builtins.TByteArray()
# Convert generic Python types to ARTIQ ones.
generic_ty = typing.get_origin(annot)
if generic_ty is not None:
type_args = typing.get_args(annot)
artiq_args = [
self._to_artiq_type(
x,
function=function,
kind=kind,
eval_in_scope=eval_in_scope,
call_loc=call_loc,
fn_kind=fn_kind)
for x in type_args
]
if generic_ty is list and len(artiq_args) == 1:
return builtins.TList(artiq_args[0])
elif generic_ty is tuple:
return types.TTuple(artiq_args)
# Otherwise report an unknown type and just use a fresh tyvar.
if annot is int:
message = (
"type annotation for {kind}, 'int' cannot be used as an ARTIQ type. "
"Use numpy's int32 or int64 instead."
)
ty = builtins.TInt()
else:
message = "type annotation for {kind}, '{annot}', is not an ARTIQ type"
ty = types.TVar()
diag = diagnostic.Diagnostic("error",
message,
{"kind": kind, "annot": repr(annot)},
self._function_loc(function),
notes=self._call_site_note(call_loc, fn_kind))
self.engine.process(diag)
return ty
def _quote_syscall(self, function, loc):
signature = inspect.signature(function)
arg_types = OrderedDict()
optarg_types = OrderedDict()
for param in signature.parameters.values():
if param.kind != inspect.Parameter.POSITIONAL_OR_KEYWORD:
diag = diagnostic.Diagnostic("error",
@ -1310,43 +974,9 @@ class Stitcher:
self.engine.process(diag)
ret_type = types.TVar()
function_type = types.TExternalFunction(arg_types, ret_type,
name=function.artiq_embedded.syscall,
flags=function.artiq_embedded.flags)
self.functions[function] = function_type
return function_type
def _quote_subkernel(self, function, loc):
if isinstance(function, SpecializedFunction):
host_function = function.host_function
else:
host_function = function
ret_type = builtins.TNone()
signature = inspect.signature(host_function)
if signature.return_annotation is not inspect.Signature.empty:
ret_type = self._extract_annot(host_function, signature.return_annotation,
"return type", loc, fn_kind='subkernel')
arg_types = OrderedDict()
optarg_types = OrderedDict()
for param in signature.parameters.values():
if param.kind != inspect.Parameter.POSITIONAL_OR_KEYWORD:
diag = diagnostic.Diagnostic("error",
"subkernels must only use positional arguments; '{argument}' isn't",
{"argument": param.name},
self._function_loc(function),
notes=self._call_site_note(loc, fn_kind='subkernel'))
self.engine.process(diag)
arg_type = self._type_of_param(function, loc, param, fn_kind='subkernel')
if param.default is inspect.Parameter.empty:
arg_types[param.name] = arg_type
else:
optarg_types[param.name] = arg_type
function_type = types.TSubkernel(arg_types, optarg_types, ret_type,
sid=self.embedding_map.store_object(host_function),
destination=host_function.artiq_embedded.destination)
function_type = types.TCFunction(arg_types, ret_type,
name=function.artiq_embedded.syscall,
flags=function.artiq_embedded.flags)
self.functions[function] = function_type
return function_type
@ -1389,7 +1019,7 @@ class Stitcher:
function_type = types.TRPC(ret_type,
service=self.embedding_map.store_object(host_function),
is_async=is_async)
async=is_async)
self.functions[function] = function_type
return function_type
@ -1400,27 +1030,13 @@ class Stitcher:
host_function = function
if function in self.functions:
return self.functions[function]
math_type = math_fns.match(function)
if math_type is not None:
self.functions[function] = math_type
pass
elif not hasattr(host_function, "artiq_embedded") or \
(host_function.artiq_embedded.core_name is None and
host_function.artiq_embedded.portable is False and
host_function.artiq_embedded.syscall is None and
host_function.artiq_embedded.destination is None and
host_function.artiq_embedded.forbidden is False):
self._quote_rpc(function, loc)
elif host_function.artiq_embedded.destination is not None and \
host_function.artiq_embedded.destination != self.destination:
# treat subkernels as kernels if running on the same device
if not 0 < host_function.artiq_embedded.destination <= 255:
diag = diagnostic.Diagnostic("error",
"subkernel destination must be between 1 and 255 (inclusive)", {},
self._function_loc(host_function))
self.engine.process(diag)
self._quote_subkernel(function, loc)
elif host_function.artiq_embedded.function is not None:
if host_function.__name__ == "<lambda>":
note = diagnostic.Diagnostic("note",
@ -1444,13 +1060,8 @@ class Stitcher:
notes=[note])
self.engine.process(diag)
destination = host_function.artiq_embedded.destination
# remote_fn only for first call in subkernels
remote_fn = destination is not None and self.first_call
self._quote_embedded_function(function,
flags=host_function.artiq_embedded.flags,
remote_fn=remote_fn)
self.first_call = False
flags=host_function.artiq_embedded.flags)
elif host_function.artiq_embedded.syscall is not None:
# Insert a storage-less global whose type instructs the compiler
# to perform a system call instead of a regular call.

View File

@ -36,48 +36,6 @@ class TKeyword(types.TMono):
def is_keyword(typ):
return isinstance(typ, TKeyword)
# See rpc_proto.rs and comm_kernel.py:_{send,receive}_rpc_value.
def rpc_tag(typ, error_handler):
typ = typ.find()
if types.is_tuple(typ):
assert len(typ.elts) < 256
return b"t" + bytes([len(typ.elts)]) + \
b"".join([rpc_tag(elt_type, error_handler)
for elt_type in typ.elts])
elif builtins.is_none(typ):
return b"n"
elif builtins.is_bool(typ):
return b"b"
elif builtins.is_int(typ, types.TValue(32)):
return b"i"
elif builtins.is_int(typ, types.TValue(64)):
return b"I"
elif builtins.is_float(typ):
return b"f"
elif builtins.is_str(typ):
return b"s"
elif builtins.is_bytes(typ):
return b"B"
elif builtins.is_bytearray(typ):
return b"A"
elif builtins.is_list(typ):
return b"l" + rpc_tag(builtins.get_iterable_elt(typ), error_handler)
elif builtins.is_array(typ):
num_dims = typ["num_dims"].value
return b"a" + bytes([num_dims]) + rpc_tag(typ["elt"], error_handler)
elif builtins.is_range(typ):
return b"r" + rpc_tag(builtins.get_iterable_elt(typ), error_handler)
elif is_keyword(typ):
return b"k" + rpc_tag(typ.params["value"], error_handler)
elif types.is_function(typ) or types.is_method(typ) or types.is_rpc(typ):
raise ValueError("RPC tag for functional value")
elif '__objectid__' in typ.attributes:
return b"O"
else:
error_handler(typ)
class Value:
"""
An SSA value that keeps track of its uses.
@ -135,7 +93,6 @@ class NamedValue(Value):
def __init__(self, typ, name):
super().__init__(typ)
self.name, self.function = name, None
self.is_removed = False
def set_name(self, new_name):
if self.function is not None:
@ -236,7 +193,7 @@ class Instruction(User):
self.drop_references()
# Check this after drop_references in case this
# is a self-referencing phi.
assert all(use.is_removed for use in self.uses)
assert not any(self.uses)
def replace_with(self, value):
self.replace_all_uses_with(value)
@ -371,7 +328,7 @@ class BasicBlock(NamedValue):
self.remove_from_parent()
# Check this after erasing instructions in case the block
# loops into itself.
assert all(use.is_removed for use in self.uses)
assert not any(self.uses)
def prepend(self, insn):
assert isinstance(insn, Instruction)
@ -706,81 +663,6 @@ class SetLocal(Instruction):
def value(self):
return self.operands[1]
class GetArgFromRemote(Instruction):
"""
An instruction that receives function arguments from remote
(ie. subkernel in DRTIO context)
:ivar arg_name: (string) argument name
:ivar arg_type: argument type
"""
"""
:param arg_name: (string) argument name
:param arg_type: argument type
"""
def __init__(self, arg_name, arg_type, name=""):
assert isinstance(arg_name, str)
super().__init__([], arg_type, name)
self.arg_name = arg_name
self.arg_type = arg_type
def copy(self, mapper):
self_copy = super().copy(mapper)
self_copy.arg_name = self.arg_name
self_copy.arg_type = self.arg_type
return self_copy
def opcode(self):
return "getargfromremote({})".format(repr(self.arg_name))
class GetOptArgFromRemote(GetArgFromRemote):
"""
An instruction that may or may not retrieve an optional function argument
from remote, depending on number of values received by firmware.
:ivar rcv_count: number of received values,
determined by firmware
:ivar index: (integer) index of the current argument,
in reference to remote arguments
"""
"""
:param rcv_count: number of received valuese
:param index: (integer) index of the current argument,
in reference to remote arguments
"""
def __init__(self, arg_name, arg_type, rcv_count, index, name=""):
super().__init__(arg_name, arg_type, name)
self.rcv_count = rcv_count
self.index = index
def copy(self, mapper):
self_copy = super().copy(mapper)
self_copy.rcv_count = self.rcv_count
self_copy.index = self.index
return self_copy
def opcode(self):
return "getoptargfromremote({})".format(repr(self.arg_name))
class SubkernelAwaitArgs(Instruction):
"""
A builtin instruction that takes min and max received messages as operands,
and a list of received types.
:ivar arg_types: (list of types) types of passed arguments (including optional)
"""
"""
:param arg_types: (list of types) types of passed arguments (including optional)
"""
def __init__(self, operands, arg_types, name=None):
assert isinstance(arg_types, list)
self.arg_types = arg_types
super().__init__(operands, builtins.TNone(), name)
class GetAttr(Instruction):
"""
An intruction that loads an attribute from an object,
@ -803,7 +685,7 @@ class GetAttr(Instruction):
typ = obj.type.attributes[attr]
else:
typ = obj.type.constructor.attributes[attr]
if types.is_function(typ) or types.is_rpc(typ) or types.is_subkernel(typ):
if types.is_function(typ) or types.is_rpc(typ):
typ = types.TMethod(obj.type, typ)
super().__init__([obj], typ, name)
self.attr = attr
@ -856,33 +738,6 @@ class SetAttr(Instruction):
def value(self):
return self.operands[1]
class Offset(Instruction):
"""
An intruction that adds an offset to a pointer (indexes into a list).
This is used to represent internally generated pointer arithmetic, and must
remain inside the same object (see :class:`GetElem` and LLVM's GetElementPtr).
"""
"""
:param lst: (:class:`Value`) list
:param index: (:class:`Value`) index
"""
def __init__(self, base, offset, name=""):
assert isinstance(base, Value)
assert isinstance(offset, Value)
typ = types._TPointer(builtins.get_iterable_elt(base.type))
super().__init__([base, offset], typ, name)
def opcode(self):
return "offset"
def base(self):
return self.operands[0]
def index(self):
return self.operands[1]
class GetElem(Instruction):
"""
An intruction that loads an element from a list.
@ -900,7 +755,7 @@ class GetElem(Instruction):
def opcode(self):
return "getelem"
def base(self):
def list(self):
return self.operands[0]
def index(self):
@ -926,7 +781,7 @@ class SetElem(Instruction):
def opcode(self):
return "setelem"
def base(self):
def list(self):
return self.operands[0]
def index(self):
@ -985,7 +840,6 @@ class Arith(Instruction):
def rhs(self):
return self.operands[1]
class Compare(Instruction):
"""
A comparison operation on numbers.
@ -1047,42 +901,6 @@ class Builtin(Instruction):
def opcode(self):
return "builtin({})".format(self.op)
class BuiltinInvoke(Terminator):
"""
A builtin operation which can raise exceptions.
:ivar op: (string) operation name
"""
"""
:param op: (string) operation name
:param normal: (:class:`BasicBlock`) normal target
:param exn: (:class:`BasicBlock`) exceptional target
"""
def __init__(self, op, operands, typ, normal, exn, name=None):
assert isinstance(op, str)
for operand in operands: assert isinstance(operand, Value)
assert isinstance(normal, BasicBlock)
assert isinstance(exn, BasicBlock)
if name is None:
name = "BLTINV.{}".format(op)
super().__init__(operands + [normal, exn], typ, name)
self.op = op
def copy(self, mapper):
self_copy = super().copy(mapper)
self_copy.op = self.op
return self_copy
def normal_target(self):
return self.operands[-2]
def exception_target(self):
return self.operands[-1]
def opcode(self):
return "builtinInvokable({})".format(self.op)
class Closure(Instruction):
"""
A closure creation operation.
@ -1301,18 +1119,14 @@ class IndirectBranch(Terminator):
class Return(Terminator):
"""
A return instruction.
:param remote_return: (bool)
marks a return in subkernel context,
where the return value is sent back through DRTIO
"""
"""
:param value: (:class:`Value`) return value
"""
def __init__(self, value, remote_return=False, name=""):
def __init__(self, value, name=""):
assert isinstance(value, Value)
super().__init__([value], builtins.TNone(), name)
self.remote_return = remote_return
def opcode(self):
return "return"
@ -1361,9 +1175,9 @@ class Raise(Terminator):
if len(self.operands) > 1:
return self.operands[1]
class Resume(Terminator):
class Reraise(Terminator):
"""
A resume instruction.
A reraise instruction.
"""
"""
@ -1377,7 +1191,7 @@ class Resume(Terminator):
super().__init__(operands, builtins.TNone(), name)
def opcode(self):
return "resume"
return "reraise"
def exception_target(self):
if len(self.operands) > 0:
@ -1463,7 +1277,6 @@ class LandingPad(Terminator):
def __init__(self, cleanup, name=""):
super().__init__([cleanup], builtins.TException(), name)
self.types = []
self.has_cleanup = True
def copy(self, mapper):
self_copy = super().copy(mapper)

View File

@ -1,70 +0,0 @@
/* Force ld to make the ELF header as loadable. */
PHDRS
{
headers PT_LOAD FILEHDR PHDRS ;
text PT_LOAD ;
data PT_LOAD ;
dynamic PT_DYNAMIC ;
eh_frame PT_GNU_EH_FRAME ;
}
SECTIONS
{
/* Push back .text section enough so that ld.lld not complain */
. = SIZEOF_HEADERS;
.text :
{
*(.text .text.*)
} : text
.rodata :
{
*(.rodata .rodata.*)
}
.eh_frame :
{
KEEP(*(.eh_frame))
} : text
.eh_frame_hdr :
{
KEEP(*(.eh_frame_hdr))
} : text : eh_frame
.got :
{
*(.got)
} : text
.got.plt :
{
*(.got.plt)
} : text
.data :
{
*(.data .data.*)
} : data
.dynamic :
{
*(.dynamic)
} : data : dynamic
.bss (NOLOAD) : ALIGN(4)
{
__bss_start = .;
*(.sbss .sbss.* .bss .bss.*);
. = ALIGN(4);
_end = .;
}
/* Kernel stack grows downward from end of memory, so put guard page after
* all the program contents. Note: This requires all loaded sections (at
* least those accessed) to be explicitly listed in the above!
*/
. = ALIGN(0x1000);
_sstack_guard = .;
}

View File

@ -1,116 +0,0 @@
r"""
The :mod:`math_fns` module lists math-related functions from NumPy recognized
by the ARTIQ compiler so host function objects can be :func:`match`\ ed to
the compiler type metadata describing their core device analogue.
"""
from collections import OrderedDict
import numpy
from . import builtins, types
# Some special mathematical functions are exposed via their scipy.special
# equivalents. Since the rest of the ARTIQ core does not depend on SciPy,
# gracefully handle it not being present, making the functions simply not
# available.
try:
import scipy.special as scipy_special
except ImportError:
scipy_special = None
#: float -> float numpy.* math functions for which llvm.* intrinsics exist.
unary_fp_intrinsics = [(name, "llvm." + name + ".f64") for name in [
"sin",
"cos",
"exp",
"exp2",
"log",
"log10",
"log2",
"fabs",
"floor",
"ceil",
"trunc",
"sqrt",
]] + [
# numpy.rint() seems to (NumPy 1.19.0, Python 3.8.5, Linux x86_64)
# implement round-to-even, but unfortunately, rust-lang/libm only
# provides round(), which always rounds away from zero.
#
# As there is no equivalent of the latter in NumPy (nor any other
# basic rounding function), expose round() as numpy.rint anyway,
# even if the rounding modes don't match up, so there is some way
# to do rounding on the core device. (numpy.round() has entirely
# different semantics; it rounds to a configurable number of
# decimals.)
("rint", "llvm.round.f64"),
]
#: float -> float numpy.* math functions lowered to runtime calls.
unary_fp_runtime_calls = [
("tan", "tan"),
("arcsin", "asin"),
("arccos", "acos"),
("arctan", "atan"),
("sinh", "sinh"),
("cosh", "cosh"),
("tanh", "tanh"),
("arcsinh", "asinh"),
("arccosh", "acosh"),
("arctanh", "atanh"),
("expm1", "expm1"),
("cbrt", "cbrt"),
]
scipy_special_unary_runtime_calls = [
("erf", "erf"),
("erfc", "erfc"),
("gamma", "tgamma"),
("gammaln", "lgamma"),
("j0", "j0"),
("j1", "j1"),
("y0", "y0"),
("y1", "y1"),
]
# Not mapped: jv/yv, libm only supports integer orders.
#: (float, float) -> float numpy.* math functions lowered to runtime calls.
binary_fp_runtime_calls = [
("arctan2", "atan2"),
("copysign", "copysign"),
("fmax", "fmax"),
("fmin", "fmin"),
# ("ldexp", "ldexp"), # One argument is an int; would need a bit more plumbing.
("hypot", "hypot"),
("nextafter", "nextafter"),
]
#: Array handling builtins (special treatment due to allocations).
numpy_builtins = ["transpose"]
def fp_runtime_type(name, arity):
args = [("arg{}".format(i), builtins.TFloat()) for i in range(arity)]
return types.TExternalFunction(
OrderedDict(args),
builtins.TFloat(),
name,
# errno isn't observable from ARTIQ Python.
flags={"nounwind", "nowrite"},
broadcast_across_arrays=True)
math_fn_map = {
getattr(numpy, symbol): fp_runtime_type(mangle, arity=1)
for symbol, mangle in (unary_fp_intrinsics + unary_fp_runtime_calls)
}
for symbol, mangle in binary_fp_runtime_calls:
math_fn_map[getattr(numpy, symbol)] = fp_runtime_type(mangle, arity=2)
for name in numpy_builtins:
math_fn_map[getattr(numpy, name)] = types.TBuiltinFunction("numpy." + name)
if scipy_special is not None:
for symbol, mangle in scipy_special_unary_runtime_calls:
math_fn_map[getattr(scipy_special, symbol)] = fp_runtime_type(mangle, arity=1)
def match(obj):
return math_fn_map.get(obj, None)

View File

@ -10,7 +10,7 @@ string and infers types for it using a trivial :module:`prelude`.
import os
from pythonparser import source, diagnostic, parse_buffer
from . import prelude, types, transforms, analyses, validators, embedding
from . import prelude, types, transforms, analyses, validators
class Source:
def __init__(self, source_buffer, engine=None):
@ -18,7 +18,7 @@ class Source:
self.engine = diagnostic.Engine(all_errors_are_fatal=True)
else:
self.engine = engine
self.embedding_map = embedding.EmbeddingMap()
self.embedding_map = None
self.name, _ = os.path.splitext(os.path.basename(source_buffer.name))
asttyped_rewriter = transforms.ASTTypedRewriter(engine=engine,
@ -57,8 +57,7 @@ class Module:
constness_validator = validators.ConstnessValidator(engine=self.engine)
artiq_ir_generator = transforms.ARTIQIRGenerator(engine=self.engine,
module_name=src.name,
ref_period=ref_period,
embedding_map=self.embedding_map)
ref_period=ref_period)
dead_code_eliminator = transforms.DeadCodeEliminator(engine=self.engine)
local_access_validator = validators.LocalAccessValidator(engine=self.engine)
local_demoter = transforms.LocalDemoter()
@ -67,8 +66,8 @@ class Module:
interleaver = transforms.Interleaver(engine=self.engine)
invariant_detection = analyses.InvariantDetection(engine=self.engine)
int_monomorphizer.visit(src.typedtree)
cast_monomorphizer.visit(src.typedtree)
int_monomorphizer.visit(src.typedtree)
inferencer.visit(src.typedtree)
monomorphism_validator.visit(src.typedtree)
escape_validator.visit(src.typedtree)
@ -84,8 +83,6 @@ class Module:
constant_hoister.process(self.artiq_ir)
if remarks:
invariant_detection.process(self.artiq_ir)
# for subkernels: main kernel inferencer output, to be passed to further compilations
self.subkernel_arg_types = inferencer.subkernel_arg_types
def build_llvm_ir(self, target):
"""Compile the module to LLVM IR for the specified target."""

View File

@ -25,19 +25,16 @@ def globals():
"IndexError": builtins.fn_IndexError(),
"ValueError": builtins.fn_ValueError(),
"ZeroDivisionError": builtins.fn_ZeroDivisionError(),
"RuntimeError": builtins.fn_RuntimeError(),
# Built-in Python functions
"len": builtins.fn_len(),
"round": builtins.fn_round(),
"abs": builtins.fn_abs(),
"min": builtins.fn_min(),
"max": builtins.fn_max(),
"print": builtins.fn_print(),
# ARTIQ decorators
"kernel": builtins.fn_kernel(),
"subkernel": builtins.fn_kernel(),
"portable": builtins.fn_kernel(),
"rpc": builtins.fn_kernel(),
@ -45,6 +42,7 @@ def globals():
"parallel": builtins.obj_parallel(),
"interleave": builtins.obj_interleave(),
"sequential": builtins.obj_sequential(),
"watchdog": builtins.fn_watchdog(),
# ARTIQ time management functions
"delay": builtins.fn_delay(),
@ -55,10 +53,4 @@ def globals():
# ARTIQ utility functions
"rtio_log": builtins.fn_rtio_log(),
"core_log": builtins.fn_print(),
# ARTIQ subkernel utility functions
"subkernel_await": builtins.fn_subkernel_await(),
"subkernel_preload": builtins.fn_subkernel_preload(),
"subkernel_send": builtins.fn_subkernel_send(),
"subkernel_recv": builtins.fn_subkernel_recv(),
}

View File

@ -1,6 +1,6 @@
import os, sys, tempfile, subprocess, io
from artiq.compiler import types, ir
from llvmlite import ir as ll, binding as llvm
from llvmlite_artiq import ir as ll, binding as llvm
llvm.initialize()
llvm.initialize_all_targets()
@ -28,10 +28,8 @@ class RunTool:
for argument in self._pattern:
cmdline.append(argument.format(**self._tempnames))
# https://bugs.python.org/issue17023
windows = os.name == "nt"
process = subprocess.Popen(cmdline, stdout=subprocess.PIPE, stderr=subprocess.PIPE,
universal_newlines=True, shell=windows)
universal_newlines=True)
stdout, stderr = process.communicate()
if process.returncode != 0:
raise Exception("{} invocation failed: {}".
@ -69,41 +67,29 @@ class Target:
generated by the ARTIQ compiler will be deployed.
:var triple: (string)
LLVM target triple, e.g. ``"riscv32"``
LLVM target triple, e.g. ``"or1k"``
:var data_layout: (string)
LLVM target data layout, e.g. ``"E-m:e-p:32:32-i64:32-f64:32-v64:32-v128:32-a:0:32-n32"``
:var features: (list of string)
LLVM target CPU features, e.g. ``["mul", "div", "ffl1"]``
:var additional_linker_options: (list of string)
Linker options for the target in addition to the target-independent ones, e.g. ``["--target2=rel"]``
:var print_function: (string)
Name of a formatted print functions (with the signature of ``printf``)
provided by the target, e.g. ``"printf"``.
:var now_pinning: (boolean)
Whether the target implements the now-pinning RTIO optimization.
"""
triple = "unknown"
data_layout = ""
features = []
additional_linker_options = []
print_function = "printf"
now_pinning = True
tool_ld = "ld.lld"
tool_strip = "llvm-strip"
tool_symbolizer = "llvm-symbolizer"
tool_cxxfilt = "llvm-cxxfilt"
def __init__(self, subkernel_id=None):
def __init__(self):
self.llcontext = ll.Context()
self.subkernel_id = subkernel_id
def target_machine(self):
lltarget = llvm.Target.from_triple(self.triple)
llmachine = lltarget.create_target_machine(
features=",".join(["+{}".format(f) for f in self.features]),
reloc="pic", codemodel="default",
abiname="ilp32d" if isinstance(self, RV32GTarget) else "")
reloc="pic", codemodel="default")
llmachine.set_asm_verbosity(True)
return llmachine
@ -149,8 +135,7 @@ class Target:
ir.BasicBlock._dump_loc = False
type_printer = types.TypePrinter()
suffix = "_subkernel_{}".format(self.subkernel_id) if self.subkernel_id is not None else ""
_dump(os.getenv("ARTIQ_DUMP_IR"), "ARTIQ IR", suffix + ".txt",
_dump(os.getenv("ARTIQ_DUMP_IR"), "ARTIQ IR", ".txt",
lambda: "\n".join(fn.as_entity(type_printer) for fn in module.artiq_ir))
llmod = module.build_llvm_ir(self)
@ -162,12 +147,12 @@ class Target:
_dump("", "LLVM IR (broken)", ".ll", lambda: str(llmod))
raise
_dump(os.getenv("ARTIQ_DUMP_UNOPT_LLVM"), "LLVM IR (generated)", suffix + "_unopt.ll",
_dump(os.getenv("ARTIQ_DUMP_UNOPT_LLVM"), "LLVM IR (generated)", "_unopt.ll",
lambda: str(llparsedmod))
self.optimize(llparsedmod)
_dump(os.getenv("ARTIQ_DUMP_LLVM"), "LLVM IR (optimized)", suffix + ".ll",
_dump(os.getenv("ARTIQ_DUMP_LLVM"), "LLVM IR (optimized)", ".ll",
lambda: str(llparsedmod))
return llparsedmod
@ -185,11 +170,8 @@ class Target:
def link(self, objects):
"""Link the relocatable objects into a shared library for this target."""
with RunTool([self.tool_ld, "-shared", "--eh-frame-hdr"] +
self.additional_linker_options +
["-T" + os.path.join(os.path.dirname(__file__), "kernel.ld")] +
with RunTool([self.triple + "-ld", "-shared", "--eh-frame-hdr"] +
["{{obj{}}}".format(index) for index in range(len(objects))] +
["-x"] +
["-o", "{output}"],
output=None,
**{"obj{}".format(index): obj for index, obj in enumerate(objects)}) \
@ -205,7 +187,7 @@ class Target:
return self.link([self.assemble(self.compile(module)) for module in modules])
def strip(self, library):
with RunTool([self.tool_strip, "--strip-debug", "{library}", "-o", "{output}"],
with RunTool([self.triple + "-strip", "--strip-debug", "{library}", "-o", "{output}"],
library=library, output=None) \
as results:
return results["output"].read()
@ -218,10 +200,9 @@ class Target:
# just after the call. Offset them back to get an address somewhere
# inside the call instruction (or its delay slot), since that's what
# the backtrace entry should point at.
last_inlined = None
offset_addresses = [hex(addr - 1) for addr in addresses]
with RunTool([self.tool_symbolizer, "--addresses", "--functions", "--inlines",
"--demangle", "--output-style=GNU", "--exe={library}"] + offset_addresses,
with RunTool([self.triple + "-addr2line", "--addresses", "--functions", "--inlines",
"--demangle", "--exe={library}"] + offset_addresses,
library=library) \
as results:
lines = iter(results["__stdout__"].read().rstrip().split("\n"))
@ -234,11 +215,9 @@ class Target:
if address_or_function[:2] == "0x":
address = int(address_or_function[2:], 16) + 1 # remove offset
function = next(lines)
inlined = False
else:
address = backtrace[-1][4] # inlined
function = address_or_function
inlined = True
location = next(lines)
filename, line = location.rsplit(":", 1)
@ -249,61 +228,21 @@ class Target:
else:
line = int(line)
# can't get column out of addr2line D:
if inlined:
last_inlined.append((filename, line, -1, function, address))
else:
last_inlined = []
backtrace.append((filename, line, -1, function, address,
last_inlined))
backtrace.append((filename, line, -1, function, address))
return backtrace
def demangle(self, names):
if not any(names):
return names
with RunTool([self.tool_cxxfilt] + names) as results:
with RunTool([self.triple + "-c++filt"] + names) as results:
return results["__stdout__"].read().rstrip().split("\n")
class NativeTarget(Target):
def __init__(self):
super().__init__()
self.triple = llvm.get_default_triple()
self.data_layout = str(llvm.targets.Target.from_default_triple().create_target_machine().target_data)
class RV32IMATarget(Target):
triple = "riscv32-unknown-linux"
data_layout = "e-m:e-p:32:32-i64:64-n32-S128"
features = ["m", "a"]
additional_linker_options = ["-m", "elf32lriscv"]
class OR1KTarget(Target):
triple = "or1k-linux"
data_layout = "E-m:e-p:32:32-i8:8:8-i16:16:16-i64:32:32-" \
"f64:32:32-v64:32:32-v128:32:32-a0:0:32-n32"
features = ["mul", "div", "ffl1", "cmov", "addc"]
print_function = "core_log"
now_pinning = True
tool_ld = "ld.lld"
tool_strip = "llvm-strip"
tool_symbolizer = "llvm-symbolizer"
tool_cxxfilt = "llvm-cxxfilt"
class RV32GTarget(Target):
triple = "riscv32-unknown-linux"
data_layout = "e-m:e-p:32:32-i64:64-n32-S128"
features = ["m", "a", "f", "d"]
additional_linker_options = ["-m", "elf32lriscv"]
print_function = "core_log"
now_pinning = True
tool_ld = "ld.lld"
tool_strip = "llvm-strip"
tool_symbolizer = "llvm-symbolizer"
tool_cxxfilt = "llvm-cxxfilt"
class CortexA9Target(Target):
triple = "armv7-unknown-linux-gnueabihf"
data_layout = "e-m:e-p:32:32-i64:64-v128:64:128-a:0:32-n32-S64"
features = ["dsp", "fp16", "neon", "vfp3"]
additional_linker_options = ["-m", "armelf_linux_eabi", "--target2=rel"]
print_function = "core_log"
now_pinning = False
tool_ld = "ld.lld"
tool_strip = "llvm-strip"
tool_symbolizer = "llvm-symbolizer"
tool_cxxfilt = "llvm-cxxfilt"

View File

@ -1,6 +1,6 @@
import os, sys, fileinput, ctypes
from pythonparser import diagnostic
from llvmlite import binding as llvm
from llvmlite_artiq import binding as llvm
from ..module import Module, Source
from ..targets import NativeTarget

View File

@ -1,6 +1,6 @@
import sys, fileinput
from pythonparser import diagnostic
from llvmlite import ir as ll
from llvmlite_artiq import ir as ll
from ..module import Module, Source
from ..targets import NativeTarget

View File

@ -1,7 +1,7 @@
import sys, os
from pythonparser import diagnostic
from ..module import Module, Source
from ..targets import RV32GTarget
from ..targets import OR1KTarget
from . import benchmark
def main():
@ -30,7 +30,7 @@ def main():
benchmark(lambda: Module(source),
"ARTIQ transforms and validators")
benchmark(lambda: RV32GTarget().compile_and_link([module]),
benchmark(lambda: OR1KTarget().compile_and_link([module]),
"LLVM optimization and linking")
if __name__ == "__main__":

View File

@ -5,7 +5,7 @@ from ...master.databases import DeviceDB, DatasetDB
from ...master.worker_db import DeviceManager, DatasetManager
from ..module import Module
from ..embedding import Stitcher
from ..targets import RV32GTarget
from ..targets import OR1KTarget
from . import benchmark
@ -30,9 +30,8 @@ def main():
device_db_path = os.path.join(os.path.dirname(sys.argv[1]), "device_db.py")
device_mgr = DeviceManager(DeviceDB(device_db_path))
dataset_db_path = os.path.join(os.path.dirname(sys.argv[1]), "dataset_db.mdb")
dataset_db = DatasetDB(dataset_db_path)
dataset_mgr = DatasetManager()
dataset_db_path = os.path.join(os.path.dirname(sys.argv[1]), "dataset_db.pyon")
dataset_mgr = DatasetManager(DatasetDB(dataset_db_path))
argument_mgr = ProcessArgumentManager({})
@ -46,7 +45,7 @@ def main():
stitcher = embed()
module = Module(stitcher)
target = RV32GTarget()
target = OR1KTarget()
llvm_ir = target.compile(module)
elf_obj = target.assemble(llvm_ir)
elf_shlib = target.link([elf_obj])
@ -69,7 +68,5 @@ def main():
benchmark(lambda: target.strip(elf_shlib),
"Stripping debug information")
dataset_db.close_db()
if __name__ == "__main__":
main()

View File

@ -1,7 +1,7 @@
import sys, os
from pythonparser import diagnostic
from ..module import Module, Source
from ..targets import RV32GTarget
from ..targets import OR1KTarget
def main():
if not len(sys.argv) > 1:
@ -20,7 +20,7 @@ def main():
for filename in sys.argv[1:]:
modules.append(Module(Source.from_filename(filename, engine=engine)))
llobj = RV32GTarget().compile_and_link(modules)
llobj = OR1KTarget().compile_and_link(modules)
basename, ext = os.path.splitext(sys.argv[-1])
with open(basename + ".so", "wb") as f:

File diff suppressed because it is too large Load Diff

View File

@ -238,7 +238,7 @@ class ASTTypedRewriter(algorithm.Transformer):
body=node.body, decorator_list=node.decorator_list,
keyword_loc=node.keyword_loc, name_loc=node.name_loc,
arrow_loc=node.arrow_loc, colon_loc=node.colon_loc, at_locs=node.at_locs,
loc=node.loc, remote_fn=False)
loc=node.loc)
try:
self.env_stack.append(node.typing_env)
@ -439,9 +439,8 @@ class ASTTypedRewriter(algorithm.Transformer):
def visit_Call(self, node):
node = self.generic_visit(node)
node = asttyped.CallT(type=types.TVar(), iodelay=None, arg_exprs={},
remote_fn=False, func=node.func,
args=node.args, keywords=node.keywords,
node = asttyped.CallT(type=types.TVar(), iodelay=None, arg_exprs={},
func=node.func, args=node.args, keywords=node.keywords,
starargs=node.starargs, kwargs=node.kwargs,
star_loc=node.star_loc, dstar_loc=node.dstar_loc,
begin_loc=node.begin_loc, end_loc=node.end_loc, loc=node.loc)

View File

@ -11,12 +11,13 @@ class CastMonomorphizer(algorithm.Visitor):
self.engine = engine
def visit_CallT(self, node):
self.generic_visit(node)
if (types.is_builtin(node.func.type, "int") or
types.is_builtin(node.func.type, "int32") or
types.is_builtin(node.func.type, "int64")):
typ = node.type.find()
if (not types.is_var(typ["width"]) and
len(node.args) == 1 and
builtins.is_int(node.args[0].type) and
types.is_var(node.args[0].type.find()["width"])):
if isinstance(node.args[0], asttyped.BinOpT):
@ -28,20 +29,3 @@ class CastMonomorphizer(algorithm.Visitor):
node.args[0].type.unify(typ)
if types.is_builtin(node.func.type, "int") or \
types.is_builtin(node.func.type, "round"):
typ = node.type.find()
if types.is_var(typ["width"]):
typ["width"].unify(types.TValue(32))
self.generic_visit(node)
def visit_CoerceT(self, node):
if isinstance(node.value, asttyped.NumT) and \
builtins.is_int(node.type) and \
builtins.is_int(node.value.type) and \
not types.is_var(node.type["width"]) and \
types.is_var(node.value.type["width"]):
node.value.type.unify(node.type)
self.generic_visit(node)

View File

@ -15,26 +15,13 @@ class DeadCodeEliminator:
self.process_function(func)
def process_function(self, func):
# defer removing those blocks, so our use checks will ignore deleted blocks
preserve = [func.entry()]
work_list = [func.entry()]
while any(work_list):
block = work_list.pop()
for succ in block.successors():
if succ not in preserve:
preserve.append(succ)
work_list.append(succ)
to_be_removed = []
for block in func.basic_blocks:
if block not in preserve:
block.is_removed = True
to_be_removed.append(block)
for insn in block.instructions:
insn.is_removed = True
for block in to_be_removed:
self.remove_block(block)
modified = True
while modified:
modified = False
for block in list(func.basic_blocks):
if not any(block.predecessors()) and block != func.entry():
self.remove_block(block)
modified = True
modified = True
while modified:
@ -46,8 +33,7 @@ class DeadCodeEliminator:
# it also has to run after the interleaver, but interleaver
# doesn't like to work with IR before DCE.
if isinstance(insn, (ir.Phi, ir.Alloc, ir.GetAttr, ir.GetElem, ir.Coerce,
ir.Arith, ir.Compare, ir.Select, ir.Quote, ir.Closure,
ir.Offset)) \
ir.Arith, ir.Compare, ir.Select, ir.Quote, ir.Closure)) \
and not any(insn.uses):
insn.erase()
modified = True
@ -55,8 +41,6 @@ class DeadCodeEliminator:
def remove_block(self, block):
# block.uses are updated while iterating
for use in set(block.uses):
if use.is_removed:
continue
if isinstance(use, ir.Phi):
use.remove_incoming_block(block)
if not any(use.operands):
@ -71,8 +55,6 @@ class DeadCodeEliminator:
def remove_instruction(self, insn):
for use in set(insn.uses):
if use.is_removed:
continue
if isinstance(use, ir.Phi):
use.remove_incoming_value(insn)
if not any(use.operands):

View File

@ -6,30 +6,6 @@ from collections import OrderedDict
from pythonparser import algorithm, diagnostic, ast
from .. import asttyped, types, builtins
from .typedtree_printer import TypedtreePrinter
from artiq.experiment import kernel
def is_nested_empty_list(node):
"""If the passed AST node is an empty list, or a regularly nested list thereof,
returns the number of nesting layers, or ``None`` otherwise.
For instance, ``is_nested_empty_list([]) == 1`` and
``is_nested_empty_list([[], []]) == 2``, but
``is_nested_empty_list([[[]], []]) == None`` as the number of nesting layers doesn't
match.
"""
if not isinstance(node, ast.List):
return None
if not node.elts:
return 1
result = is_nested_empty_list(node.elts[0])
if result is None:
return None
for elt in node.elts[:1]:
if result != is_nested_empty_list(elt):
return None
return result + 1
class Inferencer(algorithm.Visitor):
"""
@ -46,7 +22,6 @@ class Inferencer(algorithm.Visitor):
self.function = None # currently visited function, for Return inference
self.in_loop = False
self.has_return = False
self.subkernel_arg_types = dict()
def _unify(self, typea, typeb, loca, locb, makenotes=None, when=""):
try:
@ -179,7 +154,7 @@ class Inferencer(algorithm.Visitor):
# Convert to a method.
attr_type = types.TMethod(object_type, attr_type)
self._unify_method_self(attr_type, attr_name, attr_loc, loc, value_node.loc)
elif types.is_rpc(attr_type) or types.is_subkernel(attr_type):
elif types.is_rpc(attr_type):
# Convert to a method. We don't have to bother typechecking
# the self argument, since for RPCs anything goes.
attr_type = types.TMethod(object_type, attr_type)
@ -208,14 +183,6 @@ class Inferencer(algorithm.Visitor):
if builtins.is_bytes(collection.type) or builtins.is_bytearray(collection.type):
self._unify(element.type, builtins.get_iterable_elt(collection.type),
element.loc, None)
elif builtins.is_array(collection.type):
array_type = collection.type.find()
elem_dims = array_type["num_dims"].value - 1
if elem_dims > 0:
elem_type = builtins.TArray(array_type["elt"], types.TValue(elem_dims))
else:
elem_type = array_type["elt"]
self._unify(element.type, elem_type, element.loc, collection.loc)
elif builtins.is_iterable(collection.type) and not builtins.is_str(collection.type):
rhs_type = collection.type.find()
rhs_wrapped_lhs_type = types.TMono(rhs_type.name, {"elt": element.type})
@ -232,15 +199,15 @@ class Inferencer(algorithm.Visitor):
self.generic_visit(node)
value = node.value
if types.is_tuple(value.type):
for elt in value.type.find().elts:
self._unify(elt, builtins.TInt(),
value.loc, None)
diag = diagnostic.Diagnostic("error",
"multi-dimensional slices are not supported", {},
node.loc, [])
self.engine.process(diag)
else:
self._unify(value.type, builtins.TInt(),
value.loc, None)
def visit_SliceT(self, node):
self.generic_visit(node)
if (node.lower, node.upper, node.step) == (None, None, None):
self._unify(node.type, builtins.TInt32(),
node.loc, None)
@ -260,78 +227,16 @@ class Inferencer(algorithm.Visitor):
def visit_SubscriptT(self, node):
self.generic_visit(node)
if types.is_tuple(node.value.type):
if (not isinstance(node.slice, ast.Index) or
not isinstance(node.slice.value, ast.Num)):
diag = diagnostic.Diagnostic(
"error", "tuples can only be indexed by a constant", {},
node.slice.loc, []
)
self.engine.process(diag)
return
tuple_type = node.value.type.find()
index = node.slice.value.n
if index < 0 or index >= len(tuple_type.elts):
diag = diagnostic.Diagnostic(
"error",
"index {index} is out of range for tuple of size {size}",
{"index": index, "size": len(tuple_type.elts)},
node.slice.loc, []
)
self.engine.process(diag)
return
self._unify(node.type, tuple_type.elts[index], node.loc, node.value.loc)
elif isinstance(node.slice, ast.Index):
if types.is_tuple(node.slice.value.type):
if types.is_var(node.value.type):
return
if not builtins.is_array(node.value.type):
diag = diagnostic.Diagnostic(
"error",
"multi-dimensional indexing only supported for arrays, not {type}",
{"type": types.TypePrinter().name(node.value.type)},
node.loc, [])
self.engine.process(diag)
return
num_idxs = len(node.slice.value.type.find().elts)
array_type = node.value.type.find()
num_dims = array_type["num_dims"].value
remaining_dims = num_dims - num_idxs
if remaining_dims < 0:
diag = diagnostic.Diagnostic(
"error",
"too many indices for array of dimension {num_dims}",
{"num_dims": num_dims}, node.slice.loc, [])
self.engine.process(diag)
return
if remaining_dims == 0:
self._unify(node.type, array_type["elt"], node.loc,
node.value.loc)
else:
self._unify(
node.type,
builtins.TArray(array_type["elt"], remaining_dims))
else:
self._unify_iterable(element=node, collection=node.value)
if isinstance(node.slice, ast.Index):
self._unify_iterable(element=node, collection=node.value)
elif isinstance(node.slice, ast.Slice):
if builtins.is_array(node.value.type):
if node.slice.step is not None:
diag = diagnostic.Diagnostic(
"error",
"strided slicing not yet supported for NumPy arrays", {},
node.slice.step.loc, [])
self.engine.process(diag)
return
self._unify(node.type, node.value.type, node.loc, node.value.loc)
else: # ExtSlice
pass # error emitted above
self._unify(node.type, node.value.type,
node.loc, node.value.loc)
else: # ExtSlice
pass # error emitted above
def visit_IfExpT(self, node):
self.generic_visit(node)
self._unify(node.test.type, builtins.TBool(), node.test.loc, None)
self._unify(node.body.type, node.orelse.type,
node.body.loc, node.orelse.loc)
self._unify(node.type, node.body.type,
@ -360,36 +265,21 @@ class Inferencer(algorithm.Visitor):
node.operand.loc)
self.engine.process(diag)
else: # UAdd, USub
if types.is_var(operand_type):
return
if builtins.is_numeric(operand_type):
self._unify(node.type, operand_type, node.loc, None)
return
if builtins.is_array(operand_type):
elt = operand_type.find()["elt"]
if builtins.is_numeric(elt):
self._unify(node.type, operand_type, node.loc, None)
return
if types.is_var(elt):
return
diag = diagnostic.Diagnostic("error",
"expected unary '{op}' operand to be of numeric type, not {type}",
{"op": node.op.loc.source(),
"type": types.TypePrinter().name(operand_type)},
node.operand.loc)
self.engine.process(diag)
self._unify(node.type, operand_type,
node.loc, None)
elif not types.is_var(operand_type):
diag = diagnostic.Diagnostic("error",
"expected unary '{op}' operand to be of numeric type, not {type}",
{"op": node.op.loc.source(),
"type": types.TypePrinter().name(operand_type)},
node.operand.loc)
self.engine.process(diag)
def visit_CoerceT(self, node):
self.generic_visit(node)
if builtins.is_numeric(node.type) and builtins.is_numeric(node.value.type):
pass
elif (builtins.is_array(node.type) and builtins.is_array(node.value.type)
and builtins.is_numeric(node.type.find()["elt"])
and builtins.is_numeric(node.value.type.find()["elt"])):
pass
else:
printer = types.TypePrinter()
note = diagnostic.Diagnostic("note",
@ -415,7 +305,7 @@ class Inferencer(algorithm.Visitor):
self.visit(node)
return node
def _coerce_numeric(self, nodes, map_return=lambda typ: typ, map_node_type =lambda typ:typ):
def _coerce_numeric(self, nodes, map_return=lambda typ: typ):
# See https://docs.python.org/3/library/stdtypes.html#numeric-types-int-float-complex.
node_types = []
for node in nodes:
@ -431,7 +321,6 @@ class Inferencer(algorithm.Visitor):
node_types.append(node.type)
else:
node_types.append(node.type)
node_types = [map_node_type(typ) for typ in node_types]
if any(map(types.is_var, node_types)): # not enough info yet
return
elif not all(map(builtins.is_numeric, node_types)):
@ -463,125 +352,8 @@ class Inferencer(algorithm.Visitor):
else:
assert False
def _coerce_binary_broadcast_op(self, left, right, map_return_elt, op_loc):
def num_dims(typ):
if builtins.is_array(typ):
# TODO: If number of dimensions is ever made a non-fixed parameter,
# need to acutally unify num_dims in _coerce_binop/….
return typ.find()["num_dims"].value
return 0
left_dims = num_dims(left.type)
right_dims = num_dims(right.type)
if left_dims != right_dims and left_dims != 0 and right_dims != 0:
# Mismatch (only scalar broadcast supported for now).
note1 = diagnostic.Diagnostic("note", "operand of dimension {num_dims}",
{"num_dims": left_dims}, left.loc)
note2 = diagnostic.Diagnostic("note", "operand of dimension {num_dims}",
{"num_dims": right_dims}, right.loc)
diag = diagnostic.Diagnostic(
"error", "dimensions of '{op}' array operands must match",
{"op": op_loc.source()}, op_loc, [left.loc, right.loc], [note1, note2])
self.engine.process(diag)
return
def map_node_type(typ):
if not builtins.is_array(typ):
# This is a single value broadcast across the array.
return typ
return typ.find()["elt"]
# Figure out result type, handling broadcasts.
result_dims = left_dims if left_dims else right_dims
def map_return(typ):
elt = map_return_elt(typ)
result = builtins.TArray(elt=elt, num_dims=result_dims)
left = builtins.TArray(elt=elt, num_dims=left_dims) if left_dims else elt
right = builtins.TArray(elt=elt, num_dims=right_dims) if right_dims else elt
return (result, left, right)
return self._coerce_numeric((left, right),
map_return=map_return,
map_node_type=map_node_type)
def _coerce_binop(self, op, left, right):
if isinstance(op, ast.MatMult):
if types.is_var(left.type) or types.is_var(right.type):
return
def num_dims(operand):
if not builtins.is_array(operand.type):
diag = diagnostic.Diagnostic(
"error",
"expected matrix multiplication operand to be of array type, not {type}",
{
"op": op.loc.source(),
"type": types.TypePrinter().name(operand.type)
}, op.loc, [operand.loc])
self.engine.process(diag)
return
num_dims = operand.type.find()["num_dims"].value
if num_dims not in (1, 2):
diag = diagnostic.Diagnostic(
"error",
"expected matrix multiplication operand to be 1- or 2-dimensional, not {type}",
{
"op": op.loc.source(),
"type": types.TypePrinter().name(operand.type)
}, op.loc, [operand.loc])
self.engine.process(diag)
return
return num_dims
left_dims = num_dims(left)
if not left_dims:
return
right_dims = num_dims(right)
if not right_dims:
return
def map_node_type(typ):
return typ.find()["elt"]
def map_return(typ):
if left_dims == 1:
if right_dims == 1:
result_dims = 0
else:
result_dims = 1
elif right_dims == 1:
result_dims = 1
else:
result_dims = 2
result = typ if result_dims == 0 else builtins.TArray(
typ, result_dims)
return (result, builtins.TArray(typ, left_dims),
builtins.TArray(typ, right_dims))
return self._coerce_numeric((left, right),
map_return=map_return,
map_node_type=map_node_type)
elif builtins.is_array(left.type) or builtins.is_array(right.type):
# Operations on arrays are element-wise (possibly using broadcasting).
# TODO: Allow only for integer arrays.
# allowed_int_array_ops = (ast.BitAnd, ast.BitOr, ast.BitXor, ast.LShift,
# ast.RShift)
allowed_array_ops = (ast.Add, ast.Mult, ast.FloorDiv, ast.Mod,
ast.Pow, ast.Sub, ast.Div)
if not isinstance(op, allowed_array_ops):
diag = diagnostic.Diagnostic(
"error", "operator '{op}' not valid for array types",
{"op": op.loc.source()}, op.loc)
self.engine.process(diag)
return
def map_result(typ):
if isinstance(op, ast.Div):
return builtins.TFloat()
return typ
return self._coerce_binary_broadcast_op(left, right, map_result, op.loc)
elif isinstance(op, (ast.BitAnd, ast.BitOr, ast.BitXor,
if isinstance(op, (ast.BitAnd, ast.BitOr, ast.BitXor,
ast.LShift, ast.RShift)):
# bitwise operators require integers
for operand in (left, right):
@ -680,7 +452,7 @@ class Inferencer(algorithm.Visitor):
# division always returns a float
return self._coerce_numeric((left, right),
lambda typ: (builtins.TFloat(), builtins.TFloat(), builtins.TFloat()))
else:
else: # MatMult
diag = diagnostic.Diagnostic("error",
"operator '{op}' is not supported", {"op": op.loc.source()},
op.loc)
@ -923,111 +695,28 @@ class Inferencer(algorithm.Visitor):
"strings currently cannot be constructed", {},
node.loc)
self.engine.process(diag)
elif types.is_builtin(typ, "array"):
valid_forms = lambda: [
valid_form("array(x:'a) -> array(elt='b) where 'a is iterable"),
valid_form("array(x:'a, dtype:'b) -> array(elt='b) where 'a is iterable")
]
elif types.is_builtin(typ, "list") or types.is_builtin(typ, "array"):
if types.is_builtin(typ, "list"):
valid_forms = lambda: [
valid_form("list() -> list(elt='a)"),
valid_form("list(x:'a) -> list(elt='b) where 'a is iterable")
]
explicit_dtype = None
keywords_acceptable = False
if len(node.keywords) == 0:
keywords_acceptable = True
elif len(node.keywords) == 1:
if node.keywords[0].arg == "dtype":
keywords_acceptable = True
explicit_dtype = node.keywords[0].value
if len(node.args) == 1 and keywords_acceptable:
arg, = node.args
self._unify(node.type, builtins.TList(),
node.loc, None)
elif types.is_builtin(typ, "array"):
valid_forms = lambda: [
valid_form("array() -> array(elt='a)"),
valid_form("array(x:'a) -> array(elt='b) where 'a is iterable")
]
num_empty_dims = is_nested_empty_list(arg)
if num_empty_dims is not None:
# As a special case, following the behaviour of numpy.array (and
# repr() on ndarrays), consider empty lists to be exactly of the
# number of dimensions given, instead of potentially containing an
# unknown number of extra dimensions.
num_dims = num_empty_dims
# The ultimate element type will be TVar initially, but we might be
# able to resolve it from context.
elt = arg.type
for _ in range(num_dims):
assert builtins.is_list(elt)
elt = elt.find()["elt"]
else:
# In the absence of any other information (there currently isn't a way
# to specify any), assume that all iterables are expandable into a
# (runtime-checked) rectangular array of the innermost element type.
elt = arg.type
num_dims = 0
expected_dims = (node.type.find()["num_dims"].value
if builtins.is_array(node.type) else -1)
while True:
if num_dims == expected_dims:
# If we already know the number of dimensions of the result,
# stop so we can disambiguate the (innermost) element type of
# the argument if it is still unknown.
break
if types.is_var(elt):
# Can't make progress here because we don't know how many more
# dimensions might be "hidden" inside.
return
if not builtins.is_iterable(elt) or builtins.is_str(elt):
break
if builtins.is_array(elt):
num_dims += elt.find()["num_dims"].value
else:
num_dims += 1
elt = builtins.get_iterable_elt(elt)
if explicit_dtype is not None:
# TODO: Factor out type detection; support quoted type constructors
# (TList(TInt32), …)?
typ = explicit_dtype.type
if types.is_builtin(typ, "int32"):
elt = builtins.TInt32()
elif types.is_builtin(typ, "int64"):
elt = builtins.TInt64()
elif types.is_constructor(typ):
elt = typ.find().instance
else:
diag = diagnostic.Diagnostic(
"error",
"dtype argument of {builtin}() must be a valid constructor",
{"builtin": typ.find().name},
node.func.loc,
notes=[note])
self.engine.process(diag)
return
if num_dims == 0:
note = diagnostic.Diagnostic(
"note", "this expression has type {type}",
{"type": types.TypePrinter().name(arg.type)}, arg.loc)
diag = diagnostic.Diagnostic(
"error",
"the argument of {builtin}() must be of an iterable type",
{"builtin": typ.find().name},
node.func.loc,
notes=[note])
self.engine.process(diag)
return
self._unify(node.type,
builtins.TArray(elt, types.TValue(num_dims)),
node.loc, arg.loc)
self._unify(node.type, builtins.TArray(),
node.loc, None)
else:
diagnose(valid_forms())
elif types.is_builtin(typ, "list"):
valid_forms = lambda: [
valid_form("list() -> list(elt='a)"),
valid_form("list(x:'a) -> list(elt='b) where 'a is iterable")
]
self._unify(node.type, builtins.TList(), node.loc, None)
assert False
if len(node.args) == 0 and len(node.keywords) == 0:
pass # []
pass # []
elif len(node.args) == 1 and len(node.keywords) == 0:
arg, = node.args
@ -1122,28 +811,6 @@ class Inferencer(algorithm.Visitor):
arg.loc, None)
else:
diagnose(valid_forms())
elif types.is_builtin(typ, "abs"):
fn = typ.name
valid_forms = lambda: [
valid_form("abs(x:numpy.int?) -> numpy.int?"),
valid_form("abs(x:float) -> float")
]
if len(node.args) == 1 and len(node.keywords) == 0:
(arg,) = node.args
if builtins.is_int(arg.type) or builtins.is_float(arg.type):
self._unify(arg.type, node.type,
arg.loc, node.loc)
elif types.is_var(arg.type):
pass # undetermined yet
else:
diag = diagnostic.Diagnostic("error",
"the arguments of abs() must be of a numeric type", {},
node.func.loc)
self.engine.process(diag)
else:
diagnose(valid_forms())
elif types.is_builtin(typ, "min") or types.is_builtin(typ, "max"):
fn = typ.name
@ -1190,69 +857,21 @@ class Inferencer(algorithm.Visitor):
diagnose(valid_forms())
elif types.is_builtin(typ, "make_array"):
valid_forms = lambda: [
valid_form("numpy.full(count:int32, value:'a) -> array(elt='a, num_dims=1)"),
valid_form("numpy.full(shape:(int32,)*'b, value:'a) -> array(elt='a, num_dims='b)"),
valid_form("numpy.full(count:int32, value:'a) -> numpy.array(elt='a)")
]
self._unify(node.type, builtins.TArray(),
node.loc, None)
if len(node.args) == 2 and len(node.keywords) == 0:
arg0, arg1 = node.args
if types.is_var(arg0.type):
return # undetermined yet
elif types.is_tuple(arg0.type):
num_dims = len(arg0.type.find().elts)
self._unify(arg0.type, types.TTuple([builtins.TInt32()] * num_dims),
arg0.loc, None)
else:
num_dims = 1
self._unify(arg0.type, builtins.TInt32(),
arg0.loc, None)
self._unify(node.type, builtins.TArray(num_dims=num_dims),
node.loc, None)
self._unify(arg0.type, builtins.TInt32(),
arg0.loc, None)
self._unify(arg1.type, node.type.find()["elt"],
arg1.loc, None)
else:
diagnose(valid_forms())
elif types.is_builtin(typ, "numpy.transpose"):
valid_forms = lambda: [
valid_form("transpose(x: array(elt='a, num_dims=1)) -> array(elt='a, num_dims=1)"),
valid_form("transpose(x: array(elt='a, num_dims=2)) -> array(elt='a, num_dims=2)")
]
if len(node.args) == 1 and len(node.keywords) == 0:
arg, = node.args
if types.is_var(arg.type):
pass # undetermined yet
elif not builtins.is_array(arg.type):
note = diagnostic.Diagnostic(
"note", "this expression has type {type}",
{"type": types.TypePrinter().name(arg.type)}, arg.loc)
diag = diagnostic.Diagnostic(
"error",
"the argument of {builtin}() must be an array",
{"builtin": typ.find().name},
node.func.loc,
notes=[note])
self.engine.process(diag)
else:
num_dims = arg.type.find()["num_dims"].value
if num_dims not in (1, 2):
note = diagnostic.Diagnostic(
"note", "argument is {num_dims}-dimensional",
{"num_dims": num_dims}, arg.loc)
diag = diagnostic.Diagnostic(
"error",
"{builtin}() is currently only supported for up to "
"two-dimensional arrays", {"builtin": typ.find().name},
node.func.loc,
notes=[note])
self.engine.process(diag)
else:
self._unify(node.type, arg.type, node.loc, None)
else:
diagnose(valid_forms())
elif types.is_builtin(typ, "rtio_log"):
valid_forms = lambda: [
valid_form("rtio_log(channel:str, args...) -> None"),
@ -1286,6 +905,9 @@ class Inferencer(algorithm.Visitor):
elif types.is_builtin(typ, "at_mu"):
simple_form("at_mu(time_mu:numpy.int64) -> None",
[builtins.TInt64()])
elif types.is_builtin(typ, "watchdog"):
simple_form("watchdog(time:float) -> [builtin context manager]",
[builtins.TFloat()], builtins.TNone())
elif types.is_constructor(typ):
# An user-defined class.
self._unify(node.type, typ.find().instance,
@ -1294,106 +916,6 @@ class Inferencer(algorithm.Visitor):
# Ignored.
self._unify(node.type, builtins.TNone(),
node.loc, None)
elif types.is_builtin(typ, "subkernel_await"):
valid_forms = lambda: [
valid_form("subkernel_await(f: subkernel) -> f return type"),
valid_form("subkernel_await(f: subkernel, timeout: numpy.int64) -> f return type")
]
if 1 <= len(node.args) <= 2:
arg0 = node.args[0].type
if types.is_var(arg0):
pass # undetermined yet
else:
if types.is_method(arg0):
fn = types.get_method_function(arg0)
elif types.is_function(arg0) or types.is_subkernel(arg0):
fn = arg0
else:
diagnose(valid_forms())
self._unify(node.type, fn.ret,
node.loc, None)
if len(node.args) == 2:
arg1 = node.args[1]
if types.is_var(arg1.type):
pass
elif builtins.is_int(arg1.type):
# promote to TInt64
self._unify(arg1.type, builtins.TInt64(),
arg1.loc, None)
else:
diagnose(valid_forms())
else:
diagnose(valid_forms())
elif types.is_builtin(typ, "subkernel_preload"):
valid_forms = lambda: [
valid_form("subkernel_preload(f: subkernel) -> None")
]
if len(node.args) == 1:
arg0 = node.args[0].type
if types.is_var(arg0):
pass # undetermined yet
else:
if types.is_method(arg0):
fn = types.get_method_function(arg0)
elif types.is_function(arg0) or types.is_subkernel(arg0):
fn = arg0
else:
diagnose(valid_forms())
self._unify(node.type, fn.ret,
node.loc, None)
else:
diagnose(valid_forms())
elif types.is_builtin(typ, "subkernel_send"):
valid_forms = lambda: [
valid_form("subkernel_send(dest: numpy.int?, name: str, value: V) -> None"),
]
self._unify(node.type, builtins.TNone(),
node.loc, None)
if len(node.args) == 3:
arg0 = node.args[0]
if types.is_var(arg0.type):
pass # undetermined yet
else:
if builtins.is_int(arg0.type):
self._unify(arg0.type, builtins.TInt8(),
arg0.loc, None)
else:
diagnose(valid_forms())
arg1 = node.args[1]
self._unify(arg1.type, builtins.TStr(),
arg1.loc, None)
else:
diagnose(valid_forms())
elif types.is_builtin(typ, "subkernel_recv"):
valid_forms = lambda: [
valid_form("subkernel_recv(name: str, value_type: type) -> value_type"),
valid_form("subkernel_recv(name: str, value_type: type, timeout: numpy.int64) -> value_type"),
]
if 2 <= len(node.args) <= 3:
arg0 = node.args[0]
if types.is_var(arg0.type):
pass
else:
self._unify(arg0.type, builtins.TStr(),
arg0.loc, None)
arg1 = node.args[1]
if types.is_var(arg1.type):
pass
else:
self._unify(node.type, arg1.value,
node.loc, None)
if len(node.args) == 3:
arg2 = node.args[2]
if types.is_var(arg2.type):
pass
elif builtins.is_int(arg2.type):
# promote to TInt64
self._unify(arg2.type, builtins.TInt64(),
arg2.loc, None)
else:
diagnose(valid_forms())
else:
diagnose(valid_forms())
else:
assert False
@ -1432,7 +954,6 @@ class Inferencer(algorithm.Visitor):
typ_args = typ.args
typ_optargs = typ.optargs
typ_ret = typ.ret
typ_func = typ
else:
typ_self = types.get_method_self(typ)
typ_func = types.get_method_function(typ)
@ -1470,43 +991,11 @@ class Inferencer(algorithm.Visitor):
self.engine.process(diag)
return
# Array broadcasting for functions explicitly marked as such.
if len(node.args) == typ_arity and types.is_broadcast_across_arrays(typ):
if typ_arity == 1:
arg_type = node.args[0].type.find()
if builtins.is_array(arg_type):
typ_arg, = typ_args.values()
self._unify(typ_arg, arg_type["elt"], node.args[0].loc, None)
self._unify(node.type, builtins.TArray(typ_ret, arg_type["num_dims"]),
node.loc, None)
return
elif typ_arity == 2:
if any(builtins.is_array(arg.type) for arg in node.args):
ret, arg0, arg1 = self._coerce_binary_broadcast_op(
node.args[0], node.args[1], lambda t: typ_ret, node.loc)
node.args[0] = self._coerce_one(arg0, node.args[0],
other_node=node.args[1])
node.args[1] = self._coerce_one(arg1, node.args[1],
other_node=node.args[0])
self._unify(node.type, ret, node.loc, None)
return
if types.is_subkernel(typ_func) and typ_func.sid not in self.subkernel_arg_types:
self.subkernel_arg_types[typ_func.sid] = []
for actualarg, (formalname, formaltyp) in \
zip(node.args, list(typ_args.items()) + list(typ_optargs.items())):
self._unify(actualarg.type, formaltyp,
actualarg.loc, None)
passed_args[formalname] = actualarg.loc
if types.is_subkernel(typ_func):
if types.is_instance(actualarg.type):
# objects cannot be passed to subkernels, as rpc code doesn't support them
diag = diagnostic.Diagnostic("error",
"argument '{name}' of type: {typ} is not supported in subkernels",
{"name": formalname, "typ": actualarg.type},
actualarg.loc, [])
self.engine.process(diag)
self.subkernel_arg_types[typ_func.sid].append((formalname, formaltyp))
for keyword in node.keywords:
if keyword.arg in passed_args:
@ -1537,7 +1026,7 @@ class Inferencer(algorithm.Visitor):
passed_args[keyword.arg] = keyword.arg_loc
for formalname in typ_args:
if formalname not in passed_args and not node.remote_fn:
if formalname not in passed_args:
note = diagnostic.Diagnostic("note",
"the called function is of type {type}",
{"type": types.TypePrinter().name(node.func.type)},
@ -1642,7 +1131,9 @@ class Inferencer(algorithm.Visitor):
typ = node.context_expr.type
if (types.is_builtin(typ, "interleave") or types.is_builtin(typ, "sequential") or
types.is_builtin(typ, "parallel")):
types.is_builtin(typ, "parallel") or
(isinstance(node.context_expr, asttyped.CallT) and
types.is_builtin(node.context_expr.func.type, "watchdog"))):
# builtin context managers
if node.optional_vars is not None:
self._unify(node.optional_vars.type, builtins.TNone(),
@ -1800,14 +1291,7 @@ class Inferencer(algorithm.Visitor):
def visit_FunctionDefT(self, node):
for index, decorator in enumerate(node.decorator_list):
def eval_attr(attr):
if isinstance(attr.value, asttyped.QuoteT):
return getattr(attr.value.value, attr.attr)
return getattr(eval_attr(attr.value), attr.attr)
if isinstance(decorator, asttyped.AttributeT):
decorator = eval_attr(decorator)
if id(decorator) == id(kernel) or \
types.is_builtin(decorator.type, "kernel") or \
if types.is_builtin(decorator.type, "kernel") or \
isinstance(decorator, asttyped.CallT) and \
types.is_builtin(decorator.func.type, "kernel"):
continue

View File

@ -14,9 +14,9 @@ class IntMonomorphizer(algorithm.Visitor):
def visit_NumT(self, node):
if builtins.is_int(node.type):
if types.is_var(node.type["width"]):
if -2**31 <= node.n <= 2**31-1:
if -2**31 < node.n < 2**31-1:
width = 32
elif -2**63 <= node.n <= 2**63-1:
elif -2**63 < node.n < 2**63-1:
width = 64
else:
diag = diagnostic.Diagnostic("error",
@ -26,3 +26,22 @@ class IntMonomorphizer(algorithm.Visitor):
return
node.type["width"].unify(types.TValue(width))
def visit_CallT(self, node):
self.generic_visit(node)
if types.is_builtin(node.func.type, "int") or \
types.is_builtin(node.func.type, "round"):
typ = node.type.find()
if types.is_var(typ["width"]):
typ["width"].unify(types.TValue(32))
def visit_CoerceT(self, node):
if isinstance(node.value, asttyped.NumT) and \
builtins.is_int(node.type) and \
builtins.is_int(node.value.type) and \
not types.is_var(node.type["width"]) and \
types.is_var(node.value.type["width"]):
node.value.type.unify(node.type)
self.generic_visit(node)

View File

@ -280,7 +280,7 @@ class IODelayEstimator(algorithm.Visitor):
context="as an argument for delay_mu()")
call_delay = value
elif not types.is_builtin(typ):
if types.is_function(typ) or types.is_rpc(typ) or types.is_subkernel(typ):
if types.is_function(typ) or types.is_rpc(typ):
offset = 0
elif types.is_method(typ):
offset = 1
@ -288,7 +288,7 @@ class IODelayEstimator(algorithm.Visitor):
else:
assert False
if types.is_rpc(typ) or types.is_subkernel(typ):
if types.is_rpc(typ):
call_delay = iodelay.Const(0)
else:
delay = typ.find().delay.find()
@ -311,20 +311,13 @@ class IODelayEstimator(algorithm.Visitor):
args[arg_name] = arg_node
free_vars = delay.duration.free_vars()
try:
node.arg_exprs = {
arg: self.evaluate(args[arg], abort=abort,
context="in the expression for argument '{}' "
"that affects I/O delay".format(arg))
for arg in free_vars
}
call_delay = delay.duration.fold(node.arg_exprs)
except KeyError as e:
if getattr(node, "remote_fn", False):
note = diagnostic.Diagnostic("note",
"function called here", {},
node.loc)
self.abort("due to arguments passed remotely", node.loc, note)
node.arg_exprs = {
arg: self.evaluate(args[arg], abort=abort,
context="in the expression for argument '{}' "
"that affects I/O delay".format(arg))
for arg in free_vars
}
call_delay = delay.duration.fold(node.arg_exprs)
else:
assert False
else:

File diff suppressed because it is too large Load Diff

View File

@ -3,7 +3,6 @@ The :mod:`types` module contains the classes describing the types
in :mod:`asttyped`.
"""
import builtins
import string
from collections import OrderedDict
from . import iodelay
@ -56,39 +55,38 @@ class TVar(Type):
def __init__(self):
self.parent = self
self.rank = 0
def find(self):
parent = self.parent
if parent is self:
if self.parent is self:
return self
else:
# The recursive find() invocation is turned into a loop
# because paths resulting from unification of large arrays
# can easily cause a stack overflow.
root = self
while parent.__class__ == TVar and root is not parent:
_, parent = root, root.parent = parent, parent.parent
return root.parent
while root.__class__ == TVar:
if root is root.parent:
break
else:
root = root.parent
# path compression
iter = self
while iter.__class__ == TVar:
if iter is iter.parent:
break
else:
iter, iter.parent = iter.parent, root
return root
def unify(self, other):
if other is self:
return
x = other.find()
y = self.find()
if x is y:
return
if y.__class__ == TVar:
if x.__class__ == TVar:
if x.rank < y.rank:
x, y = y, x
y.parent = x
if x.rank == y.rank:
x.rank += 1
else:
y.parent = x
other = other.find()
if self.parent is self:
self.parent = other
else:
y.unify(x)
self.find().unify(other)
def fold(self, accum, fn):
if self.parent is self:
@ -97,8 +95,6 @@ class TVar(Type):
return self.find().fold(accum, fn)
def __repr__(self):
if getattr(builtins, "__in_sphinx__", False):
return str(self)
if self.parent is self:
return "<artiq.compiler.types.TVar %d>" % id(self)
else:
@ -128,8 +124,6 @@ class TMono(Type):
return self
def unify(self, other):
if other is self:
return
if isinstance(other, TMono) and self.name == other.name:
assert self.params.keys() == other.params.keys()
for param in self.params:
@ -145,8 +139,6 @@ class TMono(Type):
return fn(accum, self)
def __repr__(self):
if getattr(builtins, "__in_sphinx__", False):
return str(self)
return "artiq.compiler.types.TMono(%s, %s)" % (repr(self.name), repr(self.params))
def __getitem__(self, param):
@ -179,8 +171,6 @@ class TTuple(Type):
return self
def unify(self, other):
if other is self:
return
if isinstance(other, TTuple) and len(self.elts) == len(other.elts):
for selfelt, otherelt in zip(self.elts, other.elts):
selfelt.unify(otherelt)
@ -195,8 +185,6 @@ class TTuple(Type):
return fn(accum, self)
def __repr__(self):
if getattr(builtins, "__in_sphinx__", False):
return str(self)
return "artiq.compiler.types.TTuple(%s)" % repr(self.elts)
def __eq__(self, other):
@ -210,10 +198,8 @@ class TTuple(Type):
return hash(tuple(self.elts))
class _TPointer(TMono):
def __init__(self, elt=None):
if elt is None:
elt = TMono("int", {"width": 8}) # i8*
super().__init__("pointer", params={"elt": elt})
def __init__(self):
super().__init__("pointer")
class TFunction(Type):
"""
@ -251,8 +237,6 @@ class TFunction(Type):
return self
def unify(self, other):
if other is self:
return
if isinstance(other, TFunction) and \
self.args.keys() == other.args.keys() and \
self.optargs.keys() == other.optargs.keys():
@ -275,8 +259,6 @@ class TFunction(Type):
return fn(accum, self)
def __repr__(self):
if getattr(builtins, "__in_sphinx__", False):
return str(self)
return "artiq.compiler.types.TFunction({}, {}, {})".format(
repr(self.args), repr(self.optargs), repr(self.ret))
@ -291,29 +273,20 @@ class TFunction(Type):
def __hash__(self):
return hash((_freeze(self.args), _freeze(self.optargs), self.ret))
class TExternalFunction(TFunction):
class TCFunction(TFunction):
"""
A type of an externally-provided function.
A function type of a runtime-provided C function.
This can be any function following the C ABI, such as provided by the
C/Rust runtime, or a compiler backend intrinsic. The mangled name to link
against is encoded as part of the type.
:ivar name: (str) external symbol name.
This will be the symbol linked against (following any extra C name
mangling rules).
:ivar flags: (set of str) function flags.
:ivar name: (str) C function name
:ivar flags: (set of str) C function flags.
Flag ``nounwind`` means the function never raises an exception.
Flag ``nowrite`` means the function never accesses any memory
Flag ``nowrite`` means the function never writes any memory
that the ARTIQ Python code can observe.
:ivar broadcast_across_arrays: (bool)
If True, the function is transparently applied element-wise when called
with TArray arguments.
"""
attributes = OrderedDict()
def __init__(self, args, ret, name, flags=set(), broadcast_across_arrays=False):
def __init__(self, args, ret, name, flags={}):
assert isinstance(flags, set)
for flag in flags:
assert flag in {'nounwind', 'nowrite'}
@ -321,12 +294,9 @@ class TExternalFunction(TFunction):
self.name = name
self.delay = TFixedDelay(iodelay.Const(0))
self.flags = flags
self.broadcast_across_arrays = broadcast_across_arrays
def unify(self, other):
if other is self:
return
if isinstance(other, TExternalFunction) and \
if isinstance(other, TCFunction) and \
self.name == other.name:
super().unify(other)
elif isinstance(other, TVar):
@ -341,24 +311,22 @@ class TRPC(Type):
:ivar ret: (:class:`Type`)
return type
:ivar service: (int) RPC service number
:ivar is_async: (bool) whether the RPC blocks until return
:ivar async: (bool) whether the RPC blocks until return
"""
attributes = OrderedDict()
def __init__(self, ret, service, is_async=False):
def __init__(self, ret, service, async=False):
assert isinstance(ret, Type)
self.ret, self.service, self.is_async = ret, service, is_async
self.ret, self.service, self.async = ret, service, async
def find(self):
return self
def unify(self, other):
if other is self:
return
if isinstance(other, TRPC) and \
self.service == other.service and \
self.is_async == other.is_async:
self.async == other.async:
self.ret.unify(other.ret)
elif isinstance(other, TVar):
other.unify(self)
@ -370,14 +338,12 @@ class TRPC(Type):
return fn(accum, self)
def __repr__(self):
if getattr(builtins, "__in_sphinx__", False):
return str(self)
return "artiq.compiler.types.TRPC({})".format(repr(self.ret))
def __eq__(self, other):
return isinstance(other, TRPC) and \
self.service == other.service and \
self.is_async == other.is_async
self.async == other.async
def __ne__(self, other):
return not (self == other)
@ -385,50 +351,6 @@ class TRPC(Type):
def __hash__(self):
return hash(self.service)
class TSubkernel(TFunction):
"""
A kernel to be run on a satellite.
:ivar args: (:class:`collections.OrderedDict` of string to :class:`Type`)
function arguments
:ivar ret: (:class:`Type`)
return type
:ivar sid: (int) subkernel ID number
:ivar destination: (int) satellite destination number
"""
attributes = OrderedDict()
def __init__(self, args, optargs, ret, sid, destination):
assert isinstance(ret, Type)
super().__init__(args, optargs, ret)
self.sid, self.destination = sid, destination
self.delay = TFixedDelay(iodelay.Const(0))
def unify(self, other):
if other is self:
return
if isinstance(other, TSubkernel) and \
self.sid == other.sid and \
self.destination == other.destination:
self.ret.unify(other.ret)
elif isinstance(other, TVar):
other.unify(self)
else:
raise UnificationError(self, other)
def __repr__(self):
if getattr(builtins, "__in_sphinx__", False):
return str(self)
return "artiq.compiler.types.TSubkernel({})".format(repr(self.ret))
def __eq__(self, other):
return isinstance(other, TSubkernel) and \
self.sid == other.sid
def __hash__(self):
return hash(self.sid)
class TBuiltin(Type):
"""
An instance of builtin type. Every instance of a builtin
@ -444,8 +366,6 @@ class TBuiltin(Type):
return self
def unify(self, other):
if other is self:
return
if self != other:
raise UnificationError(self, other)
@ -453,8 +373,6 @@ class TBuiltin(Type):
return fn(accum, self)
def __repr__(self):
if getattr(builtins, "__in_sphinx__", False):
return str(self)
return "artiq.compiler.types.{}({})".format(type(self).__name__, repr(self.name))
def __eq__(self, other):
@ -470,11 +388,6 @@ class TBuiltin(Type):
class TBuiltinFunction(TBuiltin):
"""
A type of a builtin function.
Builtin functions are treated specially throughout all stages of the
compilation process according to their name (e.g. calls may not actually
lower to a function call). See :class:`TExternalFunction` for externally
defined functions that are otherwise regular.
"""
class TConstructor(TBuiltin):
@ -515,8 +428,6 @@ class TInstance(TMono):
self.constant_attributes = set()
def __repr__(self):
if getattr(builtins, "__in_sphinx__", False):
return str(self)
return "artiq.compiler.types.TInstance({}, {})".format(
repr(self.name), repr(self.attributes))
@ -532,8 +443,6 @@ class TModule(TMono):
self.constant_attributes = set()
def __repr__(self):
if getattr(builtins, "__in_sphinx__", False):
return str(self)
return "artiq.compiler.types.TModule({}, {})".format(
repr(self.name), repr(self.attributes))
@ -562,8 +471,6 @@ class TValue(Type):
return self
def unify(self, other):
if other is self:
return
if isinstance(other, TVar):
other.unify(self)
elif self != other:
@ -573,8 +480,6 @@ class TValue(Type):
return fn(accum, self)
def __repr__(self):
if getattr(builtins, "__in_sphinx__", False):
return str(self)
return "artiq.compiler.types.TValue(%s)" % repr(self.value)
def __eq__(self, other):
@ -633,8 +538,6 @@ class TDelay(Type):
return not (self == other)
def __repr__(self):
if getattr(builtins, "__in_sphinx__", False):
return str(self)
if self.duration is None:
return "<{}.TIndeterminateDelay>".format(__name__)
elif self.cause is None:
@ -658,15 +561,13 @@ def is_mono(typ, name=None, **params):
if not isinstance(typ, TMono):
return False
if name is not None and typ.name != name:
return False
params_match = True
for param in params:
if param not in typ.params:
return False
if typ.params[param].find() != params[param].find():
return False
return True
params_match = params_match and \
typ.params[param].find() == params[param].find()
return name is None or (typ.name == name and params_match)
def is_polymorphic(typ):
return typ.fold(False, lambda accum, typ: accum or is_var(typ))
@ -688,15 +589,12 @@ def is_function(typ):
def is_rpc(typ):
return isinstance(typ.find(), TRPC)
def is_subkernel(typ):
return isinstance(typ.find(), TSubkernel)
def is_external_function(typ, name=None):
def is_c_function(typ, name=None):
typ = typ.find()
if name is None:
return isinstance(typ, TExternalFunction)
return isinstance(typ, TCFunction)
else:
return isinstance(typ, TExternalFunction) and \
return isinstance(typ, TCFunction) and \
typ.name == name
def is_builtin(typ, name=None):
@ -715,15 +613,6 @@ def is_builtin_function(typ, name=None):
return isinstance(typ, TBuiltinFunction) and \
typ.name == name
def is_broadcast_across_arrays(typ):
# For now, broadcasting is only exposed to predefined external functions, and
# statically selected. Might be extended to user-defined functions if the design
# pans out.
typ = typ.find()
if not isinstance(typ, TExternalFunction):
return False
return typ.broadcast_across_arrays
def is_constructor(typ, name=None):
typ = typ.find()
if name is not None:
@ -828,14 +717,12 @@ class TypePrinter(object):
else:
return "%s(%s)" % (typ.name, ", ".join(
["%s=%s" % (k, self.name(typ.params[k], depth + 1)) for k in typ.params]))
elif isinstance(typ, _TPointer):
return "{}*".format(self.name(typ["elt"], depth + 1))
elif isinstance(typ, TTuple):
if len(typ.elts) == 1:
return "(%s,)" % self.name(typ.elts[0], depth + 1)
else:
return "(%s)" % ", ".join([self.name(typ, depth + 1) for typ in typ.elts])
elif isinstance(typ, (TFunction, TExternalFunction)):
elif isinstance(typ, (TFunction, TCFunction)):
args = []
args += [ "%s:%s" % (arg, self.name(typ.args[arg], depth + 1))
for arg in typ.args]
@ -849,18 +736,14 @@ class TypePrinter(object):
elif not (delay.is_fixed() and iodelay.is_zero(delay.duration)):
signature += " " + self.name(delay, depth + 1)
if isinstance(typ, TExternalFunction):
if isinstance(typ, TCFunction):
return "[ffi {}]{}".format(repr(typ.name), signature)
elif isinstance(typ, TFunction):
return signature
elif isinstance(typ, TRPC):
return "[rpc{} #{}](...)->{}".format(typ.service,
" async" if typ.is_async else "",
" async" if typ.async else "",
self.name(typ.ret, depth + 1))
elif isinstance(typ, TSubkernel):
return "<subkernel{} dest#{}>->{}".format(typ.sid,
typ.destination,
self.name(typ.ret, depth + 1))
elif isinstance(typ, TBuiltinFunction):
return "<function {}>".format(typ.name)
elif isinstance(typ, (TConstructor, TExceptionConstructor)):

View File

@ -50,9 +50,3 @@ class ConstnessValidator(algorithm.Visitor):
node.loc)
self.engine.process(diag)
return
if builtins.is_array(typ):
diag = diagnostic.Diagnostic("error",
"array attributes cannot be assigned to",
{}, node.loc)
self.engine.process(diag)
return

View File

@ -51,6 +51,10 @@ class Region:
(other.range.begin_pos <= self.range.begin_pos <= other.range.end_pos and \
self.range.end_pos > other.range.end_pos)
def contract(self, other):
if not self.range:
self.range = other.range
def outlives(lhs, rhs):
if not isinstance(lhs, Region): # lhs lives nonlexically
return True
@ -65,11 +69,8 @@ class Region:
class RegionOf(algorithm.Visitor):
"""
Visit an expression and return the region that must be alive for the
expression to execute.
For expressions involving multiple regions, the shortest-lived one is
returned.
Visit an expression and return the list of regions that must
be alive for the expression to execute.
"""
def __init__(self, env_stack, youngest_region):
@ -99,23 +100,11 @@ class RegionOf(algorithm.Visitor):
visit_BinOpT = visit_sometimes_allocating
def visit_CallT(self, node):
if types.is_external_function(node.func.type, "cache_get"):
if types.is_c_function(node.func.type, "cache_get"):
# The cache is borrow checked dynamically
return Global()
if (types.is_builtin_function(node.func.type, "array")
or types.is_builtin_function(node.func.type, "make_array")
or types.is_builtin_function(node.func.type, "numpy.transpose")):
# While lifetime tracking across function calls in general is currently
# broken (see below), these special builtins that allocate an array on
# the stack of the caller _always_ allocate regardless of the parameters,
# and we can thus handle them without running into the precision issue
# mentioned in commit ae999db.
return self.visit_allocating(node)
# FIXME: Return statement missing here, but see m-labs/artiq#1497 and
# commit ae999db.
self.visit_sometimes_allocating(node)
else:
self.visit_sometimes_allocating(node)
# Value lives as long as the object/container, if it's mutable,
# or else forever
@ -168,7 +157,7 @@ class RegionOf(algorithm.Visitor):
visit_NameConstantT = visit_immutable
visit_NumT = visit_immutable
visit_EllipsisT = visit_immutable
visit_UnaryOpT = visit_sometimes_allocating # possibly array op
visit_UnaryOpT = visit_immutable
visit_CompareT = visit_immutable
# Value lives forever
@ -312,20 +301,17 @@ class EscapeValidator(algorithm.Visitor):
def visit_assignment(self, target, value):
value_region = self._region_of(value)
# If this is a variable, we might need to contract the live range.
if isinstance(value_region, Region):
for name in self._names_of(target):
region = self._region_of(name)
if isinstance(region, Region):
region.contract(value_region)
# If we assign to an attribute of a quoted value, there will be no names
# in the assignment lhs.
target_names = self._names_of(target) or []
# Adopt the value region for any variables declared on the lhs.
for name in target_names:
region = self._region_of(name)
if isinstance(region, Region) and not region.present():
# Find the name's environment to overwrite the region.
for env in self.env_stack[::-1]:
if name.id in env:
env[name.id] = value_region
break
# The assigned value should outlive the assignee
target_regions = [self._region_of(name) for name in target_names]
for target_region in target_regions:

View File

@ -1,8 +1,8 @@
"""RTIO driver for the Analog Devices AD53[67][0123] family of multi-channel
""""RTIO driver for the Analog Devices AD53[67][0123] family of multi-channel
Digital to Analog Converters.
Output event replacement is not supported and issuing commands at the same
time results in a collision error.
time is an error.
"""
# Designed from the data sheets and somewhat after the linux kernel
@ -80,30 +80,21 @@ def ad53xx_cmd_read_ch(channel, op):
return AD53XX_CMD_SPECIAL | AD53XX_SPECIAL_READ | (op + (channel << 7))
# maintain function definition for backward compatibility
@portable
def voltage_to_mu(voltage, offset_dacs=0x2000, vref=5.):
"""Returns the 16-bit DAC register value required to produce a given output
"""Returns the DAC register value required to produce a given output
voltage, assuming offset and gain errors have been trimmed out.
The 16-bit register value may also be used with 14-bit DACs. The additional
bits are disregarded by 14-bit DACs.
Also used to return offset register value required to produce a given
voltage when the DAC register is set to mid-scale.
An offset of V can be used to trim out a DAC offset error of -V.
:param voltage: Voltage in SI units.
Valid voltages are: [-2*vref, + 2*vref - 1 LSB] + voltage offset.
:param voltage: Voltage
:param offset_dacs: Register value for the two offset DACs
(default: 0x2000)
:param vref: DAC reference voltage (default: 5.)
:return: The 16-bit DAC register value
"""
code = int(round((1 << 16) * (voltage / (4. * vref)) + offset_dacs * 0x4))
if code < 0x0 or code > 0xffff:
raise ValueError("Invalid DAC voltage!")
return code
return int(round(0x10000*(voltage/(4.*vref)) + offset_dacs*0x4))
class _DummyTTL:
@ -127,14 +118,14 @@ class AD53xx:
transactions (default: 1)
:param div_write: SPI clock divider for write operations (default: 4,
50MHz max SPI clock with {t_high, t_low} >=8ns)
:param div_read: SPI clock divider for read operations (default: 16, not
optimized for speed; datasheet says t22: 25ns min SCLK edge to SDO
valid, and suggests the SPI speed for reads should be <=20 MHz)
:param div_read: SPI clock divider for read operations (default: 8, not
optimized for speed, but cf data sheet t22: 25ns min SCLK edge to SDO
valid)
:param vref: DAC reference voltage (default: 5.)
:param offset_dacs: Initial register value for the two offset DACs
(default: 8192). Device dependent and must be set correctly for
correct voltage-to-mu conversions. Knowledge of this state is
not transferred between experiments.
:param offset_dacs: Initial register value for the two offset DACs, device
dependent and must be set correctly for correct voltage to mu
conversions. Knowledge of his state is not transferred between
experiments. (default: 8192)
:param core_device: Core device name (default: "core")
"""
kernel_invariants = {"bus", "ldac", "clr", "chip_select", "div_write",
@ -178,8 +169,6 @@ class AD53xx:
self.write_offset_dacs_mu(self.offset_dacs)
if not blind:
ctrl = self.read_reg(channel=0, op=AD53XX_READ_CONTROL)
if ctrl == 0xffff:
raise ValueError("DAC not found")
if ctrl & 0b10000:
raise ValueError("DAC over temperature")
delay(25*us)
@ -187,7 +176,7 @@ class AD53xx:
(AD53XX_CMD_SPECIAL | AD53XX_SPECIAL_CONTROL | 0b0010) << 8)
if not blind:
ctrl = self.read_reg(channel=0, op=AD53XX_READ_CONTROL)
if (ctrl & 0b10111) != 0b00010:
if ctrl != 0b0010:
raise ValueError("DAC CONTROL readback mismatch")
delay(15*us)
@ -202,7 +191,7 @@ class AD53xx:
:param op: Operation to perform, one of :const:`AD53XX_READ_X1A`,
:const:`AD53XX_READ_X1B`, :const:`AD53XX_READ_OFFSET`,
:const:`AD53XX_READ_GAIN` etc. (default: :const:`AD53XX_READ_X1A`).
:return: The 16-bit register value
:return: The 16 bit register value
"""
self.bus.write(ad53xx_cmd_read_ch(channel, op) << 8)
self.bus.set_config_mu(SPI_AD53XX_CONFIG | spi.SPI_INPUT, 24,
@ -233,7 +222,7 @@ class AD53xx:
def write_gain_mu(self, channel, gain=0xffff):
"""Program the gain register for a DAC channel.
The DAC output is not updated until LDAC is pulsed (see :meth:`load`).
The DAC output is not updated until LDAC is pulsed (see :meth load:).
This method advances the timeline by the duration of one SPI transfer.
:param gain: 16-bit gain register value (default: 0xffff)
@ -245,7 +234,7 @@ class AD53xx:
def write_offset_mu(self, channel, offset=0x8000):
"""Program the offset register for a DAC channel.
The DAC output is not updated until LDAC is pulsed (see :meth:`load`).
The DAC output is not updated until LDAC is pulsed (see :meth load:).
This method advances the timeline by the duration of one SPI transfer.
:param offset: 16-bit offset register value (default: 0x8000)
@ -258,7 +247,7 @@ class AD53xx:
"""Program the DAC offset voltage for a channel.
An offset of +V can be used to trim out a DAC offset error of -V.
The DAC output is not updated until LDAC is pulsed (see :meth:`load`).
The DAC output is not updated until LDAC is pulsed (see :meth load:).
This method advances the timeline by the duration of one SPI transfer.
:param voltage: the offset voltage
@ -270,7 +259,7 @@ class AD53xx:
def write_dac_mu(self, channel, value):
"""Program the DAC input register for a channel.
The DAC output is not updated until LDAC is pulsed (see :meth:`load`).
The DAC output is not updated until LDAC is pulsed (see :meth load:).
This method advances the timeline by the duration of one SPI transfer.
"""
self.bus.write(
@ -280,7 +269,7 @@ class AD53xx:
def write_dac(self, channel, voltage):
"""Program the DAC output voltage for a channel.
The DAC output is not updated until LDAC is pulsed (see :meth:`load`).
The DAC output is not updated until LDAC is pulsed (see :meth load:).
This method advances the timeline by the duration of one SPI transfer.
"""
self.write_dac_mu(channel, voltage_to_mu(voltage, self.offset_dacs,
@ -309,11 +298,11 @@ class AD53xx:
This method does not advance the timeline; write events are scheduled
in the past. The DACs will synchronously start changing their output
levels ``now``.
levels `now`.
If no LDAC device was defined, the LDAC pulse is skipped.
See :meth:`load`.
See :meth load:.
:param values: list of DAC values to program
:param channels: list of DAC channels to program. If not specified,
@ -355,7 +344,7 @@ class AD53xx:
""" Two-point calibration of a DAC channel.
Programs the offset and gain register to trim out DAC errors. Does not
take effect until LDAC is pulsed (see :meth:`load`).
take effect until LDAC is pulsed (see :meth load:).
Calibration consists of measuring the DAC output voltage for a channel
with the DAC set to zero-scale (0x0000) and full-scale (0xffff).
@ -364,8 +353,8 @@ class AD53xx:
high) can be calibrated in this fashion.
:param channel: The number of the calibrated channel
:param vzs: Measured voltage with the DAC set to zero-scale (0x0000)
:param vfs: Measured voltage with the DAC set to full-scale (0xffff)
:params vzs: Measured voltage with the DAC set to zero-scale (0x0000)
:params vfs: Measured voltage with the DAC set to full-scale (0xffff)
"""
offset_err = voltage_to_mu(vzs, self.offset_dacs, self.vref)
gain_err = voltage_to_mu(vfs, self.offset_dacs, self.vref) - (
@ -377,17 +366,3 @@ class AD53xx:
self.core.break_realtime()
self.write_offset_mu(channel, 0x8000-offset_err)
self.write_gain_mu(channel, 0xffff-gain_err)
@portable
def voltage_to_mu(self, voltage):
"""Returns the 16-bit DAC register value required to produce a given
output voltage, assuming offset and gain errors have been trimmed out.
The 16-bit register value may also be used with 14-bit DACs. The
additional bits are disregarded by 14-bit DACs.
:param voltage: Voltage in SI units.
Valid voltages are: [-2*vref, + 2*vref - 1 LSB] + voltage offset.
:return: The 16-bit DAC register value
"""
return voltage_to_mu(voltage, self.offset_dacs, self.vref)

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,23 @@
from artiq.language.core import kernel
class AD9154:
"""Kernel interface to AD9154 registers, using non-realtime SPI."""
def __init__(self, dmgr, spi_device, chip_select):
self.core = dmgr.get("core")
self.bus = dmgr.get(spi_device)
self.chip_select = chip_select
@kernel
def setup_bus(self, div=16):
self.bus.set_config_mu(0, 24, div, self.chip_select)
@kernel
def write(self, addr, data):
self.bus.write((addr << 16) | (data<< 8))
@kernel
def read(self, addr):
self.write((1 << 15) | addr, 0)
return self.bus.read()

View File

@ -1,437 +0,0 @@
"""
RTIO Driver for the Analog Devices AD9834 DDS via 3-wire SPI interface.
"""
# https://www.analog.com/media/en/technical-documentation/data-sheets/AD9834.pdf
# https://www.analog.com/media/en/technical-documentation/app-notes/an-1070.pdf
from numpy import int32
from artiq.coredevice import spi2 as spi
from artiq.experiment import *
from artiq.language.core import *
from artiq.language.types import *
from artiq.language.units import *
AD9834_B28 = 1 << 13
AD9834_HLB = 1 << 12
AD9834_FSEL = 1 << 11
AD9834_PSEL = 1 << 10
AD9834_PIN_SW = 1 << 9
AD9834_RESET = 1 << 8
AD9834_SLEEP1 = 1 << 7
AD9834_SLEEP12 = 1 << 6
AD9834_OPBITEN = 1 << 5
AD9834_SIGN_PIB = 1 << 4
AD9834_DIV2 = 1 << 3
AD9834_MODE = 1 << 1
AD9834_FREQ_REG_0 = 0b01 << 14
AD9834_FREQ_REG_1 = 0b10 << 14
FREQ_REGS = [AD9834_FREQ_REG_0, AD9834_FREQ_REG_1]
AD9834_PHASE_REG = 0b11 << 14
AD9834_PHASE_REG_0 = AD9834_PHASE_REG | (0 << 13)
AD9834_PHASE_REG_1 = AD9834_PHASE_REG | (1 << 13)
PHASE_REGS = [AD9834_PHASE_REG_0, AD9834_PHASE_REG_1]
class AD9834:
"""
AD9834 DDS driver.
This class provides control for the DDS AD9834.
The driver utilizes bit-controlled :const:`AD9834_FSEL`, :const:`AD9834_PSEL`, and
:const:`AD9834_RESET`. To pin control ``FSELECT``, ``PSELECT``, and ``RESET`` set
:const:`AD9834_PIN_SW`. The ``ctrl_reg`` attribute is used to maintain the state of
the control register, enabling persistent management of various configurations.
:param spi_device: SPI bus device name.
:param spi_freq: SPI bus clock frequency (default: 10 MHz, max: 40 MHz).
:param clk_freq: DDS clock frequency (default: 75 MHz).
:param core_device: Core device name (default: "core").
"""
kernel_invariants = {"core", "bus", "spi_freq", "clk_freq"}
def __init__(
self, dmgr, spi_device, spi_freq=10 * MHz, clk_freq=75 * MHz, core_device="core"
):
self.core = dmgr.get(core_device)
self.bus = dmgr.get(spi_device)
assert spi_freq <= 40 * MHz, "SPI frequency exceeds maximum value of 40 MHz"
self.spi_freq = spi_freq
self.clk_freq = clk_freq
self.ctrl_reg = 0x0000 # Reset control register
@kernel
def write(self, data: TInt32):
"""
Write a 16-bit word to the AD9834.
This method sends a 16-bit data word to the AD9834 via the SPI bus. The input
data is left-shifted by 16 bits to ensure proper alignment for the SPI controller,
allowing for accurate processing of the command by the AD9834.
This method is used internally by other methods to update the control registers
and frequency settings of the AD9834. It should not be called directly unless
low-level register manipulation is required.
:param data: The 16-bit word to be sent to the AD9834.
"""
self.bus.write(data << 16)
@kernel
def enable_reset(self):
"""
Enable the DDS reset.
This method sets :const:`AD9834_RESET`, putting the AD9834 into a reset state.
While in this state, the digital-to-analog converter (DAC) is not operational.
This method should be called during initialization or when a reset is required
to reinitialize the device and ensure proper operation.
"""
self.ctrl_reg |= AD9834_RESET
self.write(self.ctrl_reg)
@kernel
def output_enable(self):
"""
Disable the DDS reset and start signal generation.
This method clears :const:`AD9834_RESET`, allowing the AD9834 to begin generating
signals. Once this method is called, the device will resume normal operation and
output the generated waveform.
This method should be called after configuration of the frequency and phase
settings to activate the output.
"""
self.ctrl_reg &= ~AD9834_RESET
self.write(self.ctrl_reg)
@kernel
def init(self):
"""
Initialize the AD9834: configure the SPI bus and reset the DDS.
This method performs the necessary setup for the AD9834 device, including:
- Configuring the SPI bus parameters (clock polarity, data width, and frequency).
- Putting the AD9834 into a reset state to ensure proper initialization.
The SPI bus is configured to use 16 bits of data width with the clock frequency
provided as a parameter when creating the AD9834 instance. After configuring
the SPI bus, the method invokes :meth:`enable_reset()` to reset the AD9834.
This is an essential step to prepare the device for subsequent configuration
of frequency and phase.
This method should be called before any other operations are performed
on the AD9834 to ensure that the device is in a known state.
"""
self.bus.set_config(spi.SPI_CLK_POLARITY | spi.SPI_END, 16, self.spi_freq, 1)
self.enable_reset()
@kernel
def set_frequency_reg_msb(self, freq_reg: TInt32, word: TInt32):
"""
Set the fourteen most significant bits MSBs of the specified frequency register.
This method updates the specified frequency register with the provided MSB value.
It configures the control register to indicate that the MSB is being set.
:param freq_reg: The frequency register to write to (0-1).
:param word: The value to be written to the fourteen MSBs of the frequency register.
The method first clears the appropriate control bits, sets :const:`AD9834_HLB` to
indicate that the MSB is being sent, and then writes the updated control register
followed by the MSB value to the specified frequency register.
"""
assert 0 <= freq_reg <= 1, "Invalid frequency register index"
self.ctrl_reg &= ~AD9834_B28
self.ctrl_reg |= AD9834_HLB
self.write(self.ctrl_reg)
self.write(FREQ_REGS[freq_reg] | (word & 0x3FFF))
@kernel
def set_frequency_reg_lsb(self, freq_reg: TInt32, word: TInt32):
"""
Set the fourteen least significant bits LSBs of the specified frequency register.
This method updates the specified frequency register with the provided LSB value.
It configures the control register to indicate that the LSB is being set.
:param freq_reg: The frequency register to write to (0-1).
:param word: The value to be written to the fourteen LSBs of the frequency register.
The method first clears the appropriate control bits and writes the updated control
register followed by the LSB value to the specified frequency register.
"""
assert 0 <= freq_reg <= 1, "Invalid frequency register index"
self.ctrl_reg &= ~AD9834_B28
self.ctrl_reg &= ~AD9834_HLB
self.write(self.ctrl_reg)
self.write(FREQ_REGS[freq_reg] | (word & 0x3FFF))
@kernel
def set_frequency_reg(self, freq_reg: TInt32, freq_word: TInt32):
"""
Set the frequency for the specified frequency register using a precomputed frequency word.
This writes to the 28-bit frequency register in one transfer.
:param freq_reg: The frequency register to write to (0-1).
:param freq_word: The precomputed frequency word.
"""
assert 0 <= freq_reg <= 1, "Invalid frequency register index"
self.ctrl_reg |= AD9834_B28
self.write(self.ctrl_reg)
lsb = freq_word & 0x3FFF
msb = (freq_word >> 14) & 0x3FFF
self.write(FREQ_REGS[freq_reg] | lsb)
self.write(FREQ_REGS[freq_reg] | msb)
@portable(flags={"fast-math"})
def frequency_to_ftw(self, frequency: TFloat) -> TInt32:
"""Return the 28-bit frequency tuning word corresponding to the given
frequency.
"""
assert frequency <= 37.5 * MHz, "Frequency exceeds maximum value of 37.5 MHz"
return int((frequency * (1 << 28)) / self.clk_freq) & 0x0FFFFFFF
@portable(flags={"fast-math"})
def turns_to_pow(self, turns: TFloat) -> TInt32:
"""Return the 12-bit phase offset word corresponding to the given phase
in turns."""
assert 0.0 <= turns <= 1.0, "Turns exceeds range 0.0 - 1.0"
return int32(round(turns * 0x1000)) & int32(0x0FFF)
@kernel
def select_frequency_reg(self, freq_reg: TInt32):
"""
Select the active frequency register for the phase accumulator.
This method chooses between the two available frequency registers in the AD9834 to
control the frequency of the output waveform. The control register is updated
to reflect the selected frequency register.
:param freq_reg: The frequency register to write to (0-1).
"""
assert 0 <= freq_reg <= 1, "Invalid frequency register index"
if freq_reg:
self.ctrl_reg |= AD9834_FSEL
else:
self.ctrl_reg &= ~AD9834_FSEL
self.ctrl_reg &= ~AD9834_PIN_SW
self.write(self.ctrl_reg)
@kernel
def set_phase_reg(self, phase_reg: TInt32, phase: TInt32):
"""
Set the phase for the specified phase register.
This method updates the specified phase register with the provided phase value.
:param phase_reg: The phase register to write to (0-1).
:param phase: The value to be written to the phase register.
The method masks the phase value to ensure it fits within the 12-bit limit
and writes it to the specified phase register.
"""
assert 0 <= phase_reg <= 1, "Invalid phase register index"
phase_word = phase & 0x0FFF
self.write(PHASE_REGS[phase_reg] | phase_word)
@kernel
def select_phase_reg(self, phase_reg: TInt32):
"""
Select the active phase register for the phase accumulator.
This method chooses between the two available phase registers in the AD9834 to
control the phase of the output waveform. The control register is updated
to reflect the selected phase register.
:param phase_reg: The phase register to write to (0-1).
"""
assert 0 <= phase_reg <= 1, "Invalid phase register index"
if phase_reg:
self.ctrl_reg |= AD9834_PSEL
else:
self.ctrl_reg &= ~AD9834_PSEL
self.ctrl_reg &= ~AD9834_PIN_SW
self.write(self.ctrl_reg)
@kernel
def sleep(self, dac_pd: bool = False, clk_dis: bool = False):
"""
Put the AD9834 into sleep mode by selectively powering down the DAC and/or disabling
the internal clock.
This method controls the sleep mode behavior of the AD9834 by setting or clearing the
corresponding bits in the control register. Two independent options can be specified:
:param dac_pd: Set to ``True`` to power down the DAC (:const:`AD9834_SLEEP12` is set).
``False`` will leave the DAC active.
:param clk_dis: Set to ``True`` to disable the internal clock (:const:`AD9834_SLEEP1` is set).
``False`` will keep the clock running.
Both options can be enabled independently, allowing the DAC and/or clock to be powered down as needed.
The method updates the control register and writes the changes to the AD9834 device.
"""
if dac_pd:
self.ctrl_reg |= AD9834_SLEEP12
else:
self.ctrl_reg &= ~AD9834_SLEEP12
if clk_dis:
self.ctrl_reg |= AD9834_SLEEP1
else:
self.ctrl_reg &= ~AD9834_SLEEP1
self.write(self.ctrl_reg)
@kernel
def awake(self):
"""
Exit sleep mode and restore normal operation.
This method brings the AD9834 out of sleep mode by clearing any DAC power-down or
internal clock disable settings. It calls :meth:`sleep()` with no arguments,
effectively setting both ``dac_powerdown`` and ``internal_clk_disable`` to ``False``.
The device will resume generating output based on the current frequency and phase
settings.
"""
self.sleep()
@kernel
def config_sign_bit_out(
self,
high_z: bool = False,
msb_2: bool = False,
msb: bool = False,
comp_out: bool = False,
):
"""
Configure the ``SIGN BIT OUT`` pin for various output modes.
This method sets the output mode for the ``SIGN BIT OUT`` pin of the AD9834 based on the provided flags.
The user can enable one of several modes, including high impedance, MSB/2 output, MSB output,
or comparator output. These modes are mutually exclusive, and passing ``True`` to one flag will
configure the corresponding mode, while other flags should be left as ``False``.
:param high_z: Set to ``True`` to place the ``SIGN BIT OUT`` pin in high impedance (disabled) mode.
:param msb_2: Set to ``True`` to output DAC Data MSB divided by 2 on the ``SIGN BIT OUT`` pin.
:param msb: Set to ``True`` to output DAC Data MSB on the ``SIGN BIT OUT`` pin.
:param comp_out: Set to ``True`` to output the comparator signal on the ``SIGN BIT OUT`` pin.
Only one flag should be set to ``True`` at a time. If no valid mode is selected, the ``SIGN BIT OUT``
pin will default to high impedance mode.
The method updates the control register with the appropriate configuration and writes it to the AD9834.
"""
if high_z:
self.ctrl_reg &= ~AD9834_OPBITEN
elif msb_2:
self.ctrl_reg |= AD9834_OPBITEN
self.ctrl_reg &= ~(AD9834_MODE | AD9834_SIGN_PIB | AD9834_DIV2)
elif msb:
self.ctrl_reg |= AD9834_OPBITEN | AD9834_DIV2
self.ctrl_reg &= ~(AD9834_MODE | AD9834_SIGN_PIB)
elif comp_out:
self.ctrl_reg |= AD9834_OPBITEN | AD9834_SIGN_PIB | AD9834_DIV2
self.ctrl_reg &= ~AD9834_MODE
else:
self.ctrl_reg &= ~AD9834_OPBITEN
self.write(self.ctrl_reg)
@kernel
def enable_triangular_waveform(self):
"""
Enable triangular waveform generation.
This method configures the AD9834 to output a triangular waveform. It does so
by clearing :const:`AD9834_OPBITEN` in the control register and setting :const:`AD9834_MODE`.
Once this method is called, the AD9834 will begin generating a triangular waveform
at the frequency set for the selected frequency register.
This method should be called when a triangular waveform is desired for signal
generation. Ensure that the frequency is set appropriately before invoking this method.
"""
self.ctrl_reg &= ~AD9834_OPBITEN
self.ctrl_reg |= AD9834_MODE
self.write(self.ctrl_reg)
@kernel
def disable_triangular_waveform(self):
"""
Disable triangular waveform generation.
This method disables the triangular waveform output by clearing :const:`AD9834_MODE`.
After invoking this method, the AD9834 will cease generating a triangular waveform.
The device can then be configured to output other waveform types if needed.
This method should be called when switching to a different waveform type or
when the triangular waveform is no longer required.
"""
self.ctrl_reg &= ~AD9834_MODE
self.write(self.ctrl_reg)
@kernel
def set_mu(
self,
freq_word: TInt32 = 0,
phase_word: TInt32 = 0,
freq_reg: TInt32 = 0,
phase_reg: TInt32 = 0,
):
"""
Set DDS frequency and phase in machine units.
This method updates the specified frequency and phase registers with the provided
machine units, selects the corresponding registers, and enables the output.
:param freq_word: Frequency tuning word (28-bit).
:param phase_word: Phase tuning word (12-bit).
:param freq_reg: Frequency register to write to (0 or 1).
:param phase_reg: Phase register to write to (0 or 1).
"""
assert 0 <= freq_reg <= 1, "Invalid frequency register index"
assert 0 <= phase_reg <= 1, "Invalid phase register index"
self.set_frequency_reg_lsb(freq_reg, freq_word & 0x3FFF)
self.set_frequency_reg_msb(freq_reg, (freq_word >> 14) & 0x3FFF)
self.set_phase_reg(phase_reg, phase_word)
self.select_frequency_reg(freq_reg)
self.select_phase_reg(phase_reg)
self.output_enable()
@kernel
def set(
self,
frequency: TFloat = 0.0,
phase: TFloat = 0.0,
freq_reg: TInt32 = 0,
phase_reg: TInt32 = 0,
):
"""
Set DDS frequency in Hz and phase using fractional turns.
This method converts the specified frequency and phase to their corresponding
machine units, updates the selected registers, and enables the output.
:param frequency: Frequency in Hz.
:param phase: Phase in fractional turns (e.g., 0.5 for 180 degrees).
:param freq_reg: Frequency register to write to (0 or 1).
:param phase_reg: Phase register to write to (0 or 1).
"""
assert 0 <= freq_reg <= 1, "Invalid frequency register index"
assert 0 <= phase_reg <= 1, "Invalid phase register index"
freq_word = self.frequency_to_ftw(frequency)
phase_word = self.turns_to_pow(phase)
self.set_mu(freq_word, phase_word, freq_reg, phase_reg)

File diff suppressed because it is too large Load Diff

View File

@ -1,8 +1,7 @@
from numpy import int32, int64
from artiq.language.types import TInt32, TInt64, TFloat, TTuple, TBool
from artiq.language.core import kernel, delay, portable
from artiq.language.units import ms, us, ns
from artiq.language.units import us, ns
from artiq.coredevice.ad9912_reg import *
from artiq.coredevice import spi2 as spi
@ -11,7 +10,7 @@ from artiq.coredevice import urukul
class AD9912:
"""
AD9912 DDS channel on Urukul.
AD9912 DDS channel on Urukul
This class supports a single DDS channel and exposes the DDS,
the digital step attenuator, and the RF switch.
@ -22,17 +21,14 @@ class AD9912:
:param sw_device: Name of the RF switch device. The RF switch is a
TTLOut channel available as the :attr:`sw` attribute of this instance.
:param pll_n: DDS PLL multiplier. The DDS sample clock is
``f_ref / clk_div * pll_n`` where ``f_ref`` is the reference frequency and
``clk_div`` is the reference clock divider (both set in the parent
f_ref*pll_n where f_ref is the reference frequency (set in the parent
Urukul CPLD instance).
:param pll_en: PLL enable bit, set to 0 to bypass PLL (default: 1).
Note that when bypassing the PLL the red front panel LED may remain on.
"""
kernel_invariants = {"chip_select", "cpld", "core", "bus",
"ftw_per_hz", "sysclk", "pll_n"}
def __init__(self, dmgr, chip_select, cpld_device, sw_device=None,
pll_n=10, pll_en=1):
self.kernel_invariants = {"cpld", "core", "bus", "chip_select",
"pll_n", "pll_en", "ftw_per_hz"}
pll_n=10):
self.cpld = dmgr.get(cpld_device)
self.core = self.cpld.core
self.bus = self.cpld.bus
@ -41,21 +37,13 @@ class AD9912:
if sw_device:
self.sw = dmgr.get(sw_device)
self.kernel_invariants.add("sw")
self.pll_en = pll_en
self.pll_n = pll_n
if pll_en:
refclk = self.cpld.refclk
if refclk < 11e6:
# use SYSCLK PLL Doubler
refclk = refclk * 2
sysclk = refclk / [1, 1, 2, 4][self.cpld.clk_div] * pll_n
else:
sysclk = self.cpld.refclk
assert sysclk <= 1e9
self.ftw_per_hz = 1 / sysclk * (int64(1) << 48)
self.sysclk = self.cpld.refclk*pll_n
assert self.sysclk <= 1e9
self.ftw_per_hz = 1/self.sysclk*(int64(1) << 48)
@kernel
def write(self, addr: TInt32, data: TInt32, length: TInt32):
def write(self, addr, data, length):
"""Variable length write to a register.
Up to 4 bytes.
@ -66,14 +54,14 @@ class AD9912:
assert length > 0
assert length <= 4
self.bus.set_config_mu(urukul.SPI_CONFIG, 16,
urukul.SPIT_DDS_WR, self.chip_select)
urukul.SPIT_DDS_WR, self.chip_select)
self.bus.write((addr | ((length - 1) << 13)) << 16)
self.bus.set_config_mu(urukul.SPI_CONFIG | spi.SPI_END, length * 8,
urukul.SPIT_DDS_WR, self.chip_select)
self.bus.write(data << (32 - length * 8))
self.bus.set_config_mu(urukul.SPI_CONFIG | spi.SPI_END, length*8,
urukul.SPIT_DDS_WR, self.chip_select)
self.bus.write(data << (32 - length*8))
@kernel
def read(self, addr: TInt32, length: TInt32) -> TInt32:
def read(self, addr, length):
"""Variable length read from a register.
Up to 4 bytes.
@ -84,15 +72,15 @@ class AD9912:
assert length > 0
assert length <= 4
self.bus.set_config_mu(urukul.SPI_CONFIG, 16,
urukul.SPIT_DDS_WR, self.chip_select)
urukul.SPIT_DDS_WR, self.chip_select)
self.bus.write((addr | ((length - 1) << 13) | 0x8000) << 16)
self.bus.set_config_mu(urukul.SPI_CONFIG | spi.SPI_END
| spi.SPI_INPUT, length * 8,
urukul.SPIT_DDS_RD, self.chip_select)
| spi.SPI_INPUT, length*8,
urukul.SPIT_DDS_RD, self.chip_select)
self.bus.write(0)
data = self.bus.read()
if length < 4:
data &= (1 << (length * 8)) - 1
data &= (1 << (length*8)) - 1
return data
@kernel
@ -101,176 +89,102 @@ class AD9912:
Sets up SPI mode, confirms chip presence, powers down unused blocks,
and configures the PLL. Does not wait for PLL lock. Uses the
``IO_UPDATE`` signal multiple times.
IO_UPDATE signal multiple times.
"""
# SPI mode
self.write(AD9912_SER_CONF, 0x99, length=1)
self.cpld.io_update.pulse(2 * us)
self.cpld.io_update.pulse(2*us)
# Verify chip ID and presence
prodid = self.read(AD9912_PRODIDH, length=2)
if (prodid != 0x1982) and (prodid != 0x1902):
raise ValueError("Urukul AD9912 product id mismatch")
delay(50 * us)
delay(50*us)
# HSTL power down, CMOS power down
pwrcntrl1 = 0x80 | ((~self.pll_en & 1) << 4)
self.write(AD9912_PWRCNTRL1, pwrcntrl1, length=1)
self.cpld.io_update.pulse(2 * us)
if self.pll_en:
self.write(AD9912_N_DIV, self.pll_n // 2 - 2, length=1)
self.cpld.io_update.pulse(2 * us)
# I_cp = 375 µA, VCO high range
if self.cpld.refclk < 11e6:
# enable SYSCLK PLL Doubler
self.write(AD9912_PLLCFG, 0b00001101, length=1)
else:
self.write(AD9912_PLLCFG, 0b00000101, length=1)
self.cpld.io_update.pulse(2 * us)
delay(1 * ms)
self.write(AD9912_PWRCNTRL1, 0x80, length=1)
self.cpld.io_update.pulse(2*us)
self.write(AD9912_N_DIV, self.pll_n//2 - 2, length=1)
self.cpld.io_update.pulse(2*us)
# I_cp = 375 µA, VCO high range
self.write(AD9912_PLLCFG, 0b00000101, length=1)
self.cpld.io_update.pulse(2*us)
@kernel
def set_att_mu(self, att: TInt32):
def set_att_mu(self, att):
"""Set digital step attenuator in machine units.
This method will write the attenuator settings of all four channels.
.. seealso:: :meth:`artiq.coredevice.urukul.CPLD.set_att_mu`
See also :meth:`~artiq.coredevice.urukul.CPLD.set_att_mu`.
:param att: Attenuation setting, 8-bit digital.
:param att: Attenuation setting, 8 bit digital.
"""
self.cpld.set_att_mu(self.chip_select - 4, att)
@kernel
def set_att(self, att: TFloat):
def set_att(self, att):
"""Set digital step attenuator in SI units.
This method will write the attenuator settings of all four channels.
See also :meth:`~artiq.coredevice.urukul.CPLD.set_att`.
.. seealso:: :meth:`artiq.coredevice.urukul.CPLD.set_att`
:param att: Attenuation in dB. Higher values mean more attenuation.
"""
self.cpld.set_att(self.chip_select - 4, att)
@kernel
def get_att_mu(self) -> TInt32:
"""Get digital step attenuator value in machine units.
See also :meth:`~artiq.coredevice.urukul.CPLD.get_channel_att_mu`.
:return: Attenuation setting, 8-bit digital.
"""
return self.cpld.get_channel_att_mu(self.chip_select - 4)
@kernel
def get_att(self) -> TFloat:
"""Get digital step attenuator value in SI units.
See also :meth:`~artiq.coredevice.urukul.CPLD.get_channel_att`.
:return: Attenuation in dB.
"""
return self.cpld.get_channel_att(self.chip_select - 4)
@kernel
def set_mu(self, ftw: TInt64, pow_: TInt32 = 0):
def set_mu(self, ftw, pow):
"""Set profile 0 data in machine units.
After the SPI transfer, the shared IO update pin is pulsed to
activate the data.
:param ftw: Frequency tuning word: 48-bit unsigned.
:param pow_: Phase tuning word: 16-bit unsigned.
:param ftw: Frequency tuning word: 32 bit unsigned.
:param pow: Phase tuning word: 16 bit unsigned.
"""
# streaming transfer of FTW and POW
self.bus.set_config_mu(urukul.SPI_CONFIG, 16,
urukul.SPIT_DDS_WR, self.chip_select)
urukul.SPIT_DDS_WR, self.chip_select)
self.bus.write((AD9912_POW1 << 16) | (3 << 29))
self.bus.set_config_mu(urukul.SPI_CONFIG, 32,
urukul.SPIT_DDS_WR, self.chip_select)
self.bus.write((pow_ << 16) | (int32(ftw >> 32) & 0xffff))
urukul.SPIT_DDS_WR, self.chip_select)
self.bus.write((pow << 16) | (int32(ftw >> 32) & 0xffff))
self.bus.set_config_mu(urukul.SPI_CONFIG | spi.SPI_END, 32,
urukul.SPIT_DDS_WR, self.chip_select)
urukul.SPIT_DDS_WR, self.chip_select)
self.bus.write(int32(ftw))
self.cpld.io_update.pulse(10 * ns)
@kernel
def get_mu(self) -> TTuple([TInt64, TInt32]):
"""Get the frequency tuning word and phase offset word.
See also :meth:`AD9912.get`.
:return: A tuple (FTW, POW).
"""
# Read data
high = self.read(AD9912_POW1, 4)
self.core.break_realtime() # Regain slack to perform second read
low = self.read(AD9912_FTW3, 4)
# Extract and return fields
ftw = (int64(high & 0xffff) << 32) | (int64(low) & int64(0xffffffff))
pow_ = (high >> 16) & 0x3fff
return ftw, pow_
self.cpld.io_update.pulse(10*ns)
@portable(flags={"fast-math"})
def frequency_to_ftw(self, frequency: TFloat) -> TInt64:
"""Returns the 48-bit frequency tuning word corresponding to the given
def frequency_to_ftw(self, frequency):
"""Returns the frequency tuning word corresponding to the given
frequency.
"""
return int64(round(self.ftw_per_hz * frequency)) & (
(int64(1) << 48) - 1)
return int64(round(self.ftw_per_hz*frequency))
@portable(flags={"fast-math"})
def ftw_to_frequency(self, ftw: TInt64) -> TFloat:
def ftw_to_frequency(self, ftw):
"""Returns the frequency corresponding to the given
frequency tuning word.
"""
return ftw / self.ftw_per_hz
return ftw/self.ftw_per_hz
@portable(flags={"fast-math"})
def turns_to_pow(self, phase: TFloat) -> TInt32:
"""Returns the 16-bit phase offset word corresponding to the given
def turns_to_pow(self, phase):
"""Returns the phase offset word corresponding to the given
phase.
"""
return int32(round((1 << 14) * phase)) & 0xffff
@portable(flags={"fast-math"})
def pow_to_turns(self, pow_: TInt32) -> TFloat:
"""Return the phase in turns corresponding to a given phase offset
word.
:param pow_: Phase offset word.
:return: Phase in turns.
"""
return pow_ / (1 << 14)
return int32(round((1 << 14)*phase))
@kernel
def set(self, frequency: TFloat, phase: TFloat = 0.0):
def set(self, frequency, phase=0.0):
"""Set profile 0 data in SI units.
See also :meth:`AD9912.set_mu`.
.. seealso:: :meth:`set_mu`
:param frequency: Frequency in Hz
:param phase: Phase tuning word in turns
:param ftw: Frequency in Hz
:param pow: Phase tuning word in turns
"""
self.set_mu(self.frequency_to_ftw(frequency),
self.turns_to_pow(phase))
self.turns_to_pow(phase))
@kernel
def get(self) -> TTuple([TFloat, TFloat]):
"""Get the frequency and phase.
See also :meth:`AD9912.get_mu`.
:return: A tuple (frequency, phase).
"""
# Get values
ftw, pow_ = self.get_mu()
# Convert and return
return self.ftw_to_frequency(ftw), self.pow_to_turns(pow_)
@kernel
def cfg_sw(self, state: TBool):
def cfg_sw(self, state):
"""Set CPLD CFG RF switch state. The RF switch is controlled by the
logical or of the CPLD configuration shift register
RF switch bit and the SW TTL line (if used).

View File

@ -49,7 +49,7 @@ class AD9914:
The time cursor is not modified by any function in this class.
Output event replacement is not supported and issuing commands at the same
time results in collision errors.
time is an error.
:param sysclk: DDS system frequency. The DDS system clock must be a
phase-locked multiple of the RTIO clock.
@ -80,16 +80,11 @@ class AD9914:
self.set_x_duration_mu = 7 * self.write_duration_mu
self.exit_x_duration_mu = 3 * self.write_duration_mu
@staticmethod
def get_rtio_channels(bus_channel, channel, **kwargs):
# return only first entry, as there are several devices with the same RTIO channel
if channel == 0:
return [(bus_channel, None)]
return []
self.continuous_phase_comp = 0
@kernel
def write(self, addr, data):
rtio_output((self.bus_channel << 8) | addr, data)
rtio_output(now_mu(), self.bus_channel, addr, data)
delay_mu(self.write_duration_mu)
@kernel
@ -134,7 +129,7 @@ class AD9914:
timing margin.
:param sync_delay: integer from 0 to 0x3f that sets the value of
``SYNC_OUT`` (bits 3-5) and ``SYNC_IN`` (bits 0-2) delay ADJ bits.
SYNC_OUT (bits 3-5) and SYNC_IN (bits 0-2) delay ADJ bits.
"""
delay_mu(-self.init_sync_duration_mu)
self.write(AD9914_GPIO, (1 << self.channel) << 1)
@ -180,16 +175,12 @@ class AD9914:
accumulator is set to the value it would have if the DDS had been
running at the specified frequency since the start of the
experiment.
.. warning:: This setting may become inconsistent when used as part of
a DMA recording. When using DMA, it is recommended to specify the
phase mode explicitly when calling :meth:`set` or :meth:`set_mu`.
"""
self.phase_mode = phase_mode
@kernel
def set_mu(self, ftw, pow=0, phase_mode=_PHASE_MODE_DEFAULT,
asf=0x0fff, ref_time_mu=-1):
asf=0x0fff, ref_time=-1):
"""Sets the DDS channel to the specified frequency and phase.
This uses machine units (FTW and POW). The frequency tuning word width
@ -203,17 +194,14 @@ class AD9914:
:param pow: adds an offset to the phase.
:param phase_mode: if specified, overrides the default phase mode set
by :meth:`set_phase_mode` for this call.
:param ref_time_mu: reference time used to compute phase. Specifying this
:param ref_time: reference time used to compute phase. Specifying this
makes it easier to have a well-defined phase relationship between
DDSes on the same bus that are updated at a similar time.
:return: Resulting phase offset word after application of phase
tracking offset. When using :const:`PHASE_MODE_CONTINUOUS` in
subsequent calls, use this value as the "current" phase.
DDSes on the same bus that are updated at a similar time.
"""
if phase_mode == _PHASE_MODE_DEFAULT:
phase_mode = self.phase_mode
if ref_time_mu < 0:
ref_time_mu = now_mu()
if ref_time < 0:
ref_time = now_mu()
delay_mu(-self.set_duration_mu)
self.write(AD9914_GPIO, (1 << self.channel) << 1)
@ -227,26 +215,27 @@ class AD9914:
# Do not clear phase accumulator on FUD
# Disable autoclear phase accumulator and enables OSK.
self.write(AD9914_REG_CFR1L, 0x0108)
pow += self.continuous_phase_comp
else:
# Clear phase accumulator on FUD
# Enable autoclear phase accumulator and enables OSK.
self.write(AD9914_REG_CFR1L, 0x2108)
fud_time = now_mu() + 2 * self.write_duration_mu
pow -= int32((ref_time_mu - fud_time) * self.sysclk_per_mu * ftw >> (32 - 16))
pow -= int32((ref_time - fud_time) * self.sysclk_per_mu * ftw >> (32 - 16))
if phase_mode == PHASE_MODE_TRACKING:
pow += int32(ref_time_mu * self.sysclk_per_mu * ftw >> (32 - 16))
pow += int32(ref_time * self.sysclk_per_mu * ftw >> (32 - 16))
self.continuous_phase_comp = pow
self.write(AD9914_REG_POW, pow)
self.write(AD9914_REG_ASF, asf)
self.write(AD9914_FUD, 0)
return pow
@portable(flags={"fast-math"})
def frequency_to_ftw(self, frequency):
"""Returns the 32-bit frequency tuning word corresponding to the given
"""Returns the frequency tuning word corresponding to the given
frequency.
"""
return int32(round(float(int64(2)**32*frequency/self.sysclk)))
return round(float(int64(2)**32*frequency/self.sysclk))
@portable(flags={"fast-math"})
def ftw_to_frequency(self, ftw):
@ -257,9 +246,9 @@ class AD9914:
@portable(flags={"fast-math"})
def turns_to_pow(self, turns):
"""Returns the 16-bit phase offset word corresponding to the given
phase in turns."""
return round(float(turns*2**16)) & 0xffff
"""Returns the phase offset word corresponding to the given phase
in turns."""
return round(float(turns*2**16))
@portable(flags={"fast-math"})
def pow_to_turns(self, pow):
@ -269,12 +258,8 @@ class AD9914:
@portable(flags={"fast-math"})
def amplitude_to_asf(self, amplitude):
"""Returns 12-bit amplitude scale factor corresponding to given
amplitude."""
code = round(float(amplitude * 0x0fff))
if code < 0 or code > 0xfff:
raise ValueError("Invalid AD9914 amplitude!")
return code
"""Returns amplitude scale factor corresponding to given amplitude."""
return round(float(amplitude*0x0fff))
@portable(flags={"fast-math"})
def asf_to_amplitude(self, asf):
@ -286,10 +271,9 @@ class AD9914:
def set(self, frequency, phase=0.0, phase_mode=_PHASE_MODE_DEFAULT,
amplitude=1.0):
"""Like :meth:`set_mu`, but uses Hz and turns."""
return self.pow_to_turns(
self.set_mu(self.frequency_to_ftw(frequency),
self.set_mu(self.frequency_to_ftw(frequency),
self.turns_to_pow(phase), phase_mode,
self.amplitude_to_asf(amplitude)))
self.amplitude_to_asf(amplitude))
# Extended-resolution functions
@kernel
@ -325,11 +309,10 @@ class AD9914:
@portable(flags={"fast-math"})
def frequency_to_xftw(self, frequency):
"""Returns the 63-bit frequency tuning word corresponding to the given
"""Returns the frequency tuning word corresponding to the given
frequency (extended resolution mode).
"""
return int64(round(2.0*float(int64(2)**62)*frequency/self.sysclk)) & (
(int64(1) << 63) - 1)
return int64(round(2.0*float(int64(2)**62)*frequency/self.sysclk))
@portable(flags={"fast-math"})
def xftw_to_frequency(self, xftw):

View File

@ -1,599 +0,0 @@
"""RTIO driver for the Analog Devices ADF[45]35[56] family of GHz PLLs
on Mirny-style prefixed SPI buses.
"""
# https://github.com/analogdevicesinc/linux/blob/master/Documentation/devicetree/bindings/iio/frequency/adf5355.txt
# https://github.com/analogdevicesinc/linux/blob/master/drivers/iio/frequency/adf5355.c
# https://www.analog.com/media/en/technical-documentation/data-sheets/ADF5355.pdf
# https://www.analog.com/media/en/technical-documentation/data-sheets/ADF5355.pdf
# https://www.analog.com/media/en/technical-documentation/user-guides/EV-ADF5355SD1Z-UG-1087.pdf
from artiq.language.core import kernel, portable, delay
from artiq.language.units import us, GHz, MHz
from artiq.language.types import TInt32, TInt64
from artiq.coredevice import spi2 as spi
from artiq.coredevice.adf5356_reg import *
from numpy import int32, int64, floor, ceil
SPI_CONFIG = (
0 * spi.SPI_OFFLINE
| 0 * spi.SPI_END
| 0 * spi.SPI_INPUT
| 1 * spi.SPI_CS_POLARITY
| 0 * spi.SPI_CLK_POLARITY
| 0 * spi.SPI_CLK_PHASE
| 0 * spi.SPI_LSB_FIRST
| 0 * spi.SPI_HALF_DUPLEX
)
ADF5356_MIN_VCO_FREQ = int64(3.4 * GHz)
ADF5356_MAX_VCO_FREQ = int64(6.8 * GHz)
ADF5356_MAX_FREQ_PFD = int32(125.0 * MHz)
ADF5356_MODULUS1 = int32(1 << 24)
ADF5356_MAX_MODULUS2 = int32(1 << 28) # FIXME: ADF5356 has 28 bits MOD2
ADF5356_MAX_R_CNT = int32(1023)
class ADF5356:
"""Analog Devices AD[45]35[56] family of GHz PLLs.
:param cpld_device: Mirny CPLD device name
:param sw_device: Mirny RF switch device name
:param channel: Mirny RF channel index
:param ref_doubler: enable/disable reference clock doubler
:param ref_divider: enable/disable reference clock divide-by-2
:param core_device: Core device name (default: "core")
"""
kernel_invariants = {"cpld", "sw", "channel", "core", "sysclk"}
def __init__(
self,
dmgr,
cpld_device,
sw_device,
channel,
ref_doubler=False,
ref_divider=False,
core="core",
):
self.cpld = dmgr.get(cpld_device)
self.sw = dmgr.get(sw_device)
self.channel = channel
self.core = dmgr.get(core)
self.ref_doubler = ref_doubler
self.ref_divider = ref_divider
self.sysclk = self.cpld.refclk
assert 10 <= self.sysclk / 1e6 <= 600
self._init_registers()
@staticmethod
def get_rtio_channels(**kwargs):
return []
@kernel
def init(self, blind=False):
"""
Initialize and configure the PLL.
:param blind: Do not attempt to verify presence.
"""
self.sync()
if not blind:
# MUXOUT = VDD
self.regs[4] = ADF5356_REG4_MUXOUT_UPDATE(self.regs[4], 1)
self.write(self.regs[4])
delay(1000 * us)
if not self.read_muxout():
raise ValueError("MUXOUT not high")
delay(800 * us)
# MUXOUT = DGND
self.regs[4] = ADF5356_REG4_MUXOUT_UPDATE(self.regs[4], 2)
self.write(self.regs[4])
delay(1000 * us)
if self.read_muxout():
raise ValueError("MUXOUT not low")
delay(800 * us)
# MUXOUT = digital lock-detect
self.regs[4] = ADF5356_REG4_MUXOUT_UPDATE(self.regs[4], 6)
self.write(self.regs[4])
@kernel
def set_att(self, att):
"""Set digital step attenuator in SI units.
This method will write the attenuator settings of the channel.
See also :meth:`Mirny.set_att<artiq.coredevice.mirny.Mirny.set_att>`.
:param att: Attenuation in dB.
"""
self.cpld.set_att(self.channel, att)
@kernel
def set_att_mu(self, att):
"""Set digital step attenuator in machine units.
:param att: Attenuation setting, 8-bit digital.
"""
self.cpld.set_att_mu(self.channel, att)
@kernel
def write(self, data):
self.cpld.write_ext(self.channel | 4, 32, data)
@kernel
def read_muxout(self):
"""
Read the state of the MUXOUT line.
By default, this is configured to be the digital lock detection.
"""
return bool(self.cpld.read_reg(0) & (1 << (self.channel + 8)))
@kernel
def set_output_power_mu(self, n):
"""
Set the power level at output A of the PLL chip in machine units.
This driver defaults to `n = 3` at init.
:param n: output power setting, 0, 1, 2, or 3 (see ADF5356 datasheet, fig. 44).
"""
if n not in [0, 1, 2, 3]:
raise ValueError("invalid power setting")
self.regs[6] = ADF5356_REG6_RF_OUTPUT_A_POWER_UPDATE(self.regs[6], n)
self.sync()
@portable
def output_power_mu(self):
"""
Return the power level at output A of the PLL chip in machine units.
"""
return ADF5356_REG6_RF_OUTPUT_A_POWER_GET(self.regs[6])
@kernel
def enable_output(self):
"""
Enable output A of the PLL chip. This is the default after init.
"""
self.regs[6] |= ADF5356_REG6_RF_OUTPUT_A_ENABLE(1)
self.sync()
@kernel
def disable_output(self):
"""
Disable output A of the PLL chip.
"""
self.regs[6] &= ~ADF5356_REG6_RF_OUTPUT_A_ENABLE(1)
self.sync()
@kernel
def set_frequency(self, f):
"""
Output given frequency on output A.
:param f: 53.125 MHz <= f <= 6800 MHz
"""
freq = int64(round(f))
if freq > ADF5356_MAX_VCO_FREQ:
raise ValueError("Requested too high frequency")
# select minimal output divider
rf_div_sel = 0
while freq < ADF5356_MIN_VCO_FREQ:
freq <<= 1
rf_div_sel += 1
if (1 << rf_div_sel) > 64:
raise ValueError("Requested too low frequency")
# choose reference divider that maximizes PFD frequency
self.regs[4] = ADF5356_REG4_R_COUNTER_UPDATE(
self.regs[4], self._compute_reference_counter()
)
f_pfd = self.f_pfd()
# choose prescaler
if freq > int64(6e9):
self.regs[0] |= ADF5356_REG0_PRESCALER(1) # 8/9
n_min, n_max = 75, 65535
# adjust reference divider to be able to match n_min constraint
while n_min * f_pfd > freq:
r = ADF5356_REG4_R_COUNTER_GET(self.regs[4])
self.regs[4] = ADF5356_REG4_R_COUNTER_UPDATE(self.regs[4], r + 1)
f_pfd = self.f_pfd()
else:
self.regs[0] &= ~ADF5356_REG0_PRESCALER(1) # 4/5
n_min, n_max = 23, 32767
# calculate PLL parameters
n, frac1, (frac2_msb, frac2_lsb), (mod2_msb, mod2_lsb) = calculate_pll(
freq, f_pfd
)
if not (n_min <= n <= n_max):
raise ValueError("Invalid INT value")
# configure PLL
self.regs[0] = ADF5356_REG0_INT_VALUE_UPDATE(self.regs[0], n)
self.regs[1] = ADF5356_REG1_MAIN_FRAC_VALUE_UPDATE(self.regs[1], frac1)
self.regs[2] = ADF5356_REG2_AUX_FRAC_LSB_VALUE_UPDATE(self.regs[2], frac2_lsb)
self.regs[2] = ADF5356_REG2_AUX_MOD_LSB_VALUE_UPDATE(self.regs[2], mod2_lsb)
self.regs[13] = ADF5356_REG13_AUX_FRAC_MSB_VALUE_UPDATE(
self.regs[13], frac2_msb
)
self.regs[13] = ADF5356_REG13_AUX_MOD_MSB_VALUE_UPDATE(self.regs[13], mod2_msb)
self.regs[6] = ADF5356_REG6_RF_DIVIDER_SELECT_UPDATE(self.regs[6], rf_div_sel)
self.regs[6] = ADF5356_REG6_CP_BLEED_CURRENT_UPDATE(
self.regs[6], int32(floor(24 * f_pfd / (61.44 * MHz)))
)
self.regs[9] = ADF5356_REG9_VCO_BAND_DIVISION_UPDATE(
self.regs[9], int32(ceil(f_pfd / 160e3))
)
# commit
self.sync()
@kernel
def sync(self):
"""
Write all registers to the device. Attempts to lock the PLL.
"""
f_pfd = self.f_pfd()
delay(200 * us) # Slack
if f_pfd <= 75.0 * MHz:
for i in range(13, 0, -1):
self.write(self.regs[i])
delay(200 * us)
self.write(self.regs[0] | ADF5356_REG0_AUTOCAL(1))
else:
# AUTOCAL AT HALF PFD FREQUENCY
# calculate PLL at f_pfd/2
n, frac1, (frac2_msb, frac2_lsb), (mod2_msb, mod2_lsb) = calculate_pll(
self.f_vco(), f_pfd >> 1
)
delay(200 * us) # Slack
self.write(
13
| ADF5356_REG13_AUX_FRAC_MSB_VALUE(frac2_msb)
| ADF5356_REG13_AUX_MOD_MSB_VALUE(mod2_msb)
)
for i in range(12, 4, -1):
self.write(self.regs[i])
self.write(
ADF5356_REG4_R_COUNTER_UPDATE(self.regs[4], 2 * self.ref_counter())
)
self.write(self.regs[3])
self.write(
2
| ADF5356_REG2_AUX_MOD_LSB_VALUE(mod2_lsb)
| ADF5356_REG2_AUX_FRAC_LSB_VALUE(frac2_lsb)
)
self.write(1 | ADF5356_REG1_MAIN_FRAC_VALUE(frac1))
delay(200 * us)
self.write(ADF5356_REG0_INT_VALUE(n) | ADF5356_REG0_AUTOCAL(1))
# RELOCK AT WANTED PFD FREQUENCY
for i in [4, 2, 1]:
self.write(self.regs[i])
# force-disable autocal
self.write(self.regs[0] & ~ADF5356_REG0_AUTOCAL(1))
@portable
def f_pfd(self) -> TInt64:
"""
Return the PFD frequency for the cached set of registers.
"""
r = ADF5356_REG4_R_COUNTER_GET(self.regs[4])
d = ADF5356_REG4_R_DOUBLER_GET(self.regs[4])
t = ADF5356_REG4_R_DIVIDER_GET(self.regs[4])
return self._compute_pfd_frequency(r, d, t)
@portable
def f_vco(self) -> TInt64:
"""
Return the VCO frequency for the cached set of registers.
"""
return int64(
self.f_pfd()
* (
self.pll_n()
+ (self.pll_frac1() + self.pll_frac2() / self.pll_mod2())
/ ADF5356_MODULUS1
)
)
@portable
def pll_n(self) -> TInt32:
"""
Return the PLL integer value (INT) for the cached set of registers.
"""
return ADF5356_REG0_INT_VALUE_GET(self.regs[0])
@portable
def pll_frac1(self) -> TInt32:
"""
Return the main fractional value (FRAC1) for the cached set of registers.
"""
return ADF5356_REG1_MAIN_FRAC_VALUE_GET(self.regs[1])
@portable
def pll_frac2(self) -> TInt32:
"""
Return the auxiliary fractional value (FRAC2) for the cached set of registers.
"""
return (
ADF5356_REG13_AUX_FRAC_MSB_VALUE_GET(self.regs[13]) << 14
) | ADF5356_REG2_AUX_FRAC_LSB_VALUE_GET(self.regs[2])
@portable
def pll_mod2(self) -> TInt32:
"""
Return the auxiliary modulus value (MOD2) for the cached set of registers.
"""
return (
ADF5356_REG13_AUX_MOD_MSB_VALUE_GET(self.regs[13]) << 14
) | ADF5356_REG2_AUX_MOD_LSB_VALUE_GET(self.regs[2])
@portable
def ref_counter(self) -> TInt32:
"""
Return the reference counter value (R) for the cached set of registers.
"""
return ADF5356_REG4_R_COUNTER_GET(self.regs[4])
@portable
def output_divider(self) -> TInt32:
"""
Return the value of the output A divider.
"""
return 1 << ADF5356_REG6_RF_DIVIDER_SELECT_GET(self.regs[6])
def info(self):
"""
Return a summary of high-level parameters as a dict.
"""
prescaler = ADF5356_REG0_PRESCALER_GET(self.regs[0])
return {
# output
"f_outA": self.f_vco() / self.output_divider(),
"f_outB": self.f_vco() * 2,
"output_divider": self.output_divider(),
# PLL parameters
"f_vco": self.f_vco(),
"pll_n": self.pll_n(),
"pll_frac1": self.pll_frac1(),
"pll_frac2": self.pll_frac2(),
"pll_mod2": self.pll_mod2(),
"prescaler": "4/5" if prescaler == 0 else "8/9",
# reference / PFD
"sysclk": self.sysclk,
"ref_doubler": self.ref_doubler,
"ref_divider": self.ref_divider,
"ref_counter": self.ref_counter(),
"f_pfd": self.f_pfd(),
}
@portable
def _init_registers(self):
"""
Initialize cached registers with sensible defaults.
"""
# fill with control bits
self.regs = [int32(i) for i in range(ADF5356_NUM_REGS)]
# REG2
# ====
# avoid divide-by-zero
self.regs[2] |= ADF5356_REG2_AUX_MOD_LSB_VALUE(1)
# REG4
# ====
# single-ended reference mode is recommended
# for references up to 250 MHz, even if the signal is differential
if self.sysclk <= 250 * MHz:
self.regs[4] |= ADF5356_REG4_REF_MODE(0)
else:
self.regs[4] |= ADF5356_REG4_REF_MODE(1)
# phase detector polarity: positive
self.regs[4] |= ADF5356_REG4_PD_POLARITY(1)
# charge pump current: 0.94 mA
self.regs[4] |= ADF5356_REG4_CURRENT_SETTING(2)
# MUXOUT: digital lock detect
self.regs[4] |= ADF5356_REG4_MUX_LOGIC(1) # 3v3 logic
self.regs[4] |= ADF5356_REG4_MUXOUT(6)
# setup reference path
if self.ref_doubler:
self.regs[4] |= ADF5356_REG4_R_DOUBLER(1)
if self.ref_divider:
self.regs[4] |= ADF5356_REG4_R_DIVIDER(1)
r = self._compute_reference_counter()
self.regs[4] |= ADF5356_REG4_R_COUNTER(r)
# REG5
# ====
# reserved values
self.regs[5] = int32(0x800025)
# REG6
# ====
# reserved values
self.regs[6] = int32(0x14000006)
# enable negative bleed
self.regs[6] |= ADF5356_REG6_NEGATIVE_BLEED(1)
# charge pump bleed current
self.regs[6] |= ADF5356_REG6_CP_BLEED_CURRENT(
int32(floor(24 * self.f_pfd() / (61.44 * MHz)))
)
# direct feedback from VCO to N counter
self.regs[6] |= ADF5356_REG6_FB_SELECT(1)
# mute until the PLL is locked
self.regs[6] |= ADF5356_REG6_MUTE_TILL_LD(1)
# enable output A
self.regs[6] |= ADF5356_REG6_RF_OUTPUT_A_ENABLE(1)
# set output A power to max power, is adjusted by extra attenuator
self.regs[6] |= ADF5356_REG6_RF_OUTPUT_A_POWER(3) # +5 dBm
# REG7
# ====
# reserved values
self.regs[7] = int32(0x10000007)
# sync load-enable to reference
self.regs[7] |= ADF5356_REG7_LE_SYNC(1)
# frac-N lock-detect precision: 12 ns
self.regs[7] |= ADF5356_REG7_FRAC_N_LD_PRECISION(3)
# REG8
# ====
# reserved values
self.regs[8] = int32(0x102D0428)
# REG9
# ====
# default timeouts (from eval software)
self.regs[9] |= (
ADF5356_REG9_SYNTH_LOCK_TIMEOUT(13)
| ADF5356_REG9_AUTOCAL_TIMEOUT(31)
| ADF5356_REG9_TIMEOUT(0x67)
)
self.regs[9] |= ADF5356_REG9_VCO_BAND_DIVISION(
int32(ceil(self.f_pfd() / 160e3))
)
# REG10
# =====
# reserved values
self.regs[10] = int32(0xC0000A)
# ADC defaults (from eval software)
self.regs[10] |= (
ADF5356_REG10_ADC_ENABLE(1)
| ADF5356_REG10_ADC_CLK_DIV(256)
| ADF5356_REG10_ADC_CONV(1)
)
# REG11
# =====
# reserved values
self.regs[11] = int32(0x61200B)
# REG12
# =====
# reserved values
self.regs[12] = int32(0x15FC)
@portable
def _compute_pfd_frequency(self, r, d, t) -> TInt64:
"""
Calculate the PFD frequency from the given reference path parameters.
"""
return int64(self.sysclk * ((1 + d) / (r * (1 + t))))
@portable
def _compute_reference_counter(self) -> TInt32:
"""
Determine the reference counter R that maximizes the PFD frequency.
"""
d = ADF5356_REG4_R_DOUBLER_GET(self.regs[4])
t = ADF5356_REG4_R_DIVIDER_GET(self.regs[4])
r = 1
while self._compute_pfd_frequency(r, d, t) > ADF5356_MAX_FREQ_PFD:
r += 1
return int32(r)
@portable
def gcd(a, b):
while b:
a, b = b, a % b
return a
@portable
def split_msb_lsb_28b(v):
return int32((v >> 14) & 0x3FFF), int32(v & 0x3FFF)
@portable
def calculate_pll(f_vco: TInt64, f_pfd: TInt64):
"""
Calculate fractional-N PLL parameters such that
``f_vco = f_pfd * (n + (frac1 + frac2/mod2) / mod1)``
where
``mod1 = 2**24`` and ``mod2 <= 2**28``
:param f_vco: target VCO frequency
:param f_pfd: PFD frequency
:return: (``n``, ``frac1``, ``(frac2_msb, frac2_lsb)``, ``(mod2_msb, mod2_lsb)``)
"""
f_pfd = int64(f_pfd)
f_vco = int64(f_vco)
# integral part
n, r = int32(f_vco // f_pfd), f_vco % f_pfd
# main fractional part
r *= ADF5356_MODULUS1
frac1, frac2 = int32(r // f_pfd), r % f_pfd
# auxiliary fractional part
mod2 = f_pfd
while mod2 > ADF5356_MAX_MODULUS2:
mod2 >>= 1
frac2 >>= 1
gcd_div = gcd(frac2, mod2)
mod2 //= gcd_div
frac2 //= gcd_div
return n, frac1, split_msb_lsb_28b(frac2), split_msb_lsb_28b(mod2)

View File

@ -1,642 +0,0 @@
# auto-generated, do not edit
from artiq.language.core import portable
from artiq.language.types import TInt32
from numpy import int32
@portable
def ADF5356_REG0_AUTOCAL_GET(reg: TInt32) -> TInt32:
return int32((reg >> 21) & 0x1)
@portable
def ADF5356_REG0_AUTOCAL(x: TInt32) -> TInt32:
return int32((x & 0x1) << 21)
@portable
def ADF5356_REG0_AUTOCAL_UPDATE(reg: TInt32, x: TInt32) -> TInt32:
return int32((reg & ~(0x1 << 21)) | ((x & 0x1) << 21))
@portable
def ADF5356_REG0_INT_VALUE_GET(reg: TInt32) -> TInt32:
return int32((reg >> 4) & 0xffff)
@portable
def ADF5356_REG0_INT_VALUE(x: TInt32) -> TInt32:
return int32((x & 0xffff) << 4)
@portable
def ADF5356_REG0_INT_VALUE_UPDATE(reg: TInt32, x: TInt32) -> TInt32:
return int32((reg & ~(0xffff << 4)) | ((x & 0xffff) << 4))
@portable
def ADF5356_REG0_PRESCALER_GET(reg: TInt32) -> TInt32:
return int32((reg >> 20) & 0x1)
@portable
def ADF5356_REG0_PRESCALER(x: TInt32) -> TInt32:
return int32((x & 0x1) << 20)
@portable
def ADF5356_REG0_PRESCALER_UPDATE(reg: TInt32, x: TInt32) -> TInt32:
return int32((reg & ~(0x1 << 20)) | ((x & 0x1) << 20))
@portable
def ADF5356_REG1_MAIN_FRAC_VALUE_GET(reg: TInt32) -> TInt32:
return int32((reg >> 4) & 0xffffff)
@portable
def ADF5356_REG1_MAIN_FRAC_VALUE(x: TInt32) -> TInt32:
return int32((x & 0xffffff) << 4)
@portable
def ADF5356_REG1_MAIN_FRAC_VALUE_UPDATE(reg: TInt32, x: TInt32) -> TInt32:
return int32((reg & ~(0xffffff << 4)) | ((x & 0xffffff) << 4))
@portable
def ADF5356_REG2_AUX_FRAC_LSB_VALUE_GET(reg: TInt32) -> TInt32:
return int32((reg >> 18) & 0x3fff)
@portable
def ADF5356_REG2_AUX_FRAC_LSB_VALUE(x: TInt32) -> TInt32:
return int32((x & 0x3fff) << 18)
@portable
def ADF5356_REG2_AUX_FRAC_LSB_VALUE_UPDATE(reg: TInt32, x: TInt32) -> TInt32:
return int32((reg & ~(0x3fff << 18)) | ((x & 0x3fff) << 18))
@portable
def ADF5356_REG2_AUX_MOD_LSB_VALUE_GET(reg: TInt32) -> TInt32:
return int32((reg >> 4) & 0x3fff)
@portable
def ADF5356_REG2_AUX_MOD_LSB_VALUE(x: TInt32) -> TInt32:
return int32((x & 0x3fff) << 4)
@portable
def ADF5356_REG2_AUX_MOD_LSB_VALUE_UPDATE(reg: TInt32, x: TInt32) -> TInt32:
return int32((reg & ~(0x3fff << 4)) | ((x & 0x3fff) << 4))
@portable
def ADF5356_REG3_PHASE_ADJUST_GET(reg: TInt32) -> TInt32:
return int32((reg >> 28) & 0x1)
@portable
def ADF5356_REG3_PHASE_ADJUST(x: TInt32) -> TInt32:
return int32((x & 0x1) << 28)
@portable
def ADF5356_REG3_PHASE_ADJUST_UPDATE(reg: TInt32, x: TInt32) -> TInt32:
return int32((reg & ~(0x1 << 28)) | ((x & 0x1) << 28))
@portable
def ADF5356_REG3_PHASE_RESYNC_GET(reg: TInt32) -> TInt32:
return int32((reg >> 29) & 0x1)
@portable
def ADF5356_REG3_PHASE_RESYNC(x: TInt32) -> TInt32:
return int32((x & 0x1) << 29)
@portable
def ADF5356_REG3_PHASE_RESYNC_UPDATE(reg: TInt32, x: TInt32) -> TInt32:
return int32((reg & ~(0x1 << 29)) | ((x & 0x1) << 29))
@portable
def ADF5356_REG3_PHASE_VALUE_GET(reg: TInt32) -> TInt32:
return int32((reg >> 4) & 0xffffff)
@portable
def ADF5356_REG3_PHASE_VALUE(x: TInt32) -> TInt32:
return int32((x & 0xffffff) << 4)
@portable
def ADF5356_REG3_PHASE_VALUE_UPDATE(reg: TInt32, x: TInt32) -> TInt32:
return int32((reg & ~(0xffffff << 4)) | ((x & 0xffffff) << 4))
@portable
def ADF5356_REG3_SD_LOAD_RESET_GET(reg: TInt32) -> TInt32:
return int32((reg >> 30) & 0x1)
@portable
def ADF5356_REG3_SD_LOAD_RESET(x: TInt32) -> TInt32:
return int32((x & 0x1) << 30)
@portable
def ADF5356_REG3_SD_LOAD_RESET_UPDATE(reg: TInt32, x: TInt32) -> TInt32:
return int32((reg & ~(0x1 << 30)) | ((x & 0x1) << 30))
@portable
def ADF5356_REG4_COUNTER_RESET_GET(reg: TInt32) -> TInt32:
return int32((reg >> 4) & 0x1)
@portable
def ADF5356_REG4_COUNTER_RESET(x: TInt32) -> TInt32:
return int32((x & 0x1) << 4)
@portable
def ADF5356_REG4_COUNTER_RESET_UPDATE(reg: TInt32, x: TInt32) -> TInt32:
return int32((reg & ~(0x1 << 4)) | ((x & 0x1) << 4))
@portable
def ADF5356_REG4_CP_THREE_STATE_GET(reg: TInt32) -> TInt32:
return int32((reg >> 5) & 0x1)
@portable
def ADF5356_REG4_CP_THREE_STATE(x: TInt32) -> TInt32:
return int32((x & 0x1) << 5)
@portable
def ADF5356_REG4_CP_THREE_STATE_UPDATE(reg: TInt32, x: TInt32) -> TInt32:
return int32((reg & ~(0x1 << 5)) | ((x & 0x1) << 5))
@portable
def ADF5356_REG4_CURRENT_SETTING_GET(reg: TInt32) -> TInt32:
return int32((reg >> 10) & 0xf)
@portable
def ADF5356_REG4_CURRENT_SETTING(x: TInt32) -> TInt32:
return int32((x & 0xf) << 10)
@portable
def ADF5356_REG4_CURRENT_SETTING_UPDATE(reg: TInt32, x: TInt32) -> TInt32:
return int32((reg & ~(0xf << 10)) | ((x & 0xf) << 10))
@portable
def ADF5356_REG4_DOUBLE_BUFF_GET(reg: TInt32) -> TInt32:
return int32((reg >> 14) & 0x1)
@portable
def ADF5356_REG4_DOUBLE_BUFF(x: TInt32) -> TInt32:
return int32((x & 0x1) << 14)
@portable
def ADF5356_REG4_DOUBLE_BUFF_UPDATE(reg: TInt32, x: TInt32) -> TInt32:
return int32((reg & ~(0x1 << 14)) | ((x & 0x1) << 14))
@portable
def ADF5356_REG4_MUX_LOGIC_GET(reg: TInt32) -> TInt32:
return int32((reg >> 8) & 0x1)
@portable
def ADF5356_REG4_MUX_LOGIC(x: TInt32) -> TInt32:
return int32((x & 0x1) << 8)
@portable
def ADF5356_REG4_MUX_LOGIC_UPDATE(reg: TInt32, x: TInt32) -> TInt32:
return int32((reg & ~(0x1 << 8)) | ((x & 0x1) << 8))
@portable
def ADF5356_REG4_MUXOUT_GET(reg: TInt32) -> TInt32:
return int32((reg >> 27) & 0x7)
@portable
def ADF5356_REG4_MUXOUT(x: TInt32) -> TInt32:
return int32((x & 0x7) << 27)
@portable
def ADF5356_REG4_MUXOUT_UPDATE(reg: TInt32, x: TInt32) -> TInt32:
return int32((reg & ~(0x7 << 27)) | ((x & 0x7) << 27))
@portable
def ADF5356_REG4_PD_POLARITY_GET(reg: TInt32) -> TInt32:
return int32((reg >> 7) & 0x1)
@portable
def ADF5356_REG4_PD_POLARITY(x: TInt32) -> TInt32:
return int32((x & 0x1) << 7)
@portable
def ADF5356_REG4_PD_POLARITY_UPDATE(reg: TInt32, x: TInt32) -> TInt32:
return int32((reg & ~(0x1 << 7)) | ((x & 0x1) << 7))
@portable
def ADF5356_REG4_POWER_DOWN_GET(reg: TInt32) -> TInt32:
return int32((reg >> 6) & 0x1)
@portable
def ADF5356_REG4_POWER_DOWN(x: TInt32) -> TInt32:
return int32((x & 0x1) << 6)
@portable
def ADF5356_REG4_POWER_DOWN_UPDATE(reg: TInt32, x: TInt32) -> TInt32:
return int32((reg & ~(0x1 << 6)) | ((x & 0x1) << 6))
@portable
def ADF5356_REG4_R_COUNTER_GET(reg: TInt32) -> TInt32:
return int32((reg >> 15) & 0x3ff)
@portable
def ADF5356_REG4_R_COUNTER(x: TInt32) -> TInt32:
return int32((x & 0x3ff) << 15)
@portable
def ADF5356_REG4_R_COUNTER_UPDATE(reg: TInt32, x: TInt32) -> TInt32:
return int32((reg & ~(0x3ff << 15)) | ((x & 0x3ff) << 15))
@portable
def ADF5356_REG4_R_DIVIDER_GET(reg: TInt32) -> TInt32:
return int32((reg >> 25) & 0x1)
@portable
def ADF5356_REG4_R_DIVIDER(x: TInt32) -> TInt32:
return int32((x & 0x1) << 25)
@portable
def ADF5356_REG4_R_DIVIDER_UPDATE(reg: TInt32, x: TInt32) -> TInt32:
return int32((reg & ~(0x1 << 25)) | ((x & 0x1) << 25))
@portable
def ADF5356_REG4_R_DOUBLER_GET(reg: TInt32) -> TInt32:
return int32((reg >> 26) & 0x1)
@portable
def ADF5356_REG4_R_DOUBLER(x: TInt32) -> TInt32:
return int32((x & 0x1) << 26)
@portable
def ADF5356_REG4_R_DOUBLER_UPDATE(reg: TInt32, x: TInt32) -> TInt32:
return int32((reg & ~(0x1 << 26)) | ((x & 0x1) << 26))
@portable
def ADF5356_REG4_REF_MODE_GET(reg: TInt32) -> TInt32:
return int32((reg >> 9) & 0x1)
@portable
def ADF5356_REG4_REF_MODE(x: TInt32) -> TInt32:
return int32((x & 0x1) << 9)
@portable
def ADF5356_REG4_REF_MODE_UPDATE(reg: TInt32, x: TInt32) -> TInt32:
return int32((reg & ~(0x1 << 9)) | ((x & 0x1) << 9))
@portable
def ADF5356_REG6_BLEED_POLARITY_GET(reg: TInt32) -> TInt32:
return int32((reg >> 31) & 0x1)
@portable
def ADF5356_REG6_BLEED_POLARITY(x: TInt32) -> TInt32:
return int32((x & 0x1) << 31)
@portable
def ADF5356_REG6_BLEED_POLARITY_UPDATE(reg: TInt32, x: TInt32) -> TInt32:
return int32((reg & ~(0x1 << 31)) | ((x & 0x1) << 31))
@portable
def ADF5356_REG6_CP_BLEED_CURRENT_GET(reg: TInt32) -> TInt32:
return int32((reg >> 13) & 0xff)
@portable
def ADF5356_REG6_CP_BLEED_CURRENT(x: TInt32) -> TInt32:
return int32((x & 0xff) << 13)
@portable
def ADF5356_REG6_CP_BLEED_CURRENT_UPDATE(reg: TInt32, x: TInt32) -> TInt32:
return int32((reg & ~(0xff << 13)) | ((x & 0xff) << 13))
@portable
def ADF5356_REG6_FB_SELECT_GET(reg: TInt32) -> TInt32:
return int32((reg >> 24) & 0x1)
@portable
def ADF5356_REG6_FB_SELECT(x: TInt32) -> TInt32:
return int32((x & 0x1) << 24)
@portable
def ADF5356_REG6_FB_SELECT_UPDATE(reg: TInt32, x: TInt32) -> TInt32:
return int32((reg & ~(0x1 << 24)) | ((x & 0x1) << 24))
@portable
def ADF5356_REG6_GATE_BLEED_GET(reg: TInt32) -> TInt32:
return int32((reg >> 30) & 0x1)
@portable
def ADF5356_REG6_GATE_BLEED(x: TInt32) -> TInt32:
return int32((x & 0x1) << 30)
@portable
def ADF5356_REG6_GATE_BLEED_UPDATE(reg: TInt32, x: TInt32) -> TInt32:
return int32((reg & ~(0x1 << 30)) | ((x & 0x1) << 30))
@portable
def ADF5356_REG6_MUTE_TILL_LD_GET(reg: TInt32) -> TInt32:
return int32((reg >> 11) & 0x1)
@portable
def ADF5356_REG6_MUTE_TILL_LD(x: TInt32) -> TInt32:
return int32((x & 0x1) << 11)
@portable
def ADF5356_REG6_MUTE_TILL_LD_UPDATE(reg: TInt32, x: TInt32) -> TInt32:
return int32((reg & ~(0x1 << 11)) | ((x & 0x1) << 11))
@portable
def ADF5356_REG6_NEGATIVE_BLEED_GET(reg: TInt32) -> TInt32:
return int32((reg >> 29) & 0x1)
@portable
def ADF5356_REG6_NEGATIVE_BLEED(x: TInt32) -> TInt32:
return int32((x & 0x1) << 29)
@portable
def ADF5356_REG6_NEGATIVE_BLEED_UPDATE(reg: TInt32, x: TInt32) -> TInt32:
return int32((reg & ~(0x1 << 29)) | ((x & 0x1) << 29))
@portable
def ADF5356_REG6_RF_DIVIDER_SELECT_GET(reg: TInt32) -> TInt32:
return int32((reg >> 21) & 0x7)
@portable
def ADF5356_REG6_RF_DIVIDER_SELECT(x: TInt32) -> TInt32:
return int32((x & 0x7) << 21)
@portable
def ADF5356_REG6_RF_DIVIDER_SELECT_UPDATE(reg: TInt32, x: TInt32) -> TInt32:
return int32((reg & ~(0x7 << 21)) | ((x & 0x7) << 21))
@portable
def ADF5356_REG6_RF_OUTPUT_A_ENABLE_GET(reg: TInt32) -> TInt32:
return int32((reg >> 6) & 0x1)
@portable
def ADF5356_REG6_RF_OUTPUT_A_ENABLE(x: TInt32) -> TInt32:
return int32((x & 0x1) << 6)
@portable
def ADF5356_REG6_RF_OUTPUT_A_ENABLE_UPDATE(reg: TInt32, x: TInt32) -> TInt32:
return int32((reg & ~(0x1 << 6)) | ((x & 0x1) << 6))
@portable
def ADF5356_REG6_RF_OUTPUT_A_POWER_GET(reg: TInt32) -> TInt32:
return int32((reg >> 4) & 0x3)
@portable
def ADF5356_REG6_RF_OUTPUT_A_POWER(x: TInt32) -> TInt32:
return int32((x & 0x3) << 4)
@portable
def ADF5356_REG6_RF_OUTPUT_A_POWER_UPDATE(reg: TInt32, x: TInt32) -> TInt32:
return int32((reg & ~(0x3 << 4)) | ((x & 0x3) << 4))
@portable
def ADF5356_REG6_RF_OUTPUT_B_ENABLE_GET(reg: TInt32) -> TInt32:
return int32((reg >> 10) & 0x1)
@portable
def ADF5356_REG6_RF_OUTPUT_B_ENABLE(x: TInt32) -> TInt32:
return int32((x & 0x1) << 10)
@portable
def ADF5356_REG6_RF_OUTPUT_B_ENABLE_UPDATE(reg: TInt32, x: TInt32) -> TInt32:
return int32((reg & ~(0x1 << 10)) | ((x & 0x1) << 10))
@portable
def ADF5356_REG7_FRAC_N_LD_PRECISION_GET(reg: TInt32) -> TInt32:
return int32((reg >> 5) & 0x3)
@portable
def ADF5356_REG7_FRAC_N_LD_PRECISION(x: TInt32) -> TInt32:
return int32((x & 0x3) << 5)
@portable
def ADF5356_REG7_FRAC_N_LD_PRECISION_UPDATE(reg: TInt32, x: TInt32) -> TInt32:
return int32((reg & ~(0x3 << 5)) | ((x & 0x3) << 5))
@portable
def ADF5356_REG7_LD_CYCLE_COUNT_GET(reg: TInt32) -> TInt32:
return int32((reg >> 8) & 0x3)
@portable
def ADF5356_REG7_LD_CYCLE_COUNT(x: TInt32) -> TInt32:
return int32((x & 0x3) << 8)
@portable
def ADF5356_REG7_LD_CYCLE_COUNT_UPDATE(reg: TInt32, x: TInt32) -> TInt32:
return int32((reg & ~(0x3 << 8)) | ((x & 0x3) << 8))
@portable
def ADF5356_REG7_LD_MODE_GET(reg: TInt32) -> TInt32:
return int32((reg >> 4) & 0x1)
@portable
def ADF5356_REG7_LD_MODE(x: TInt32) -> TInt32:
return int32((x & 0x1) << 4)
@portable
def ADF5356_REG7_LD_MODE_UPDATE(reg: TInt32, x: TInt32) -> TInt32:
return int32((reg & ~(0x1 << 4)) | ((x & 0x1) << 4))
@portable
def ADF5356_REG7_LE_SEL_SYNC_EDGE_GET(reg: TInt32) -> TInt32:
return int32((reg >> 27) & 0x1)
@portable
def ADF5356_REG7_LE_SEL_SYNC_EDGE(x: TInt32) -> TInt32:
return int32((x & 0x1) << 27)
@portable
def ADF5356_REG7_LE_SEL_SYNC_EDGE_UPDATE(reg: TInt32, x: TInt32) -> TInt32:
return int32((reg & ~(0x1 << 27)) | ((x & 0x1) << 27))
@portable
def ADF5356_REG7_LE_SYNC_GET(reg: TInt32) -> TInt32:
return int32((reg >> 25) & 0x1)
@portable
def ADF5356_REG7_LE_SYNC(x: TInt32) -> TInt32:
return int32((x & 0x1) << 25)
@portable
def ADF5356_REG7_LE_SYNC_UPDATE(reg: TInt32, x: TInt32) -> TInt32:
return int32((reg & ~(0x1 << 25)) | ((x & 0x1) << 25))
@portable
def ADF5356_REG7_LOL_MODE_GET(reg: TInt32) -> TInt32:
return int32((reg >> 7) & 0x1)
@portable
def ADF5356_REG7_LOL_MODE(x: TInt32) -> TInt32:
return int32((x & 0x1) << 7)
@portable
def ADF5356_REG7_LOL_MODE_UPDATE(reg: TInt32, x: TInt32) -> TInt32:
return int32((reg & ~(0x1 << 7)) | ((x & 0x1) << 7))
@portable
def ADF5356_REG9_AUTOCAL_TIMEOUT_GET(reg: TInt32) -> TInt32:
return int32((reg >> 9) & 0x1f)
@portable
def ADF5356_REG9_AUTOCAL_TIMEOUT(x: TInt32) -> TInt32:
return int32((x & 0x1f) << 9)
@portable
def ADF5356_REG9_AUTOCAL_TIMEOUT_UPDATE(reg: TInt32, x: TInt32) -> TInt32:
return int32((reg & ~(0x1f << 9)) | ((x & 0x1f) << 9))
@portable
def ADF5356_REG9_SYNTH_LOCK_TIMEOUT_GET(reg: TInt32) -> TInt32:
return int32((reg >> 4) & 0x1f)
@portable
def ADF5356_REG9_SYNTH_LOCK_TIMEOUT(x: TInt32) -> TInt32:
return int32((x & 0x1f) << 4)
@portable
def ADF5356_REG9_SYNTH_LOCK_TIMEOUT_UPDATE(reg: TInt32, x: TInt32) -> TInt32:
return int32((reg & ~(0x1f << 4)) | ((x & 0x1f) << 4))
@portable
def ADF5356_REG9_TIMEOUT_GET(reg: TInt32) -> TInt32:
return int32((reg >> 14) & 0x3ff)
@portable
def ADF5356_REG9_TIMEOUT(x: TInt32) -> TInt32:
return int32((x & 0x3ff) << 14)
@portable
def ADF5356_REG9_TIMEOUT_UPDATE(reg: TInt32, x: TInt32) -> TInt32:
return int32((reg & ~(0x3ff << 14)) | ((x & 0x3ff) << 14))
@portable
def ADF5356_REG9_VCO_BAND_DIVISION_GET(reg: TInt32) -> TInt32:
return int32((reg >> 24) & 0xff)
@portable
def ADF5356_REG9_VCO_BAND_DIVISION(x: TInt32) -> TInt32:
return int32((x & 0xff) << 24)
@portable
def ADF5356_REG9_VCO_BAND_DIVISION_UPDATE(reg: TInt32, x: TInt32) -> TInt32:
return int32((reg & ~(0xff << 24)) | ((x & 0xff) << 24))
@portable
def ADF5356_REG10_ADC_CLK_DIV_GET(reg: TInt32) -> TInt32:
return int32((reg >> 6) & 0xff)
@portable
def ADF5356_REG10_ADC_CLK_DIV(x: TInt32) -> TInt32:
return int32((x & 0xff) << 6)
@portable
def ADF5356_REG10_ADC_CLK_DIV_UPDATE(reg: TInt32, x: TInt32) -> TInt32:
return int32((reg & ~(0xff << 6)) | ((x & 0xff) << 6))
@portable
def ADF5356_REG10_ADC_CONV_GET(reg: TInt32) -> TInt32:
return int32((reg >> 5) & 0x1)
@portable
def ADF5356_REG10_ADC_CONV(x: TInt32) -> TInt32:
return int32((x & 0x1) << 5)
@portable
def ADF5356_REG10_ADC_CONV_UPDATE(reg: TInt32, x: TInt32) -> TInt32:
return int32((reg & ~(0x1 << 5)) | ((x & 0x1) << 5))
@portable
def ADF5356_REG10_ADC_ENABLE_GET(reg: TInt32) -> TInt32:
return int32((reg >> 4) & 0x1)
@portable
def ADF5356_REG10_ADC_ENABLE(x: TInt32) -> TInt32:
return int32((x & 0x1) << 4)
@portable
def ADF5356_REG10_ADC_ENABLE_UPDATE(reg: TInt32, x: TInt32) -> TInt32:
return int32((reg & ~(0x1 << 4)) | ((x & 0x1) << 4))
@portable
def ADF5356_REG11_VCO_BAND_HOLD_GET(reg: TInt32) -> TInt32:
return int32((reg >> 24) & 0x1)
@portable
def ADF5356_REG11_VCO_BAND_HOLD(x: TInt32) -> TInt32:
return int32((x & 0x1) << 24)
@portable
def ADF5356_REG11_VCO_BAND_HOLD_UPDATE(reg: TInt32, x: TInt32) -> TInt32:
return int32((reg & ~(0x1 << 24)) | ((x & 0x1) << 24))
@portable
def ADF5356_REG12_PHASE_RESYNC_CLK_VALUE_GET(reg: TInt32) -> TInt32:
return int32((reg >> 12) & 0xfffff)
@portable
def ADF5356_REG12_PHASE_RESYNC_CLK_VALUE(x: TInt32) -> TInt32:
return int32((x & 0xfffff) << 12)
@portable
def ADF5356_REG12_PHASE_RESYNC_CLK_VALUE_UPDATE(reg: TInt32, x: TInt32) -> TInt32:
return int32((reg & ~(0xfffff << 12)) | ((x & 0xfffff) << 12))
@portable
def ADF5356_REG13_AUX_FRAC_MSB_VALUE_GET(reg: TInt32) -> TInt32:
return int32((reg >> 18) & 0x3fff)
@portable
def ADF5356_REG13_AUX_FRAC_MSB_VALUE(x: TInt32) -> TInt32:
return int32((x & 0x3fff) << 18)
@portable
def ADF5356_REG13_AUX_FRAC_MSB_VALUE_UPDATE(reg: TInt32, x: TInt32) -> TInt32:
return int32((reg & ~(0x3fff << 18)) | ((x & 0x3fff) << 18))
@portable
def ADF5356_REG13_AUX_MOD_MSB_VALUE_GET(reg: TInt32) -> TInt32:
return int32((reg >> 4) & 0x3fff)
@portable
def ADF5356_REG13_AUX_MOD_MSB_VALUE(x: TInt32) -> TInt32:
return int32((x & 0x3fff) << 4)
@portable
def ADF5356_REG13_AUX_MOD_MSB_VALUE_UPDATE(reg: TInt32, x: TInt32) -> TInt32:
return int32((reg & ~(0x3fff << 4)) | ((x & 0x3fff) << 4))
ADF5356_NUM_REGS = 14

View File

@ -1,182 +0,0 @@
from artiq.language.core import kernel, portable, delay
from artiq.language.units import us
from numpy import int32
# almazny-specific data
ALMAZNY_LEGACY_REG_BASE = 0x0C
ALMAZNY_LEGACY_OE_SHIFT = 12
# higher SPI write divider to match almazny shift register timing
# min SER time before SRCLK rise = 125ns
# -> div=32 gives 125ns for data before clock rise
# works at faster dividers too but could be less reliable
ALMAZNY_LEGACY_SPIT_WR = 32
class AlmaznyLegacy:
"""
Almazny (High-frequency mezzanine board for Mirny)
This applies to Almazny hardware v1.1 and earlier.
Use :class:`~artiq.coredevice.almazny.AlmaznyChannel` for Almazny v1.2 and later.
:param host_mirny: :class:`~artiq.coredevice.mirny.Mirny` device Almazny is connected to
"""
def __init__(self, dmgr, host_mirny):
self.mirny_cpld = dmgr.get(host_mirny)
self.att_mu = [0x3f] * 4
self.channel_sw = [0] * 4
self.output_enable = False
@kernel
def init(self):
self.output_toggle(self.output_enable)
@kernel
def att_to_mu(self, att):
"""
Convert an attenuator setting in dB to machine units.
:param att: attenuator setting in dB [0-31.5]
:return: attenuator setting in machine units
"""
mu = round(att * 2.0)
if mu > 63 or mu < 0:
raise ValueError("Invalid Almazny attenuator settings!")
return mu
@kernel
def mu_to_att(self, att_mu):
"""
Convert a digital attenuator setting to dB.
:param att_mu: attenuator setting in machine units
:return: attenuator setting in dB
"""
return att_mu / 2
@kernel
def set_att(self, channel, att, rf_switch=True):
"""
Sets attenuators on chosen shift register (channel).
:param channel: index of the register [0-3]
:param att: attenuation setting in dBm [0-31.5]
:param rf_switch: rf switch (bool)
"""
self.set_att_mu(channel, self.att_to_mu(att), rf_switch)
@kernel
def set_att_mu(self, channel, att_mu, rf_switch=True):
"""
Sets attenuators on chosen shift register (channel).
:param channel: index of the register [0-3]
:param att_mu: attenuation setting in machine units [0-63]
:param rf_switch: rf switch (bool)
"""
self.channel_sw[channel] = 1 if rf_switch else 0
self.att_mu[channel] = att_mu
self._update_register(channel)
@kernel
def output_toggle(self, oe):
"""
Toggles output on all shift registers on or off.
:param oe: toggle output enable (bool)
"""
self.output_enable = oe
cfg_reg = self.mirny_cpld.read_reg(1)
en = 1 if self.output_enable else 0
delay(100 * us)
new_reg = (en << ALMAZNY_LEGACY_OE_SHIFT) | (cfg_reg & 0x3FF)
self.mirny_cpld.write_reg(1, new_reg)
delay(100 * us)
@kernel
def _flip_mu_bits(self, mu):
# in this form MSB is actually 0.5dB attenuator
# unnatural for users, so we flip the six bits
return (((mu & 0x01) << 5)
| ((mu & 0x02) << 3)
| ((mu & 0x04) << 1)
| ((mu & 0x08) >> 1)
| ((mu & 0x10) >> 3)
| ((mu & 0x20) >> 5))
@kernel
def _update_register(self, ch):
self.mirny_cpld.write_ext(
ALMAZNY_LEGACY_REG_BASE + ch,
8,
self._flip_mu_bits(self.att_mu[ch]) | (self.channel_sw[ch] << 6),
ALMAZNY_LEGACY_SPIT_WR
)
delay(100 * us)
class AlmaznyChannel:
"""
Driver for one Almazny channel.
Almazny is a mezzanine for the Quad PLL RF source Mirny that exposes and
controls the frequency-doubled outputs.
This driver requires Almazny hardware revision v1.2 or later
and Mirny CPLD gateware v0.3 or later.
Use :class:`~artiq.coredevice.almazny.AlmaznyLegacy` for Almazny hardware v1.1 and earlier.
:param host_mirny: Mirny CPLD device name
:param channel: channel index (0-3)
"""
def __init__(self, dmgr, host_mirny, channel):
self.channel = channel
self.mirny_cpld = dmgr.get(host_mirny)
@portable
def to_mu(self, att, enable, led):
"""
Convert an attenuation in dB, RF switch state and LED state to machine
units.
:param att: attenuator setting in dB (0-31.5)
:param enable: RF switch state (bool)
:param led: LED state (bool)
:return: channel setting in machine units
"""
mu = int32(round(att * 2.))
if mu >= 64 or mu < 0:
raise ValueError("Attenuation out of range")
# unfortunate hardware design: bit reverse
mu = ((mu & 0x15) << 1) | ((mu >> 1) & 0x15)
mu = ((mu & 0x03) << 4) | (mu & 0x0c) | ((mu >> 4) & 0x03)
if enable:
mu |= 1 << 6
if led:
mu |= 1 << 7
return mu
@kernel
def set_mu(self, mu):
"""
Set channel state (machine units).
:param mu: channel state in machine units.
"""
self.mirny_cpld.write_ext(
addr=0xc + self.channel, length=8, data=mu, ext_div=32)
@kernel
def set(self, att, enable, led=False):
"""
Set attenuation, RF switch, and LED state (SI units).
:param att: attenuator setting in dB (0-31.5)
:param enable: RF switch state (bool)
:param led: LED state (bool)
"""
self.set_mu(self.to_mu(att, enable, led))

View File

@ -2,11 +2,11 @@ from artiq.language.core import *
from artiq.language.types import *
@syscall(flags={"nounwind"})
@syscall(flags={"nounwind", "nowrite"})
def cache_get(key: TStr) -> TList(TInt32):
raise NotImplementedError("syscall not simulated")
@syscall
@syscall(flags={"nowrite"})
def cache_put(key: TStr, value: TList(TInt32)) -> TNone:
raise NotImplementedError("syscall not simulated")
@ -21,9 +21,9 @@ class CoreCache:
"""Extract a value from the core device cache.
After a value is extracted, it cannot be replaced with another value using
:meth:`put` until all kernel functions finish executing; attempting
to replace it will result in a :class:`~artiq.coredevice.exceptions.CacheError`.
to replace it will result in a :class:`artiq.coredevice.exceptions.CacheError`.
If the cache does not contain any value associated with `key`, an empty list
If the cache does not contain any value associated with ``key``, an empty list
is returned.
The value is not copied, so mutating it will change what's stored in the cache.

37
artiq/coredevice/comm.py Normal file
View File

@ -0,0 +1,37 @@
import sys
import socket
import logging
logger = logging.getLogger(__name__)
def set_keepalive(sock, after_idle, interval, max_fails):
if sys.platform.startswith("linux"):
sock.setsockopt(socket.SOL_SOCKET, socket.SO_KEEPALIVE, 1)
sock.setsockopt(socket.IPPROTO_TCP, socket.TCP_KEEPIDLE, after_idle)
sock.setsockopt(socket.IPPROTO_TCP, socket.TCP_KEEPINTVL, interval)
sock.setsockopt(socket.IPPROTO_TCP, socket.TCP_KEEPCNT, max_fails)
elif sys.platform.startswith("win") or sys.platform.startswith("cygwin"):
# setting max_fails is not supported, typically ends up being 5 or 10
# depending on Windows version
sock.ioctl(socket.SIO_KEEPALIVE_VALS,
(1, after_idle*1000, interval*1000))
else:
logger.warning("TCP keepalive not supported on platform '%s', ignored",
sys.platform)
def initialize_connection(host, port, ssh_transport=None):
if ssh_transport is None:
sock = socket.create_connection((host, port), 5.0)
sock.settimeout(None)
set_keepalive(sock, 3, 2, 3)
logger.debug("connected to %s:%d", host, port)
else:
sock = ssh_transport.open_channel("direct-tcpip", (host, port),
("localhost", 9999), timeout=5.0)
ssh_transport.set_keepalive(2)
logger.debug("connected to %s:%d via SSH transport to %s:%d",
host, port, *ssh_transport.getpeername())
return sock

View File

@ -2,22 +2,15 @@ from operator import itemgetter
from collections import namedtuple
from itertools import count
from contextlib import contextmanager
from sipyco import keepalive
import asyncio
from enum import Enum
import struct
import logging
import socket
import math
logger = logging.getLogger(__name__)
DEFAULT_REF_PERIOD = 1e-9
ANALYZER_MAGIC = b"ARTIQ Analyzer Proxy\n"
class MessageType(Enum):
output = 0b00
input = 0b01
@ -41,13 +34,6 @@ class ExceptionType(Enum):
i_overflow = 0b100001
class WaveformType(Enum):
ANALOG = 0
BIT = 1
VECTOR = 2
LOG = 3
def get_analyzer_dump(host, port=1382):
sock = socket.create_connection((host, port))
try:
@ -104,110 +90,30 @@ DecodedDump = namedtuple(
def decode_dump(data):
# extract endian byte
if data[0] == ord('E'):
endian = '>'
elif data[0] == ord('e'):
endian = '<'
else:
raise ValueError
data = data[1:]
# only header is device endian
# messages are big endian
parts = struct.unpack(endian + "IQbbb", data[:15])
parts = struct.unpack(">IQbbb", data[:15])
(sent_bytes, total_byte_count,
error_occurred, log_channel, dds_onehot_sel) = parts
logger.debug("analyzer dump has length %d", sent_bytes)
overflow_occured, log_channel, dds_onehot_sel) = parts
expected_len = sent_bytes + 15
if expected_len != len(data):
raise ValueError("analyzer dump has incorrect length "
"(got {}, expected {})".format(
len(data), expected_len))
if error_occurred:
logger.warning("error occurred within the analyzer, "
"data may be corrupted")
if overflow_occured:
logger.warning("analyzer FIFO overflow occured, "
"some messages have been lost")
if total_byte_count > sent_bytes:
logger.info("analyzer ring buffer has wrapped %d times",
total_byte_count//sent_bytes)
if sent_bytes == 0:
logger.warning("analyzer dump is empty")
position = 15
messages = []
for _ in range(sent_bytes//32):
messages.append(decode_message(data[position:position+32]))
position += 32
if len(messages) == 1 and isinstance(messages[0], StoppedMessage):
logger.warning("analyzer dump is empty aside from stop message")
return DecodedDump(log_channel, bool(dds_onehot_sel), messages)
# simplified from sipyco broadcast Receiver
class AnalyzerProxyReceiver:
def __init__(self, receive_cb, disconnect_cb=None):
self.receive_cb = receive_cb
self.disconnect_cb = disconnect_cb
async def connect(self, host, port):
self.reader, self.writer = \
await keepalive.async_open_connection(host, port)
try:
line = await self.reader.readline()
assert line == ANALYZER_MAGIC
self.receive_task = asyncio.create_task(self._receive_cr())
except:
self.writer.close()
del self.reader
del self.writer
raise
async def close(self):
self.disconnect_cb = None
try:
self.receive_task.cancel()
try:
await self.receive_task
except asyncio.CancelledError:
pass
finally:
self.writer.close()
del self.reader
del self.writer
async def _receive_cr(self):
try:
while True:
data = bytearray()
data.extend(await self.reader.read(1))
if len(data) == 0:
# EOF reached, connection lost
return
if data[0] == ord("E"):
endian = '>'
elif data[0] == ord("e"):
endian = '<'
else:
raise ValueError
data.extend(await self.reader.readexactly(4))
payload_length = struct.unpack(endian + "I", data[1:5])[0]
if payload_length > 10 * 512 * 1024:
# 10x buffer size of firmware
raise ValueError
# The remaining header length is 11 bytes.
data.extend(await self.reader.readexactly(payload_length + 11))
self.receive_cb(data)
except Exception:
logger.error("analyzer receiver connection terminating with exception", exc_info=True)
finally:
if self.disconnect_cb is not None:
self.disconnect_cb()
def vcd_codes():
codechars = [chr(i) for i in range(33, 127)]
for n in count():
@ -234,129 +140,38 @@ class VCDChannel:
integer_cast = struct.unpack(">Q", struct.pack(">d", x))[0]
self.set_value("{:064b}".format(integer_cast))
def set_log(self, log_message):
value = ""
for c in log_message:
value += "{:08b}".format(ord(c))
self.set_value(value)
class VCDManager:
def __init__(self, fileobj):
self.out = fileobj
self.codes = vcd_codes()
self.current_time = None
self.start_time = 0
def set_timescale_ps(self, timescale):
self.out.write("$timescale {}ps $end\n".format(round(timescale)))
def get_channel(self, name, width, ty, precision=0, unit=""):
def get_channel(self, name, width):
code = next(self.codes)
self.out.write("$var wire {width} {code} {name} $end\n"
.format(name=name, code=code, width=width))
return VCDChannel(self.out, code)
@contextmanager
def scope(self, scope, name):
self.out.write("$scope module {}/{} $end\n".format(scope, name))
def scope(self, name):
self.out.write("$scope module {} $end\n".format(name))
yield
self.out.write("$upscope $end\n")
def set_time(self, time):
time -= self.start_time
if time != self.current_time:
self.out.write("#{}\n".format(time))
self.current_time = time
def set_start_time(self, time):
self.start_time = time
def set_end_time(self, time):
pass
class WaveformManager:
def __init__(self):
self.current_time = 0
self.start_time = 0
self.end_time = 0
self.channels = list()
self.current_scope = ""
self.trace = {"timescale": 1, "stopped_x": None, "logs": dict(), "data": dict()}
def set_timescale_ps(self, timescale):
self.trace["timescale"] = int(timescale)
def get_channel(self, name, width, ty, precision=0, unit=""):
if ty == WaveformType.LOG:
self.trace["logs"][self.current_scope + name] = (ty, width, precision, unit)
data = self.trace["data"][self.current_scope + name] = list()
channel = WaveformChannel(data, self.current_time)
self.channels.append(channel)
return channel
@contextmanager
def scope(self, scope, name):
old_scope = self.current_scope
self.current_scope = scope + "/"
yield
self.current_scope = old_scope
def set_time(self, time):
time -= self.start_time
for channel in self.channels:
channel.set_time(time)
def set_start_time(self, time):
self.start_time = time
if self.trace["stopped_x"] is not None:
self.trace["stopped_x"] = self.end_time - self.start_time
def set_end_time(self, time):
self.end_time = time
self.trace["stopped_x"] = self.end_time - self.start_time
class WaveformChannel:
def __init__(self, data, current_time):
self.data = data
self.current_time = current_time
def set_value(self, value):
self.data.append((self.current_time, value))
def set_value_double(self, x):
self.data.append((self.current_time, x))
def set_time(self, time):
self.current_time = time
def set_log(self, log_message):
self.data.append((self.current_time, log_message))
class ChannelSignatureManager:
def __init__(self):
self.current_scope = ""
self.channels = dict()
def get_channel(self, name, width, ty, precision=0, unit=""):
self.channels[self.current_scope + name] = (ty, width, precision, unit)
return None
@contextmanager
def scope(self, scope, name):
old_scope = self.current_scope
self.current_scope = scope + "/"
yield
self.current_scope = old_scope
class TTLHandler:
def __init__(self, manager, name):
def __init__(self, vcd_manager, name):
self.name = name
self.channel_value = manager.get_channel("ttl/" + name, 1, ty=WaveformType.BIT)
self.channel_value = vcd_manager.get_channel("ttl/" + name, 1)
self.last_value = "X"
self.oe = True
@ -381,12 +196,11 @@ class TTLHandler:
class TTLClockGenHandler:
def __init__(self, manager, name, ref_period):
def __init__(self, vcd_manager, name, ref_period):
self.name = name
self.ref_period = ref_period
precision = max(0, math.ceil(math.log10(2**24 * ref_period) + 6))
self.channel_frequency = manager.get_channel(
"ttl_clkgen/" + name, 64, ty=WaveformType.ANALOG, precision=precision, unit="MHz")
self.channel_frequency = vcd_manager.get_channel(
"ttl_clkgen/" + name, 64)
def process_message(self, message):
if isinstance(message, OutputMessage):
@ -397,8 +211,8 @@ class TTLClockGenHandler:
class DDSHandler:
def __init__(self, manager, onehot_sel, sysclk):
self.manager = manager
def __init__(self, vcd_manager, onehot_sel, sysclk):
self.vcd_manager = vcd_manager
self.onehot_sel = onehot_sel
self.sysclk = sysclk
@ -407,18 +221,11 @@ class DDSHandler:
def add_dds_channel(self, name, dds_channel_nr):
dds_channel = dict()
frequency_precision = max(0, math.ceil(math.log10(2**32 / self.sysclk) + 6))
phase_precision = max(0, math.ceil(math.log10(2**16)))
with self.manager.scope("dds", name):
with self.vcd_manager.scope("dds/{}".format(name)):
dds_channel["vcd_frequency"] = \
self.manager.get_channel(name + "/frequency", 64,
ty=WaveformType.ANALOG,
precision=frequency_precision,
unit="MHz")
self.vcd_manager.get_channel(name + "/frequency", 64)
dds_channel["vcd_phase"] = \
self.manager.get_channel(name + "/phase", 64,
ty=WaveformType.ANALOG,
precision=phase_precision)
self.vcd_manager.get_channel(name + "/phase", 64)
dds_channel["ftw"] = [None, None]
dds_channel["pow"] = None
self.dds_channels[dds_channel_nr] = dds_channel
@ -468,10 +275,10 @@ class DDSHandler:
class WishboneHandler:
def __init__(self, manager, name, read_bit):
def __init__(self, vcd_manager, name, read_bit):
self._reads = []
self._read_bit = read_bit
self.stb = manager.get_channel(name + "/stb", 1, ty=WaveformType.BIT)
self.stb = vcd_manager.get_channel("{}/{}".format(name, "stb"), 1)
def process_message(self, message):
self.stb.set_value("1")
@ -501,17 +308,16 @@ class WishboneHandler:
class SPIMasterHandler(WishboneHandler):
def __init__(self, manager, name):
def __init__(self, vcd_manager, name):
self.channels = {}
self.scope = "spi"
with manager.scope("spi", name):
super().__init__(manager, name, read_bit=0b100)
with vcd_manager.scope("spi/{}".format(name)):
super().__init__(vcd_manager, name, read_bit=0b100)
for reg_name, reg_width in [
("config", 32), ("chip_select", 16),
("write_length", 8), ("read_length", 8),
("write", 32), ("read", 32)]:
self.channels[reg_name] = manager.get_channel(
"{}/{}".format(name, reg_name), reg_width, ty=WaveformType.VECTOR)
self.channels[reg_name] = vcd_manager.get_channel(
"{}/{}".format(name, reg_name), reg_width)
def process_write(self, address, data):
if address == 0:
@ -536,12 +342,11 @@ class SPIMasterHandler(WishboneHandler):
class SPIMaster2Handler(WishboneHandler):
def __init__(self, manager, name):
def __init__(self, vcd_manager, name):
self._reads = []
self.channels = {}
self.scope = "spi2"
with manager.scope("spi2", name):
self.stb = manager.get_channel(name + "/stb", 1, ty=WaveformType.BIT)
with vcd_manager.scope("spi2/{}".format(name)):
self.stb = vcd_manager.get_channel("{}/{}".format(name, "stb"), 1)
for reg_name, reg_width in [
("flags", 8),
("length", 5),
@ -549,14 +354,14 @@ class SPIMaster2Handler(WishboneHandler):
("chip_select", 8),
("write", 32),
("read", 32)]:
self.channels[reg_name] = manager.get_channel(
"{}/{}".format(name, reg_name), reg_width, ty=WaveformType.VECTOR)
self.channels[reg_name] = vcd_manager.get_channel(
"{}/{}".format(name, reg_name), reg_width)
def process_message(self, message):
self.stb.set_value("1")
self.stb.set_value("0")
data = message.data
if isinstance(message, OutputMessage):
data = message.data
address = message.address
if address == 1:
logger.debug("SPI config @%d data=0x%08x",
@ -598,12 +403,11 @@ def _extract_log_chars(data):
class LogHandler:
def __init__(self, manager, log_channels):
self.channels = dict()
for name, maxlength in log_channels.items():
self.channels[name] = manager.get_channel("logs/" + name,
maxlength * 8,
ty=WaveformType.LOG)
def __init__(self, vcd_manager, vcd_log_channels):
self.vcd_channels = dict()
for name, maxlength in vcd_log_channels.items():
self.vcd_channels[name] = vcd_manager.get_channel("log/" + name,
maxlength*8)
self.current_entry = ""
def process_message(self, message):
@ -611,12 +415,15 @@ class LogHandler:
self.current_entry += _extract_log_chars(message.data)
if len(self.current_entry) > 1 and self.current_entry[-1] == "\x1D":
channel_name, log_message = self.current_entry[:-1].split("\x1E", maxsplit=1)
self.channels[channel_name].set_log(log_message)
vcd_value = ""
for c in log_message:
vcd_value += "{:08b}".format(ord(c))
self.vcd_channels[channel_name].set_value(vcd_value)
self.current_entry = ""
def get_log_channels(log_channel, messages):
log_channels = dict()
def get_vcd_log_channels(log_channel, messages):
vcd_log_channels = dict()
log_entry = ""
for message in messages:
if (isinstance(message, OutputMessage)
@ -625,13 +432,13 @@ def get_log_channels(log_channel, messages):
if len(log_entry) > 1 and log_entry[-1] == "\x1D":
channel_name, log_message = log_entry[:-1].split("\x1E", maxsplit=1)
l = len(log_message)
if channel_name in log_channels:
if log_channels[channel_name] < l:
log_channels[channel_name] = l
if channel_name in vcd_log_channels:
if vcd_log_channels[channel_name] < l:
vcd_log_channels[channel_name] = l
else:
log_channels[channel_name] = l
vcd_log_channels[channel_name] = l
log_entry = ""
return log_channels
return vcd_log_channels
def get_single_device_argument(devices, module, cls, argument):
@ -655,10 +462,10 @@ def get_ref_period(devices):
def get_dds_sysclk(devices):
return get_single_device_argument(devices, "artiq.coredevice.ad9914",
("AD9914",), "sysclk")
("ad9914",), "sysclk")
def create_channel_handlers(manager, devices, ref_period,
def create_channel_handlers(vcd_manager, devices, ref_period,
dds_sysclk, dds_onehot_sel):
channel_handlers = dict()
for name, desc in sorted(devices.items(), key=itemgetter(0)):
@ -666,11 +473,11 @@ def create_channel_handlers(manager, devices, ref_period,
if (desc["module"] == "artiq.coredevice.ttl"
and desc["class"] in {"TTLOut", "TTLInOut"}):
channel = desc["arguments"]["channel"]
channel_handlers[channel] = TTLHandler(manager, name)
channel_handlers[channel] = TTLHandler(vcd_manager, name)
if (desc["module"] == "artiq.coredevice.ttl"
and desc["class"] == "TTLClockGen"):
channel = desc["arguments"]["channel"]
channel_handlers[channel] = TTLClockGenHandler(manager, name, ref_period)
channel_handlers[channel] = TTLClockGenHandler(vcd_manager, name, ref_period)
if (desc["module"] == "artiq.coredevice.ad9914"
and desc["class"] == "AD9914"):
dds_bus_channel = desc["arguments"]["bus_channel"]
@ -678,104 +485,63 @@ def create_channel_handlers(manager, devices, ref_period,
if dds_bus_channel in channel_handlers:
dds_handler = channel_handlers[dds_bus_channel]
else:
dds_handler = DDSHandler(manager, dds_onehot_sel, dds_sysclk)
dds_handler = DDSHandler(vcd_manager, desc["class"],
dds_onehot_sel, dds_sysclk)
channel_handlers[dds_bus_channel] = dds_handler
dds_handler.add_dds_channel(name, dds_channel)
if (desc["module"] == "artiq.coredevice.spi2" and
desc["class"] == "SPIMaster"):
channel = desc["arguments"]["channel"]
channel_handlers[channel] = SPIMaster2Handler(
manager, name)
vcd_manager, name)
return channel_handlers
def get_channel_list(devices):
manager = ChannelSignatureManager()
create_channel_handlers(manager, devices, 1e-9, 3e9, False)
ref_period = get_ref_period(devices)
if ref_period is None:
ref_period = DEFAULT_REF_PERIOD
precision = max(0, math.ceil(math.log10(1 / ref_period) - 6))
manager.get_channel("rtio_slack", 64, ty=WaveformType.ANALOG, precision=precision, unit="us")
return manager.channels
def get_message_time(message):
return getattr(message, "timestamp", message.rtio_counter)
def decoded_dump_to_vcd(fileobj, devices, dump, uniform_interval=False):
def decoded_dump_to_vcd(fileobj, devices, dump):
vcd_manager = VCDManager(fileobj)
decoded_dump_to_target(vcd_manager, devices, dump, uniform_interval)
def decoded_dump_to_waveform_data(devices, dump, uniform_interval=False):
manager = WaveformManager()
decoded_dump_to_target(manager, devices, dump, uniform_interval)
return manager.trace
def decoded_dump_to_target(manager, devices, dump, uniform_interval):
ref_period = get_ref_period(devices)
if ref_period is None:
if ref_period is not None:
vcd_manager.set_timescale_ps(ref_period*1e12)
else:
logger.warning("unable to determine core device ref_period")
ref_period = DEFAULT_REF_PERIOD
if not uniform_interval:
manager.set_timescale_ps(ref_period*1e12)
ref_period = 1e-9 # guess
dds_sysclk = get_dds_sysclk(devices)
if dds_sysclk is None:
logger.warning("unable to determine DDS sysclk")
dds_sysclk = 3e9 # guess
messages = sorted(dump.messages, key=get_message_time)
if isinstance(dump.messages[-1], StoppedMessage):
messages = dump.messages[:-1]
else:
logger.warning("StoppedMessage missing")
messages = dump.messages
messages = sorted(messages, key=get_message_time)
channel_handlers = create_channel_handlers(
manager, devices, ref_period,
vcd_manager, devices, ref_period,
dds_sysclk, dump.dds_onehot_sel)
log_channels = get_log_channels(dump.log_channel, messages)
vcd_log_channels = get_vcd_log_channels(dump.log_channel, messages)
channel_handlers[dump.log_channel] = LogHandler(
manager, log_channels)
if uniform_interval:
# RTIO event timestamp in machine units
timestamp = manager.get_channel("timestamp", 64, ty=WaveformType.VECTOR)
# RTIO time interval between this and the next timed event
# in SI seconds
interval = manager.get_channel("interval", 64, ty=WaveformType.ANALOG)
slack = manager.get_channel("rtio_slack", 64, ty=WaveformType.ANALOG)
vcd_manager, vcd_log_channels)
slack = vcd_manager.get_channel("rtio_slack", 64)
stopped_messages = []
manager.set_time(0)
vcd_manager.set_time(0)
start_time = 0
for m in messages:
start_time = get_message_time(m)
if start_time:
break
if not uniform_interval:
manager.set_start_time(start_time)
t0 = start_time
for i, message in enumerate(messages):
if isinstance(message, StoppedMessage):
stopped_messages.append(message)
logger.debug(f"StoppedMessage at {get_message_time(message)}")
elif message.channel in channel_handlers:
t = get_message_time(message)
for message in messages:
if message.channel in channel_handlers:
t = get_message_time(message) - start_time
if t >= 0:
if uniform_interval:
interval.set_value_double((t - t0)*ref_period)
manager.set_time(i)
timestamp.set_value("{:064b}".format(t))
t0 = t
else:
manager.set_time(t)
vcd_manager.set_time(t)
channel_handlers[message.channel].process_message(message)
if isinstance(message, OutputMessage):
slack.set_value_double(
(message.timestamp - message.rtio_counter)*ref_period)
if not stopped_messages:
logger.warning("StoppedMessage missing")
else:
end_time = get_message_time(stopped_messages[-1])
manager.set_end_time(end_time)

View File

@ -2,15 +2,14 @@ import struct
import logging
import traceback
import numpy
import socket
import builtins
from enum import Enum
from fractions import Fraction
from collections import namedtuple
from artiq.coredevice import exceptions
from artiq.coredevice.comm import initialize_connection
from artiq import __version__ as software_version
from sipyco.keepalive import create_connection
logger = logging.getLogger(__name__)
@ -24,8 +23,6 @@ class Request(Enum):
RPCReply = 7
RPCException = 8
SubkernelUpload = 9
class Reply(Enum):
SystemInfo = 2
@ -39,17 +36,16 @@ class Reply(Enum):
RPCRequest = 10
WatchdogExpired = 14
ClockFailure = 15
class UnsupportedDevice(Exception):
pass
class LoadError(Exception):
pass
class RPCReturnValueError(ValueError):
pass
@ -57,105 +53,6 @@ class RPCReturnValueError(ValueError):
RPCKeyword = namedtuple('RPCKeyword', ['name', 'value'])
def _receive_fraction(kernel, embedding_map):
numerator = kernel._read_int64()
denominator = kernel._read_int64()
return Fraction(numerator, denominator)
def _receive_list(kernel, embedding_map):
length = kernel._read_int32()
tag = chr(kernel._read_int8())
if tag == "b":
buffer = kernel._read(length)
return list(struct.unpack(kernel.endian + "%s?" % length, buffer))
elif tag == "i":
buffer = kernel._read(4 * length)
return list(struct.unpack(kernel.endian + "%sl" % length, buffer))
elif tag == "I":
buffer = kernel._read(8 * length)
return list(numpy.ndarray((length, ), kernel.endian + 'i8', buffer))
elif tag == "f":
buffer = kernel._read(8 * length)
return list(struct.unpack(kernel.endian + "%sd" % length, buffer))
else:
fn = receivers[tag]
elems = []
for _ in range(length):
# discard tag, as our device would still send the tag for each
# non-primitive elements.
kernel._read_int8()
item = fn(kernel, embedding_map)
elems.append(item)
return elems
def _receive_array(kernel, embedding_map):
num_dims = kernel._read_int8()
shape = tuple(kernel._read_int32() for _ in range(num_dims))
tag = chr(kernel._read_int8())
fn = receivers[tag]
length = numpy.prod(shape)
if tag == "b":
buffer = kernel._read(length)
elems = numpy.ndarray((length, ), '?', buffer)
elif tag == "i":
buffer = kernel._read(4 * length)
elems = numpy.ndarray((length, ), kernel.endian + 'i4', buffer)
elif tag == "I":
buffer = kernel._read(8 * length)
elems = numpy.ndarray((length, ), kernel.endian + 'i8', buffer)
elif tag == "f":
buffer = kernel._read(8 * length)
elems = numpy.ndarray((length, ), kernel.endian + 'd', buffer)
else:
fn = receivers[tag]
elems = []
for _ in range(numpy.prod(shape)):
# discard the tag
kernel._read_int8()
item = fn(kernel, embedding_map)
elems.append(item)
elems = numpy.array(elems)
return elems.reshape(shape)
def _receive_range(kernel, embedding_map):
start = kernel._receive_rpc_value(embedding_map)
stop = kernel._receive_rpc_value(embedding_map)
step = kernel._receive_rpc_value(embedding_map)
return range(start, stop, step)
def _receive_keyword(kernel, embedding_map):
name = kernel._read_string()
value = kernel._receive_rpc_value(embedding_map)
return RPCKeyword(name, value)
receivers = {
"\x00": lambda kernel, embedding_map: kernel._rpc_sentinel,
"t": lambda kernel, embedding_map:
tuple(kernel._receive_rpc_value(embedding_map)
for _ in range(kernel._read_int8())),
"n": lambda kernel, embedding_map: None,
"b": lambda kernel, embedding_map: bool(kernel._read_int8()),
"i": lambda kernel, embedding_map: numpy.int32(kernel._read_int32()),
"I": lambda kernel, embedding_map: numpy.int64(kernel._read_int64()),
"f": lambda kernel, embedding_map: kernel._read_float64(),
"s": lambda kernel, embedding_map: kernel._read_string(),
"B": lambda kernel, embedding_map: kernel._read_bytes(),
"A": lambda kernel, embedding_map: kernel._read_bytes(),
"O": lambda kernel, embedding_map:
embedding_map.retrieve_object(kernel._read_int32()),
"F": _receive_fraction,
"l": _receive_list,
"a": _receive_array,
"r": _receive_range,
"k": _receive_keyword
}
class CommKernelDummy:
def __init__(self):
pass
@ -173,16 +70,6 @@ class CommKernelDummy:
pass
def incompatible_versions(v1, v2):
if v1.endswith(".beta") or v2.endswith(".beta"):
# Beta branches may introduce breaking changes. Check version strictly.
return v1 != v2
else:
# On stable branches, runtime/software protocol backward compatibility is kept.
# Runtime and software with the same major version number are compatible.
return v1.split(".", maxsplit=1)[0] != v2.split(".", maxsplit=1)[0]
class CommKernel:
warned_of_mismatch = False
@ -190,31 +77,12 @@ class CommKernel:
self._read_type = None
self.host = host
self.port = port
self.read_buffer = bytearray()
self.write_buffer = bytearray()
def open(self):
def open(self, **kwargs):
if hasattr(self, "socket"):
return
self.socket = create_connection(self.host, self.port)
self.socket = initialize_connection(self.host, self.port, **kwargs)
self.socket.sendall(b"ARTIQ coredev\n")
endian = self._read(1)
if endian == b"e":
self.endian = "<"
elif endian == b"E":
self.endian = ">"
else:
raise IOError("Incorrect reply from device: expected e/E.")
self.unpack_int32 = struct.Struct(self.endian + "l").unpack
self.unpack_int64 = struct.Struct(self.endian + "q").unpack
self.unpack_float64 = struct.Struct(self.endian + "d").unpack
self.pack_header = struct.Struct(self.endian + "lB").pack
self.pack_int8 = struct.Struct(self.endian + "B").pack
self.pack_int32 = struct.Struct(self.endian + "l").pack
self.pack_int64 = struct.Struct(self.endian + "q").pack
self.pack_float64 = struct.Struct(self.endian + "d").pack
def close(self):
if not hasattr(self, "socket"):
@ -223,41 +91,36 @@ class CommKernel:
del self.socket
logger.debug("disconnected")
def read(self, length):
r = bytes()
while len(r) < length:
rn = self.socket.recv(min(8192, length - len(r)))
if not rn:
raise ConnectionResetError("Connection closed")
r += rn
return r
def write(self, data):
self.socket.sendall(data)
#
# Reader interface
#
def _read(self, length):
# cache the reads to avoid frequent call to recv
while len(self.read_buffer) < length:
# the number is just the maximum amount
# when there is not much data, it would return earlier
diff = length - len(self.read_buffer)
flag = 0
if diff > 8192:
flag |= socket.MSG_WAITALL
new_buffer = self.socket.recv(8192, flag)
if not new_buffer:
raise ConnectionResetError("Core device connection closed unexpectedly")
self.read_buffer += new_buffer
result = self.read_buffer[:length]
self.read_buffer = self.read_buffer[length:]
return result
def _read_header(self):
self.open()
# Wait for a synchronization sequence, 5a 5a 5a 5a.
sync_count = 0
while sync_count < 4:
sync_byte = self._read(1)[0]
(sync_byte, ) = struct.unpack("B", self.read(1))
if sync_byte == 0x5a:
sync_count += 1
else:
sync_count = 0
# Read message header.
raw_type = self._read(1)[0]
(raw_type, ) = struct.unpack("B", self.read(1))
self._read_type = Reply(raw_type)
logger.debug("receiving message: type=%r",
@ -272,26 +135,30 @@ class CommKernel:
self._read_header()
self._read_expect(ty)
def _read_chunk(self, length):
return self.read(length)
def _read_int8(self):
return self._read(1)[0]
(value, ) = struct.unpack("B", self._read_chunk(1))
return value
def _read_int32(self):
(value, ) = self.unpack_int32(self._read(4))
(value, ) = struct.unpack(">l", self._read_chunk(4))
return value
def _read_int64(self):
(value, ) = self.unpack_int64(self._read(8))
(value, ) = struct.unpack(">q", self._read_chunk(8))
return value
def _read_float64(self):
(value, ) = self.unpack_float64(self._read(8))
(value, ) = struct.unpack(">d", self._read_chunk(8))
return value
def _read_bool(self):
return True if self._read_int8() else False
def _read_bytes(self):
return self._read(self._read_int32())
return self._read_chunk(self._read_int32())
def _read_string(self):
return self._read_bytes().decode("utf-8")
@ -300,49 +167,38 @@ class CommKernel:
# Writer interface
#
def _write(self, data):
self.write_buffer += data
# if the buffer is already pretty large, send it
# the block size is arbitrary, tuning it may improve performance
if len(self.write_buffer) > 4096:
self._flush()
def _flush(self):
self.socket.sendall(self.write_buffer)
self.write_buffer.clear()
def _write_header(self, ty):
self.open()
logger.debug("sending message: type=%r", ty)
# Write synchronization sequence and header.
self._write(self.pack_header(0x5a5a5a5a, ty.value))
self.write(struct.pack(">lB", 0x5a5a5a5a, ty.value))
def _write_empty(self, ty):
self._write_header(ty)
def _write_chunk(self, chunk):
self._write(chunk)
self.write(chunk)
def _write_int8(self, value):
self._write(self.pack_int8(value))
self.write(struct.pack("B", value))
def _write_int32(self, value):
self._write(self.pack_int32(value))
self.write(struct.pack(">l", value))
def _write_int64(self, value):
self._write(self.pack_int64(value))
self.write(struct.pack(">q", value))
def _write_float64(self, value):
self._write(self.pack_float64(value))
self.write(struct.pack(">d", value))
def _write_bool(self, value):
self._write(b'\x01' if value else b'\x00')
self.write(struct.pack("B", value))
def _write_bytes(self, value):
self._write_int32(len(value))
self._write(value)
self.write(value)
def _write_string(self, value):
self._write_bytes(value.encode("utf-8"))
@ -351,47 +207,33 @@ class CommKernel:
# Exported APIs
#
def reset_session(self):
self.write(struct.pack(">ll", 0x5a5a5a5a, 0))
def check_system_info(self):
self._write_empty(Request.SystemInfo)
self._flush()
self._read_header()
self._read_expect(Reply.SystemInfo)
runtime_id = self._read(4)
if runtime_id == b"AROR":
gateware_version = self._read_string().split(";")[0]
if not self.warned_of_mismatch and incompatible_versions(gateware_version, software_version):
logger.warning("Mismatch between gateware (%s) "
"and software (%s) versions",
gateware_version, software_version)
CommKernel.warned_of_mismatch = True
finished_cleanly = self._read_bool()
if not finished_cleanly:
logger.warning("Previous kernel did not cleanly finish")
elif runtime_id == b"ARZQ":
pass
else:
runtime_id = self._read_chunk(4)
if runtime_id != b"AROR":
raise UnsupportedDevice("Unsupported runtime ID: {}"
.format(runtime_id))
gateware_version = self._read_string().split(";")[0]
if gateware_version != software_version and not self.warned_of_mismatch:
logger.warning("Mismatch between gateware (%s) "
"and software (%s) versions",
gateware_version, software_version)
CommKernel.warned_of_mismatch = True
finished_cleanly = self._read_bool()
if not finished_cleanly:
logger.warning("Previous kernel did not cleanly finish")
def load(self, kernel_library):
self._write_header(Request.LoadKernel)
self._write_bytes(kernel_library)
self._flush()
self._read_header()
if self._read_type == Reply.LoadFailed:
raise LoadError(self._read_string())
else:
self._read_expect(Reply.LoadCompleted)
def upload_subkernel(self, kernel_library, id, destination):
self._write_header(Request.SubkernelUpload)
self._write_int32(id)
self._write_int8(destination)
self._write_bytes(kernel_library)
self._flush()
self._read_header()
if self._read_type == Reply.LoadFailed:
@ -401,16 +243,55 @@ class CommKernel:
def run(self):
self._write_empty(Request.RunKernel)
self._flush()
logger.debug("running kernel")
_rpc_sentinel = object()
# See rpc_proto.rs and compiler/ir.py:rpc_tag.
# See session.c:{send,receive}_rpc_value and llvm_ir_generator.py:_rpc_tag.
def _receive_rpc_value(self, embedding_map):
tag = chr(self._read_int8())
if tag in receivers:
return receivers.get(tag)(self, embedding_map)
if tag == "\x00":
return self._rpc_sentinel
elif tag == "t":
length = self._read_int8()
return tuple(self._receive_rpc_value(embedding_map) for _ in range(length))
elif tag == "n":
return None
elif tag == "b":
return bool(self._read_int8())
elif tag == "i":
return numpy.int32(self._read_int32())
elif tag == "I":
return numpy.int64(self._read_int64())
elif tag == "f":
return self._read_float64()
elif tag == "F":
numerator = self._read_int64()
denominator = self._read_int64()
return Fraction(numerator, denominator)
elif tag == "s":
return self._read_string()
elif tag == "B":
return self._read_bytes()
elif tag == "A":
return self._read_bytes()
elif tag == "l":
length = self._read_int32()
return [self._receive_rpc_value(embedding_map) for _ in range(length)]
elif tag == "a":
length = self._read_int32()
return numpy.array([self._receive_rpc_value(embedding_map) for _ in range(length)])
elif tag == "r":
start = self._receive_rpc_value(embedding_map)
stop = self._receive_rpc_value(embedding_map)
step = self._receive_rpc_value(embedding_map)
return range(start, stop, step)
elif tag == "k":
name = self._read_string()
value = self._receive_rpc_value(embedding_map)
return RPCKeyword(name, value)
elif tag == "O":
return embedding_map.retrieve_object(self._read_int32())
else:
raise IOError("Unknown RPC value tag: {}".format(repr(tag)))
@ -426,7 +307,7 @@ class CommKernel:
args.append(value)
def _skip_rpc_value(self, tags):
tag = chr(tags.pop(0))
tag = tags.pop(0)
if tag == "t":
length = tags.pop(0)
for _ in range(length):
@ -435,9 +316,6 @@ class CommKernel:
self._skip_rpc_value(tags)
elif tag == "r":
self._skip_rpc_value(tags)
elif tag == "a":
_ndims = tags.pop(0)
self._skip_rpc_value(tags)
else:
pass
@ -463,15 +341,15 @@ class CommKernel:
elif tag == "b":
check(isinstance(value, bool),
lambda: "bool")
self._write_bool(value)
self._write_int8(value)
elif tag == "i":
check(isinstance(value, (int, numpy.int32)) and
(-2**31 <= value <= 2**31-1),
(-2**31 < value < 2**31-1),
lambda: "32-bit int")
self._write_int32(value)
elif tag == "I":
check(isinstance(value, (int, numpy.int32, numpy.int64)) and
(-2**63 <= value <= 2**63-1),
(-2**63 < value < 2**63-1),
lambda: "64-bit int")
self._write_int64(value)
elif tag == "f":
@ -480,8 +358,8 @@ class CommKernel:
self._write_float64(value)
elif tag == "F":
check(isinstance(value, Fraction) and
(-2**63 <= value.numerator <= 2**63-1) and
(-2**63 <= value.denominator <= 2**63-1),
(-2**63 < value.numerator < 2**63-1) and
(-2**63 < value.denominator < 2**63-1),
lambda: "64-bit Fraction")
self._write_int64(value.numerator)
self._write_int64(value.denominator)
@ -501,58 +379,9 @@ class CommKernel:
check(isinstance(value, list),
lambda: "list")
self._write_int32(len(value))
tag_element = chr(tags[0])
if tag_element == "b":
self._write(bytes(value))
elif tag_element == "i":
try:
self._write(struct.pack(self.endian + "%sl" % len(value), *value))
except struct.error:
raise RPCReturnValueError(
"type mismatch: cannot serialize {value} as {type}".format(
value=repr(value), type="32-bit integer list"))
elif tag_element == "I":
try:
self._write(struct.pack(self.endian + "%sq" % len(value), *value))
except struct.error:
raise RPCReturnValueError(
"type mismatch: cannot serialize {value} as {type}".format(
value=repr(value), type="64-bit integer list"))
elif tag_element == "f":
self._write(struct.pack(self.endian + "%sd" %
len(value), *value))
else:
for elt in value:
tags_copy = bytearray(tags)
self._send_rpc_value(tags_copy, elt, root, function)
self._skip_rpc_value(tags)
elif tag == "a":
check(isinstance(value, numpy.ndarray),
lambda: "numpy.ndarray")
num_dims = tags.pop(0)
check(num_dims == len(value.shape),
lambda: "{}-dimensional numpy.ndarray".format(num_dims))
for s in value.shape:
self._write_int32(s)
tag_element = chr(tags[0])
if tag_element == "b":
self._write(value.reshape((-1,), order="C").tobytes())
elif tag_element == "i":
array = value.reshape(
(-1,), order="C").astype(self.endian + 'i4')
self._write(array.tobytes())
elif tag_element == "I":
array = value.reshape(
(-1,), order="C").astype(self.endian + 'i8')
self._write(array.tobytes())
elif tag_element == "f":
array = value.reshape(
(-1,), order="C").astype(self.endian + 'd')
self._write(array.tobytes())
else:
for elt in value.reshape((-1,), order="C"):
tags_copy = bytearray(tags)
self._send_rpc_value(tags_copy, elt, root, function)
for elt in value:
tags_copy = bytearray(tags)
self._send_rpc_value(tags_copy, elt, root, function)
self._skip_rpc_value(tags)
elif tag == "r":
check(isinstance(value, range),
@ -574,60 +403,59 @@ class CommKernel:
return msg
def _serve_rpc(self, embedding_map):
is_async = self._read_bool()
service_id = self._read_int32()
async = self._read_bool()
service_id = self._read_int32()
args, kwargs = self._receive_rpc_args(embedding_map)
return_tags = self._read_bytes()
return_tags = self._read_bytes()
if service_id == 0:
def service(obj, attr, value): return setattr(obj, attr, value)
if service_id is 0:
service = lambda obj, attr, value: setattr(obj, attr, value)
else:
service = embedding_map.retrieve_object(service_id)
service = embedding_map.retrieve_object(service_id)
logger.debug("rpc service: [%d]%r%s %r %r -> %s", service_id, service,
(" (async)" if is_async else ""), args, kwargs, return_tags)
(" (async)" if async else ""), args, kwargs, return_tags)
if is_async:
if async:
service(*args, **kwargs)
return
try:
result = service(*args, **kwargs)
logger.debug("rpc service: %d %r %r = %r", service_id, args, kwargs, result)
self._write_header(Request.RPCReply)
self._write_bytes(return_tags)
self._send_rpc_value(bytearray(return_tags), result, result, service)
except RPCReturnValueError as exn:
raise
except Exception as exn:
logger.debug("rpc service: %d %r %r ! %r",
service_id, args, kwargs, exn)
logger.debug("rpc service: %d %r %r ! %r", service_id, args, kwargs, exn)
self._write_header(Request.RPCException)
# Note: instead of sending strings, we send object ID
# This is to avoid the need of allocatio on the device side
# This is a special case: this only applies to exceptions
if hasattr(exn, "artiq_core_exception"):
exn = exn.artiq_core_exception
self._write_int32(embedding_map.store_str(exn.name))
self._write_int32(embedding_map.store_str(self._truncate_message(exn.message)))
self._write_string(exn.name)
self._write_string(self._truncate_message(exn.message))
for index in range(3):
self._write_int64(exn.param[index])
filename, line, column, function = exn.traceback[-1]
self._write_int32(embedding_map.store_str(filename))
self._write_string(filename)
self._write_int32(line)
self._write_int32(column)
self._write_int32(embedding_map.store_str(function))
self._write_string(function)
else:
exn_type = type(exn)
if exn_type in builtins.__dict__.values():
name = "0:{}".format(exn_type.__qualname__)
elif hasattr(exn, "artiq_builtin"):
name = "0:{}.{}".format(exn_type.__module__, exn_type.__qualname__)
if exn_type in (ZeroDivisionError, ValueError, IndexError, RuntimeError) or \
hasattr(exn, "artiq_builtin"):
self._write_string("0:{}".format(exn_type.__name__))
else:
exn_id = embedding_map.store_object(exn_type)
name = "{}:{}.{}".format(exn_id,
exn_type.__module__,
exn_type.__qualname__)
self._write_int32(embedding_map.store_str(name))
self._write_int32(embedding_map.store_str(self._truncate_message(str(exn))))
self._write_string("{}:{}.{}".format(exn_id,
exn_type.__module__,
exn_type.__qualname__))
self._write_string(self._truncate_message(str(exn)))
for index in range(3):
self._write_int64(0)
@ -638,98 +466,36 @@ class CommKernel:
((filename, line, function, _), ) = tb
else:
assert False
self._write_int32(embedding_map.store_str(filename))
self._write_string(filename)
self._write_int32(line)
self._write_int32(-1) # column not known
self._write_int32(embedding_map.store_str(function))
self._flush()
else:
logger.debug("rpc service: %d %r %r = %r",
service_id, args, kwargs, result)
self._write_header(Request.RPCReply)
self._write_bytes(return_tags)
self._send_rpc_value(bytearray(return_tags),
result, result, service)
self._flush()
self._write_int32(-1) # column not known
self._write_string(function)
def _serve_exception(self, embedding_map, symbolizer, demangler):
exception_count = self._read_int32()
nested_exceptions = []
name = self._read_string()
message = self._read_string()
params = [self._read_int64() for _ in range(3)]
def read_exception_string():
# note: if length == -1, the following int32 is the object key
length = self._read_int32()
if length == -1:
return embedding_map.retrieve_str(self._read_int32())
else:
return self._read(length).decode("utf-8")
filename = self._read_string()
line = self._read_int32()
column = self._read_int32()
function = self._read_string()
for _ in range(exception_count):
name = embedding_map.retrieve_str(self._read_int32())
message = read_exception_string()
params = [self._read_int64() for _ in range(3)]
backtrace = [self._read_int32() for _ in range(self._read_int32())]
filename = read_exception_string()
line = self._read_int32()
column = self._read_int32()
function = read_exception_string()
nested_exceptions.append([name, message, params,
filename, line, column, function])
demangled_names = demangler([ex[6] for ex in nested_exceptions])
for i in range(exception_count):
nested_exceptions[i][6] = demangled_names[i]
exception_info = []
for _ in range(exception_count):
sp = self._read_int32()
initial_backtrace = self._read_int32()
current_backtrace = self._read_int32()
exception_info.append((sp, initial_backtrace, current_backtrace))
backtrace = []
stack_pointers = []
for _ in range(self._read_int32()):
backtrace.append(self._read_int32())
stack_pointers.append(self._read_int32())
self._process_async_error()
traceback = list(symbolizer(backtrace))
core_exn = exceptions.CoreException(nested_exceptions, exception_info,
traceback, stack_pointers)
traceback = list(reversed(symbolizer(backtrace))) + \
[(filename, line, column, *demangler([function]), None)]
core_exn = exceptions.CoreException(name, message, params, traceback)
if core_exn.id == 0:
python_exn_type = getattr(exceptions, core_exn.name.split('.')[-1])
else:
python_exn_type = embedding_map.retrieve_object(core_exn.id)
try:
message = nested_exceptions[0][1].format(*nested_exceptions[0][2])
except:
message = nested_exceptions[0][1]
logger.error("Couldn't format exception message", exc_info=True)
try:
python_exn = python_exn_type(message)
except Exception as ex:
python_exn = RuntimeError(
f"Exception type={python_exn_type}, which couldn't be "
f"reconstructed ({ex})"
)
python_exn = python_exn_type(message.format(*params))
python_exn.artiq_core_exception = core_exn
raise python_exn
def _process_async_error(self):
errors = self._read_int8()
if errors > 0:
map_name = lambda y, z: [f"{y}(s)"] if z else []
errors = map_name("collision", errors & 2 ** 0) + \
map_name("busy error", errors & 2 ** 1) + \
map_name("sequence error", errors & 2 ** 2)
logger.warning(f"{(', '.join(errors[:-1]) + ' and ') if len(errors) > 1 else ''}{errors[-1]} "
f"reported during kernel execution")
def serve(self, embedding_map, symbolizer, demangler):
while True:
self._read_header()
@ -737,9 +503,10 @@ class CommKernel:
self._serve_rpc(embedding_map)
elif self._read_type == Reply.KernelException:
self._serve_exception(embedding_map, symbolizer, demangler)
elif self._read_type == Reply.WatchdogExpired:
raise exceptions.WatchdogExpired
elif self._read_type == Reply.ClockFailure:
raise exceptions.ClockFailure
else:
self._read_expect(Reply.KernelFinished)
self._process_async_error()
return

View File

@ -1,10 +1,10 @@
from enum import Enum
import binascii
import logging
import io
import socket
import struct
from sipyco.keepalive import create_connection
from artiq.coredevice.comm import initialize_connection
logger = logging.getLogger(__name__)
@ -21,12 +21,15 @@ class Request(Enum):
ConfigRemove = 14
ConfigErase = 15
StartProfiler = 9
StopProfiler = 10
GetProfile = 11
Hotswap = 4
Reboot = 5
DebugAllocator = 8
Flash = 9
class Reply(Enum):
Success = 1
@ -37,6 +40,8 @@ class Reply(Enum):
ConfigData = 7
Profile = 5
RebootImminent = 3
@ -50,24 +55,15 @@ class LogLevel(Enum):
class CommMgmt:
def __init__(self, host, port=1380, drtio_dest=0):
def __init__(self, host, port=1380):
self.host = host
self.port = port
self.drtio_dest = drtio_dest
def open(self):
def open(self, **kwargs):
if hasattr(self, "socket"):
return
self.socket = create_connection(self.host, self.port)
self.socket = initialize_connection(self.host, self.port, **kwargs)
self.socket.sendall(b"ARTIQ management\n")
self._write_int8(self.drtio_dest)
endian = self._read(1)
if endian == b"e":
self.endian = "<"
elif endian == b"E":
self.endian = ">"
else:
raise IOError("Incorrect reply from device: expected e/E.")
def close(self):
if not hasattr(self, "socket"):
@ -91,7 +87,7 @@ class CommMgmt:
self._write(struct.pack("B", value))
def _write_int32(self, value):
self._write(struct.pack(self.endian + "l", value))
self._write(struct.pack(">l", value))
def _write_bytes(self, value):
self._write_int32(len(value))
@ -116,13 +112,12 @@ class CommMgmt:
return ty
def _read_expect(self, ty):
header = self._read_header()
if header != ty:
if self._read_header() != ty:
raise IOError("Incorrect reply from device: {} (expected {})".
format(header, ty))
format(self._read_type, ty))
def _read_int32(self):
(value, ) = struct.unpack(self.endian + "l", self._read(4))
(value, ) = struct.unpack(">l", self._read(4))
return value
def _read_bytes(self):
@ -166,12 +161,7 @@ class CommMgmt:
def config_read(self, key):
self._write_header(Request.ConfigRead)
self._write_string(key)
ty = self._read_header()
if ty == Reply.Error:
raise IOError("Device failed to read config. The key may not exist.")
elif ty != Reply.ConfigData:
raise IOError("Incorrect reply from device: {} (expected {})".
format(ty, Reply.ConfigData))
self._read_expect(Reply.ConfigData)
return self._read_string()
def config_write(self, key, value):
@ -180,7 +170,7 @@ class CommMgmt:
self._write_bytes(value)
ty = self._read_header()
if ty == Reply.Error:
raise IOError("Device failed to write config. More information may be available in the log.")
raise IOError("Flash storage is full")
elif ty != Reply.Success:
raise IOError("Incorrect reply from device: {} (expected {})".
format(ty, Reply.Success))
@ -194,28 +184,48 @@ class CommMgmt:
self._write_header(Request.ConfigErase)
self._read_expect(Reply.Success)
def start_profiler(self, interval, edges_size, hits_size):
self._write_header(Request.StartProfiler)
self._write_int32(interval)
self._write_int32(edges_size)
self._write_int32(hits_size)
self._read_expect(Reply.Success)
def stop_profiler(self):
self._write_header(Request.StopProfiler)
self._read_expect(Reply.Success)
def stop_profiler(self):
self._write_header(Request.StopProfiler)
self._read_expect(Reply.Success)
def get_profile(self):
self._write_header(Request.GetProfile)
self._read_expect(Reply.Profile)
hits = {}
for _ in range(self._read_int32()):
addr = self._read_int32()
count = self._read_int32()
hits[addr] = count
edges = {}
for _ in range(self._read_int32()):
caller = self._read_int32()
callee = self._read_int32()
count = self._read_int32()
edges[(caller, callee)] = count
return hits, edges
def hotswap(self, firmware):
self._write_header(Request.Hotswap)
self._write_bytes(firmware)
self._read_expect(Reply.RebootImminent)
def reboot(self):
self._write_header(Request.Reboot)
self._read_expect(Reply.RebootImminent)
def debug_allocator(self):
self._write_header(Request.DebugAllocator)
def flash(self, bin_paths):
self._write_header(Request.Flash)
with io.BytesIO() as image_buf:
for filename in bin_paths:
with open(filename, "rb") as fi:
bin_ = fi.read()
if (len(bin_paths) > 1):
image_buf.write(
struct.pack(self.endian + "I", len(bin_)))
image_buf.write(bin_)
crc = binascii.crc32(image_buf.getvalue())
image_buf.write(struct.pack(self.endian + "I", crc))
self._write_bytes(image_buf.getvalue())
self._read_expect(Reply.RebootImminent)

View File

@ -3,7 +3,6 @@ import logging
import struct
from enum import Enum
from sipyco.keepalive import async_open_connection
__all__ = ["TTLProbe", "TTLOverride", "CommMonInj"]
@ -29,14 +28,7 @@ class CommMonInj:
self.disconnect_cb = disconnect_cb
async def connect(self, host, port=1383):
self._reader, self._writer = await async_open_connection(
host,
port,
after_idle=1,
interval=1,
max_fails=3,
)
self._reader, self._writer = await asyncio.open_connection(host, port)
try:
self._writer.write(b"ARTIQ moninj\n")
self._receive_task = asyncio.ensure_future(self._receive_cr())
@ -46,9 +38,6 @@ class CommMonInj:
del self._writer
raise
def wait_terminate(self):
return self._receive_task
async def close(self):
self.disconnect_cb = None
try:
@ -63,19 +52,19 @@ class CommMonInj:
del self._writer
def monitor_probe(self, enable, channel, probe):
packet = struct.pack("<bblb", 0, enable, channel, probe)
packet = struct.pack(">bblb", 0, enable, channel, probe)
self._writer.write(packet)
def monitor_injection(self, enable, channel, overrd):
packet = struct.pack("<bblb", 3, enable, channel, overrd)
packet = struct.pack(">bblb", 3, enable, channel, overrd)
self._writer.write(packet)
def inject(self, channel, override, value):
packet = struct.pack("<blbb", 1, channel, override, value)
packet = struct.pack(">blbb", 1, channel, override, value)
self._writer.write(packet)
def get_injection_status(self, channel, override):
packet = struct.pack("<blb", 2, channel, override)
packet = struct.pack(">blb", 2, channel, override)
self._writer.write(packet)
async def _receive_cr(self):
@ -85,17 +74,15 @@ class CommMonInj:
if not ty:
return
if ty == b"\x00":
payload = await self._reader.readexactly(13)
channel, probe, value = struct.unpack("<lbq", payload)
payload = await self._reader.read(9)
channel, probe, value = struct.unpack(">lbl", payload)
self.monitor_cb(channel, probe, value)
elif ty == b"\x01":
payload = await self._reader.readexactly(6)
channel, override, value = struct.unpack("<lbb", payload)
payload = await self._reader.read(6)
channel, override, value = struct.unpack(">lbb", payload)
self.injection_status_cb(channel, override, value)
else:
raise ValueError("Unknown packet type", ty)
except Exception:
logger.error("Moninj connection terminating with exception", exc_info=True)
finally:
if self.disconnect_cb is not None:
self.disconnect_cb()

View File

@ -1,7 +1,5 @@
import os, sys
import numpy
from inspect import getfullargspec
from functools import wraps
from pythonparser import diagnostic
@ -13,7 +11,7 @@ from artiq.language.units import *
from artiq.compiler.module import Module
from artiq.compiler.embedding import Stitcher
from artiq.compiler.targets import RV32IMATarget, RV32GTarget, CortexA9Target
from artiq.compiler.targets import OR1KTarget
from artiq.coredevice.comm_kernel import CommKernel, CommKernelDummy
# Import for side effects (creating the exception classes).
@ -45,28 +43,14 @@ class CompileError(Exception):
def rtio_init() -> TNone:
raise NotImplementedError("syscall not simulated")
@syscall(flags={"nounwind", "nowrite"})
def rtio_get_destination_status(linkno: TInt32) -> TBool:
raise NotImplementedError("syscall not simulated")
@syscall(flags={"nounwind", "nowrite"})
def rtio_get_counter() -> TInt64:
raise NotImplementedError("syscall not simulated")
@syscall
def test_exception_id_sync(id: TInt32) -> TNone:
@syscall(flags={"nounwind", "nowrite"})
def drtio_get_link_status(linkno: TInt32) -> TBool:
raise NotImplementedError("syscall not simulated")
def get_target_cls(target):
if target == "rv32g":
return RV32GTarget
elif target == "rv32ima":
return RV32IMATarget
elif target == "cortexa9":
return CortexA9Target
else:
raise ValueError("Unsupported target")
class Core:
"""Core device driver.
@ -76,214 +60,82 @@ class Core:
On platforms that use clock multiplication and SERDES-based PHYs,
this is the period after multiplication. For example, with a RTIO core
clocked at 125MHz and a SERDES multiplication factor of 8, the
reference period is ``1 ns``.
The machine time unit (``mu``) is equal to this period.
reference period is 1ns.
The time machine unit is equal to this period.
:param ref_multiplier: ratio between the RTIO fine timestamp frequency
and the RTIO coarse timestamp frequency (e.g. SERDES multiplication
factor).
:param analyzer_proxy: name of the core device analyzer proxy to trigger
(optional).
:param analyze_at_run_end: automatically trigger the core device analyzer
proxy after the Experiment's run stage finishes.
:param report_invariants: report variables which are not changed inside
kernels and are thus candidates for inclusion in kernel_invariants
"""
kernel_invariants = {
"core", "ref_period", "coarse_ref_period", "ref_multiplier",
}
def __init__(self, dmgr,
host, ref_period,
analyzer_proxy=None, analyze_at_run_end=False,
ref_multiplier=8,
target="rv32g", satellite_cpu_targets={},
report_invariants=False):
def __init__(self, dmgr, host, ref_period, ref_multiplier=8):
self.ref_period = ref_period
self.ref_multiplier = ref_multiplier
self.satellite_cpu_targets = satellite_cpu_targets
self.target_cls = get_target_cls(target)
self.coarse_ref_period = ref_period*ref_multiplier
if host is None:
self.comm = CommKernelDummy()
else:
self.comm = CommKernel(host)
self.analyzer_proxy_name = analyzer_proxy
self.analyze_at_run_end = analyze_at_run_end
self.report_invariants = report_invariants
self.first_run = True
self.dmgr = dmgr
self.core = self
self.comm.core = self
self.analyzer_proxy = None
def notify_run_end(self):
if self.analyze_at_run_end:
self.trigger_analyzer_proxy()
def close(self):
"""Disconnect core device and close sockets.
"""
self.comm.close()
def compile(self, function, args, kwargs, set_result=None,
attribute_writeback=True, print_as_rpc=True,
target=None, destination=0, subkernel_arg_types=[],
old_embedding_map=None):
attribute_writeback=True, print_as_rpc=True):
try:
engine = _DiagnosticEngine(all_errors_are_fatal=True)
stitcher = Stitcher(engine=engine, core=self, dmgr=self.dmgr,
print_as_rpc=print_as_rpc,
destination=destination, subkernel_arg_types=subkernel_arg_types,
old_embedding_map=old_embedding_map)
print_as_rpc=print_as_rpc)
stitcher.stitch_call(function, args, kwargs, set_result)
stitcher.finalize()
module = Module(stitcher,
ref_period=self.ref_period,
attribute_writeback=attribute_writeback,
remarks=self.report_invariants)
target = target if target is not None else self.target_cls()
attribute_writeback=attribute_writeback)
target = OR1KTarget()
library = target.compile_and_link([module])
stripped_library = target.strip(library)
return stitcher.embedding_map, stripped_library, \
lambda addresses: target.symbolize(library, addresses), \
lambda symbols: target.demangle(symbols), \
module.subkernel_arg_types
lambda symbols: target.demangle(symbols)
except diagnostic.Error as error:
raise CompileError(error.diagnostic) from error
def _run_compiled(self, kernel_library, embedding_map, symbolizer, demangler):
if self.first_run:
self.comm.check_system_info()
self.first_run = False
self.comm.load(kernel_library)
self.comm.run()
self.comm.serve(embedding_map, symbolizer, demangler)
def run(self, function, args, kwargs):
result = None
@rpc(flags={"async"})
def set_result(new_result):
nonlocal result
result = new_result
embedding_map, kernel_library, symbolizer, demangler, subkernel_arg_types = \
embedding_map, kernel_library, symbolizer, demangler = \
self.compile(function, args, kwargs, set_result)
self.compile_and_upload_subkernels(embedding_map, args, subkernel_arg_types)
self._run_compiled(kernel_library, embedding_map, symbolizer, demangler)
if self.first_run:
self.comm.check_system_info()
self.first_run = False
self.comm.load(kernel_library)
self.comm.run()
self.comm.serve(embedding_map, symbolizer, demangler)
return result
def compile_subkernel(self, sid, subkernel_fn, embedding_map, args, subkernel_arg_types, subkernels):
# pass self to subkernels (if applicable)
# assuming the first argument is self
subkernel_args = getfullargspec(subkernel_fn.artiq_embedded.function)
self_arg = []
if len(subkernel_args[0]) > 0:
if subkernel_args[0][0] == 'self':
self_arg = args[:1]
destination = subkernel_fn.artiq_embedded.destination
destination_tgt = self.satellite_cpu_targets[destination]
target = get_target_cls(destination_tgt)(subkernel_id=sid)
object_map, kernel_library, _, _, _ = \
self.compile(subkernel_fn, self_arg, {}, attribute_writeback=False,
print_as_rpc=False, target=target, destination=destination,
subkernel_arg_types=subkernel_arg_types.get(sid, []),
old_embedding_map=embedding_map)
if object_map.has_rpc():
raise ValueError("Subkernel must not use RPC")
return destination, kernel_library, object_map
def compile_and_upload_subkernels(self, embedding_map, args, subkernel_arg_types):
subkernels = embedding_map.subkernels()
subkernels_compiled = []
while True:
new_subkernels = {}
for sid, subkernel_fn in subkernels.items():
if sid in subkernels_compiled:
continue
destination, kernel_library, embedding_map = \
self.compile_subkernel(sid, subkernel_fn, embedding_map,
args, subkernel_arg_types, subkernels)
self.comm.upload_subkernel(kernel_library, sid, destination)
new_subkernels.update(embedding_map.subkernels())
subkernels_compiled.append(sid)
if new_subkernels == subkernels:
break
subkernels.update(new_subkernels)
# check for messages without a send/recv pair
unpaired_messages = embedding_map.subkernel_messages_unpaired()
if unpaired_messages:
for unpaired_message in unpaired_messages:
engine = _DiagnosticEngine(all_errors_are_fatal=False)
# errors are non-fatal in order to display
# all unpaired message errors before raising an excption
if unpaired_message.send_loc is None:
diag = diagnostic.Diagnostic("error",
"subkernel message '{name}' only has a receiver but no sender",
{"name": unpaired_message.name},
unpaired_message.recv_loc)
else:
diag = diagnostic.Diagnostic("error",
"subkernel message '{name}' only has a sender but no receiver",
{"name": unpaired_message.name},
unpaired_message.send_loc)
engine.process(diag)
raise ValueError("Found subkernel message(s) without a full send/recv pair")
def precompile(self, function, *args, **kwargs):
"""Precompile a kernel and return a callable that executes it on the core device
at a later time.
Arguments to the kernel are set at compilation time and passed to this function,
as additional positional and keyword arguments.
The returned callable accepts no arguments.
Precompiled kernels may use RPCs and subkernels.
Object attributes at the beginning of a precompiled kernel execution have the
values they had at precompilation time. If up-to-date values are required,
use RPC to read them.
Similarly, modified values are not written back, and explicit RPC should be used
to modify host objects.
Carefully review the source code of drivers calls used in precompiled kernels, as
they may rely on host object attributes being transferred between kernel calls.
Examples include code used to control DDS phase and Urukul RF switch control
via the CPLD register.
The return value of the callable is the return value of the kernel, if any.
The callable may be called several times.
"""
if not hasattr(function, "artiq_embedded"):
raise ValueError("Argument is not a kernel")
result = None
@rpc(flags={"async"})
def set_result(new_result):
nonlocal result
result = new_result
embedding_map, kernel_library, symbolizer, demangler, subkernel_arg_types = \
self.compile(function, args, kwargs, set_result, attribute_writeback=False)
self.compile_and_upload_subkernels(embedding_map, args, subkernel_arg_types)
@wraps(function)
def run_precompiled():
nonlocal result
self._run_compiled(kernel_library, embedding_map, symbolizer, demangler)
return result
return run_precompiled
@portable
def seconds_to_mu(self, seconds):
"""Convert seconds to the corresponding number of machine units
(fine RTIO cycles).
(RTIO cycles).
:param seconds: time (in seconds) to convert.
"""
@ -291,7 +143,7 @@ class Core:
@portable
def mu_to_seconds(self, mu):
"""Convert machine units (fine RTIO cycles) to seconds.
"""Convert machine units (RTIO cycles) to seconds.
:param mu: cycle count to convert.
"""
@ -306,7 +158,7 @@ class Core:
for the actual value of the hardware register at the instant when
execution resumes in the caller.
For a more detailed description of these concepts, see :doc:`rtio`.
For a more detailed description of these concepts, see :doc:`/rtio`.
"""
return rtio_get_counter()
@ -322,11 +174,12 @@ class Core:
pass
@kernel
def get_rtio_destination_status(self, destination):
"""Returns whether the specified RTIO destination is up.
def get_drtio_link_status(self, linkno):
"""Return whether the specified DRTIO link is up.
This is particularly useful in startup kernels to delay
startup until certain DRTIO destinations are available."""
return rtio_get_destination_status(destination)
startup until certain DRTIO links are up."""
return drtio_get_link_status(linkno)
@kernel
def reset(self):
@ -346,21 +199,3 @@ class Core:
min_now = rtio_get_counter() + 125000
if now_mu() < min_now:
at_mu(min_now)
def trigger_analyzer_proxy(self):
"""Causes the core analyzer proxy to retrieve a dump from the device,
and distribute it to all connected clients (typically dashboards).
Returns only after the dump has been retrieved from the device.
Raises :exc:`IOError` if no analyzer proxy has been configured, or if the
analyzer proxy fails. In the latter case, more details would be
available in the proxy log.
"""
if self.analyzer_proxy is None:
if self.analyzer_proxy_name is not None:
self.analyzer_proxy = self.dmgr.get(self.analyzer_proxy_name)
if self.analyzer_proxy is None:
raise IOError("No analyzer proxy configured")
else:
self.analyzer_proxy.trigger()

View File

@ -1,648 +0,0 @@
{
"$id": "https://m-labs.hk/kasli_generic.schema.json",
"$schema": "http://json-schema.org/draft-07/schema#",
"title": "Kasli variant description",
"type": "object",
"properties": {
"_description": {
"type": "string",
"description": "Free-form description text"
},
"target": {
"type": "string",
"description": "Target board"
},
"variant": {
"type": "string",
"description": "Target board variant name"
},
"min_artiq_version": {
"type": "string",
"description": "Minimum required ARTIQ version",
"default": "0"
},
"hw_rev": {
"type": "string",
"description": "Hardware revision"
},
"base": {
"type": "string",
"enum": ["use_drtio_role", "standalone", "master", "satellite"],
"description": "Deprecated, use drtio_role instead",
"default": "use_drtio_role"
},
"drtio_role": {
"type": "string",
"enum": ["standalone", "master", "satellite"],
"description": "Role that this device takes in a DRTIO network; 'standalone' means no DRTIO",
"default": "standalone"
},
"ext_ref_frequency": {
"type": "number",
"exclusiveMinimum": 0,
"description": "External reference frequency"
},
"rtio_frequency": {
"type": "number",
"exclusiveMinimum": 0,
"default": 125e6,
"description": "RTIO frequency"
},
"enable_wrpll": {
"type": "boolean",
"default": false
},
"core_addr": {
"type": "string",
"format": "ipv4",
"description": "IPv4 address",
"default": "192.168.1.70"
},
"vendor": {
"type": "string",
"description": "Board vendor"
},
"eui48": {
"type": "array",
"items": {
"type": "string",
"pattern": "^([0-9a-f]{2}-){5}[0-9a-f]{2}$",
"examples": ["80-1f-12-4c-22-7f"]
},
"description": "Ethernet MAC addresses"
},
"enable_sata_drtio": {
"type": "boolean",
"default": false
},
"sed_lanes": {
"type": "number",
"minimum": 1,
"maximum": 32,
"default": 8,
"description": "Number of FIFOs in the SED, must be a power of 2"
},
"peripherals": {
"type": "array",
"items": {
"$ref": "#/definitions/peripheral"
}
}
},
"if": {
"properties": {
"target": { "const": "kasli" },
"hw_rev": {
"not": {
"oneOf": [
{ "const": "v1.0" },
{ "const": "v1.1" }
]
}
}
}
},
"then": {
"properties": {
"enable_sata_drtio": {
"const": false
}
}
},
"required": ["target", "variant", "hw_rev", "base", "peripherals"],
"additionalProperties": false,
"oneOf": [
{
"properties": {
"target": {
"type": "string",
"const": "kasli"
},
"hw_rev": {
"type": "string",
"enum": ["v1.0", "v1.1", "v2.0"]
}
}
},
{
"properties": {
"target": {
"type": "string",
"const": "kasli_soc"
},
"hw_rev": {
"type": "string",
"enum": ["v1.0", "v1.1"]
}
}
}
],
"definitions": {
"peripheral": {
"type": "object",
"properties": {
"type": {
"type": "string",
"enum": ["dio", "dio_spi", "urukul", "novogorny", "sampler", "suservo", "zotino", "grabber", "mirny", "fastino", "phaser", "hvamp", "shuttler"]
},
"board": {
"type": "string"
},
"hw_rev": {
"type": "string",
"pattern": "^v[0-9]+\\.[0-9]+"
}
},
"required": ["type"],
"allOf": [{
"title": "DIO",
"if": {
"properties": {
"type": {
"const": "dio"
}
}
},
"then": {
"properties": {
"ports": {
"type": "array",
"items": {
"type": "integer"
},
"minItems": 1,
"maxItems": 1
},
"edge_counter": {
"type": "boolean",
"default": false
},
"bank_direction_low": {
"type": "string",
"enum": ["input", "output", "clkgen"]
},
"bank_direction_high": {
"type": "string",
"enum": ["input", "output", "clkgen"]
}
},
"required": ["ports", "bank_direction_low", "bank_direction_high"]
}
}, {
"title": "DIO_SPI",
"if": {
"properties": {
"type": {
"const": "dio_spi"
}
}
},
"then": {
"properties": {
"ports": {
"type": "array",
"items": {
"type": "integer"
},
"minItems": 1,
"maxItems": 1
},
"spi": {
"type": "array",
"items": {
"type": "object",
"properties": {
"name": {
"type": "string",
"default": "dio_spi"
},
"clk": {
"type": "integer",
"minimum": 0,
"maximum": 7
},
"mosi": {
"type": "integer",
"minimum": 0,
"maximum": 7
},
"miso": {
"type": "integer",
"minimum": 0,
"maximum": 7
},
"cs": {
"type": "array",
"items": {
"type": "integer",
"minimum": 0,
"maximum": 7
}
}
},
"required": ["clk"]
},
"minItems": 1
},
"ttl": {
"type": "array",
"items": {
"type": "object",
"properties": {
"name": {
"type": "string",
"default": "ttl"
},
"pin": {
"type": "integer",
"minimum": 0,
"maximum": 7
},
"direction": {
"type": "string",
"enum": ["input", "output"]
},
"edge_counter": {
"type": "boolean",
"default": false
}
},
"required": ["pin", "direction"]
},
"default": []
}
},
"required": ["ports", "spi"]
}
}, {
"title": "Urukul",
"if": {
"properties": {
"type": {
"const": "urukul"
}
}
},
"then": {
"properties": {
"ports": {
"type": "array",
"items": {
"type": "integer"
},
"minItems": 1,
"maxItems": 2
},
"synchronization": {
"type": "boolean",
"default": false
},
"refclk": {
"type": "number",
"minimum": 0
},
"clk_sel": {
"type": "integer",
"minimum": 0,
"maximum": 3
},
"clk_div": {
"type": "integer",
"minimum": 0,
"maximum": 3
},
"pll_n": {
"type": "integer"
},
"pll_en": {
"type": "integer",
"minimum": 0,
"maximum": 1,
"default": 1
},
"pll_vco": {
"type": "integer"
},
"dds": {
"type": "string",
"enum": ["ad9910", "ad9912"],
"default": "ad9910"
}
},
"required": ["ports"]
}
}, {
"title": "Novogorny",
"if": {
"properties": {
"type": {
"const": "novogorny"
}
}
},
"then": {
"properties": {
"ports": {
"type": "array",
"items": {
"type": "integer"
},
"minItems": 1,
"maxItems": 1
}
},
"required": ["ports"]
}
}, {
"title": "Sampler",
"if": {
"properties": {
"type": {
"const": "sampler"
}
}
},
"then": {
"properties": {
"ports": {
"type": "array",
"items": {
"type": "integer"
},
"minItems": 1,
"maxItems": 2
}
},
"required": ["ports"]
}
}, {
"title": "SUServo",
"if": {
"properties": {
"type": {
"const": "suservo"
}
}
},
"then": {
"properties": {
"sampler_ports": {
"type": "array",
"items": {
"type": "integer"
},
"minItems": 2,
"maxItems": 2
},
"sampler_hw_rev": {
"type": "string",
"pattern": "^v[0-9]+\\.[0-9]+",
"default": "v2.2"
},
"urukul0_ports": {
"type": "array",
"items": {
"type": "integer"
},
"minItems": 2,
"maxItems": 2
},
"urukul1_ports": {
"type": "array",
"items": {
"type": "integer"
},
"minItems": 2,
"maxItems": 2
},
"refclk": {
"type": "number",
"minimum": 0
},
"clk_sel": {
"type": "integer",
"minimum": 0,
"maximum": 3
},
"pll_n": {
"type": "integer",
"default": 32
},
"pll_en": {
"type": "integer",
"minimum": 0,
"maximum": 1,
"default": 1
},
"pll_vco": {
"type": "integer"
}
},
"required": ["sampler_ports", "urukul0_ports"]
}
}, {
"title": "Zotino",
"if": {
"properties": {
"type": {
"const": "zotino"
}
}
},
"then": {
"properties": {
"ports": {
"type": "array",
"items": {
"type": "integer"
},
"minItems": 1,
"maxItems": 1
}
},
"required": ["ports"]
}
}, {
"title": "Grabber",
"if": {
"properties": {
"type": {
"const": "grabber"
}
}
},
"then": {
"properties": {
"ports": {
"type": "array",
"items": {
"type": "integer"
},
"minItems": 1,
"maxItems": 3
}
},
"required": ["ports"]
}
}, {
"title": "Mirny",
"if": {
"properties": {
"type": {
"const": "mirny"
}
}
},
"then": {
"properties": {
"ports": {
"type": "array",
"items": {
"type": "integer"
},
"minItems": 1,
"maxItems": 1
},
"refclk": {
"type": "number",
"exclusiveMinimum": 0,
"default": 100e6
},
"clk_sel": {
"oneOf": [
{
"type": "integer",
"minimum": 0,
"maximum": 3
},
{
"type": "string",
"enum": ["xo", "mmcx", "sma"]
}
],
"default": 0
},
"almazny": {
"type": "boolean",
"default": false
},
"almazny_hw_rev": {
"type": "string",
"pattern": "^v[0-9]+\\.[0-9]+",
"default": "v1.2"
}
},
"required": ["ports"]
}
}, {
"title": "Fastino",
"if": {
"properties": {
"type": {
"const": "fastino"
}
}
},
"then": {
"properties": {
"ports": {
"type": "array",
"items": {
"type": "integer"
},
"minItems": 1,
"maxItems": 1
},
"log2_width": {
"type": "integer",
"default": 0,
"description": "Width of DAC channel group (logarithm base 2)"
}
},
"required": ["ports"]
}
}, {
"title": "Phaser",
"if": {
"properties": {
"type": {
"const": "phaser"
}
}
},
"then": {
"properties": {
"ports": {
"type": "array",
"items": {
"type": "integer"
},
"minItems": 1,
"maxItems": 1
},
"mode": {
"type": "string",
"enum": ["base", "miqro"],
"default": "base"
}
},
"required": ["ports"]
}
}, {
"title": "HVAmp",
"if": {
"properties": {
"type": {
"const": "hvamp"
}
}
},
"then": {
"properties": {
"ports": {
"type": "array",
"items": {
"type": "integer"
},
"minItems": 1,
"maxItems": 1
}
},
"required": ["ports"]
}
},{
"title": "Shuttler",
"if": {
"properties": {
"type": {
"const": "shuttler"
}
}
},
"then": {
"properties": {
"ports": {
"type": "array",
"items": {
"type": "integer"
},
"minItems": 1,
"maxItems": 2
},
"drtio_destination": {
"type": "integer"
},
"hw_rev": {
"type": "string",
"enum": ["v1.0", "v1.1"]
}
},
"required": ["ports"]
}
}]
}
}
}

View File

@ -1,277 +0,0 @@
class DAC34H84:
"""DAC34H84 settings and register map.
For possible values, documentation, and explanation, see the DAC datasheet
at https://www.ti.com/lit/pdf/slas751
"""
qmc_corr_ena = 0 # msb ab
qmc_offset_ena = 0 # msb ab
invsinc_ena = 0 # msb ab
interpolation = 1 # 2x
fifo_ena = 1
alarm_out_ena = 1
alarm_out_pol = 1
clkdiv_sync_ena = 1
iotest_ena = 0
cnt64_ena = 0
oddeven_parity = 0 # even
single_parity_ena = 1
dual_parity_ena = 0
rev_interface = 0
dac_complement = 0b0000 # msb A
alarm_fifo = 0b111 # msb 2-away
dacclkgone_ena = 1
dataclkgone_ena = 1
collisiongone_ena = 1
sif4_ena = 1
mixer_ena = 0
mixer_gain = 1
nco_ena = 0
revbus = 0
twos = 1
coarse_dac = 9 # 18.75 mA, 0-15
sif_txenable = 0
mask_alarm_from_zerochk = 0
mask_alarm_fifo_collision = 0
mask_alarm_fifo_1away = 0
mask_alarm_fifo_2away = 0
mask_alarm_dacclk_gone = 0
mask_alarm_dataclk_gone = 0
mask_alarm_output_gone = 0
mask_alarm_from_iotest = 0
mask_alarm_from_pll = 0
mask_alarm_parity = 0b0000 # msb a
qmc_offseta = 0 # 12b
fifo_offset = 2 # 0-7
qmc_offsetb = 0 # 12b
qmc_offsetc = 0 # 12b
qmc_offsetd = 0 # 12b
qmc_gaina = 0 # 11b
cmix_fs8 = 0
cmix_fs4 = 0
cmix_fs2 = 0
cmix_nfs4 = 0
qmc_gainb = 0 # 11b
qmc_gainc = 0 # 11b
output_delayab = 0b00
output_delaycd = 0b00
qmc_gaind = 0 # 11b
qmc_phaseab = 0 # 12b
qmc_phasecd = 0 # 12b
phase_offsetab = 0 # 16b
phase_offsetcd = 0 # 16b
phase_addab_lsb = 0 # 16b
phase_addab_msb = 0 # 16b
phase_addcd_lsb = 0 # 16b
phase_addcd_msb = 0 # 16b
pll_reset = 0
pll_ndivsync_ena = 1
pll_ena = 1
pll_cp = 0b01 # single charge pump
pll_p = 0b100 # p=4
pll_m2 = 1 # x2
pll_m = 8 # m = 8
pll_n = 0b0001 # n = 2
pll_vcotune = 0b01
pll_vco = 0x3f # 4 GHz
bias_sleep = 0
tsense_sleep = 0
pll_sleep = 0
clkrecv_sleep = 0
dac_sleep = 0b0000 # msb a
extref_ena = 0
fuse_sleep = 1
atest = 0b00000 # atest mode
syncsel_qmcoffsetab = 0b1001 # sif_sync and register write
syncsel_qmcoffsetcd = 0b1001 # sif_sync and register write
syncsel_qmccorrab = 0b1001 # sif_sync and register write
syncsel_qmccorrcd = 0b1001 # sif_sync and register write
syncsel_mixerab = 0b1001 # sif_sync and register write
syncsel_mixercd = 0b1001 # sif_sync and register write
syncsel_nco = 0b1000 # sif_sync
syncsel_fifo_input = 0b10 # external lvds istr
sif_sync = 0
syncsel_fifoin = 0b0010 # istr
syncsel_fifoout = 0b0100 # ostr
clkdiv_sync_sel = 0 # ostr
path_a_sel = 0
path_b_sel = 1
path_c_sel = 2
path_d_sel = 3
# swap dac pairs (CDAB) for layout
# swap I-Q dacs for spectral inversion
dac_a_sel = 3
dac_b_sel = 2
dac_c_sel = 1
dac_d_sel = 0
dac_sleep_en = 0b1111 # msb a
clkrecv_sleep_en = 1
pll_sleep_en = 1
lvds_data_sleep_en = 1
lvds_control_sleep_en = 1
temp_sense_sleep_en = 1
bias_sleep_en = 1
data_dly = 2
clk_dly = 0
ostrtodig_sel = 0
ramp_ena = 0
sifdac_ena = 0
grp_delaya = 0x00
grp_delayb = 0x00
grp_delayc = 0x00
grp_delayd = 0x00
sifdac = 0
def __init__(self, updates=None):
if updates is None:
return
for key, value in updates.items():
if not hasattr(self, key):
raise KeyError("invalid setting", key)
setattr(self, key, value)
def get_mmap(self):
mmap = []
mmap.append(
(0x00 << 16) |
(self.qmc_offset_ena << 14) | (self.qmc_corr_ena << 12) |
(self.interpolation << 8) | (self.fifo_ena << 7) |
(self.alarm_out_ena << 4) | (self.alarm_out_pol << 3) |
(self.clkdiv_sync_ena << 2) | (self.invsinc_ena << 0))
mmap.append(
(0x01 << 16) |
(self.iotest_ena << 15) | (self.cnt64_ena << 12) |
(self.oddeven_parity << 11) | (self.single_parity_ena << 10) |
(self.dual_parity_ena << 9) | (self.rev_interface << 8) |
(self.dac_complement << 4) | (self.alarm_fifo << 1))
mmap.append(
(0x02 << 16) |
(self.dacclkgone_ena << 14) | (self.dataclkgone_ena << 13) |
(self.collisiongone_ena << 12) | (self.sif4_ena << 7) |
(self.mixer_ena << 6) | (self.mixer_gain << 5) |
(self.nco_ena << 4) | (self.revbus << 3) | (self.twos << 1))
mmap.append((0x03 << 16) | (self.coarse_dac << 12) |
(self.sif_txenable << 0))
mmap.append(
(0x07 << 16) |
(self.mask_alarm_from_zerochk << 15) | (1 << 14) |
(self.mask_alarm_fifo_collision << 13) |
(self.mask_alarm_fifo_1away << 12) |
(self.mask_alarm_fifo_2away << 11) |
(self.mask_alarm_dacclk_gone << 10) |
(self.mask_alarm_dataclk_gone << 9) |
(self.mask_alarm_output_gone << 8) |
(self.mask_alarm_from_iotest << 7) | (1 << 6) |
(self.mask_alarm_from_pll << 5) | (self.mask_alarm_parity << 1))
mmap.append(
(0x08 << 16) | (self.qmc_offseta << 0))
mmap.append(
(0x09 << 16) | (self.fifo_offset << 13) | (self.qmc_offsetb << 0))
mmap.append((0x0a << 16) | (self.qmc_offsetc << 0))
mmap.append((0x0b << 16) | (self.qmc_offsetd << 0))
mmap.append((0x0c << 16) | (self.qmc_gaina << 0))
mmap.append(
(0x0d << 16) |
(self.cmix_fs8 << 15) | (self.cmix_fs4 << 14) |
(self.cmix_fs2 << 13) | (self.cmix_nfs4 << 12) |
(self.qmc_gainb << 0))
mmap.append((0x0e << 16) | (self.qmc_gainc << 0))
mmap.append(
(0x0f << 16) |
(self.output_delayab << 14) | (self.output_delaycd << 12) |
(self.qmc_gaind << 0))
mmap.append((0x10 << 16) | (self.qmc_phaseab << 0))
mmap.append((0x11 << 16) | (self.qmc_phasecd << 0))
mmap.append((0x12 << 16) | (self.phase_offsetab << 0))
mmap.append((0x13 << 16) | (self.phase_offsetcd << 0))
mmap.append((0x14 << 16) | (self.phase_addab_lsb << 0))
mmap.append((0x15 << 16) | (self.phase_addab_msb << 0))
mmap.append((0x16 << 16) | (self.phase_addcd_lsb << 0))
mmap.append((0x17 << 16) | (self.phase_addcd_msb << 0))
mmap.append(
(0x18 << 16) |
(0b001 << 13) | (self.pll_reset << 12) |
(self.pll_ndivsync_ena << 11) | (self.pll_ena << 10) |
(self.pll_cp << 6) | (self.pll_p << 3))
mmap.append(
(0x19 << 16) |
(self.pll_m2 << 15) | (self.pll_m << 8) | (self.pll_n << 4) |
(self.pll_vcotune << 2))
mmap.append(
(0x1a << 16) |
(self.pll_vco << 10) | (self.bias_sleep << 7) |
(self.tsense_sleep << 6) |
(self.pll_sleep << 5) | (self.clkrecv_sleep << 4) |
(self.dac_sleep << 0))
mmap.append(
(0x1b << 16) |
(self.extref_ena << 15) | (self.fuse_sleep << 11) |
(self.atest << 0))
mmap.append(
(0x1e << 16) |
(self.syncsel_qmcoffsetab << 12) |
(self.syncsel_qmcoffsetcd << 8) |
(self.syncsel_qmccorrab << 4) |
(self.syncsel_qmccorrcd << 0))
mmap.append(
(0x1f << 16) |
(self.syncsel_mixerab << 12) | (self.syncsel_mixercd << 8) |
(self.syncsel_nco << 4) | (self.syncsel_fifo_input << 2) |
(self.sif_sync << 1))
mmap.append(
(0x20 << 16) |
(self.syncsel_fifoin << 12) | (self.syncsel_fifoout << 8) |
(self.clkdiv_sync_sel << 0))
mmap.append(
(0x22 << 16) |
(self.path_a_sel << 14) | (self.path_b_sel << 12) |
(self.path_c_sel << 10) | (self.path_d_sel << 8) |
(self.dac_a_sel << 6) | (self.dac_b_sel << 4) |
(self.dac_c_sel << 2) | (self.dac_d_sel << 0))
mmap.append(
(0x23 << 16) |
(self.dac_sleep_en << 12) | (self.clkrecv_sleep_en << 11) |
(self.pll_sleep_en << 10) | (self.lvds_data_sleep_en << 9) |
(self.lvds_control_sleep_en << 8) |
(self.temp_sense_sleep_en << 7) | (1 << 6) |
(self.bias_sleep_en << 5) | (0x1f << 0))
mmap.append(
(0x24 << 16) | (self.data_dly << 13) | (self.clk_dly << 10))
mmap.append(
(0x2d << 16) |
(self.ostrtodig_sel << 14) | (self.ramp_ena << 13) |
(0x002 << 1) | (self.sifdac_ena << 0))
mmap.append(
(0x2e << 16) | (self.grp_delaya << 8) | (self.grp_delayb << 0))
mmap.append(
(0x2f << 16) | (self.grp_delayc << 8) | (self.grp_delayd << 0))
mmap.append((0x30 << 16) | self.sifdac)
return mmap

View File

@ -6,7 +6,7 @@ alone could achieve.
"""
from artiq.language.core import syscall, kernel
from artiq.language.types import TInt32, TInt64, TStr, TNone, TTuple, TBool
from artiq.language.types import TInt32, TInt64, TStr, TNone, TTuple
from artiq.coredevice.exceptions import DMAError
from numpy import int64
@ -17,7 +17,7 @@ def dma_record_start(name: TStr) -> TNone:
raise NotImplementedError("syscall not simulated")
@syscall
def dma_record_stop(duration: TInt64, enable_ddma: TBool) -> TNone:
def dma_record_stop(duration: TInt64) -> TNone:
raise NotImplementedError("syscall not simulated")
@syscall
@ -25,11 +25,11 @@ def dma_erase(name: TStr) -> TNone:
raise NotImplementedError("syscall not simulated")
@syscall
def dma_retrieve(name: TStr) -> TTuple([TInt64, TInt32, TBool]):
def dma_retrieve(name: TStr) -> TTuple([TInt64, TInt32]):
raise NotImplementedError("syscall not simulated")
@syscall
def dma_playback(timestamp: TInt64, ptr: TInt32, enable_ddma: TBool) -> TNone:
def dma_playback(timestamp: TInt64, ptr: TInt32) -> TNone:
raise NotImplementedError("syscall not simulated")
@ -47,7 +47,6 @@ class DMARecordContextManager:
def __init__(self):
self.name = ""
self.saved_now_mu = int64(0)
self.enable_ddma = False
@kernel
def __enter__(self):
@ -57,7 +56,7 @@ class DMARecordContextManager:
@kernel
def __exit__(self, type, value, traceback):
dma_record_stop(now_mu(), self.enable_ddma) # see above
dma_record_stop(now_mu()) # see above
at_mu(self.saved_now_mu)
@ -75,20 +74,12 @@ class CoreDMA:
self.epoch = 0
@kernel
def record(self, name, enable_ddma=False):
"""Returns a context manager that will record a DMA trace called `name`.
def record(self, name):
"""Returns a context manager that will record a DMA trace called ``name``.
Any previously recorded trace with the same name is overwritten.
The trace will persist across kernel switches.
In DRTIO context, distributed DMA can be toggled with `enable_ddma`.
Enabling it allows running DMA on satellites, rather than sending all
events from the master.
Keeping it disabled it may improve performance in some scenarios,
e.g. when there are many small satellite buffers."""
The trace will persist across kernel switches."""
self.epoch += 1
self.recorder.name = name
self.recorder.enable_ddma = enable_ddma
return self.recorder
@kernel
@ -101,24 +92,24 @@ class CoreDMA:
def playback(self, name):
"""Replays a previously recorded DMA trace. This function blocks until
the entire trace is submitted to the RTIO FIFOs."""
(advance_mu, ptr, uses_ddma) = dma_retrieve(name)
dma_playback(now_mu(), ptr, uses_ddma)
(advance_mu, ptr) = dma_retrieve(name)
dma_playback(now_mu(), ptr)
delay_mu(advance_mu)
@kernel
def get_handle(self, name):
"""Returns a handle to a previously recorded DMA trace. The returned handle
is only valid until the next call to :meth:`record` or :meth:`erase`."""
(advance_mu, ptr, uses_ddma) = dma_retrieve(name)
return (self.epoch, advance_mu, ptr, uses_ddma)
(advance_mu, ptr) = dma_retrieve(name)
return (self.epoch, advance_mu, ptr)
@kernel
def playback_handle(self, handle):
"""Replays a handle obtained with :meth:`get_handle`. Using this function
is much faster than :meth:`playback` for replaying a set of traces repeatedly,
but offloads the overhead of managing the handles onto the programmer."""
(epoch, advance_mu, ptr, uses_ddma) = handle
but incurs the overhead of managing the handles onto the programmer."""
(epoch, advance_mu, ptr) = handle
if self.epoch != epoch:
raise DMAError("Invalid handle")
dma_playback(now_mu(), ptr, uses_ddma)
dma_playback(now_mu(), ptr)
delay_mu(advance_mu)

View File

@ -0,0 +1,17 @@
"""
DRTIO debugging functions.
Those syscalls are intended for ARTIQ developers only.
"""
from artiq.language.core import syscall
from artiq.language.types import TTuple, TInt32, TInt64, TNone
@syscall(flags={"nounwind", "nowrite"})
def drtio_get_packet_counts(linkno: TInt32) -> TTuple([TInt32, TInt32]):
raise NotImplementedError("syscall not simulated")
@syscall(flags={"nounwind", "nowrite"})
def drtio_get_fifo_space_req_count(linkno: TInt32) -> TInt32:
raise NotImplementedError("syscall not simulated")

View File

@ -1,238 +0,0 @@
"""Driver for RTIO-enabled TTL edge counter.
As for the TTL input PHYs, sensitivity can be configured over RTIO
(:meth:`gate_rising<EdgeCounter.gate_rising>`, etc.). In contrast to the former, however, the count is
accumulated in gateware, and only a single input event is generated at the end
of each gate period: ::
with parallel:
doppler_cool()
self.pmt_counter.gate_rising(1 * ms)
with parallel:
readout()
self.pmt_counter.gate_rising(100 * us)
print("Doppler cooling counts:", self.pmt_counter.fetch_count())
print("Readout counts:", self.pmt_counter.fetch_count())
For applications where the timestamps of the individual input events are not
required, this has two advantages over :meth:`TTLInOut.count<artiq.coredevice.ttl.TTLInOut.count>`
beyond raw throughput. First, it is easy to count events during multiple separate
periods without blocking to read back counts in between, as illustrated in the
above example. Secondly, as each count total only takes up a single input event,
it is much easier to acquire counts on several channels in parallel without
risking input RTIO overflows: ::
# Using the TTLInOut driver, pmt_1 input events are only processed
# after pmt_0 is done counting. To avoid RTIOOverflows, a round-robin
# scheme would have to be implemented manually.
with parallel:
self.pmt_0.gate_rising(10 * ms)
self.pmt_1.gate_rising(10 * ms)
counts_0 = self.pmt_0.count(now_mu()) # blocks
counts_1 = self.pmt_1.count(now_mu())
# Using gateware counters, only a single input event each is
# generated, greatly reducing the load on the input FIFOs:
with parallel:
self.pmt_0_counter.gate_rising(10 * ms)
self.pmt_1_counter.gate_rising(10 * ms)
counts_0 = self.pmt_0_counter.fetch_count() # blocks
counts_1 = self.pmt_1_counter.fetch_count()
See the sources of :mod:`artiq.gateware.rtio.phy.edge_counter` and
:meth:`artiq.gateware.eem.DIO.add_std` for the gateware components.
"""
from artiq.language.core import *
from artiq.language.types import *
from artiq.coredevice.rtio import (rtio_output, rtio_input_data,
rtio_input_timestamped_data)
from numpy import int32, int64
CONFIG_COUNT_RISING = 0b0001
CONFIG_COUNT_FALLING = 0b0010
CONFIG_SEND_COUNT_EVENT = 0b0100
CONFIG_RESET_TO_ZERO = 0b1000
class CounterOverflow(Exception):
"""Raised when an edge counter value is read which indicates that the
counter might have overflowed."""
pass
class EdgeCounter:
"""RTIO TTL edge counter driver driver.
Like for regular TTL inputs, timeline periods where the counter is
sensitive to a chosen set of input transitions can be specified. Unlike the
former, however, the specified edges do not create individual input events;
rather, the total count can be requested as a single input event from the
core (typically at the end of the gate window).
:param channel: The RTIO channel of the gateware phy.
:param gateware_width: The width of the gateware counter register, in
bits. This is only used for overflow handling; to change the size,
the gateware needs to be rebuilt.
"""
kernel_invariants = {"core", "channel", "counter_max"}
def __init__(self, dmgr, channel, gateware_width=31, core_device="core"):
self.core = dmgr.get(core_device)
self.channel = channel
self.counter_max = (1 << (gateware_width - 1)) - 1
@staticmethod
def get_rtio_channels(channel, **kwargs):
return [(channel, None)]
@kernel
def gate_rising(self, duration):
"""Count rising edges for the given duration and request the total at
the end.
The counter is reset at the beginning of the gate period. Use
:meth:`set_config` directly for more detailed control.
:param duration: The duration for which the gate is to stay open.
:return: The timestamp at the end of the gate period, in machine units.
"""
return self.gate_rising_mu(self.core.seconds_to_mu(duration))
@kernel
def gate_falling(self, duration):
"""Count falling edges for the given duration and request the total at
the end.
The counter is reset at the beginning of the gate period. Use
:meth:`set_config` directly for more detailed control.
:param duration: The duration for which the gate is to stay open.
:return: The timestamp at the end of the gate period, in machine units.
"""
return self.gate_falling_mu(self.core.seconds_to_mu(duration))
@kernel
def gate_both(self, duration):
"""Count both rising and falling edges for the given duration, and
request the total at the end.
The counter is reset at the beginning of the gate period. Use
:meth:`set_config` directly for more detailed control.
:param duration: The duration for which the gate is to stay open.
:return: The timestamp at the end of the gate period, in machine units.
"""
return self.gate_both_mu(self.core.seconds_to_mu(duration))
@kernel
def gate_rising_mu(self, duration_mu):
"""See :meth:`gate_rising`."""
return self._gate_mu(
duration_mu, count_rising=True, count_falling=False)
@kernel
def gate_falling_mu(self, duration_mu):
"""See :meth:`gate_falling`."""
return self._gate_mu(
duration_mu, count_rising=False, count_falling=True)
@kernel
def gate_both_mu(self, duration_mu):
"""See :meth:`gate_both_mu`."""
return self._gate_mu(
duration_mu, count_rising=True, count_falling=True)
@kernel
def _gate_mu(self, duration_mu, count_rising, count_falling):
self.set_config(
count_rising=count_rising,
count_falling=count_falling,
send_count_event=False,
reset_to_zero=True)
delay_mu(duration_mu)
self.set_config(
count_rising=False,
count_falling=False,
send_count_event=True,
reset_to_zero=False)
return now_mu()
@kernel
def set_config(self, count_rising: TBool, count_falling: TBool,
send_count_event: TBool, reset_to_zero: TBool):
"""Emit an RTIO event at the current timeline position to set the
gateware configuration.
For most use cases, the ``gate_*`` wrappers will be more convenient.
:param count_rising: Whether to count rising signal edges.
:param count_falling: Whether to count falling signal edges.
:param send_count_event: If ``True``, an input event with the current
counter value is generated on the next clock cycle (once).
:param reset_to_zero: If ``True``, the counter value is reset to zero on
the next clock cycle (once).
"""
config = int32(0)
if count_rising:
config |= CONFIG_COUNT_RISING
if count_falling:
config |= CONFIG_COUNT_FALLING
if send_count_event:
config |= CONFIG_SEND_COUNT_EVENT
if reset_to_zero:
config |= CONFIG_RESET_TO_ZERO
rtio_output(self.channel << 8, config)
@kernel
def fetch_count(self) -> TInt32:
"""Wait for and return count total from previously requested input
event.
It is valid to trigger multiple gate periods without immediately
reading back the count total; the results will be returned in order on
subsequent fetch calls.
This function blocks until a result becomes available.
"""
count = rtio_input_data(self.channel)
if count == self.counter_max:
raise CounterOverflow(
"Input edge counter overflow on RTIO channel {0}",
int64(self.channel))
return count
@kernel
def fetch_timestamped_count(
self, timeout_mu=int64(-1)) -> TTuple([TInt64, TInt32]):
"""Wait for and return the timestamp and count total of a previously
requested input event.
It is valid to trigger multiple gate periods without immediately
reading back the count total; the results will be returned in order on
subsequent fetch calls.
This function blocks until a result becomes available or the given
timeout elapses.
:return: A tuple of timestamp (-1 if timeout elapsed) and counter
value. (The timestamp is that of the requested input event
typically the gate closing time and not that of any input edges.)
"""
timestamp, count = rtio_input_timestamped_data(timeout_mu,
self.channel)
if count == self.counter_max:
raise CounterOverflow(
"Input edge counter overflow on RTIO channel {0}",
int64(self.channel))
return timestamp, count

View File

@ -2,131 +2,63 @@ import builtins
import linecache
import re
import os
from numpy.linalg import LinAlgError
from artiq import __artiq_dir__ as artiq_dir
from artiq.coredevice.runtime import source_loader
"""
This file provides class definition for all the exceptions declared in `EmbeddingMap` in `artiq.compiler.embedding`
For Python builtin exceptions, use the `builtins` module
For ARTIQ specific exceptions, inherit from `Exception` class
"""
AssertionError = builtins.AssertionError
AttributeError = builtins.AttributeError
IndexError = builtins.IndexError
IOError = builtins.IOError
KeyError = builtins.KeyError
NotImplementedError = builtins.NotImplementedError
OverflowError = builtins.OverflowError
RuntimeError = builtins.RuntimeError
TimeoutError = builtins.TimeoutError
TypeError = builtins.TypeError
ValueError = builtins.ValueError
ZeroDivisionError = builtins.ZeroDivisionError
OSError = builtins.OSError
ValueError = builtins.ValueError
IndexError = builtins.IndexError
RuntimeError = builtins.RuntimeError
class CoreException:
"""Information about an exception raised or passed through the core device.
"""Information about an exception raised or passed through the core device."""
If the exception message contains positional format arguments, it
will attempt to substitute them with the provided parameters.
If the substitution fails, the original message will remain unchanged.
"""
def __init__(self, exceptions, exception_info, traceback, stack_pointers):
self.exceptions = exceptions
self.exception_info = exception_info
self.traceback = list(traceback)
self.stack_pointers = stack_pointers
first_exception = exceptions[0]
name = first_exception[0]
def __init__(self, name, message, params, traceback):
if ':' in name:
exn_id, self.name = name.split(':', 2)
self.id = int(exn_id)
else:
self.id, self.name = 0, name
self.message = first_exception[1]
self.params = first_exception[2]
def append_backtrace(self, record, inlined=False):
filename, line, column, function, address = record
stub_globals = {"__name__": filename, "__loader__": source_loader}
source_line = linecache.getline(filename, line, stub_globals)
indentation = re.search(r"^\s*", source_line).end()
if address is None:
formatted_address = ""
elif inlined:
formatted_address = " (inlined)"
else:
formatted_address = " (RA=+0x{:x})".format(address)
filename = filename.replace(artiq_dir, "<artiq>")
lines = []
if column == -1:
lines.append(" {}".format(source_line.strip() if source_line else "<unknown>"))
lines.append(" File \"{file}\", line {line}, in {function}{address}".
format(file=filename, line=line, function=function,
address=formatted_address))
else:
lines.append(" {}^".format(" " * (column - indentation)))
lines.append(" {}".format(source_line.strip() if source_line else "<unknown>"))
lines.append(" File \"{file}\", line {line}, column {column},"
" in {function}{address}".
format(file=filename, line=line, column=column + 1,
function=function, address=formatted_address))
return lines
def single_traceback(self, exception_index):
# note that we insert in reversed order
lines = []
last_sp = 0
start_backtrace_index = self.exception_info[exception_index][1]
zipped = list(zip(self.traceback[start_backtrace_index:],
self.stack_pointers[start_backtrace_index:]))
exception = self.exceptions[exception_index]
name = exception[0]
message = exception[1]
params = exception[2]
if ':' in name:
exn_id, name = name.split(':', 2)
exn_id = int(exn_id)
else:
exn_id = 0
try:
lines.append("{}({}): {}".format(name, exn_id, message.format(*params)))
except:
lines.append("{}({}): {}".format(name, exn_id, message))
zipped.append(((exception[3], exception[4], exception[5], exception[6],
None, []), None))
for ((filename, line, column, function, address, inlined), sp) in zipped:
# backtrace of nested exceptions may be discontinuous
# but the stack pointer must increase monotonically
if sp is not None and sp <= last_sp:
continue
last_sp = sp
for record in reversed(inlined):
lines += self.append_backtrace(record, True)
lines += self.append_backtrace((filename, line, column, function,
address))
lines.append("Traceback (most recent call first):")
return "\n".join(reversed(lines))
self.message, self.params = message, params
self.traceback = list(traceback)
def __str__(self):
tracebacks = [self.single_traceback(i) for i in range(len(self.exceptions))]
traceback_str = ('\n\nDuring handling of the above exception, ' +
'another exception occurred:\n\n').join(tracebacks)
return 'Core Device Traceback:\n' +\
traceback_str +\
'\n\nEnd of Core Device Traceback\n'
lines = []
lines.append("Core Device Traceback (most recent call last):")
last_address = 0
for (filename, line, column, function, address) in self.traceback:
stub_globals = {"__name__": filename, "__loader__": source_loader}
source_line = linecache.getline(filename, line, stub_globals)
indentation = re.search(r"^\s*", source_line).end()
if address is None:
formatted_address = ""
elif address == last_address:
formatted_address = " (inlined)"
else:
formatted_address = " (RA=+0x{:x})".format(address)
last_address = address
filename = filename.replace(artiq_dir, "<artiq>")
if column == -1:
lines.append(" File \"{file}\", line {line}, in {function}{address}".
format(file=filename, line=line, function=function,
address=formatted_address))
lines.append(" {}".format(source_line.strip() if source_line else "<unknown>"))
else:
lines.append(" File \"{file}\", line {line}, column {column},"
" in {function}{address}".
format(file=filename, line=line, column=column + 1,
function=function, address=formatted_address))
lines.append(" {}".format(source_line.strip() if source_line else "<unknown>"))
lines.append(" {}^".format(" " * (column - indentation)))
lines.append("{}({}): {}".format(self.name, self.id,
self.message.format(*self.params)))
return "\n".join(lines)
class InternalError(Exception):
@ -159,8 +91,8 @@ class RTIOOverflow(Exception):
artiq_builtin = True
class RTIODestinationUnreachable(Exception):
"""Raised when a RTIO operation could not be completed due to a DRTIO link
class RTIOLinkError(Exception):
"""Raised with a RTIO operation could not be completed due to a DRTIO link
being down.
"""
artiq_builtin = True
@ -171,27 +103,19 @@ class DMAError(Exception):
artiq_builtin = True
class SubkernelError(Exception):
"""Raised when an operation regarding a subkernel is invalid
or cannot be completed.
"""
artiq_builtin = True
class WatchdogExpired(Exception):
"""Raised when a watchdog expires."""
class ClockFailure(Exception):
"""Raised when RTIO PLL has lost lock."""
artiq_builtin = True
class I2CError(Exception):
"""Raised when a I2C transaction fails."""
artiq_builtin = True
pass
class SPIError(Exception):
"""Raised when a SPI transaction fails."""
artiq_builtin = True
class UnwrapNoneError(Exception):
"""Raised when unwrapping a none Option."""
artiq_builtin = True
pass

View File

@ -1,305 +0,0 @@
"""RTIO driver for the Fastino 32-channel, 16-bit, 2.5 MS/s per channel
streaming DAC.
"""
from numpy import int32, int64
from artiq.language.core import kernel, portable, delay, delay_mu
from artiq.coredevice.rtio import (rtio_output, rtio_output_wide,
rtio_input_data)
from artiq.language.units import ns
from artiq.language.types import TInt32, TList
class Fastino:
"""Fastino 32-channel, 16-bit, 2.5 MS/s per channel streaming DAC
The RTIO PHY supports staging DAC data before transmitting them by writing
to the DAC RTIO addresses, if a channel is not "held" by setting its bit
using :meth:`set_hold`, the next frame will contain the update. For the
DACs held, the update is triggered explicitly by setting the corresponding
bit using :meth:`update`. Update is self-clearing. This enables atomic
DAC updates synchronized to a frame edge.
The ``log2_width=0`` RTIO layout uses one DAC channel per RTIO address and a
dense RTIO address space. The RTIO words are narrow (32-bit) and
few-channel updates are efficient. There is the least amount of DAC state
tracking in kernels, at the cost of more DMA and RTIO data.
The setting here and in the RTIO PHY (gateware) must match.
Other ``log2_width`` (up to ``log2_width=5``) settings pack multiple
(in powers of two) DAC channels into one group and into one RTIO write.
The RTIO data width increases accordingly. The ``log2_width``
LSBs of the RTIO address for a DAC channel write must be zero and the
address space is sparse. For ``log2_width=5`` the RTIO data is 512-bit wide.
If ``log2_width`` is zero, the :meth:`set_dac`/:meth:`set_dac_mu` interface
must be used. If non-zero, the :meth:`set_group`/:meth:`set_group_mu`
interface must be used.
:param channel: RTIO channel number
:param core_device: Core device name (default: "core")
:param log2_width: Width of DAC channel group (logarithm base 2).
Value must match the corresponding value in the RTIO PHY (gateware).
"""
kernel_invariants = {"core", "channel", "width", "t_frame"}
def __init__(self, dmgr, channel, core_device="core", log2_width=0):
self.channel = channel << 8
self.core = dmgr.get(core_device)
self.width = 1 << log2_width
# frame duration in mu (14 words each 7 clock cycles each 4 ns)
# self.core.seconds_to_mu(14*7*4*ns) # unfortunately this may round wrong
assert self.core.ref_period == 1*ns
self.t_frame = int64(14*7*4)
@staticmethod
def get_rtio_channels(channel, **kwargs):
return [(channel, None)]
@kernel
def init(self):
"""Initialize the device.
* disables RESET, DAC_CLR, enables AFE_PWR
* clears error counters, enables error counting
* turns LEDs off
* clears ``hold`` and ``continuous`` on all channels
* clear and resets interpolators to unit rate change on all
channels
It does not change set channel voltages and does not reset the PLLs or clock
domains.
.. warning::
On Fastino gateware before v0.2 this may lead to 0 voltage being emitted
transiently.
"""
self.set_cfg(reset=0, afe_power_down=0, dac_clr=0, clr_err=1)
delay_mu(self.t_frame)
self.set_cfg(reset=0, afe_power_down=0, dac_clr=0, clr_err=0)
delay_mu(self.t_frame)
self.set_continuous(0)
delay_mu(self.t_frame)
self.stage_cic(1)
delay_mu(self.t_frame)
self.apply_cic(0xffffffff)
delay_mu(self.t_frame)
self.set_leds(0)
delay_mu(self.t_frame)
self.set_hold(0)
delay_mu(self.t_frame)
@kernel
def write(self, addr, data):
"""Write data to a Fastino register.
:param addr: Address to write to.
:param data: Data to write.
"""
rtio_output(self.channel | addr, data)
@kernel
def read(self, addr):
"""Read from Fastino register.
TODO: untested
:param addr: Address to read from.
:return: The data read.
"""
raise NotImplementedError
# rtio_output(self.channel | addr | 0x80)
# return rtio_input_data(self.channel >> 8)
@kernel
def set_dac_mu(self, dac, data):
"""Write DAC data in machine units.
:param dac: DAC channel to write to (0-31).
:param data: DAC word to write, 16-bit unsigned integer, in machine
units.
"""
self.write(dac, data)
@kernel
def set_group_mu(self, dac: TInt32, data: TList(TInt32)):
"""Write a group of DAC channels in machine units.
:param dac: First channel in DAC channel group (0-31). The ``log2_width``
LSBs must be zero.
:param data: List of DAC data pairs (2x16-bit unsigned) to write,
in machine units. Data exceeding group size is ignored.
If the list length is less than group size, the remaining
DAC channels within the group are cleared to 0 (machine units).
"""
if dac & (self.width - 1):
raise ValueError("Group index LSBs must be zero")
rtio_output_wide(self.channel | dac, data)
@portable
def voltage_to_mu(self, voltage):
"""Convert SI volts to DAC machine units.
:param voltage: Voltage in SI volts.
:return: DAC data word in machine units, 16-bit integer.
"""
data = int32(round((0x8000/10.)*voltage)) + int32(0x8000)
if data < 0 or data > 0xffff:
raise ValueError("DAC voltage out of bounds")
return data
@portable
def voltage_group_to_mu(self, voltage, data):
"""Convert SI volts to packed DAC channel group machine units.
:param voltage: List of SI volt voltages.
:param data: List of DAC channel data pairs to write to.
Half the length of `voltage`.
"""
for i in range(len(voltage)):
v = self.voltage_to_mu(voltage[i])
if i & 1:
v = data[i // 2] | (v << 16)
data[i // 2] = int32(v)
@kernel
def set_dac(self, dac, voltage):
"""Set DAC data to given voltage.
:param dac: DAC channel (0-31).
:param voltage: Desired output voltage.
"""
self.write(dac, self.voltage_to_mu(voltage))
@kernel
def set_group(self, dac, voltage):
"""Set DAC group data to given voltage.
:param dac: DAC channel (0-31).
:param voltage: Desired output voltage.
"""
data = [int32(0)] * (len(voltage) // 2)
self.voltage_group_to_mu(voltage, data)
self.set_group_mu(dac, data)
@kernel
def update(self, update):
"""Schedule channels for update.
:param update: Bit mask of channels to update (32-bit).
"""
self.write(0x20, update)
@kernel
def set_hold(self, hold):
"""Set channels to manual update.
:param hold: Bit mask of channels to hold (32-bit).
"""
self.write(0x21, hold)
@kernel
def set_cfg(self, reset=0, afe_power_down=0, dac_clr=0, clr_err=0):
"""Set configuration bits.
:param reset: Reset SPI PLL and SPI clock domain.
:param afe_power_down: Disable AFE power.
:param dac_clr: Assert all 32 DAC_CLR signals setting all DACs to
mid-scale (0 V).
:param clr_err: Clear error counters and PLL reset indicator.
This clears the sticky red error LED. Must be cleared to enable
error counting.
"""
self.write(0x22, (reset << 0) | (afe_power_down << 1) |
(dac_clr << 2) | (clr_err << 3))
@kernel
def set_leds(self, leds):
"""Set the green user-defined LEDs.
:param leds: LED status, 8-bit integer each bit corresponding to one
green LED.
"""
self.write(0x23, leds)
@kernel
def set_continuous(self, channel_mask):
"""Enable continuous DAC updates on channels regardless of new data
being submitted.
"""
self.write(0x25, channel_mask)
@kernel
def stage_cic_mu(self, rate_mantissa, rate_exponent, gain_exponent):
"""Stage machine unit CIC interpolator configuration.
"""
if rate_mantissa < 0 or rate_mantissa >= 1 << 6:
raise ValueError("rate_mantissa out of bounds")
if rate_exponent < 0 or rate_exponent >= 1 << 4:
raise ValueError("rate_exponent out of bounds")
if gain_exponent < 0 or gain_exponent >= 1 << 6:
raise ValueError("gain_exponent out of bounds")
config = rate_mantissa | (rate_exponent << 6) | (gain_exponent << 10)
self.write(0x26, config)
@kernel
def stage_cic(self, rate) -> TInt32:
"""Compute and stage interpolator configuration.
This method approximates the desired interpolation rate using a 10-bit
floating point representation (6-bit mantissa, 4-bit exponent) and
then determines an optimal interpolation gain compensation exponent
to avoid clipping. Gains for rates that are powers of two are accurately
compensated. Other rates lead to overall less than unity gain (but more
than 0.5 gain).
The overall gain including gain compensation is ``actual_rate ** order /
2 ** ceil(log2(actual_rate ** order))``
where ``order = 3``.
Returns the actual interpolation rate.
"""
if rate <= 0 or rate > 1 << 16:
raise ValueError("rate out of bounds")
rate_mantissa = rate
rate_exponent = 0
while rate_mantissa > 1 << 6:
rate_exponent += 1
rate_mantissa >>= 1
order = 3
gain = 1
for i in range(order):
gain *= rate_mantissa
gain_exponent = 0
while gain > 1 << gain_exponent:
gain_exponent += 1
gain_exponent += order*rate_exponent
assert gain_exponent <= order*16
self.stage_cic_mu(rate_mantissa - 1, rate_exponent, gain_exponent)
return rate_mantissa << rate_exponent
@kernel
def apply_cic(self, channel_mask):
"""Apply the staged interpolator configuration on the specified channels.
Each Fastino channel starting with gateware v0.2 includes a fourth order
(cubic) CIC interpolator with variable rate change and variable output
gain compensation (see :meth:`stage_cic`).
Fastino gateware before v0.2 does not include the interpolators and the
methods affecting the CICs should not be used.
Channels using non-unity interpolation rate should have
continous DAC updates enabled (see :meth:`set_continuous`) unless
their output is supposed to be constant.
This method resets and settles the affected interpolators. There will be
no output updates for the next ``order = 3`` input samples.
Affected channels will only accept one input sample per input sample
period. This method synchronizes the input sample period to the current
frame on the affected channels.
If application of new interpolator settings results in a change of the
overall gain, there will be a corresponding output step.
"""
self.write(0x27, channel_mask)

View File

@ -0,0 +1,51 @@
# Definitions for using the "FMC DIO 32ch LVDS a" card with the VHDCI-EEM breakout v1.1
eem_fmc_connections = {
0: [0, 8, 2, 3, 4, 5, 6, 7],
1: [1, 9, 10, 11, 12, 13, 14, 15],
2: [17, 16, 24, 19, 20, 21, 22, 23],
3: [18, 25, 26, 27, 28, 29, 30, 31],
}
def shiftreg_bits(eem, out_pins):
"""
Returns the bits that have to be set in the FMC card direction
shift register for the given EEM.
Takes a set of pin numbers (0-7) at the EEM. Return values
of this function for different EEMs should be ORed together.
"""
r = 0
for i in range(8):
if i not in out_pins:
lvds_line = eem_fmc_connections[eem][i]
# lines are swapped in pairs to ease PCB routing
# at the shift register
shift = lvds_line ^ 1
r |= 1 << shift
return r
dio_bank0_out_pins = set(range(4))
dio_bank1_out_pins = set(range(4, 8))
urukul_out_pins = {
0, # clk
1, # mosi
3, 4, 5, # cs_n
6, # io_update
7, # dds_reset
}
urukul_aux_out_pins = {
4, # sw0
5, # sw1
6, # sw2
7, # sw3
}
zotino_out_pins = {
0, # clk
1, # mosi
3, 4, # cs_n
5, # ldac_n
7, # clr_n
}

View File

@ -2,7 +2,7 @@ from numpy import int32, int64
from artiq.language.core import *
from artiq.language.types import *
from artiq.coredevice.rtio import rtio_output, rtio_input_timestamped_data
from artiq.coredevice.rtio import rtio_output, rtio_input_data
class OutOfSyncException(Exception):
@ -11,11 +11,6 @@ class OutOfSyncException(Exception):
pass
class GrabberTimeoutException(Exception):
"""Raised when a timeout occurs while attempting to read Grabber RTIO input events."""
pass
class Grabber:
"""Driver for the Grabber camera interface."""
kernel_invariants = {"core", "channel_base", "sentinel"}
@ -28,11 +23,7 @@ class Grabber:
count_width = min(31, 2*res_width + 16 - count_shift)
# This value is inserted by the gateware to mark the start of a series of
# ROI engine outputs for one video frame.
self.sentinel = int32(int64(2**count_width))
@staticmethod
def get_rtio_channels(channel_base, **kwargs):
return [(channel_base, "ROI coordinates"), (channel_base + 1, "ROI mask")]
self.sentinel = int32(2**count_width)
@kernel
def setup_roi(self, n, x0, y0, x1, y1):
@ -49,13 +40,13 @@ class Grabber:
Advances the timeline by 4 coarse RTIO cycles.
"""
c = int64(self.core.ref_multiplier)
rtio_output((self.channel_base << 8) | (4*n+0), x0)
rtio_output(now_mu(), self.channel_base, 4*n+0, x0)
delay_mu(c)
rtio_output((self.channel_base << 8) | (4*n+1), y0)
rtio_output(now_mu(), self.channel_base, 4*n+1, y0)
delay_mu(c)
rtio_output((self.channel_base << 8) | (4*n+2), x1)
rtio_output(now_mu(), self.channel_base, 4*n+2, x1)
delay_mu(c)
rtio_output((self.channel_base << 8) | (4*n+3), y1)
rtio_output(now_mu(), self.channel_base, 4*n+3, y1)
delay_mu(c)
@kernel
@ -76,7 +67,7 @@ class Grabber:
:param mask: bitmask enabling or disabling each ROI engine.
"""
rtio_output((self.channel_base + 1) << 8, mask)
rtio_output(now_mu(), self.channel_base+1, 0, mask)
@kernel
def gate_roi_pulse(self, mask, dt):
@ -87,10 +78,10 @@ class Grabber:
self.gate_roi(0)
@kernel
def input_mu(self, data, timeout_mu=-1):
def input_mu(self, data):
"""
Retrieves the accumulated values for one frame from the ROI engines.
Blocks until values are available or timeout is reached.
Blocks until values are available.
The input list must be a list of integers of the same length as there
are enabled ROI engines. This method replaces the elements of the
@ -100,26 +91,15 @@ class Grabber:
If the number of elements in the list does not match the number of
ROI engines that produced output, an exception will be raised during
this call or the next.
If the timeout is reached before data is available, the exception
:exc:`GrabberTimeoutException` is raised.
:param timeout_mu: Timestamp at which a timeout will occur. Set to -1
(default) to disable timeout.
"""
channel = self.channel_base + 1
timestamp, sentinel = rtio_input_timestamped_data(timeout_mu, channel)
if timestamp == -1:
raise GrabberTimeoutException("Timeout before Grabber frame available")
sentinel = rtio_input_data(channel)
if sentinel != self.sentinel:
raise OutOfSyncException
for i in range(len(data)):
timestamp, roi_output = rtio_input_timestamped_data(timeout_mu, channel)
roi_output = rtio_input_data(channel)
if roi_output == self.sentinel:
raise OutOfSyncException
if timestamp == -1:
raise GrabberTimeoutException(
"Timeout retrieving ROIs (attempting to read more ROIs than enabled?)")
data[i] = roi_output

View File

@ -33,17 +33,12 @@ def i2c_read(busno: TInt32, ack: TBool) -> TInt32:
raise NotImplementedError("syscall not simulated")
@syscall(flags={"nounwind", "nowrite"})
def i2c_switch_select(busno: TInt32, address: TInt32, mask: TInt32) -> TNone:
raise NotImplementedError("syscall not simulated")
@kernel
def i2c_poll(busno, busaddr):
"""Poll I2C device at address.
:param busno: I2C bus number
:param busaddr: 8-bit I2C device address (LSB=0)
:param busaddr: 8 bit I2C device address (LSB=0)
:returns: True if the poll was ACKed
"""
i2c_start(busno)
@ -57,7 +52,7 @@ def i2c_write_byte(busno, busaddr, data, ack=True):
"""Write one byte to a device.
:param busno: I2C bus number
:param busaddr: 8-bit I2C device address (LSB=0)
:param busaddr: 8 bit I2C device address (LSB=0)
:param data: Data byte to be written
:param nack: Allow NACK
"""
@ -76,7 +71,7 @@ def i2c_read_byte(busno, busaddr):
"""Read one byte from a device.
:param busno: I2C bus number
:param busaddr: 8-bit I2C device address (LSB=0)
:param busaddr: 8 bit I2C device address (LSB=0)
:returns: Byte read
"""
i2c_start(busno)
@ -95,10 +90,10 @@ def i2c_write_many(busno, busaddr, addr, data, ack_last=True):
"""Transfer multiple bytes to a device.
:param busno: I2c bus number
:param busaddr: 8-bit I2C device address (LSB=0)
:param addr: 8-bit data address
:param busaddr: 8 bit I2C device address (LSB=0)
:param addr: 8 bit data address
:param data: Data bytes to be written
:param ack_last: Expect I2C ACK of the last byte written. If ``False``,
:param ack_last: Expect I2C ACK of the last byte written. If `False`,
the last byte may be NACKed (e.g. EEPROM full page writes).
"""
n = len(data)
@ -121,8 +116,8 @@ def i2c_read_many(busno, busaddr, addr, data):
"""Transfer multiple bytes from a device.
:param busno: I2c bus number
:param busaddr: 8-bit I2C device address (LSB=0)
:param addr: 8-bit data address
:param busaddr: 8 bit I2C device address (LSB=0)
:param addr: 8 bit data address
:param data: List of integers to be filled with the data read.
One entry ber byte.
"""
@ -142,12 +137,10 @@ def i2c_read_many(busno, busaddr, addr, data):
i2c_stop(busno)
class I2CSwitch:
"""Driver for the I2C bus switch.
class PCA9548:
"""Driver for the PCA9548 I2C bus switch.
PCA954X (or other) type detection is done by the CPU during I2C init.
I2C transactions are not real-time, and are performed by the CPU without
I2C transactions not real-time, and are performed by the CPU without
involving RTIO.
On the KC705, this chip is used for selecting the I2C buses on the two FMC
@ -158,25 +151,31 @@ class I2CSwitch:
self.busno = busno
self.address = address
@kernel
def select(self, mask):
"""Enable/disable channels.
:param mask: Bit mask of enabled channels
"""
i2c_write_byte(self.busno, self.address, mask)
@kernel
def set(self, channel):
"""Enable one channel.
:param channel: channel number (0-7)
"""
i2c_switch_select(self.busno, self.address >> 1, 1 << channel)
self.select(1 << channel)
@kernel
def unset(self):
"""Disable output of the I2C switch.
"""
i2c_switch_select(self.busno, self.address >> 1, 0)
def readback(self):
return i2c_read_byte(self.busno, self.address)
class TCA6424A:
"""Driver for the TCA6424A I2C I/O expander.
I2C transactions are not real-time, and are performed by the CPU without
I2C transactions not real-time, and are performed by the CPU without
involving RTIO.
On the NIST QC2 hardware, this chip is used for switching the directions
@ -208,46 +207,3 @@ class TCA6424A:
self._write24(0x8c, 0) # set all directions to output
self._write24(0x84, outputs_le) # set levels
class PCF8574A:
"""Driver for the PCF8574 I2C remote 8-bit I/O expander.
I2C transactions are not real-time, and are performed by the CPU without
involving RTIO.
"""
def __init__(self, dmgr, busno=0, address=0x7c, core_device="core"):
self.core = dmgr.get(core_device)
self.busno = busno
self.address = address
@kernel
def set(self, data):
"""Drive data on the quasi-bidirectional pins.
:param data: Pin data. High bits are weakly driven high
(and thus inputs), low bits are strongly driven low.
"""
i2c_start(self.busno)
try:
if not i2c_write(self.busno, self.address):
raise I2CError("PCF8574A failed to ack address")
if not i2c_write(self.busno, data):
raise I2CError("PCF8574A failed to ack data")
finally:
i2c_stop(self.busno)
@kernel
def get(self):
"""Retrieve quasi-bidirectional pin input data.
:return: Pin data
"""
i2c_start(self.busno)
ret = 0
try:
if not i2c_write(self.busno, self.address | 1):
raise I2CError("PCF8574A failed to ack address")
ret = i2c_read(self.busno, False)
finally:
i2c_stop(self.busno)
return ret

View File

@ -1,38 +0,0 @@
from os import path
import json
from jsonschema import Draft7Validator, validators
def extend_with_default(validator_class):
validate_properties = validator_class.VALIDATORS["properties"]
def set_defaults(validator, properties, instance, schema):
for property, subschema in properties.items():
if "default" in subschema:
instance.setdefault(property, subschema["default"])
for error in validate_properties(
validator, properties, instance, schema,
):
yield error
return validators.extend(
validator_class, {"properties" : set_defaults},
)
schema_path = path.join(path.dirname(__file__), "coredevice_generic.schema.json")
with open(schema_path, "r") as f:
schema = json.load(f)
validator = extend_with_default(Draft7Validator)(schema)
def load(description_path):
with open(description_path, "r") as f:
result = json.load(f)
global validator
validator.validate(result)
if result["base"] != "use_drtio_role":
result["drtio_role"] = result["base"]
return result

View File

@ -1,77 +0,0 @@
from numpy import int32
from artiq.experiment import *
from artiq.coredevice.i2c import i2c_write_many, i2c_read_many, i2c_poll
port_mapping = {
"EEM0": 7,
"EEM1": 5,
"EEM2": 4,
"EEM3": 3,
"EEM4": 2,
"EEM5": 1,
"EEM6": 0,
"EEM7": 6,
"EEM8": 12,
"EEM9": 13,
"EEM10": 15,
"EEM11": 14,
"SFP0": 8,
"SFP1": 9,
"SFP2": 10,
"LOC0": 11,
}
class KasliEEPROM:
def __init__(self, dmgr, port, address=0xa0, busno=0,
core_device="core", sw0_device="i2c_switch0", sw1_device="i2c_switch1"):
self.core = dmgr.get(core_device)
self.sw0 = dmgr.get(sw0_device)
self.sw1 = dmgr.get(sw1_device)
self.busno = busno
self.port = port_mapping[port]
self.address = address # i2c 8 bit
@kernel
def select(self):
mask = 1 << self.port
if self.port < 8:
self.sw0.set(self.port)
self.sw1.unset()
else:
self.sw0.unset()
self.sw1.set(self.port - 8)
@kernel
def deselect(self):
self.sw0.unset()
self.sw1.unset()
@kernel
def write_i32(self, addr, value):
self.select()
try:
data = [0]*4
for i in range(4):
data[i] = (value >> 24) & 0xff
value <<= 8
i2c_write_many(self.busno, self.address, addr, data)
i2c_poll(self.busno, self.address)
finally:
self.deselect()
@kernel
def read_i32(self, addr):
self.select()
try:
data = [0]*4
i2c_read_many(self.busno, self.address, addr, data)
value = int32(0)
for i in range(4):
value <<= 8
value |= data[i]
finally:
self.deselect()
return value

View File

@ -1,169 +0,0 @@
"""RTIO driver for Mirny (4-channel GHz PLLs)
"""
from artiq.language.core import kernel, delay, portable
from artiq.language.units import us
from numpy import int32
from artiq.coredevice import spi2 as spi
SPI_CONFIG = (
0 * spi.SPI_OFFLINE
| 0 * spi.SPI_END
| 0 * spi.SPI_INPUT
| 1 * spi.SPI_CS_POLARITY
| 0 * spi.SPI_CLK_POLARITY
| 0 * spi.SPI_CLK_PHASE
| 0 * spi.SPI_LSB_FIRST
| 0 * spi.SPI_HALF_DUPLEX
)
# SPI clock write and read dividers
SPIT_WR = 4
SPIT_RD = 16
SPI_CS = 1
WE = 1 << 24
# supported CPLD code version
PROTO_REV_MATCH = 0x0
class Mirny:
"""
Mirny PLL-based RF generator.
:param spi_device: SPI bus device
:param refclk: Reference clock (SMA, MMCX or on-board 100 MHz oscillator)
frequency in Hz
:param clk_sel: Reference clock selection.
Valid options are: "XO" - onboard crystal oscillator;
"SMA" - front-panel SMA connector; "MMCX" - internal MMCX connector.
Passing an integer writes it as ``clk_sel`` in the CPLD's register 1.
The effect depends on the hardware revision.
:param core_device: Core device name (default: "core")
"""
kernel_invariants = {"bus", "core", "refclk", "clk_sel_hw_rev"}
def __init__(self, dmgr, spi_device, refclk=100e6, clk_sel="XO", core_device="core"):
self.core = dmgr.get(core_device)
self.bus = dmgr.get(spi_device)
# reference clock frequency
self.refclk = refclk
if not (10 <= self.refclk / 1e6 <= 600):
raise ValueError("Invalid refclk")
# reference clock selection
try:
self.clk_sel_hw_rev = {
# clk source: [reserved, reserved, v1.1, v1.0]
"xo": [-1, -1, 0, 0],
"mmcx": [-1, -1, 3, 2],
"sma": [-1, -1, 2, 3],
}[clk_sel.lower()]
except AttributeError: # not a string, fallback to int
if clk_sel & 0x3 != clk_sel:
raise ValueError("Invalid clk_sel") from None
self.clk_sel_hw_rev = [clk_sel] * 4
except KeyError:
raise ValueError("Invalid clk_sel") from None
self.clk_sel = -1
# board hardware revision
self.hw_rev = 0 # v1.0: 3, v1.1: 2
# TODO: support clk_div on v1.0 boards
@kernel
def read_reg(self, addr):
"""Read a register."""
self.bus.set_config_mu(
SPI_CONFIG | spi.SPI_INPUT | spi.SPI_END, 24, SPIT_RD, SPI_CS
)
self.bus.write((addr << 25))
return self.bus.read() & int32(0xFFFF)
@kernel
def write_reg(self, addr, data):
"""Write a register."""
self.bus.set_config_mu(SPI_CONFIG | spi.SPI_END, 24, SPIT_WR, SPI_CS)
self.bus.write((addr << 25) | WE | ((data & 0xFFFF) << 8))
@kernel
def init(self, blind=False):
"""
Initialize and detect Mirny.
Select the clock source based the board's hardware revision.
Raise :exc:`ValueError` if the board's hardware revision is not supported.
:param blind: Verify presence and protocol compatibility. Raise :exc:`ValueError` on failure.
"""
reg0 = self.read_reg(0)
self.hw_rev = reg0 & 0x3
if not blind:
if (reg0 >> 2) & 0x3 != PROTO_REV_MATCH:
raise ValueError("Mirny PROTO_REV mismatch")
delay(100 * us) # slack
# select clock source
self.clk_sel = self.clk_sel_hw_rev[self.hw_rev]
if self.clk_sel < 0:
raise ValueError("Hardware revision not supported")
self.write_reg(1, (self.clk_sel << 4))
delay(1000 * us)
@portable(flags={"fast-math"})
def att_to_mu(self, att):
"""Convert an attenuation setting in dB to machine units.
:param att: Attenuation setting in dB.
:return: Digital attenuation setting.
"""
code = int32(255) - int32(round(att * 8))
if code < 0 or code > 255:
raise ValueError("Invalid Mirny attenuation!")
return code
@kernel
def set_att_mu(self, channel, att):
"""Set digital step attenuator in machine units.
:param att: Attenuation setting, 8-bit digital.
"""
self.bus.set_config_mu(SPI_CONFIG | spi.SPI_END, 16, SPIT_WR, SPI_CS)
self.bus.write(((channel | 8) << 25) | (att << 16))
@kernel
def set_att(self, channel, att):
"""Set digital step attenuator in SI units.
This method will write the attenuator settings of the selected channel.
See also :meth:`Mirny.set_att_mu`.
:param channel: Attenuator channel (0-3).
:param att: Attenuation setting in dB. Higher value is more
attenuation. Minimum attenuation is 0*dB, maximum attenuation is
31.5*dB.
"""
self.set_att_mu(channel, self.att_to_mu(att))
@kernel
def write_ext(self, addr, length, data, ext_div=SPIT_WR):
"""Perform SPI write to a prefixed address."""
self.bus.set_config_mu(SPI_CONFIG, 8, SPIT_WR, SPI_CS)
self.bus.write(addr << 25)
self.bus.set_config_mu(SPI_CONFIG | spi.SPI_END, length, ext_div, SPI_CS)
if length < 32:
data <<= 32 - length
self.bus.write(data)

View File

@ -16,31 +16,31 @@ SPI_CS_SR = 2
@portable
def adc_ctrl(channel=1, softspan=0b111, valid=1):
"""Build a LTC2335-16 control word."""
"""Build a LTC2335-16 control word"""
return (valid << 7) | (channel << 3) | softspan
@portable
def adc_softspan(data):
"""Return the softspan configuration index from a result packet."""
"""Return the softspan configuration index from a result packet"""
return data & 0x7
@portable
def adc_channel(data):
"""Return the channel index from a result packet."""
"""Return the channel index from a result packet"""
return (data >> 3) & 0x7
@portable
def adc_data(data):
"""Return the ADC value from a result packet."""
"""Return the ADC value from a result packet"""
return (data >> 8) & 0xffff
@portable
def adc_value(data, v_ref=5.):
"""Convert a ADC result packet to SI units (volts)."""
"""Convert a ADC result packet to SI units (Volt)"""
softspan = adc_softspan(data)
data = adc_data(data)
g = 625
@ -107,7 +107,7 @@ class Novogorny:
def configure(self, data):
"""Set up the ADC sequencer.
:param data: List of 8-bit control words to write into the sequencer
:param data: List of 8 bit control words to write into the sequencer
table.
"""
if len(data) > 1:
@ -137,10 +137,12 @@ class Novogorny:
@kernel
def sample(self, next_ctrl=0):
"""Acquire a sample. See also :meth:`Novogorny.sample_mu`.
"""Acquire a sample
.. seealso:: :meth:`sample_mu`
:param next_ctrl: ADC control word for the next sample
:return: The ADC result packet (volts)
:return: The ADC result packet (Volt)
"""
return adc_value(self.sample_mu(), self.v_ref)
@ -149,7 +151,7 @@ class Novogorny:
"""Acquire a burst of samples.
If the burst is too long and the sample rate too high, there will be
:exc:RTIOOverflow exceptions.
RTIO input overflows.
High sample rates lead to gain errors since the impedance between the
instrumentation amplifier and the ADC is high.

View File

@ -0,0 +1,47 @@
from artiq.experiment import kernel
from artiq.coredevice.i2c import (
i2c_start, i2c_write, i2c_read, i2c_stop, I2CError)
class PCF8574A:
"""Driver for the PCF8574 I2C remote 8-bit I/O expander.
I2C transactions not real-time, and are performed by the CPU without
involving RTIO.
"""
def __init__(self, dmgr, busno=0, address=0x7c, core_device="core"):
self.core = dmgr.get(core_device)
self.busno = busno
self.address = address
@kernel
def set(self, data):
"""Drive data on the quasi-bidirectional pins.
:param data: Pin data. High bits are weakly driven high
(and thus inputs), low bits are strongly driven low.
"""
i2c_start(self.busno)
try:
if not i2c_write(self.busno, self.address):
raise I2CError("PCF8574A failed to ack address")
if not i2c_write(self.busno, data):
raise I2CError("PCF8574A failed to ack data")
finally:
i2c_stop(self.busno)
@kernel
def get(self):
"""Retrieve quasi-bidirectional pin input data.
:return: Pin data
"""
i2c_start(self.busno)
ret = 0
try:
if not i2c_write(self.busno, self.address | 1):
raise I2CError("PCF8574A failed to ack address")
ret = i2c_read(self.busno, False)
finally:
i2c_stop(self.busno)
return ret

77
artiq/coredevice/pcu.py Normal file
View File

@ -0,0 +1,77 @@
from .spr import mtspr, mfspr
from artiq.language.core import kernel
_MAX_SPRS_PER_GRP_BITS = 11
_SPRGROUP_PC = 7 << _MAX_SPRS_PER_GRP_BITS
_SPR_PCMR_CP = 0x00000001 # Counter present
_SPR_PCMR_CISM = 0x00000004 # Count in supervisor mode
_SPR_PCMR_CIUM = 0x00000008 # Count in user mode
_SPR_PCMR_LA = 0x00000010 # Load access event
_SPR_PCMR_SA = 0x00000020 # Store access event
_SPR_PCMR_IF = 0x00000040 # Instruction fetch event
_SPR_PCMR_DCM = 0x00000080 # Data cache miss event
_SPR_PCMR_ICM = 0x00000100 # Insn cache miss event
_SPR_PCMR_IFS = 0x00000200 # Insn fetch stall event
_SPR_PCMR_LSUS = 0x00000400 # LSU stall event
_SPR_PCMR_BS = 0x00000800 # Branch stall event
_SPR_PCMR_DTLBM = 0x00001000 # DTLB miss event
_SPR_PCMR_ITLBM = 0x00002000 # ITLB miss event
_SPR_PCMR_DDS = 0x00004000 # Data dependency stall event
_SPR_PCMR_WPE = 0x03ff8000 # Watchpoint events
@kernel(flags={"nowrite", "nounwind"})
def _PCCR(n):
return _SPRGROUP_PC + n
@kernel(flags={"nowrite", "nounwind"})
def _PCMR(n):
return _SPRGROUP_PC + 8 + n
class CorePCU:
"""Core device performance counter unit (PCU) access"""
def __init__(self, dmgr, core_device="core"):
self.core = dmgr.get(core_device)
@kernel
def start(self):
"""
Configure and clear the kernel CPU performance counters.
The eight counters are configured to count the following events:
* Load or store
* Instruction fetch
* Data cache miss
* Instruction cache miss
* Instruction fetch stall
* Load-store-unit stall
* Branch stall
* Data dependency stall
"""
for i in range(8):
if not mfspr(_PCMR(i)) & _SPR_PCMR_CP:
raise ValueError("counter not present")
mtspr(_PCMR(i), 0)
mtspr(_PCCR(i), 0)
mtspr(_PCMR(0), _SPR_PCMR_CISM | _SPR_PCMR_LA | _SPR_PCMR_SA)
mtspr(_PCMR(1), _SPR_PCMR_CISM | _SPR_PCMR_IF)
mtspr(_PCMR(2), _SPR_PCMR_CISM | _SPR_PCMR_DCM)
mtspr(_PCMR(3), _SPR_PCMR_CISM | _SPR_PCMR_ICM)
mtspr(_PCMR(4), _SPR_PCMR_CISM | _SPR_PCMR_IFS)
mtspr(_PCMR(5), _SPR_PCMR_CISM | _SPR_PCMR_LSUS)
mtspr(_PCMR(6), _SPR_PCMR_CISM | _SPR_PCMR_BS)
mtspr(_PCMR(7), _SPR_PCMR_CISM | _SPR_PCMR_DDS)
@kernel
def get(self, r):
"""
Read the performance counters and store the counts in the
array provided.
:param list[int] r: array to store the counter values
"""
for i in range(8):
r[i] = mfspr(_PCCR(i))

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,92 @@
from collections import defaultdict
import subprocess
class Symbolizer:
def __init__(self, binary, triple, demangle=True):
cmdline = [
triple + "-addr2line", "--exe=" + binary,
"--addresses", "--functions", "--inlines"
]
if demangle:
cmdline.append("--demangle=rust")
self._addr2line = subprocess.Popen(cmdline, stdin=subprocess.PIPE, stdout=subprocess.PIPE,
universal_newlines=True)
def symbolize(self, addr):
self._addr2line.stdin.write("0x{:08x}\n0\n".format(addr))
self._addr2line.stdin.flush()
self._addr2line.stdout.readline() # 0x[addr]
result = []
while True:
function = self._addr2line.stdout.readline().rstrip()
# check for end marker
if function == "0x00000000": # 0x00000000
self._addr2line.stdout.readline() # ??
self._addr2line.stdout.readline() # ??:0
return result
file, line = self._addr2line.stdout.readline().rstrip().split(":")
result.append((function, file, line, addr))
class CallgrindWriter:
def __init__(self, output, binary, triple, compression=True, demangle=True):
self._output = output
self._binary = binary
self._current = defaultdict(lambda: None)
self._ids = defaultdict(lambda: {})
self._compression = compression
self._symbolizer = Symbolizer(binary, triple, demangle=demangle)
def _write(self, fmt, *args, **kwargs):
self._output.write(fmt.format(*args, **kwargs))
self._output.write("\n")
def _spec(self, spec, value):
if self._current[spec] == value:
return
self._current[spec] = value
if not self._compression or value == "??":
self._write("{}={}", spec, value)
return
spec_ids = self._ids[spec]
if value in spec_ids:
self._write("{}=({})", spec, spec_ids[value])
else:
spec_ids[value] = len(spec_ids) + 1
self._write("{}=({}) {}", spec, spec_ids[value], value)
def header(self):
self._write("# callgrind format")
self._write("version: 1")
self._write("creator: ARTIQ")
self._write("positions: instr line")
self._write("events: Hits")
self._write("")
self._spec("ob", self._binary)
self._spec("cob", self._binary)
def hit(self, addr, count):
for function, file, line, addr in self._symbolizer.symbolize(addr):
self._spec("fl", file)
self._spec("fn", function)
self._write("0x{:08x} {} {}", addr, line, count)
def edge(self, caller, callee, count):
edges = self._symbolizer.symbolize(callee) + self._symbolizer.symbolize(caller)
for (callee, caller) in zip(edges, edges[1:]):
function, file, line, addr = callee
self._spec("cfl", file)
self._spec("cfn", function)
self._write("calls={} 0x{:08x} {}", count, addr, line)
function, file, line, addr = caller
self._spec("fl", file)
self._spec("fn", function)
self._write("0x{:08x} {} {}", addr, line, count)

View File

@ -1,14 +1,16 @@
from artiq.language.core import syscall
from artiq.language.types import TInt32, TInt64, TList, TNone, TTuple
from artiq.language.types import TInt64, TInt32, TNone, TList
@syscall(flags={"nowrite"})
def rtio_output(target: TInt32, data: TInt32) -> TNone:
def rtio_output(time_mu: TInt64, channel: TInt32, addr: TInt32, data: TInt32
) -> TNone:
raise NotImplementedError("syscall not simulated")
@syscall(flags={"nowrite"})
def rtio_output_wide(target: TInt32, data: TList(TInt32)) -> TNone:
def rtio_output_wide(time_mu: TInt64, channel: TInt32, addr: TInt32,
data: TList(TInt32)) -> TNone:
raise NotImplementedError("syscall not simulated")
@ -20,12 +22,3 @@ def rtio_input_timestamp(timeout_mu: TInt64, channel: TInt32) -> TInt64:
@syscall(flags={"nowrite"})
def rtio_input_data(channel: TInt32) -> TInt32:
raise NotImplementedError("syscall not simulated")
@syscall(flags={"nowrite"})
def rtio_input_timestamped_data(timeout_mu: TInt64,
channel: TInt32) -> TTuple([TInt64, TInt32]):
"""Wait for an input event up to ``timeout_mu`` on the given channel, and
return a tuple of timestamp and attached data, or (-1, 0) if the timeout is
reached."""
raise NotImplementedError("syscall not simulated")

View File

@ -15,32 +15,30 @@ SPI_CS_PGIA = 1 # separate SPI bus, CS used as RCLK
@portable
def adc_mu_to_volt(data, gain=0, corrected_fs=True):
"""Convert ADC data in machine units to volts.
def adc_mu_to_volt(data, gain=0):
"""Convert ADC data in machine units to Volts.
:param data: 16-bit signed ADC word
:param data: 16 bit signed ADC word
:param gain: PGIA gain setting (0: 1, ..., 3: 1000)
:param corrected_fs: use corrected ADC FS reference.
Should be ``True`` for Sampler revisions after v2.1. ``False`` for v2.1 and earlier.
:return: Voltage in volts
:return: Voltage in Volts
"""
if gain == 0:
volt_per_lsb = 20.48 / (1 << 16) if corrected_fs else 20. / (1 << 16)
volt_per_lsb = 20./(1 << 16)
elif gain == 1:
volt_per_lsb = 2.048 / (1 << 16) if corrected_fs else 2. / (1 << 16)
volt_per_lsb = 2./(1 << 16)
elif gain == 2:
volt_per_lsb = .2048 / (1 << 16) if corrected_fs else .2 / (1 << 16)
volt_per_lsb = .2/(1 << 16)
elif gain == 3:
volt_per_lsb = 0.02048 / (1 << 16) if corrected_fs else .02 / (1 << 16)
volt_per_lsb = .02/(1 << 16)
else:
raise ValueError("invalid gain")
return data * volt_per_lsb
return data*volt_per_lsb
class Sampler:
"""Sampler ADC.
Controls the LTC2320-16 8-channel 16-bit ADC with SPI interface and
Controls the LTC2320-16 8 channel 16 bit ADC with SPI interface and
the switchable gain instrumentation amplifiers.
:param spi_adc_device: ADC SPI bus device name
@ -50,13 +48,12 @@ class Sampler:
:param gains: Initial value for PGIA gains shift register
(default: 0x0000). Knowledge of this state is not transferred
between experiments.
:param hw_rev: Sampler's hardware revision string (default 'v2.2')
:param core_device: Core device name
"""
kernel_invariants = {"bus_adc", "bus_pgia", "core", "cnv", "div", "corrected_fs"}
kernel_invariants = {"bus_adc", "bus_pgia", "core", "cnv", "div"}
def __init__(self, dmgr, spi_adc_device, spi_pgia_device, cnv_device,
div=8, gains=0x0000, hw_rev="v2.2", core_device="core"):
div=8, gains=0x0000, core_device="core"):
self.bus_adc = dmgr.get(spi_adc_device)
self.bus_adc.update_xfer_duration_mu(div, 32)
self.bus_pgia = dmgr.get(spi_pgia_device)
@ -65,11 +62,6 @@ class Sampler:
self.cnv = dmgr.get(cnv_device)
self.div = div
self.gains = gains
self.corrected_fs = self.use_corrected_fs(hw_rev)
@staticmethod
def use_corrected_fs(hw_rev):
return hw_rev != "v2.1"
@kernel
def init(self):
@ -119,12 +111,12 @@ class Sampler:
Perform a conversion and transfer the samples.
This assumes that the input FIFO of the ADC SPI RTIO channel is deep
enough to buffer the samples (half the length of ``data`` deep).
enough to buffer the samples (half the length of `data` deep).
If it is not, there will be RTIO input overflows.
:param data: List of data samples to fill. Must have even length.
Samples are always read from the last channel (channel 7) down.
The ``data`` list will always be filled with the last item
The `data` list will always be filled with the last item
holding to the sample from channel 7.
"""
self.cnv.pulse(30*ns) # t_CNVH
@ -142,7 +134,7 @@ class Sampler:
def sample(self, data):
"""Acquire a set of samples.
See also :meth:`Sampler.sample_mu`.
.. seealso:: :meth:`sample_mu`
:param data: List of floating point data samples to fill.
"""
@ -152,4 +144,4 @@ class Sampler:
for i in range(n):
channel = i + 8 - len(data)
gain = (self.gains >> (channel*2)) & 0b11
data[i] = adc_mu_to_volt(adc_data[i], gain, self.corrected_fs)
data[i] = adc_mu_to_volt(adc_data[i], gain)

372
artiq/coredevice/sawg.py Normal file
View File

@ -0,0 +1,372 @@
"""
Driver for the Smart Arbitrary Waveform Generator (SAWG) on RTIO.
The SAWG is an "improved DDS" built in gateware and interfacing to
high-speed DACs.
Output event replacement is supported except on the configuration channel.
"""
from artiq.language.types import TInt32, TFloat
from numpy import int32, int64
from artiq.language.core import kernel, now_mu
from artiq.coredevice.spline import Spline
from artiq.coredevice.rtio import rtio_output
# sawg.Config addresses
_SAWG_DIV = 0
_SAWG_CLR = 1
_SAWG_IQ_EN = 2
# _SAWF_PAD = 3 # reserved
_SAWG_OUT_MIN = 4
_SAWG_OUT_MAX = 5
_SAWG_DUC_MIN = 6
_SAWG_DUC_MAX = 7
class Config:
"""SAWG configuration.
Exposes the configurable quantities of a single SAWG channel.
Access to the configuration registers for a SAWG channel can not
be concurrent. There must be at least :attr:`_rtio_interval` machine
units of delay between accesses. Replacement is not supported and will be
lead to an ``RTIOCollision`` as this is likely a programming error.
All methods therefore advance the timeline by the duration of one
configuration register transfer.
:param channel: RTIO channel number of the channel.
:param core: Core device.
"""
kernel_invariants = {"channel", "core", "_out_scale", "_duc_scale",
"_rtio_interval"}
def __init__(self, channel, core, cordic_gain=1.):
self.channel = channel
self.core = core
# normalized DAC output
self._out_scale = (1 << 15) - 1.
# normalized DAC output including DUC cordic gain
self._duc_scale = self._out_scale/cordic_gain
# configuration channel access interval
self._rtio_interval = int64(3*self.core.ref_multiplier)
@kernel
def set_div(self, div: TInt32, n: TInt32=0):
"""Set the spline evolution divider and current counter value.
The divider and the spline evolution are synchronized across all
spline channels within a SAWG channel. The DDS/DUC phase accumulators
always evolves at full speed.
.. note:: The spline evolution divider has not been tested extensively
and is currently considered a technological preview only.
:param div: Spline evolution divider, such that
``t_sawg_spline/t_rtio_coarse = div + 1``. Default: ``0``.
:param n: Current value of the counter. Default: ``0``.
"""
rtio_output(now_mu(), self.channel, _SAWG_DIV, div | (n << 16))
delay_mu(self._rtio_interval)
@kernel
def set_clr(self, clr0: TInt32, clr1: TInt32, clr2: TInt32):
"""Set the accumulator clear mode for the three phase accumulators.
When the ``clr`` bit for a given DDS/DUC phase accumulator is
set, that phase accumulator will be cleared with every phase offset
RTIO command and the output phase of the DDS/DUC will be
exactly the phase RTIO value ("absolute phase update mode").
.. math::
q^\prime(t) = p^\prime + (t - t^\prime) f^\prime
In turn, when the bit is cleared, the phase RTIO channels
determine a phase offset to the current (carrier-) value of the
DDS/DUC phase accumulator. This "relative phase update mode" is
sometimes also called continuous phase mode.
.. math::
q^\prime(t) = q(t^\prime) + (p^\prime - p) +
(t - t^\prime) f^\prime
Where:
* :math:`q`, :math:`q^\prime`: old/new phase accumulator
* :math:`p`, :math:`p^\prime`: old/new phase offset
* :math:`f^\prime`: new frequency
* :math:`t^\prime`: timestamp of setting new :math:`p`, :math:`f`
* :math:`t`: running time
:param clr0: Auto-clear phase accumulator of the ``phase0``/
``frequency0`` DUC. Default: ``True``
:param clr1: Auto-clear phase accumulator of the ``phase1``/
``frequency1`` DDS. Default: ``True``
:param clr2: Auto-clear phase accumulator of the ``phase2``/
``frequency2`` DDS. Default: ``True``
"""
rtio_output(now_mu(), self.channel, _SAWG_CLR, clr0 |
(clr1 << 1) | (clr2 << 2))
delay_mu(self._rtio_interval)
@kernel
def set_iq_en(self, i_enable: TInt32, q_enable: TInt32):
"""Enable I/Q data on this DAC channel.
Every pair of SAWG channels forms a buddy pair.
The ``iq_en`` configuration controls which DDS data is emitted to the
DACs.
Refer to the documentation of :class:`SAWG` for a mathematical
description of ``i_enable`` and ``q_enable``.
.. note:: Quadrature data from the buddy channel is currently
a technological preview only. The data is ignored in the SAWG
gateware and not added to the DAC output.
This is equivalent to the ``q_enable`` switch always being ``0``.
:param i_enable: Controls adding the in-phase
DUC-DDS data of *this* SAWG channel to *this* DAC channel.
Default: ``1``.
:param q_enable: controls adding the quadrature
DUC-DDS data of this SAWG's *buddy* channel to *this* DAC
channel. Default: ``0``.
"""
rtio_output(now_mu(), self.channel, _SAWG_IQ_EN, i_enable |
(q_enable << 1))
delay_mu(self._rtio_interval)
@kernel
def set_duc_max_mu(self, limit: TInt32):
"""Set the digital up-converter (DUC) I and Q data summing junctions
upper limit. In machine units.
The default limits are chosen to reach maximum and minimum DAC output
amplitude.
For a description of the limiter functions in normalized units see:
.. seealso:: :meth:`set_duc_max`
"""
rtio_output(now_mu(), self.channel, _SAWG_DUC_MAX, limit)
delay_mu(self._rtio_interval)
@kernel
def set_duc_min_mu(self, limit: TInt32):
""".. seealso:: :meth:`set_duc_max_mu`"""
rtio_output(now_mu(), self.channel, _SAWG_DUC_MIN, limit)
delay_mu(self._rtio_interval)
@kernel
def set_out_max_mu(self, limit: TInt32):
""".. seealso:: :meth:`set_duc_max_mu`"""
rtio_output(now_mu(), self.channel, _SAWG_OUT_MAX, limit)
delay_mu(self._rtio_interval)
@kernel
def set_out_min_mu(self, limit: TInt32):
""".. seealso:: :meth:`set_duc_max_mu`"""
rtio_output(now_mu(), self.channel, _SAWG_OUT_MIN, limit)
delay_mu(self._rtio_interval)
@kernel
def set_duc_max(self, limit: TFloat):
"""Set the digital up-converter (DUC) I and Q data summing junctions
upper limit.
Each of the three summing junctions has a saturating adder with
configurable upper and lower limits. The three summing junctions are:
* At the in-phase input to the ``phase0``/``frequency0`` fast DUC,
after the anti-aliasing FIR filter.
* At the quadrature input to the ``phase0``/``frequency0``
fast DUC, after the anti-aliasing FIR filter. The in-phase and
quadrature data paths both use the same limits.
* Before the DAC, where the following three data streams
are added together:
* the output of the ``offset`` spline,
* (optionally, depending on ``i_enable``) the in-phase output
of the ``phase0``/``frequency0`` fast DUC, and
* (optionally, depending on ``q_enable``) the quadrature
output of the ``phase0``/``frequency0`` fast DUC of the
buddy channel.
Refer to the documentation of :class:`SAWG` for a mathematical
description of the summing junctions.
:param limit: Limit value ``[-1, 1]``. The output of the limiter will
never exceed this limit. The default limits are the full range
``[-1, 1]``.
.. seealso::
* :meth:`set_duc_max`: Upper limit of the in-phase and quadrature
inputs to the DUC.
* :meth:`set_duc_min`: Lower limit of the in-phase and quadrature
inputs to the DUC.
* :meth:`set_out_max`: Upper limit of the DAC output.
* :meth:`set_out_min`: Lower limit of the DAC output.
"""
self.set_duc_max_mu(int32(round(limit*self._duc_scale)))
@kernel
def set_duc_min(self, limit: TFloat):
""".. seealso:: :meth:`set_duc_max`"""
self.set_duc_min_mu(int32(round(limit*self._duc_scale)))
@kernel
def set_out_max(self, limit: TFloat):
""".. seealso:: :meth:`set_duc_max`"""
self.set_out_max_mu(int32(round(limit*self._out_scale)))
@kernel
def set_out_min(self, limit: TFloat):
""".. seealso:: :meth:`set_duc_max`"""
self.set_out_min_mu(int32(round(limit*self._out_scale)))
class SAWG:
"""Smart arbitrary waveform generator channel.
The channel is parametrized as: ::
oscillators = exp(2j*pi*(frequency0*t + phase0))*(
amplitude1*exp(2j*pi*(frequency1*t + phase1)) +
amplitude2*exp(2j*pi*(frequency2*t + phase2)))
output = (offset +
i_enable*Re(oscillators) +
q_enable*Im(buddy_oscillators))
This parametrization can be viewed as two complex (quadrature) oscillators
(``frequency1``/``phase1`` and ``frequency2``/``phase2``) that are
executing and sampling at the coarse RTIO frequency. They can represent
frequencies within the first Nyquist zone from ``-f_rtio_coarse/2`` to
``f_rtio_coarse/2``.
.. note:: The coarse RTIO frequency ``f_rtio_coarse`` is the inverse of
``ref_period*multiplier``. Both are arguments of the ``Core`` device,
specified in the device database ``device_db.py``.
The sum of their outputs is then interpolated by a factor of
:attr:`parallelism` (2, 4, 8 depending on the bitstream) using a
finite-impulse-response (FIR) anti-aliasing filter (more accurately
a half-band filter).
The filter is followed by a configurable saturating limiter.
After the limiter, the data is shifted in frequency using a complex
digital up-converter (DUC, ``frequency0``/``phase0``) running at
:attr:`parallelism` times the coarse RTIO frequency. The first Nyquist
zone of the DUC extends from ``-f_rtio_coarse*parallelism/2`` to
``f_rtio_coarse*parallelism/2``. Other Nyquist zones are usable depending
on the interpolation/modulation options configured in the DAC.
The real/in-phase data after digital up-conversion can be offset using
another spline interpolator ``offset``.
The ``i_enable``/``q_enable`` switches enable emission of quadrature
signals for later analog quadrature mixing distinguishing upper and lower
sidebands and thus doubling the bandwidth. They can also be used to emit
four-tone signals.
.. note:: Quadrature data from the buddy channel is currently
ignored in the SAWG gateware and not added to the DAC output.
This is equivalent to the ``q_enable`` switch always being ``0``.
The configuration channel and the nine
:class:`artiq.coredevice.spline.Spline` interpolators are accessible as
attributes:
* :attr:`config`: :class:`Config`
* :attr:`offset`, :attr:`amplitude1`, :attr:`amplitude2`: in units
of full scale
* :attr:`phase0`, :attr:`phase1`, :attr:`phase2`: in units of turns
* :attr:`frequency0`, :attr:`frequency1`, :attr:`frequency2`: in units
of Hz
.. note:: The latencies (pipeline depths) of the nine data channels (i.e.
all except :attr:`config`) are matched. Equivalent channels (e.g.
:attr:`phase1` and :attr:`phase2`) are exactly matched. Channels of
different type or functionality (e.g. :attr:`offset` vs
:attr:`amplitude1`, DDS vs DUC, :attr:`phase0` vs :attr:`phase1`) are
only matched to within one coarse RTIO cycle.
:param channel_base: RTIO channel number of the first channel (amplitude).
The configuration channel and frequency/phase/amplitude channels are
then assumed to be successive channels.
:param parallelism: Number of output samples per coarse RTIO clock cycle.
:param core_device: Name of the core device that this SAWG is on.
"""
kernel_invariants = {"channel_base", "core", "parallelism",
"amplitude1", "frequency1", "phase1",
"amplitude2", "frequency2", "phase2",
"frequency0", "phase0", "offset"}
def __init__(self, dmgr, channel_base, parallelism, core_device="core"):
self.core = dmgr.get(core_device)
self.channel_base = channel_base
self.parallelism = parallelism
width = 16
time_width = 16
cordic_gain = 1.646760258057163 # Cordic(width=16, guard=None).gain
head_room = 1.001
self.config = Config(channel_base, self.core, cordic_gain)
self.offset = Spline(width, time_width, channel_base + 1,
self.core, 2.*head_room)
self.amplitude1 = Spline(width, time_width, channel_base + 2,
self.core, 2*head_room*cordic_gain**2)
self.frequency1 = Spline(3*width, time_width, channel_base + 3,
self.core, 1/self.core.coarse_ref_period)
self.phase1 = Spline(width, time_width, channel_base + 4,
self.core, 1.)
self.amplitude2 = Spline(width, time_width, channel_base + 5,
self.core, 2*head_room*cordic_gain**2)
self.frequency2 = Spline(3*width, time_width, channel_base + 6,
self.core, 1/self.core.coarse_ref_period)
self.phase2 = Spline(width, time_width, channel_base + 7,
self.core, 1.)
self.frequency0 = Spline(2*width, time_width, channel_base + 8,
self.core,
parallelism/self.core.coarse_ref_period)
self.phase0 = Spline(width, time_width, channel_base + 9,
self.core, 1.)
@kernel
def reset(self):
"""Re-establish initial conditions.
This clears all spline interpolators, accumulators and configuration
settings.
This method advances the timeline by the time required to perform all
7 writes to the configuration channel, plus 9 coarse RTIO cycles.
"""
self.config.set_div(0, 0)
self.config.set_clr(1, 1, 1)
self.config.set_iq_en(1, 0)
self.config.set_duc_min(-1.)
self.config.set_duc_max(1.)
self.config.set_out_min(-1.)
self.config.set_out_max(1.)
self.frequency0.set_mu(0)
coarse_cycle = int64(self.core.ref_multiplier)
delay_mu(coarse_cycle)
self.frequency1.set_mu(0)
delay_mu(coarse_cycle)
self.frequency2.set_mu(0)
delay_mu(coarse_cycle)
self.phase0.set_mu(0)
delay_mu(coarse_cycle)
self.phase1.set_mu(0)
delay_mu(coarse_cycle)
self.phase2.set_mu(0)
delay_mu(coarse_cycle)
self.amplitude1.set_mu(0)
delay_mu(coarse_cycle)
self.amplitude2.set_mu(0)
delay_mu(coarse_cycle)
self.offset.set_mu(0)
delay_mu(coarse_cycle)

View File

@ -0,0 +1,36 @@
from artiq.language.core import kernel, delay
from artiq.language.units import us
class ShiftReg:
"""Driver for shift registers/latch combos connected to TTLs"""
kernel_invariants = {"dt", "n"}
def __init__(self, dmgr, clk, ser, latch, n=32, dt=10*us):
self.core = dmgr.get("core")
self.clk = dmgr.get(clk)
self.ser = dmgr.get(ser)
self.latch = dmgr.get(latch)
self.n = n
self.dt = dt
@kernel
def set(self, data):
"""Sets the values of the latch outputs. This does not
advance the timeline and the waveform is generated before
`now`."""
delay(-2*(self.n + 1)*self.dt)
for i in range(self.n):
if (data >> (self.n-i-1)) & 1 == 0:
self.ser.off()
else:
self.ser.on()
self.clk.off()
delay(self.dt)
self.clk.on()
delay(self.dt)
self.clk.off()
self.latch.on()
delay(self.dt)
self.latch.off()
delay(self.dt)

View File

@ -1,613 +0,0 @@
from artiq.language.core import *
from artiq.language.types import *
from artiq.coredevice.rtio import rtio_output, rtio_input_data
from artiq.coredevice import spi2 as spi
from artiq.language.units import us
@portable
def shuttler_volt_to_mu(volt):
"""Return the equivalent DAC code. Valid input range is from -10 to
10 - LSB.
"""
return round((1 << 16) * (volt / 20.0)) & 0xffff
class Config:
"""Shuttler configuration registers interface.
The configuration registers control waveform phase auto-clear, pre-DAC
gain and offset values for calibration with ADC on the Shuttler AFE card.
To find the calibrated DAC code, the Shuttler Core first multiplies the
output data with pre-DAC gain, then adds the offset.
.. note::
The DAC code is capped at 0x7fff and 0x8000.
:param channel: RTIO channel number of this interface.
:param core_device: Core device name.
"""
kernel_invariants = {
"core", "channel", "target_base", "target_read",
"target_gain", "target_offset", "target_clr"
}
def __init__(self, dmgr, channel, core_device="core"):
self.core = dmgr.get(core_device)
self.channel = channel
self.target_base = channel << 8
self.target_read = 1 << 6
self.target_gain = 0 * (1 << 4)
self.target_offset = 1 * (1 << 4)
self.target_clr = 1 * (1 << 5)
@kernel
def set_clr(self, clr):
"""Set/Unset waveform phase clear bits.
Each bit corresponds to a Shuttler waveform generator core. Setting a
clear bit forces the Shuttler Core to clear the phase accumulator on
waveform trigger (See :class:`Trigger` for the trigger method).
Otherwise, the phase accumulator increments from its original value.
:param clr: Waveform phase clear bits. The MSB corresponds to Channel
15, LSB corresponds to Channel 0.
"""
rtio_output(self.target_base | self.target_clr, clr)
@kernel
def set_gain(self, channel, gain):
"""Set the 16-bits pre-DAC gain register of a Shuttler Core channel.
The `gain` parameter represents the decimal portion of the gain
factor. The MSB represents 0.5 and the sign bit. Hence, the valid
total gain value (1 +/- 0.gain) ranges from 0.5 to 1.5 - LSB.
:param channel: Shuttler Core channel to be configured.
:param gain: Shuttler Core channel gain.
"""
rtio_output(self.target_base | self.target_gain | channel, gain)
@kernel
def get_gain(self, channel):
"""Return the pre-DAC gain value of a Shuttler Core channel.
:param channel: The Shuttler Core channel.
:return: Pre-DAC gain value. See :meth:`set_gain`.
"""
rtio_output(self.target_base | self.target_gain |
self.target_read | channel, 0)
return rtio_input_data(self.channel)
@kernel
def set_offset(self, channel, offset):
"""Set the 16-bits pre-DAC offset register of a Shuttler Core channel.
See also :meth:`shuttler_volt_to_mu`.
:param channel: Shuttler Core channel to be configured.
:param offset: Shuttler Core channel offset.
"""
rtio_output(self.target_base | self.target_offset | channel, offset)
@kernel
def get_offset(self, channel):
"""Return the pre-DAC offset value of a Shuttler Core channel.
:param channel: The Shuttler Core channel.
:return: Pre-DAC offset value. See :meth:`set_offset`.
"""
rtio_output(self.target_base | self.target_offset |
self.target_read | channel, 0)
return rtio_input_data(self.channel)
class DCBias:
"""Shuttler Core cubic DC-bias spline.
A Shuttler channel can generate a waveform `w(t)` that is the sum of a
cubic spline `a(t)` and a sinusoid modulated in amplitude by a cubic
spline `b(t)` and in phase/frequency by a quadratic spline `c(t)`, where
.. math::
w(t) = a(t) + b(t) * cos(c(t))
and `t` corresponds to time in seconds.
This class controls the cubic spline `a(t)`, in which
.. math::
a(t) = p_0 + p_1t + \\frac{p_2t^2}{2} + \\frac{p_3t^3}{6}
and `a(t)` is measured in volts.
:param channel: RTIO channel number of this DC-bias spline interface.
:param core_device: Core device name.
"""
kernel_invariants = {"core", "channel", "target_o"}
def __init__(self, dmgr, channel, core_device="core"):
self.core = dmgr.get(core_device)
self.channel = channel
self.target_o = channel << 8
@kernel
def set_waveform(self, a0: TInt32, a1: TInt32, a2: TInt64, a3: TInt64):
"""Set the DC-bias spline waveform.
Given `a(t)` as defined in :class:`DCBias`, the coefficients should be
configured by the following formulae:
.. math::
T &= 8*10^{-9}
a_0 &= p_0
a_1 &= p_1T + \\frac{p_2T^2}{2} + \\frac{p_3T^3}{6}
a_2 &= p_2T^2 + p_3T^3
a_3 &= p_3T^3
:math:`a_0`, :math:`a_1`, :math:`a_2` and :math:`a_3` are 16, 32, 48
and 48 bits in width respectively. See :meth:`shuttler_volt_to_mu` for
machine unit conversion.
.. note::
The waveform is not updated to the Shuttler Core until
triggered. See :class:`Trigger` for the update triggering
mechanism.
:param a0: The :math:`a_0` coefficient in machine unit.
:param a1: The :math:`a_1` coefficient in machine unit.
:param a2: The :math:`a_2` coefficient in machine unit.
:param a3: The :math:`a_3` coefficient in machine unit.
"""
coef_words = [
a0,
a1,
a1 >> 16,
a2 & 0xFFFF,
(a2 >> 16) & 0xFFFF,
(a2 >> 32) & 0xFFFF,
a3 & 0xFFFF,
(a3 >> 16) & 0xFFFF,
(a3 >> 32) & 0xFFFF,
]
for i in range(len(coef_words)):
rtio_output(self.target_o | i, coef_words[i])
delay_mu(int64(self.core.ref_multiplier))
class DDS:
"""Shuttler Core DDS spline.
A Shuttler channel can generate a waveform `w(t)` that is the sum of a
cubic spline `a(t)` and a sinusoid modulated in amplitude by a cubic
spline `b(t)` and in phase/frequency by a quadratic spline `c(t)`, where
.. math::
w(t) = a(t) + b(t) * cos(c(t))
and `t` corresponds to time in seconds.
This class controls the cubic spline `b(t)` and quadratic spline `c(t)`,
in which
.. math::
b(t) &= g * (q_0 + q_1t + \\frac{q_2t^2}{2} + \\frac{q_3t^3}{6})
c(t) &= r_0 + r_1t + \\frac{r_2t^2}{2}
`b(t)` is in volts, `c(t)` is in number of turns. Note that `b(t)`
contributes to a constant gain of :math:`g=1.64676`.
:param channel: RTIO channel number of this DC-bias spline interface.
:param core_device: Core device name.
"""
kernel_invariants = {"core", "channel", "target_o"}
def __init__(self, dmgr, channel, core_device="core"):
self.core = dmgr.get(core_device)
self.channel = channel
self.target_o = channel << 8
@kernel
def set_waveform(self, b0: TInt32, b1: TInt32, b2: TInt64, b3: TInt64,
c0: TInt32, c1: TInt32, c2: TInt32):
"""Set the DDS spline waveform.
Given `b(t)` and `c(t)` as defined in :class:`DDS`, the coefficients
should be configured by the following formulae.
.. math::
T &= 8*10^{-9}
b_0 &= q_0
b_1 &= q_1T + \\frac{q_2T^2}{2} + \\frac{q_3T^3}{6}
b_2 &= q_2T^2 + q_3T^3
b_3 &= q_3T^3
c_0 &= r_0
c_1 &= r_1T + \\frac{r_2T^2}{2}
c_2 &= r_2T^2
:math:`b_0`, :math:`b_1`, :math:`b_2` and :math:`b_3` are 16, 32, 48
and 48 bits in width respectively. See :meth:`shuttler_volt_to_mu` for
machine unit conversion. :math:`c_0`, :math:`c_1` and :math:`c_2` are
16, 32 and 32 bits in width respectively.
Note: The waveform is not updated to the Shuttler Core until
triggered. See :class:`Trigger` for the update triggering mechanism.
:param b0: The :math:`b_0` coefficient in machine units.
:param b1: The :math:`b_1` coefficient in machine units.
:param b2: The :math:`b_2` coefficient in machine units.
:param b3: The :math:`b_3` coefficient in machine units.
:param c0: The :math:`c_0` coefficient in machine units.
:param c1: The :math:`c_1` coefficient in machine units.
:param c2: The :math:`c_2` coefficient in machine units.
"""
coef_words = [
b0,
b1,
b1 >> 16,
b2 & 0xFFFF,
(b2 >> 16) & 0xFFFF,
(b2 >> 32) & 0xFFFF,
b3 & 0xFFFF,
(b3 >> 16) & 0xFFFF,
(b3 >> 32) & 0xFFFF,
c0,
c1,
c1 >> 16,
c2,
c2 >> 16,
]
for i in range(len(coef_words)):
rtio_output(self.target_o | i, coef_words[i])
delay_mu(int64(self.core.ref_multiplier))
class Trigger:
"""Shuttler Core spline coefficients update trigger.
:param channel: RTIO channel number of the trigger interface.
:param core_device: Core device name.
"""
kernel_invariants = {"core", "channel", "target_o"}
def __init__(self, dmgr, channel, core_device="core"):
self.core = dmgr.get(core_device)
self.channel = channel
self.target_o = channel << 8
@kernel
def trigger(self, trig_out):
"""Triggers coefficient update of (a) Shuttler Core channel(s).
Each bit corresponds to a Shuttler waveform generator core. Setting
``trig_out`` bits commits the pending coefficient update (from
``set_waveform`` in :class:`DCBias` and :class:`DDS`) to the Shuttler Core
synchronously.
:param trig_out: Coefficient update trigger bits. The MSB corresponds
to Channel 15, LSB corresponds to Channel 0.
"""
rtio_output(self.target_o, trig_out)
RELAY_SPI_CONFIG = (0*spi.SPI_OFFLINE | 1*spi.SPI_END |
0*spi.SPI_INPUT | 0*spi.SPI_CS_POLARITY |
0*spi.SPI_CLK_POLARITY | 0*spi.SPI_CLK_PHASE |
0*spi.SPI_LSB_FIRST | 0*spi.SPI_HALF_DUPLEX)
ADC_SPI_CONFIG = (0*spi.SPI_OFFLINE | 0*spi.SPI_END |
0*spi.SPI_INPUT | 0*spi.SPI_CS_POLARITY |
1*spi.SPI_CLK_POLARITY | 1*spi.SPI_CLK_PHASE |
0*spi.SPI_LSB_FIRST | 0*spi.SPI_HALF_DUPLEX)
# SPI clock write and read dividers
# CS should assert at least 9.5 ns after clk pulse
SPIT_RELAY_WR = 4
# 25 ns high/low pulse hold (limiting for write)
SPIT_ADC_WR = 4
SPIT_ADC_RD = 16
# SPI CS line
CS_RELAY = 1 << 0
CS_LED = 1 << 1
CS_ADC = 1 << 0
# Referenced AD4115 registers
_AD4115_REG_STATUS = 0x00
_AD4115_REG_ADCMODE = 0x01
_AD4115_REG_DATA = 0x04
_AD4115_REG_ID = 0x07
_AD4115_REG_CH0 = 0x10
_AD4115_REG_SETUPCON0 = 0x20
class Relay:
"""Shuttler AFE relay switches.
This class controls the AFE relay switches and the LEDs. Switch the relay on to
enable AFE output; off to disable the output. The LEDs indicate the
relay status.
.. note::
The relay does not disable ADC measurements. Voltage of any channels
can still be read by the ADC even after switching off the relays.
:param spi_device: SPI bus device name.
:param core_device: Core device name.
"""
kernel_invariant = {"core", "bus"}
def __init__(self, dmgr, spi_device, core_device="core"):
self.core = dmgr.get(core_device)
self.bus = dmgr.get(spi_device)
@kernel
def init(self):
"""Initialize SPI device.
Configures the SPI bus to 16 bits, write-only, simultaneous relay
switches and LED control.
"""
self.bus.set_config_mu(
RELAY_SPI_CONFIG, 16, SPIT_RELAY_WR, CS_RELAY | CS_LED)
@kernel
def enable(self, en: TInt32):
"""Enable/disable relay switches of corresponding channels.
Each bit corresponds to the relay switch of a channel. Asserting a bit
turns on the corresponding relay switch; deasserting the same bit
turns off the switch instead.
:param en: Switch enable bits. The MSB corresponds to Channel 15, LSB
corresponds to Channel 0.
"""
self.bus.write(en << 16)
class ADC:
"""Shuttler AFE ADC (AD4115) driver.
:param spi_device: SPI bus device name.
:param core_device: Core device name.
"""
kernel_invariant = {"core", "bus"}
def __init__(self, dmgr, spi_device, core_device="core"):
self.core = dmgr.get(core_device)
self.bus = dmgr.get(spi_device)
@kernel
def read_id(self) -> TInt32:
"""Read the product ID of the ADC.
The expected return value is 0x38DX, the 4 LSbs are don't cares.
:return: The read-back product ID.
"""
return self.read16(_AD4115_REG_ID)
@kernel
def reset(self):
"""AD4115 reset procedure.
Performs a write operation of 96 serial clock cycles with DIN
held at high. This resets the entire device, including the register
contents.
.. note::
The datasheet only requires 64 cycles, but reasserting ``CS_n`` right
after the transfer appears to interrupt the start-up sequence.
"""
self.bus.set_config_mu(ADC_SPI_CONFIG, 32, SPIT_ADC_WR, CS_ADC)
self.bus.write(0xffffffff)
self.bus.write(0xffffffff)
self.bus.set_config_mu(
ADC_SPI_CONFIG | spi.SPI_END, 32, SPIT_ADC_WR, CS_ADC)
self.bus.write(0xffffffff)
@kernel
def read8(self, addr: TInt32) -> TInt32:
"""Read from 8-bit register.
:param addr: Register address.
:return: Read-back register content.
"""
self.bus.set_config_mu(
ADC_SPI_CONFIG | spi.SPI_END | spi.SPI_INPUT,
16, SPIT_ADC_RD, CS_ADC)
self.bus.write((addr | 0x40) << 24)
return self.bus.read() & 0xff
@kernel
def read16(self, addr: TInt32) -> TInt32:
"""Read from 16-bit register.
:param addr: Register address.
:return: Read-back register content.
"""
self.bus.set_config_mu(
ADC_SPI_CONFIG | spi.SPI_END | spi.SPI_INPUT,
24, SPIT_ADC_RD, CS_ADC)
self.bus.write((addr | 0x40) << 24)
return self.bus.read() & 0xffff
@kernel
def read24(self, addr: TInt32) -> TInt32:
"""Read from 24-bit register.
:param addr: Register address.
:return: Read-back register content.
"""
self.bus.set_config_mu(
ADC_SPI_CONFIG | spi.SPI_END | spi.SPI_INPUT,
32, SPIT_ADC_RD, CS_ADC)
self.bus.write((addr | 0x40) << 24)
return self.bus.read() & 0xffffff
@kernel
def write8(self, addr: TInt32, data: TInt32):
"""Write to 8-bit register.
:param addr: Register address.
:param data: Data to be written.
"""
self.bus.set_config_mu(
ADC_SPI_CONFIG | spi.SPI_END, 16, SPIT_ADC_WR, CS_ADC)
self.bus.write(addr << 24 | (data & 0xff) << 16)
@kernel
def write16(self, addr: TInt32, data: TInt32):
"""Write to 16-bit register.
:param addr: Register address.
:param data: Data to be written.
"""
self.bus.set_config_mu(
ADC_SPI_CONFIG | spi.SPI_END, 24, SPIT_ADC_WR, CS_ADC)
self.bus.write(addr << 24 | (data & 0xffff) << 8)
@kernel
def write24(self, addr: TInt32, data: TInt32):
"""Write to 24-bit register.
:param addr: Register address.
:param data: Data to be written.
"""
self.bus.set_config_mu(
ADC_SPI_CONFIG | spi.SPI_END, 32, SPIT_ADC_WR, CS_ADC)
self.bus.write(addr << 24 | (data & 0xffffff))
@kernel
def read_ch(self, channel: TInt32) -> TFloat:
"""Sample a Shuttler channel on the AFE.
Performs a single conversion using profile 0 and setup 0 on the
selected channel. The sample is then recovered and converted to volts.
:param channel: Shuttler channel to be sampled.
:return: Voltage sample in volts.
"""
# Always configure Profile 0 for single conversion
self.write16(_AD4115_REG_CH0, 0x8000 | ((channel * 2 + 1) << 4))
self.write16(_AD4115_REG_SETUPCON0, 0x1300)
self.single_conversion()
delay(100*us)
adc_code = self.read24(_AD4115_REG_DATA)
return ((adc_code / (1 << 23)) - 1) * 2.5 / 0.1
@kernel
def single_conversion(self):
"""Place the ADC in single conversion mode.
The ADC returns to standby mode after the conversion is complete.
"""
self.write16(_AD4115_REG_ADCMODE, 0x8010)
@kernel
def standby(self):
"""Place the ADC in standby mode and disable power down the clock.
The ADC can be returned to single conversion mode by calling
:meth:`single_conversion`.
"""
# Selecting internal XO (0b00) also disables clock during standby
self.write16(_AD4115_REG_ADCMODE, 0x8020)
@kernel
def power_down(self):
"""Place the ADC in power-down mode.
The ADC must be reset before returning to other modes.
.. note::
The AD4115 datasheet suggests placing the ADC in standby mode
before power-down. This is to prevent accidental entry into the
power-down mode. See also :meth:`standby` and :meth:`power_up`.
"""
self.write16(_AD4115_REG_ADCMODE, 0x8030)
@kernel
def power_up(self):
"""Exit the ADC power-down mode.
The ADC should be in power-down mode before calling this method.
See also :meth:`power_down`.
"""
self.reset()
# Although the datasheet claims 500 us reset wait time, only waiting
# for ~500 us can result in DOUT pin stuck in high
delay(2500*us)
@kernel
def calibrate(self, volts, trigger, config, samples=[-5.0, 0.0, 5.0]):
"""Calibrate the Shuttler waveform generator using the ADC on the AFE.
Finds the average slope rate and average offset by samples, and
compensates by writing the pre-DAC gain and offset registers in the
configuration registers.
.. note::
If the pre-calibration slope rate is less than 1, the calibration
procedure will introduce a pre-DAC gain compensation. However, this
may saturate the pre-DAC voltage code (see :class:`Config` notes).
Shuttler cannot cover the entire +/- 10 V range in this case.
See also :meth:`Config.set_gain` and :meth:`Config.set_offset`.
:param volts: A list of all 16 cubic DC-bias splines.
(See :class:`DCBias`)
:param trigger: The Shuttler spline coefficient update trigger.
:param config: The Shuttler Core configuration registers.
:param samples: A list of sample voltages for calibration. There must
be at least 2 samples to perform slope rate calculation.
"""
assert len(volts) == 16
assert len(samples) > 1
measurements = [0.0] * len(samples)
for ch in range(16):
# Find the average slope rate and offset
for i in range(len(samples)):
self.core.break_realtime()
volts[ch].set_waveform(
shuttler_volt_to_mu(samples[i]), 0, 0, 0)
trigger.trigger(1 << ch)
measurements[i] = self.read_ch(ch)
# Find the average output slope
slope_sum = 0.0
for i in range(len(samples) - 1):
slope_sum += (measurements[i+1] - measurements[i])/(samples[i+1] - samples[i])
slope_avg = slope_sum / (len(samples) - 1)
gain_code = int32(1 / slope_avg * (2 ** 16)) & 0xffff
# Scale the measurements by 1/slope, find average offset
offset_sum = 0.0
for i in range(len(samples)):
offset_sum += (measurements[i] / slope_avg) - samples[i]
offset_avg = offset_sum / len(samples)
offset_code = shuttler_volt_to_mu(-offset_avg)
self.core.break_realtime()
config.set_gain(ch, gain_code)
delay_mu(int64(self.core.ref_multiplier))
config.set_offset(ch, offset_code)

View File

@ -4,10 +4,10 @@ Driver for generic SPI on RTIO.
This ARTIQ coredevice driver corresponds to the "new" MiSoC SPI core (v2).
Output event replacement is not supported and issuing commands at the same
time results in collision errors.
time is an error.
"""
from artiq.language.core import syscall, kernel, portable, delay_mu
from artiq.language.core import syscall, kernel, portable, now_mu, delay_mu
from artiq.language.types import TInt32, TNone
from artiq.coredevice.rtio import rtio_output, rtio_input_data
@ -51,7 +51,7 @@ class SPIMaster:
event (``SPI_INPUT`` set), then :meth:`read` the ``data``.
* If ``SPI_END`` was not set, repeat the transfer sequence.
A *transaction* consists of one or more *transfers*. The chip select
A **transaction** consists of one or more **transfers**. The chip select
pattern is asserted for the entire length of the transaction. All but the
last transfer are submitted with ``SPI_END`` cleared in the configuration
register.
@ -72,10 +72,6 @@ class SPIMaster:
self.channel = channel
self.update_xfer_duration_mu(div, length)
@staticmethod
def get_rtio_channels(channel, **kwargs):
return [(channel, None)]
@portable
def frequency_to_div(self, f):
"""Convert a SPI clock frequency to the closest SPI clock divider."""
@ -138,10 +134,10 @@ class SPIMaster:
* :const:`SPI_LSB_FIRST`: LSB is the first bit on the wire (reset=0)
* :const:`SPI_HALF_DUPLEX`: 3-wire SPI, in/out on ``mosi`` (reset=0)
:param flags: A bit map of :const:`SPI_*` flags.
:param flags: A bit map of `SPI_*` flags.
:param length: Number of bits to write during the next transfer.
(reset=1)
:param freq: Desired SPI clock frequency. (reset= ``f_rtio/2``)
:param freq: Desired SPI clock frequency. (reset=f_rtio/2)
:param cs: Bit pattern of chip selects to assert.
Or number of the chip select to assert if ``cs`` is decoded
downstream. (reset=0)
@ -152,15 +148,16 @@ class SPIMaster:
def set_config_mu(self, flags, length, div, cs):
"""Set the ``config`` register (in SPI bus machine units).
See also :meth:`set_config`.
.. seealso:: :meth:`set_config`
:param flags: A bit map of `SPI_*` flags.
:param length: Number of bits to write during the next transfer.
(reset=1)
:param div: Counter load value to divide the RTIO
clock by to generate the SPI clock; ``f_rtio_clk/f_spi == div``.
If ``div`` is odd, the setup phase of the SPI clock is one
coarse RTIO clock cycle longer than the hold phase. (minimum=2, reset=2)
clock by to generate the SPI clock. (minimum=2, reset=2)
``f_rtio_clk/f_spi == div``. If ``div`` is odd,
the setup phase of the SPI clock is one coarse RTIO clock cycle
longer than the hold phase.
:param cs: Bit pattern of chip selects to assert.
Or number of the chip select to assert if ``cs`` is decoded
downstream. (reset=0)
@ -169,7 +166,7 @@ class SPIMaster:
raise ValueError("Invalid SPI transfer length")
if div > 257 or div < 2:
raise ValueError("Invalid SPI clock divider")
rtio_output((self.channel << 8) | SPI_CONFIG_ADDR, flags |
rtio_output(now_mu(), self.channel, SPI_CONFIG_ADDR, flags |
((length - 1) << 8) | ((div - 2) << 16) | (cs << 24))
self.update_xfer_duration_mu(div, length)
delay_mu(self.ref_period_mu)
@ -187,13 +184,7 @@ class SPIMaster:
experiments and are known.
This method is portable and can also be called from e.g.
``__init__``.
.. warning:: If this method is called while recording a DMA
sequence, the playback of the sequence will not update the
driver state.
When required, update the driver state manually (by calling
this method) after playing back a DMA sequence.
:meth:`__init__`.
:param div: SPI clock divider (see: :meth:`set_config_mu`)
:param length: SPI transfer length (see: :meth:`set_config_mu`)
@ -207,7 +198,7 @@ class SPIMaster:
* The ``data`` register and the shift register are 32 bits wide.
* Data writes take one ``ref_period`` cycle.
* A transaction consisting of a single transfer (``SPI_END``) takes
:attr:`xfer_duration_mu` `` = (n + 1) * div`` cycles RTIO time, where
:attr:`xfer_duration_mu` ``=(n + 1)*div`` cycles RTIO time where
``n`` is the number of bits and ``div`` is the SPI clock divider.
* Transfers in a multi-transfer transaction take up to one SPI clock
cycle less time depending on multiple parameters. Advanced users may
@ -225,7 +216,7 @@ class SPIMaster:
:param data: SPI output data to be written.
"""
rtio_output((self.channel << 8) | SPI_DATA_ADDR, data)
rtio_output(now_mu(), self.channel, SPI_DATA_ADDR, data)
delay_mu(self.xfer_duration_mu)
@kernel
@ -276,8 +267,9 @@ class NRTSPIMaster:
def set_config_mu(self, flags=0, length=8, div=6, cs=1):
"""Set the ``config`` register.
In many cases, the SPI configuration is already set by the firmware
and you do not need to call this method.
Note that the non-realtime SPI cores are usually clocked by the system
clock and not the RTIO clock. In many cases, the SPI configuration is
already set by the firmware and you do not need to call this method.
"""
spi_set_config(self.busno, flags, length, div, cs)

228
artiq/coredevice/spline.py Normal file
View File

@ -0,0 +1,228 @@
from numpy import int32, int64
from artiq.language.core import kernel, now_mu, portable, delay
from artiq.coredevice.rtio import rtio_output, rtio_output_wide
from artiq.language.types import TInt32, TInt64, TFloat
class Spline:
r"""Spline interpolating RTIO channel.
One knot of a polynomial basis spline (B-spline) :math:`u(t)`
is defined by the coefficients :math:`u_n` up to order :math:`n = k`.
If the coefficients are evaluated starting at time :math:`t_0`,
the output :math:`u(t)` for :math:`t > t_0, t_0` is:
.. math::
u(t) &= \sum_{n=0}^k \frac{u_n}{n!} (t - t_0)^n \\
&= u_0 + u_1 (t - t_0) + \frac{u_2}{2} (t - t_0)^2 + \dots
This class contains multiple methods to convert spline knot data from SI
to machine units and multiple methods that set the current spline
coefficient data. None of these advance the timeline. The :meth:`smooth`
method is the only method that advances the timeline.
:param width: Width in bits of the quantity that this spline controls
:param time_width: Width in bits of the time counter of this spline
:param channel: RTIO channel number
:param core_device: Core device that this spline is attached to
:param scale: Scale for conversion between machine units and physical
units; to be given as the "full scale physical value".
"""
kernel_invariants = {"channel", "core", "scale", "width",
"time_width", "time_scale"}
def __init__(self, width, time_width, channel, core_device, scale=1.):
self.core = core_device
self.channel = channel
self.width = width
self.scale = float((int64(1) << width) / scale)
self.time_width = time_width
self.time_scale = float((1 << time_width) *
core_device.coarse_ref_period)
@portable(flags={"fast-math"})
def to_mu(self, value: TFloat) -> TInt32:
"""Convert floating point ``value`` from physical units to 32 bit
integer machine units."""
return int32(round(value*self.scale))
@portable(flags={"fast-math"})
def from_mu(self, value: TInt32) -> TFloat:
"""Convert 32 bit integer ``value`` from machine units to floating
point physical units."""
return value/self.scale
@portable(flags={"fast-math"})
def to_mu64(self, value: TFloat) -> TInt64:
"""Convert floating point ``value`` from physical units to 64 bit
integer machine units."""
return int64(round(value*self.scale))
@kernel
def set_mu(self, value: TInt32):
"""Set spline value (machine units).
:param value: Spline value in integer machine units.
"""
rtio_output(now_mu(), self.channel, 0, value)
@kernel(flags={"fast-math"})
def set(self, value: TFloat):
"""Set spline value.
:param value: Spline value relative to full-scale.
"""
if self.width > 32:
l = [int32(0)] * 2
self.pack_coeff_mu([self.to_mu64(value)], l)
rtio_output_wide(now_mu(), self.channel, 0, l)
else:
rtio_output(now_mu(), self.channel, 0, self.to_mu(value))
@kernel
def set_coeff_mu(self, value): # TList(TInt32)
"""Set spline raw values.
:param value: Spline packed raw values.
"""
rtio_output_wide(now_mu(), self.channel, 0, value)
@portable(flags={"fast-math"})
def pack_coeff_mu(self, coeff, packed): # TList(TInt64), TList(TInt32)
"""Pack coefficients into RTIO data
:param coeff: TList(TInt64) list of machine units spline coefficients.
Lowest (zeroth) order first. The coefficient list is zero-extended
by the RTIO gateware.
:param packed: TList(TInt32) list for packed RTIO data. Must be
pre-allocated. Length in bits is
``n*width + (n - 1)*n//2*time_width``
"""
pos = 0
for i in range(len(coeff)):
wi = self.width + i*self.time_width
ci = coeff[i]
while wi != 0:
j = pos//32
used = pos - 32*j
avail = 32 - used
if avail > wi:
avail = wi
cij = int32(ci)
if avail != 32:
cij &= (1 << avail) - 1
packed[j] |= cij << used
ci >>= avail
wi -= avail
pos += avail
@portable(flags={"fast-math"})
def coeff_to_mu(self, coeff, coeff64): # TList(TFloat), TList(TInt64)
"""Convert a floating point list of coefficients into a 64 bit
integer (preallocated).
:param coeff: TList(TFloat) list of coefficients in physical units.
:param coeff64: TList(TInt64) preallocated list of coefficients in
machine units.
"""
for i in range(len(coeff)):
vi = coeff[i] * self.scale
for j in range(i):
vi *= self.time_scale
ci = int64(round(vi))
coeff64[i] = ci
# artiq.wavesynth.coefficients.discrete_compensate:
if i == 2:
coeff64[1] += ci >> self.time_width + 1
elif i == 3:
coeff64[2] += ci >> self.time_width
coeff64[1] += ci // 6 >> 2*self.time_width
def coeff_as_packed_mu(self, coeff64):
"""Pack 64 bit integer machine units coefficients into 32 bit integer
RTIO data list.
This is a host-only method that can be used to generate packed
spline coefficient data to be frozen into kernels at compile time.
"""
n = len(coeff64)
width = n*self.width + (n - 1)*n//2*self.time_width
packed = [int32(0)] * ((width + 31)//32)
self.pack_coeff_mu(coeff64, packed)
return packed
def coeff_as_packed(self, coeff):
"""Convert floating point spline coefficients into 32 bit integer
packed data.
This is a host-only method that can be used to generate packed
spline coefficient data to be frozen into kernels at compile time.
"""
coeff64 = [int64(0)] * len(coeff)
self.coeff_to_mu(coeff, coeff64)
return self.coeff_as_packed_mu(coeff64)
@kernel(flags={"fast-math"})
def set_coeff(self, coeff): # TList(TFloat)
"""Set spline coefficients.
Missing coefficients (high order) are zero-extended byt the RTIO
gateware.
If more coefficients are supplied than the gateware supports the extra
coefficients are ignored.
:param value: List of floating point spline coefficients,
lowest order (constant) coefficient first. Units are the
unit of this spline's value times increasing powers of 1/s.
"""
n = len(coeff)
coeff64 = [int64(0)] * n
self.coeff_to_mu(coeff, coeff64)
width = n*self.width + (n - 1)*n//2*self.time_width
packed = [int32(0)] * ((width + 31)//32)
self.pack_coeff_mu(coeff64, packed)
self.set_coeff_mu(packed)
@kernel(flags={"fast-math"})
def smooth(self, start: TFloat, stop: TFloat, duration: TFloat,
order: TInt32):
"""Initiate an interpolated value change.
For zeroth order (step) interpolation, the step is at
``start + duration/2``.
First order interpolation corresponds to a linear value ramp from
``start`` to ``stop`` over ``duration``.
The third order interpolation is constrained to have zero first
order derivative at both `start` and `stop`.
For first order and third order interpolation (linear and cubic)
the interpolator needs to be stopped explicitly at the stop time
(e.g. by setting spline coefficient data or starting a new
:meth:`smooth` interpolation).
This method advances the timeline by ``duration``.
:param start: Initial value of the change. In physical units.
:param stop: Final value of the change. In physical units.
:param duration: Duration of the interpolation. In physical units.
:param order: Order of the interpolation. Only 0, 1,
and 3 are valid: step, linear, cubic.
"""
if order == 0:
delay(duration/2.)
self.set_coeff([stop])
delay(duration/2.)
elif order == 1:
self.set_coeff([start, (stop - start)/duration])
delay(duration)
elif order == 3:
v2 = 6.*(stop - start)/(duration*duration)
self.set_coeff([start, 0., v2, -2.*v2/duration])
delay(duration)
else:
raise ValueError("Invalid interpolation order. "
"Supported orders are: 0, 1, 3.")

12
artiq/coredevice/spr.py Normal file
View File

@ -0,0 +1,12 @@
from artiq.language.core import syscall
from artiq.language.types import TInt32, TNone
@syscall(flags={"nounwind", "nowrite"})
def mfspr(spr: TInt32) -> TInt32:
raise NotImplementedError("syscall not simulated")
@syscall(flags={"nowrite", "nowrite"})
def mtspr(spr: TInt32, value: TInt32) -> TNone:
raise NotImplementedError("syscall not simulated")

View File

@ -1,4 +1,4 @@
from artiq.language.core import kernel, delay, delay_mu, portable
from artiq.language.core import kernel, delay, now_mu, delay_mu, portable
from artiq.language.units import us, ns
from artiq.coredevice.rtio import rtio_output, rtio_input_data
from artiq.coredevice import spi2 as spi
@ -6,29 +6,28 @@ from artiq.coredevice import urukul, sampler
COEFF_WIDTH = 18
Y_FULL_SCALE_MU = (1 << (COEFF_WIDTH - 1)) - 1
COEFF_DEPTH = 10 + 1
WE = 1 << COEFF_DEPTH + 1
STATE_SEL = 1 << COEFF_DEPTH
CONFIG_SEL = 1 << COEFF_DEPTH - 1
CONFIG_ADDR = CONFIG_SEL | STATE_SEL
T_CYCLE = (2*(8 + 64) + 2)*8*ns # Must match gateware Servo.t_cycle.
T_CYCLE = (2*(8 + 64) + 2 + 1)*8*ns
COEFF_SHIFT = 11
@portable
def y_mu_to_full_scale(y):
"""Convert servo Y data from machine units to units of full scale."""
return y / Y_FULL_SCALE_MU
return y*(1./(1 << COEFF_WIDTH - 1))
@portable
def adc_mu_to_volts(x, gain, corrected_fs=True):
"""Convert servo ADC data from machine units to volts."""
def adc_mu_to_volts(x, gain):
"""Convert servo ADC data from machine units to Volt."""
val = (x >> 1) & 0xffff
mask = 1 << 15
val = -(val & mask) + (val & ~mask)
return sampler.adc_mu_to_volt(val, gain, corrected_fs)
return sampler.adc_mu_to_volt(val, gain)
class SUServo:
@ -57,38 +56,38 @@ class SUServo:
:param channel: RTIO channel number
:param pgia_device: Name of the Sampler PGIA gain setting SPI bus
:param cpld_devices: Names of the Urukul CPLD SPI buses
:param dds_devices: Names of the AD9910 devices
:param cpld0_device: Name of the first Urukul CPLD SPI bus
:param cpld1_device: Name of the second Urukul CPLD SPI bus
:param dds0_device: Name of the AD9910 device for the DDS on the first
Urukul
:param dds1_device: Name of the AD9910 device for the DDS on the second
Urukul
:param gains: Initial value for PGIA gains shift register
(default: 0x0000). Knowledge of this state is not transferred
between experiments.
:param sampler_hw_rev: Sampler's revision string
:param core_device: Core device name
"""
kernel_invariants = {"channel", "core", "pgia", "cplds", "ddses",
"ref_period_mu", "corrected_fs"}
kernel_invariants = {"channel", "core", "pgia", "cpld0", "cpld1",
"dds0", "dds1", "ref_period_mu"}
def __init__(self, dmgr, channel, pgia_device,
cpld_devices, dds_devices,
gains=0x0000, sampler_hw_rev="v2.2", core_device="core"):
cpld0_device, cpld1_device,
dds0_device, dds1_device,
gains=0x0000, core_device="core"):
self.core = dmgr.get(core_device)
self.pgia = dmgr.get(pgia_device)
self.pgia.update_xfer_duration_mu(div=4, length=16)
assert len(dds_devices) == len(cpld_devices)
self.ddses = [dmgr.get(dds) for dds in dds_devices]
self.cplds = [dmgr.get(cpld) for cpld in cpld_devices]
self.dds0 = dmgr.get(dds0_device)
self.dds1 = dmgr.get(dds1_device)
self.cpld0 = dmgr.get(cpld0_device)
self.cpld1 = dmgr.get(cpld1_device)
self.channel = channel
self.gains = gains
self.ref_period_mu = self.core.seconds_to_mu(
self.core.coarse_ref_period)
self.corrected_fs = sampler.Sampler.use_corrected_fs(sampler_hw_rev)
assert self.ref_period_mu == self.core.ref_multiplier
@staticmethod
def get_rtio_channels(channel, **kwargs):
return [(channel, None)]
@kernel
def init(self):
"""Initialize the servo, Sampler and both Urukuls.
@ -109,15 +108,17 @@ class SUServo:
sampler.SPI_CONFIG | spi.SPI_END,
16, 4, sampler.SPI_CS_PGIA)
for i in range(len(self.cplds)):
cpld = self.cplds[i]
dds = self.ddses[i]
self.cpld0.init(blind=True)
cfg0 = self.cpld0.cfg_reg
self.cpld0.cfg_write(cfg0 | (0xf << urukul.CFG_MASK_NU))
self.dds0.init(blind=True)
self.cpld0.cfg_write(cfg0)
cpld.init(blind=True)
prev_cpld_cfg = cpld.cfg_reg
cpld.cfg_write(prev_cpld_cfg | (0xf << urukul.CFG_MASK_NU))
dds.init(blind=True)
cpld.cfg_write(prev_cpld_cfg)
self.cpld1.init(blind=True)
cfg1 = self.cpld1.cfg_reg
self.cpld1.cfg_write(cfg1 | (0xf << urukul.CFG_MASK_NU))
self.dds1.init(blind=True)
self.cpld1.cfg_write(cfg1)
@kernel
def write(self, addr, value):
@ -128,11 +129,7 @@ class SUServo:
:param addr: Memory location address.
:param value: Data to be written.
"""
addr |= WE
value &= (1 << COEFF_WIDTH) - 1
value |= (addr >> 8) << COEFF_WIDTH
addr = addr & 0xff
rtio_output((self.channel << 8) | addr, value)
rtio_output(now_mu(), self.channel, addr | WE, value)
delay_mu(self.ref_period_mu)
@kernel
@ -143,9 +140,7 @@ class SUServo:
:param addr: Memory location address.
"""
value = (addr >> 8) << COEFF_WIDTH
addr = addr & 0xff
rtio_output((self.channel << 8) | addr, value)
rtio_output(now_mu(), self.channel, addr, 0)
return rtio_input_data(self.channel)
@kernel
@ -155,7 +150,7 @@ class SUServo:
This method advances the timeline by one servo memory access.
It does not support RTIO event replacement.
:param int enable: Enable servo operation. Enabling starts servo
:param enable (int): Enable servo operation. Enabling starts servo
iterations beginning with the ADC sampling stage. The first DDS
update will happen about two servo cycles (~2.3 µs) after enabling
the servo. The delay is deterministic.
@ -189,16 +184,12 @@ class SUServo:
@kernel
def get_adc_mu(self, adc):
"""Get the latest ADC reading (IIR filter input X0) in machine units.
"""Get an ADC reading (IIR filter input X0) in machine units.
This method does not advance the timeline but consumes all slack.
If reading servo state through this method collides with the servo
writing that same data, the data can become invalid. To ensure
consistent and valid data, stop the servo before using this method.
:param adc: ADC channel number (0-7)
:return: 17-bit signed X0
:return: 17 bit signed X0
"""
# State memory entries are 25 bits. Due to the pre-adder dynamic
# range, X0/X1/OFFSET are only 24 bits. Finally, the RTIO interface
@ -223,14 +214,10 @@ class SUServo:
@kernel
def get_adc(self, channel):
"""Get the latest ADC reading (IIR filter input X0).
"""Get an ADC reading (IIR filter input X0).
This method does not advance the timeline but consumes all slack.
If reading servo state through this method collides with the servo
writing that same data, the data can become invalid. To ensure
consistent and valid data, stop the servo before using this method.
The PGIA gain setting must be known prior to using this method, either
by setting the gain (:meth:`set_pgia_mu`) or by supplying it
(:attr:`gains` or via the constructor/device database).
@ -240,7 +227,7 @@ class SUServo:
"""
val = self.get_adc_mu(channel)
gain = (self.gains >> (channel*2)) & 0b11
return adc_mu_to_volts(val, gain, self.corrected_fs)
return adc_mu_to_volts(val, gain)
class Channel:
@ -255,15 +242,9 @@ class Channel:
self.servo = dmgr.get(servo_device)
self.core = self.servo.core
self.channel = channel
# This assumes the mem channel is right after the control channels
# Make sure this is always the case in eem.py
self.servo_channel = (self.channel + 4 * len(self.servo.cplds) -
self.servo.channel)
self.dds = self.servo.ddses[self.servo_channel // 4]
@staticmethod
def get_rtio_channels(channel, **kwargs):
return [(channel, None)]
# FIXME: this assumes the mem channel is right after the control
# channels
self.servo_channel = self.channel + 8 - self.servo.channel
@kernel
def set(self, en_out, en_iir=0, profile=0):
@ -272,33 +253,33 @@ class Channel:
This method does not advance the timeline. Output RF switch setting
takes effect immediately and is independent of any other activity
(profile settings, other channels). The RF switch behaves like
:class:`artiq.coredevice.ttl.TTLOut`. RTIO event replacement is
supported. IIR updates take place once the RF switch has been enabled
for the configured delay and the profile setting has been stable.
Profile changes take between one and two servo cycles to reach the DDS.
:class:`artiq.coredevice.ttl.TTLOut`. RTIO event replacement is supported. IIR updates take place
once the RF switch has been enabled for the configured delay and the
profile setting has been stable. Profile changes take between one and
two servo cycles to reach the DDS.
:param en_out: RF switch enable
:param en_iir: IIR updates enable
:param profile: Active profile (0-31)
"""
rtio_output(self.channel << 8,
rtio_output(now_mu(), self.channel, 0,
en_out | (en_iir << 1) | (profile << 2))
@kernel
def set_dds_mu(self, profile, ftw, offs, pow_=0):
"""Set profile DDS coefficients in machine units.
See also :meth:`Channel.set_dds`.
.. seealso:: :meth:`set_amplitude`
:param profile: Profile number (0-31)
:param ftw: Frequency tuning word (32-bit unsigned)
:param offs: IIR offset (17-bit signed)
:param pow_: Phase offset word (16-bit)
:param ftw: Frequency tuning word (32 bit unsigned)
:param offs: IIR offset (17 bit signed)
:param pow_: Phase offset word (16 bit)
"""
base = (self.servo_channel << 8) | (profile << 3)
self.servo.write(base + 0, ftw >> 16)
self.servo.write(base + 6, (ftw & 0xffff))
self.set_dds_offset_mu(profile, offs)
self.servo.write(base + 6, ftw)
self.servo.write(base + 4, offs)
self.servo.write(base + 2, pow_)
@kernel
@ -311,49 +292,21 @@ class Channel:
:param profile: Profile number (0-31)
:param frequency: DDS frequency in Hz
:param offset: IIR offset (negative setpoint) in units of full scale,
see :meth:`dds_offset_to_mu`
:param offset: IIR offset (negative setpoint) in units of full scale.
For positive ADC voltages as setpoints, this should be negative.
Due to rounding and representation as two's complement,
``offset=1`` can not be represented while ``offset=-1`` can.
:param phase: DDS phase in turns
"""
ftw = self.dds.frequency_to_ftw(frequency)
pow_ = self.dds.turns_to_pow(phase)
offs = self.dds_offset_to_mu(offset)
if self.servo_channel < 4:
dds = self.servo.dds0
else:
dds = self.servo.dds1
ftw = dds.frequency_to_ftw(frequency)
pow_ = dds.turns_to_pow(phase)
offs = int(round(offset*(1 << COEFF_WIDTH - 1)))
self.set_dds_mu(profile, ftw, offs, pow_)
@kernel
def set_dds_offset_mu(self, profile, offs):
"""Set only IIR offset in DDS coefficient profile.
See :meth:`set_dds_mu` for setting the complete DDS profile.
:param profile: Profile number (0-31)
:param offs: IIR offset (17-bit signed)
"""
base = (self.servo_channel << 8) | (profile << 3)
self.servo.write(base + 4, offs)
@kernel
def set_dds_offset(self, profile, offset):
"""Set only IIR offset in DDS coefficient profile.
See :meth:`set_dds` for setting the complete DDS profile.
:param profile: Profile number (0-31)
:param offset: IIR offset (negative setpoint) in units of full scale
"""
self.set_dds_offset_mu(profile, self.dds_offset_to_mu(offset))
@portable
def dds_offset_to_mu(self, offset):
"""Convert IIR offset (negative setpoint) from units of full scale to
machine units (see :meth:`set_dds_mu`, :meth:`set_dds_offset_mu`).
For positive ADC voltages as setpoints, this should be negative. Due to
rounding and representation as two's complement, ``offset=1`` can not
be represented while ``offset=-1`` can.
"""
return int(round(offset * (1 << COEFF_WIDTH - 1)))
@kernel
def set_iir_mu(self, profile, adc, a1, b0, b1, dly=0):
"""Set profile IIR coefficients in machine units.
@ -375,15 +328,15 @@ class Channel:
* :math:`b_0` and :math:`b_1` are the feedforward gains for the two
delays
See also :meth:`Channel.set_iir`.
.. seealso:: :meth:`set_iir`
:param profile: Profile number (0-31)
:param adc: ADC channel to take IIR input from (0-7)
:param a1: 18-bit signed A1 coefficient (Y1 coefficient,
:param a1: 18 bit signed A1 coefficient (Y1 coefficient,
feedback, integrator gain)
:param b0: 18-bit signed B0 coefficient (recent,
:param b0: 18 bit signed B0 coefficient (recent,
X0 coefficient, feed forward, proportional gain)
:param b1: 18-bit signed B1 coefficient (old,
:param b1: 18 bit signed B1 coefficient (old,
X1 coefficient, feed forward, proportional gain)
:param dly: IIR update suppression time. In units of IIR cycles
(~1.2 µs, 0-255).
@ -489,17 +442,13 @@ class Channel:
def get_y_mu(self, profile):
"""Get a profile's IIR state (filter output, Y0) in machine units.
The IIR state is also known as the "integrator", or the DDS amplitude
scale factor. It is 17 bits wide and unsigned.
The IIR state is also know as the "integrator", or the DDS amplitude
scale factor. It is 18 bits wide and unsigned.
This method does not advance the timeline but consumes all slack.
If reading servo state through this method collides with the servo
writing that same data, the data can become invalid. To ensure
consistent and valid data, stop the servo before using this method.
:param profile: Profile number (0-31)
:return: 17-bit unsigned Y0
:return: 18 bit unsigned Y0
"""
return self.servo.read(STATE_SEL | (self.servo_channel << 5) | profile)
@ -507,15 +456,11 @@ class Channel:
def get_y(self, profile):
"""Get a profile's IIR state (filter output, Y0).
The IIR state is also known as the "integrator", or the DDS amplitude
scale factor. It is 17 bits wide and unsigned.
The IIR state is also know as the "integrator", or the DDS amplitude
scale factor. It is 18 bits wide and unsigned.
This method does not advance the timeline but consumes all slack.
If reading servo state through this method collides with the servo
writing that same data, the data can become invalid. To ensure
consistent and valid data, stop the servo before using this method.
:param profile: Profile number (0-31)
:return: IIR filter output in Y0 units of full scale
"""
@ -525,8 +470,8 @@ class Channel:
def set_y_mu(self, profile, y):
"""Set a profile's IIR state (filter output, Y0) in machine units.
The IIR state is also known as the "integrator", or the DDS amplitude
scale factor. It is 17 bits wide and unsigned.
The IIR state is also know as the "integrator", or the DDS amplitude
scale factor. It is 18 bits wide and unsigned.
This method must not be used when the servo could be writing to the
same location. Either deactivate the profile, or deactivate IIR
@ -535,7 +480,7 @@ class Channel:
This method advances the timeline by one servo memory access.
:param profile: Profile number (0-31)
:param y: 17-bit unsigned Y0
:param y: 17 bit unsigned Y0
"""
# State memory is 25 bits wide and signed.
# Reads interact with the 18 MSBs (coefficient memory width)
@ -545,8 +490,8 @@ class Channel:
def set_y(self, profile, y):
"""Set a profile's IIR state (filter output, Y0).
The IIR state is also known as the "integrator", or the DDS amplitude
scale factor. It is 17 bits wide and unsigned.
The IIR state is also know as the "integrator", or the DDS amplitude
scale factor. It is 18 bits wide and unsigned.
This method must not be used when the servo could be writing to the
same location. Either deactivate the profile, or deactivate IIR
@ -557,8 +502,4 @@ class Channel:
:param profile: Profile number (0-31)
:param y: IIR state in units of full scale
"""
y_mu = int(round(y * Y_FULL_SCALE_MU))
if y_mu < 0 or y_mu > (1 << 17) - 1:
raise ValueError("Invalid SUServo y-value!")
self.set_y_mu(profile, y_mu)
return y_mu
self.set_y_mu(profile, int(round((1 << COEFF_WIDTH - 1)*y)))

View File

@ -1,136 +0,0 @@
class TRF372017:
"""TRF372017 settings and register map.
For possible values, documentation, and explanation, see the datasheet.
https://www.ti.com/lit/gpn/trf372017
"""
rdiv = 2 # 13b - highest valid f_PFD
ref_inv = 0
neg_vco = 1
icp = 0 # 1.94 mA, 5b
icp_double = 0
cal_clk_sel = 0b1110 # div64, 4b
# default f_vco is 2.875 GHz
nint = 23 # 16b - lowest value suitable for fractional & integer mode
pll_div_sel = 0b01 # div2, 2b
prsc_sel = 0 # 4/5
vco_sel = 2 # 2b
vcosel_mode = 0
cal_acc = 0b00 # 2b
en_cal = 0 # leave at 0 - calibration is performed in `Phaser.init()`
nfrac = 0 # 25b
pwd_pll = 0
pwd_cp = 0
pwd_vco = 0
pwd_vcomux = 0
pwd_div124 = 0
pwd_presc = 0
pwd_out_buff = 1 # leave at 1 - only enable outputs after calibration
pwd_lo_div = 1 # leave at 1 - only enable outputs after calibration
pwd_tx_div = 1 # leave at 1 - only enable outputs after calibration
pwd_bb_vcm = 0
pwd_dc_off = 0
en_extvco = 0
en_isource = 0
ld_ana_prec = 0 # 2b
cp_tristate = 0 # 2b
speedup = 0
ld_dig_prec = 1
en_dith = 1
mod_ord = 2 # 3rd order, 2b
dith_sel = 0
del_sd_clk = 2 # 2b
en_frac = 0
vcobias_rtrim = 4 # 3b
pllbias_rtrim = 2 # 2b
vco_bias = 8 # 460 µA, 4b
vcobuf_bias = 2 # 2b
vcomux_bias = 3 # 2b
bufout_bias = 0 # 300 µA, 2b
vco_cal_ib = 0 # PTAT
vco_cal_ref = 2 # 1.04 V, 2b
vco_ampl_ctrl = 3 # 2b
vco_vb_ctrl = 0 # 1.2 V, 2b
en_ld_isource = 0
ioff = 0x80 # 8b
qoff = 0x80 # 8b
vref_sel = 4 # 0.85 V, 3b
tx_div_sel = 0 # div1, 2b
lo_div_sel = 0 # div1, 2b
tx_div_bias = 1 # 37.5 µA, 2b
lo_div_bias = 2 # 50 µA, 2b
vco_trim = 0x20 # 6b
vco_test_mode = 0
cal_bypass = 0
mux_ctrl = 1 # lock detect, 3b
isource_sink = 0
isource_trim = 4 # 3b
pd_tc = 0 # 2b
ib_vcm_sel = 0 # ptat
dcoffset_i = 2 # 150 µA, 2b
vco_bias_sel = 1 # spi
def __init__(self, updates=None):
if updates is None:
return
for key, value in updates.items():
if not hasattr(self, key):
raise KeyError("invalid setting", key)
setattr(self, key, value)
def get_mmap(self):
"""Memory map for TRF372017"""
mmap = []
mmap.append(
0x9 |
(self.rdiv << 5) | (self.ref_inv << 19) | (self.neg_vco << 20) |
(self.icp << 21) | (self.icp_double << 26) |
(self.cal_clk_sel << 27))
mmap.append(
0xa |
(self.nint << 5) | (self.pll_div_sel << 21) |
(self.prsc_sel << 23) | (self.vco_sel << 26) |
(self.vcosel_mode << 28) | (self.cal_acc << 29) |
(self.en_cal << 31))
mmap.append(0xb | (self.nfrac << 5))
mmap.append(
0xc |
(self.pwd_pll << 5) | (self.pwd_cp << 6) | (self.pwd_vco << 7) |
(self.pwd_vcomux << 8) | (self.pwd_div124 << 9) |
(self.pwd_presc << 10) | (self.pwd_out_buff << 12) |
(self.pwd_lo_div << 13) | (self.pwd_tx_div << 14) |
(self.pwd_bb_vcm << 15) | (self.pwd_dc_off << 16) |
(self.en_extvco << 17) | (self.en_isource << 18) |
(self.ld_ana_prec << 19) | (self.cp_tristate << 21) |
(self.speedup << 23) | (self.ld_dig_prec << 24) |
(self.en_dith << 25) | (self.mod_ord << 26) |
(self.dith_sel << 28) | (self.del_sd_clk << 29) |
(self.en_frac << 31))
mmap.append(
0xd |
(self.vcobias_rtrim << 5) | (self.pllbias_rtrim << 8) |
(self.vco_bias << 10) | (self.vcobuf_bias << 14) |
(self.vcomux_bias << 16) | (self.bufout_bias << 18) |
(1 << 21) | (self.vco_cal_ib << 22) | (self.vco_cal_ref << 23) |
(self.vco_ampl_ctrl << 26) | (self.vco_vb_ctrl << 28) |
(self.en_ld_isource << 31))
mmap.append(
0xe |
(self.ioff << 5) | (self.qoff << 13) | (self.vref_sel << 21) |
(self.tx_div_sel << 24) | (self.lo_div_sel << 26) |
(self.tx_div_bias << 28) | (self.lo_div_bias << 30))
mmap.append(
0xf |
(self.vco_trim << 7) | (self.vco_test_mode << 14) |
(self.cal_bypass << 15) | (self.mux_ctrl << 16) |
(self.isource_sink << 19) | (self.isource_trim << 20) |
(self.pd_tc << 23) | (self.ib_vcm_sel << 25) |
(1 << 28) | (self.dcoffset_i << 29) |
(self.vco_bias_sel << 31))
return mmap

View File

@ -27,18 +27,13 @@ class TTLOut:
This should be used with output-only channels.
:param channel: Channel number
:param channel: channel number
"""
kernel_invariants = {"core", "channel", "target_o"}
kernel_invariants = {"core", "channel"}
def __init__(self, dmgr, channel, core_device="core"):
self.core = dmgr.get(core_device)
self.channel = channel
self.target_o = channel << 8
@staticmethod
def get_rtio_channels(channel, **kwargs):
return [(channel, None)]
@kernel
def output(self):
@ -46,11 +41,11 @@ class TTLOut:
@kernel
def set_o(self, o):
rtio_output(self.target_o, 1 if o else 0)
rtio_output(now_mu(), self.channel, 0, 1 if o else 0)
@kernel
def on(self):
"""Set the output to a logic high state at the current position
"""Sets the output to a logic high state at the current position
of the time cursor.
The time cursor is not modified by this function."""
@ -109,48 +104,25 @@ class TTLInOut:
API is active (e.g. the gate is open, or the input events have not been
fully read out), another API must not be used simultaneously.
:param channel: Channel number
:param channel: channel number
"""
kernel_invariants = {"core", "channel", "gate_latency_mu",
"target_o", "target_oe", "target_sens", "target_sample"}
kernel_invariants = {"core", "channel"}
def __init__(self, dmgr, channel, gate_latency_mu=None,
core_device="core"):
def __init__(self, dmgr, channel, core_device="core"):
self.core = dmgr.get(core_device)
self.channel = channel
# With TTLs inputs, the gate control is connected to a high-latency
# path through SED. When looking at the RTIO counter to determine if
# the gate has closed, we need to take this latency into account.
# See: https://github.com/m-labs/artiq/issues/1137
if gate_latency_mu is None:
gate_latency_mu = 13*self.core.ref_multiplier
self.gate_latency_mu = gate_latency_mu
self.target_o = (channel << 8) + 0
self.target_oe = (channel << 8) + 1
self.target_sens = (channel << 8) + 2
self.target_sample = (channel << 8) + 3
@staticmethod
def get_rtio_channels(channel, **kwargs):
return [(channel, None)]
@kernel
def set_oe(self, oe):
rtio_output(self.target_oe, 1 if oe else 0)
rtio_output(now_mu(), self.channel, 1, 1 if oe else 0)
@kernel
def output(self):
"""Set the direction to output at the current position of the time
cursor.
A delay of at least one RTIO clock cycle is necessary before any
other command can be issued.
This method only configures the direction at the FPGA. When using
buffered I/O interfaces, such as the Sinara TTL cards, the buffer
direction must be configured separately in the hardware."""
There must be a delay of at least one RTIO clock cycle before any
other command can be issued."""
self.set_oe(True)
@kernel
@ -158,17 +130,13 @@ class TTLInOut:
"""Set the direction to input at the current position of the time
cursor.
A delay of at least one RTIO clock cycle is necessary before any
other command can be issued.
This method only configures the direction at the FPGA. When using
buffered I/O interfaces, such as the Sinara TTL cards, the buffer
direction must be configured separately in the hardware."""
There must be a delay of at least one RTIO clock cycle before any
other command can be issued."""
self.set_oe(False)
@kernel
def set_o(self, o):
rtio_output(self.target_o, 1 if o else 0)
rtio_output(now_mu(), self.channel, 0, 1 if o else 0)
@kernel
def on(self):
@ -192,7 +160,7 @@ class TTLInOut:
@kernel
def pulse_mu(self, duration):
"""Pulse the output high for the specified duration
"""Pulses the output high for the specified duration
(in machine units).
The time cursor is advanced by the specified duration."""
@ -202,7 +170,7 @@ class TTLInOut:
@kernel
def pulse(self, duration):
"""Pulse the output high for the specified duration
"""Pulses the output high for the specified duration
(in seconds).
The time cursor is advanced by the specified duration."""
@ -213,7 +181,7 @@ class TTLInOut:
# Input API: gating
@kernel
def _set_sensitivity(self, value):
rtio_output(self.target_sens, value)
rtio_output(now_mu(), self.channel, 2, value)
@kernel
def gate_rising_mu(self, duration):
@ -326,18 +294,17 @@ class TTLInOut:
:return: The number of events before the timeout elapsed (0 if none
observed).
**Examples:**
Examples:
To count events on channel ``ttl_input``, up to the current timeline
position: ::
position::
ttl_input.count(now_mu())
If other events are scheduled between the end of the input gate
period and when the number of events is counted, using
:meth:`~artiq.language.core.now_mu()` as timeout consumes an
unnecessary amount of timeline slack. In such cases, it can be
beneficial to pass a more precise timestamp, for example: ::
period and when the number of events is counted, using ``now_mu()``
as timeout consumes an unnecessary amount of timeline slack. In
such cases, it can be beneficial to pass a more precise timestamp,
for example::
gate_end_mu = ttl_input.gate_rising(100 * us)
@ -351,12 +318,12 @@ class TTLInOut:
num_rising_edges = ttl_input.count(gate_end_mu)
The ``gate_*()`` family of methods return the cursor at the end
of the window, allowing this to be expressed in a compact fashion: ::
of the window, allowing this to be expressed in a compact fashion::
ttl_input.count(ttl_input.gate_rising(100 * us))
"""
count = 0
while rtio_input_timestamp(up_to_timestamp_mu + self.gate_latency_mu, self.channel) >= 0:
while rtio_input_timestamp(up_to_timestamp_mu, self.channel) >= 0:
count += 1
return count
@ -379,7 +346,7 @@ class TTLInOut:
:return: The timestamp (in machine units) of the first event received;
-1 on timeout.
"""
return rtio_input_timestamp(up_to_timestamp_mu + self.gate_latency_mu, self.channel)
return rtio_input_timestamp(up_to_timestamp_mu, self.channel)
# Input API: sampling
@kernel
@ -388,7 +355,7 @@ class TTLInOut:
position of the time cursor.
The time cursor is not modified by this function."""
rtio_output(self.target_sample, 0)
rtio_output(now_mu(), self.channel, 3, 0)
@kernel
def sample_get(self):
@ -425,13 +392,13 @@ class TTLInOut:
The time cursor is not modified by this function.
"""
rtio_output(self.target_sample, 2) # gate falling
rtio_output(now_mu(), self.channel, 3, 2) # gate falling
return rtio_input_data(self.channel) == 1
@kernel
def watch_stay_off(self):
"""Like :meth:`watch_stay_on`, but for low levels."""
rtio_output(self.target_sample, 1) # gate rising
rtio_output(now_mu(), self.channel, 3, 1) # gate rising
return rtio_input_data(self.channel) == 0
@kernel
@ -442,12 +409,12 @@ class TTLInOut:
was being watched.
The time cursor is not modified by this function. This function
always results in negative slack.
always makes the slack negative.
"""
rtio_output(self.target_sens, 0)
rtio_output(now_mu(), self.channel, 2, 0)
success = True
try:
while rtio_input_timestamp(now_mu() + self.gate_latency_mu, self.channel) != -1:
while rtio_input_timestamp(now_mu(), self.channel) != -1:
success = False
except RTIOOverflow:
success = False
@ -465,19 +432,14 @@ class TTLClockGen:
:param channel: channel number
:param acc_width: accumulator width in bits
"""
kernel_invariants = {"core", "channel", "target", "acc_width"}
kernel_invariants = {"core", "channel", "acc_width"}
def __init__(self, dmgr, channel, acc_width=24, core_device="core"):
self.core = dmgr.get(core_device)
self.channel = channel
self.target = channel << 8
self.acc_width = numpy.int64(acc_width)
@staticmethod
def get_rtio_channels(channel, **kwargs):
return [(channel, None)]
@portable
def frequency_to_ftw(self, frequency):
"""Returns the frequency tuning word corresponding to the given
@ -510,7 +472,7 @@ class TTLClockGen:
Due to the way the clock generator operates, frequency tuning words
that are not powers of two cause jitter of one RTIO clock cycle at the
output."""
rtio_output(self.target, frequency)
rtio_output(now_mu(), self.channel, 0, frequency)
@kernel
def set(self, frequency):

View File

@ -1,15 +1,15 @@
from numpy import int32, int64
from artiq.language.core import kernel, delay, portable, at_mu, now_mu
from artiq.language.units import us, ms
from artiq.language.types import TInt32, TFloat, TBool
from numpy import int32
from artiq.coredevice import spi2 as spi
SPI_CONFIG = (0 * spi.SPI_OFFLINE | 0 * spi.SPI_END |
0 * spi.SPI_INPUT | 1 * spi.SPI_CS_POLARITY |
0 * spi.SPI_CLK_POLARITY | 0 * spi.SPI_CLK_PHASE |
0 * spi.SPI_LSB_FIRST | 0 * spi.SPI_HALF_DUPLEX)
SPI_CONFIG = (0*spi.SPI_OFFLINE | 0*spi.SPI_END |
0*spi.SPI_INPUT | 1*spi.SPI_CS_POLARITY |
0*spi.SPI_CLK_POLARITY | 0*spi.SPI_CLK_PHASE |
0*spi.SPI_LSB_FIRST | 0*spi.SPI_HALF_DUPLEX)
# SPI clock write and read dividers
SPIT_CFG_WR = 2
@ -31,7 +31,6 @@ CFG_CLK_SEL1 = 21
CFG_SYNC_SEL = 18
CFG_RST = 19
CFG_IO_RST = 20
CFG_CLK_DIV = 22
# STA status register bit offsets
STA_RF_SW = 0
@ -52,13 +51,10 @@ CS_DDS_CH1 = 5
CS_DDS_CH2 = 6
CS_DDS_CH3 = 7
# Default profile
DEFAULT_PROFILE = 7
@portable
def urukul_cfg(rf_sw, led, profile, io_update, mask_nu,
clk_sel, sync_sel, rst, io_rst, clk_div):
clk_sel, sync_sel, rst, io_rst):
"""Build Urukul CPLD configuration register"""
return ((rf_sw << CFG_RF_SW) |
(led << CFG_LED) |
@ -69,8 +65,7 @@ def urukul_cfg(rf_sw, led, profile, io_update, mask_nu,
((clk_sel & 0x02) << (CFG_CLK_SEL1 - 1)) |
(sync_sel << CFG_SYNC_SEL) |
(rst << CFG_RST) |
(io_rst << CFG_IO_RST) |
(clk_div << CFG_CLK_DIV))
(io_rst << CFG_IO_RST))
@portable
@ -108,7 +103,7 @@ class _RegIOUpdate:
self.cpld = cpld
@kernel
def pulse(self, t: TFloat):
def pulse(self, t):
cfg = self.cpld.cfg_reg
self.cpld.cfg_write(cfg | (1 << CFG_IO_UPDATE))
delay(t)
@ -120,7 +115,7 @@ class _DummySync:
self.cpld = cpld
@kernel
def set_mu(self, ftw: TInt32):
def set_mu(self, ftw):
pass
@ -130,7 +125,7 @@ class CPLD:
:param spi_device: SPI bus device name
:param io_update_device: IO update RTIO TTLOut channel name
:param dds_reset_device: DDS reset RTIO TTLOut channel name
:param sync_device: AD9910 ``SYNC_IN`` RTIO TTLClockGen channel name
:param sync_device: AD9910 SYNC_IN RTIO TTLClockGen channel name
:param refclk: Reference clock (SMA, MMCX or on-board 100 MHz oscillator)
frequency in Hz
:param clk_sel: Reference clock selection. For hardware revision >= 1.3
@ -138,42 +133,28 @@ class CPLD:
internal MMCX. For hardware revision <= v1.2 valid options are: 0 -
either XO or MMCX dependent on component population; 1 SMA. Unsupported
clocking options are silently ignored.
:param clk_div: Reference clock divider. Valid options are 0: variant
dependent default (divide-by-4 for AD9910 and divide-by-1 for AD9912);
1: divide-by-1; 2: divide-by-2; 3: divide-by-4.
On Urukul boards with CPLD gateware before v1.3.1 only the default
(0, i.e. variant dependent divider) is valid.
:param sync_sel: ``SYNC`` (multi-chip synchronisation) signal source selection.
0 corresponds to ``SYNC_IN`` being supplied by the FPGA via the EEM
connector. 1 corresponds to ``SYNC_OUT`` from DDS0 being distributed to the
other chips.
:param sync_sel: SYNC_IN selection. 0 corresponds to SYNC_IN over EEM
from FPGA. 1 corresponds to SYNC_IN from DDS0.
:param rf_sw: Initial CPLD RF switch register setting (default: 0x0).
Knowledge of this state is not transferred between experiments.
:param att: Initial attenuator setting shift register (default:
0x00000000). See also :meth:`get_att_mu` which retrieves the hardware
state without side effects. Knowledge of this state is not transferred
between experiments.
:param sync_div: ``SYNC_IN`` generator divider. The ratio between the coarse
RTIO frequency and the ``SYNC_IN`` generator frequency (default: 2 if
0x00000000). See also: :meth:`set_all_att_mu`. Knowledge of this state
is not transferred between experiments.
:param sync_div: SYNC_IN generator divider. The ratio between the coarse
RTIO frequency and the SYNC_IN generator frequency (default: 2 if
`sync_device` was specified).
:param core_device: Core device name
If the clocking is incorrect (for example, setting ``clk_sel`` to the
front panel SMA with no clock connected), then the ``init()`` method of
the DDS channels can fail with the error message ``PLL lock timeout``.
"""
kernel_invariants = {"refclk", "bus", "core", "io_update", "clk_div"}
kernel_invariants = {"refclk", "bus", "core", "io_update"}
def __init__(self, dmgr, spi_device, io_update_device=None,
dds_reset_device=None, sync_device=None,
sync_sel=0, clk_sel=0, clk_div=0, rf_sw=0,
sync_sel=0, clk_sel=0, rf_sw=0,
refclk=125e6, att=0x00000000, sync_div=None,
core_device="core"):
self.core = dmgr.get(core_device)
self.refclk = refclk
assert 0 <= clk_div <= 3
self.clk_div = clk_div
self.bus = dmgr.get(spi_device)
if io_update_device is not None:
@ -191,20 +172,19 @@ class CPLD:
assert sync_div is None
sync_div = 0
self.cfg_reg = urukul_cfg(rf_sw=rf_sw, led=0, profile=DEFAULT_PROFILE,
self.cfg_reg = urukul_cfg(rf_sw=rf_sw, led=0, profile=0,
io_update=0, mask_nu=0, clk_sel=clk_sel,
sync_sel=sync_sel,
rst=0, io_rst=0, clk_div=clk_div)
self.att_reg = int32(int64(att))
sync_sel=sync_sel, rst=0, io_rst=0)
self.att_reg = int32(att)
self.sync_div = sync_div
@kernel
def cfg_write(self, cfg: TInt32):
def cfg_write(self, cfg):
"""Write to the configuration register.
See :func:`urukul_cfg` for possible flags.
:param cfg: 24-bit data to be written. Will be stored at
:param data: 24 bit data to be written. Will be stored at
:attr:`cfg_reg`.
"""
self.bus.set_config_mu(SPI_CONFIG | spi.SPI_END, 24,
@ -213,7 +193,7 @@ class CPLD:
self.cfg_reg = cfg
@kernel
def sta_read(self) -> TInt32:
def sta_read(self):
"""Read the status register.
Use any of the following functions to extract values:
@ -232,12 +212,12 @@ class CPLD:
return self.bus.read()
@kernel
def init(self, blind: TBool = False):
def init(self, blind=False):
"""Initialize and detect Urukul.
Resets the DDS I/O interface and verifies correct CPLD gateware
version.
Does not pulse the DDS ``MASTER_RESET`` as that confuses the AD9910.
Does not pulse the DDS MASTER_RESET as that confuses the AD9910.
:param blind: Do not attempt to verify presence and compatibility.
"""
@ -250,12 +230,12 @@ class CPLD:
proto_rev = urukul_sta_proto_rev(self.sta_read())
if proto_rev != STA_PROTO_REV_MATCH:
raise ValueError("Urukul proto_rev mismatch")
delay(100 * us) # reset, slack
delay(100*us) # reset, slack
self.cfg_write(cfg)
if self.sync_div:
at_mu(now_mu() & ~0xf) # align to RTIO/2
self.set_sync_div(self.sync_div) # 125 MHz/2 = 1 GHz/16
delay(1 * ms) # DDS wake up
delay(1*ms) # DDS wake up
@kernel
def io_rst(self):
@ -264,7 +244,7 @@ class CPLD:
self.cfg_write(self.cfg_reg & ~(1 << CFG_IO_RST))
@kernel
def cfg_sw(self, channel: TInt32, on: TBool):
def cfg_sw(self, channel, on):
"""Configure the RF switches through the configuration register.
These values are logically OR-ed with the LVDS lines on EEM1.
@ -280,44 +260,21 @@ class CPLD:
self.cfg_write(c)
@kernel
def cfg_switches(self, state: TInt32):
def cfg_switches(self, state):
"""Configure all four RF switches through the configuration register.
:param state: RF switch state as a 4-bit integer.
:param state: RF switch state as a 4 bit integer.
"""
self.cfg_write((self.cfg_reg & ~0xf) | state)
@portable(flags={"fast-math"})
def mu_to_att(self, att_mu: TInt32) -> TFloat:
"""Convert a digital attenuation setting to dB.
:param att_mu: Digital attenuation setting.
:return: Attenuation setting in dB.
"""
return (255 - (att_mu & 0xff)) / 8
@portable(flags={"fast-math"})
def att_to_mu(self, att: TFloat) -> TInt32:
"""Convert an attenuation setting in dB to machine units.
:param att: Attenuation setting in dB.
:return: Digital attenuation setting.
"""
code = int32(255) - int32(round(att * 8))
if code < 0 or code > 255:
raise ValueError("Invalid urukul.CPLD attenuation!")
return code
@kernel
def set_att_mu(self, channel: TInt32, att: TInt32):
def set_att_mu(self, channel, att):
"""Set digital step attenuator in machine units.
This method will also write the attenuator settings of the three
other channels. Use :meth:`get_att_mu` to retrieve the hardware
state set in previous experiments.
This method will write the attenuator settings of all four channels.
:param channel: Attenuator channel (0-3).
:param att: 8-bit digital attenuation setting:
:param att: Digital attenuation setting:
255 minimum attenuation, 0 maximum attenuation (31.5 dB)
"""
a = self.att_reg & ~(0xff << (channel * 8))
@ -325,11 +282,12 @@ class CPLD:
self.set_all_att_mu(a)
@kernel
def set_all_att_mu(self, att_reg: TInt32):
"""Set all four digital step attenuators (in machine units).
See also :meth:`set_att_mu`.
def set_all_att_mu(self, att_reg):
"""Set all four digital step attenuators (in machine units).
:param att_reg: Attenuator setting string (32-bit)
.. seealso:: :meth:`set_att_mu`
:param att_reg: Attenuator setting string (32 bit)
"""
self.bus.set_config_mu(SPI_CONFIG | spi.SPI_END, 32,
SPIT_ATT_WR, CS_ATT)
@ -337,87 +295,49 @@ class CPLD:
self.att_reg = att_reg
@kernel
def set_att(self, channel: TInt32, att: TFloat):
def set_att(self, channel, att):
"""Set digital step attenuator in SI units.
This method will write the attenuator settings of all four channels.
See also :meth:`set_att_mu`.
:param channel: Attenuator channel (0-3).
:param att: Attenuation setting in dB. Higher value is more
attenuation. Minimum attenuation is 0*dB, maximum attenuation is
31.5*dB.
"""
self.set_att_mu(channel, self.att_to_mu(att))
self.set_att_mu(channel, 255 - int32(round(att*8)))
@kernel
def get_att_mu(self) -> TInt32:
def get_att_mu(self):
"""Return the digital step attenuator settings in machine units.
The result is stored and will be used in future calls of
:meth:`set_att_mu` and :meth:`set_att`.
This method will also (as a side effect) write the attenuator
settings of all four channels.
See also :meth:`get_channel_att_mu`.
:return: 32-bit attenuator settings
:return: 32 bit attenuator settings
"""
self.bus.set_config_mu(SPI_CONFIG | spi.SPI_INPUT, 32,
self.bus.set_config_mu(SPI_CONFIG | spi.SPI_END | spi.SPI_INPUT, 32,
SPIT_ATT_RD, CS_ATT)
self.bus.write(0) # shift in zeros, shift out current value
self.bus.set_config_mu(SPI_CONFIG | spi.SPI_END, 32,
SPIT_ATT_WR, CS_ATT)
delay(10 * us)
self.att_reg = self.bus.read()
self.bus.write(self.att_reg) # shift in current value again and latch
return self.att_reg
self.bus.write(self.att_reg)
return self.bus.read()
@kernel
def get_channel_att_mu(self, channel: TInt32) -> TInt32:
"""Get digital step attenuator value for a channel in machine units.
The result is stored and will be used in future calls of
:meth:`set_att_mu` and :meth:`set_att`.
See also :meth:`get_att_mu`.
:param channel: Attenuator channel (0-3).
:return: 8-bit digital attenuation setting:
255 minimum attenuation, 0 maximum attenuation (31.5 dB)
"""
return int32((self.get_att_mu() >> (channel * 8)) & 0xff)
@kernel
def get_channel_att(self, channel: TInt32) -> TFloat:
"""Get digital step attenuator value for a channel in SI units.
See also :meth:`get_channel_att_mu`.
:param channel: Attenuator channel (0-3).
:return: Attenuation setting in dB. Higher value is more
attenuation. Minimum attenuation is 0*dB, maximum attenuation is
31.5*dB.
"""
return self.mu_to_att(self.get_channel_att_mu(channel))
@kernel
def set_sync_div(self, div: TInt32):
"""Set the ``SYNC_IN`` AD9910 pulse generator frequency
def set_sync_div(self, div):
"""Set the SYNC_IN AD9910 pulse generator frequency
and align it to the current RTIO timestamp.
The ``SYNC_IN`` signal is derived from the coarse RTIO clock
and the divider must be a power of two.
The SYNC_IN signal is derived from the coarse RTIO clock
and the divider must be a power of two two.
Configure ``sync_sel == 0``.
:param div: ``SYNC_IN`` frequency divider. Must be a power of two.
:param div: SYNC_IN frequency divider. Must be a power of two.
Minimum division ratio is 2. Maximum division ratio is 16.
"""
ftw_max = 1 << 4
ftw = ftw_max // div
assert ftw * div == ftw_max
ftw = ftw_max//div
assert ftw*div == ftw_max
self.sync.set_mu(ftw)
@kernel
def set_profile(self, profile: TInt32):
def set_profile(self, profile):
"""Set the PROFILE pins.
The PROFILE pins are common to all four DDS channels.

View File

@ -1,7 +1,7 @@
"""RTIO driver for the Zotino 32-channel, 16-bit 1MSPS DAC.
Output event replacement is not supported and issuing commands at the same
time results in a collision error.
time is an error.
"""
from artiq.language.core import kernel
@ -27,15 +27,15 @@ class Zotino(AD53xx):
:param clr_device: CLR RTIO TTLOut channel name.
:param div_write: SPI clock divider for write operations (default: 4,
50MHz max SPI clock)
:param div_read: SPI clock divider for read operations (default: 16, not
optimized for speed; datasheet says t22: 25ns min SCLK edge to SDO
valid, and suggests the SPI speed for reads should be <=20 MHz)
:param div_read: SPI clock divider for read operations (default: 8, not
optimized for speed, but cf data sheet t22: 25ns min SCLK edge to SDO
valid)
:param vref: DAC reference voltage (default: 5.)
:param core_device: Core device name (default: "core")
"""
def __init__(self, dmgr, spi_device, ldac_device=None, clr_device=None,
div_write=4, div_read=16, vref=5., core="core"):
div_write=4, div_read=8, vref=5., core="core"):
AD53xx.__init__(self, dmgr=dmgr, spi_device=spi_device,
ldac_device=ldac_device, clr_device=clr_device,
chip_select=_SPI_CS_DAC, div_write=div_write,

View File

@ -1,7 +1,6 @@
import asyncio
import logging
from PyQt6 import QtCore, QtGui, QtWidgets
from PyQt5 import QtCore, QtWidgets
from artiq.gui import applets
@ -13,58 +12,57 @@ class AppletsCCBDock(applets.AppletsDock):
def __init__(self, *args, **kwargs):
applets.AppletsDock.__init__(self, *args, **kwargs)
sep = QtGui.QAction(self.table)
sep = QtWidgets.QAction(self.table)
sep.setSeparator(True)
self.table.addAction(sep)
ccbp_group_menu = QtWidgets.QMenu(self.table)
actiongroup = QtGui.QActionGroup(self.table)
ccbp_group_menu = QtWidgets.QMenu()
actiongroup = QtWidgets.QActionGroup(self.table)
actiongroup.setExclusive(True)
self.ccbp_group_none = QtGui.QAction("No policy", self.table)
self.ccbp_group_none = QtWidgets.QAction("No policy", self.table)
self.ccbp_group_none.setCheckable(True)
self.ccbp_group_none.triggered.connect(lambda: self.set_ccbp(""))
ccbp_group_menu.addAction(self.ccbp_group_none)
actiongroup.addAction(self.ccbp_group_none)
self.ccbp_group_ignore = QtGui.QAction("Ignore requests", self.table)
self.ccbp_group_ignore = QtWidgets.QAction("Ignore requests", self.table)
self.ccbp_group_ignore.setCheckable(True)
self.ccbp_group_ignore.triggered.connect(lambda: self.set_ccbp("ignore"))
ccbp_group_menu.addAction(self.ccbp_group_ignore)
actiongroup.addAction(self.ccbp_group_ignore)
self.ccbp_group_create = QtGui.QAction("Create applets", self.table)
self.ccbp_group_create = QtWidgets.QAction("Create applets", self.table)
self.ccbp_group_create.setCheckable(True)
self.ccbp_group_create.triggered.connect(lambda: self.set_ccbp("create"))
ccbp_group_menu.addAction(self.ccbp_group_create)
actiongroup.addAction(self.ccbp_group_create)
self.ccbp_group_enable = QtGui.QAction("Create and enable/disable applets",
self.table)
self.ccbp_group_enable = QtWidgets.QAction("Create and enable/disable applets",
self.table)
self.ccbp_group_enable.setCheckable(True)
self.ccbp_group_enable.triggered.connect(lambda: self.set_ccbp("enable"))
ccbp_group_menu.addAction(self.ccbp_group_enable)
actiongroup.addAction(self.ccbp_group_enable)
self.ccbp_group_action = QtGui.QAction("Group CCB policy", self.table)
self.ccbp_group_action = QtWidgets.QAction("Group CCB policy", self.table)
self.ccbp_group_action.setMenu(ccbp_group_menu)
self.table.addAction(self.ccbp_group_action)
self.table.itemSelectionChanged.connect(self.update_group_ccbp_menu)
self.update_group_ccbp_menu()
ccbp_global_menu = QtWidgets.QMenu(self.table)
actiongroup = QtGui.QActionGroup(self.table)
ccbp_global_menu = QtWidgets.QMenu()
actiongroup = QtWidgets.QActionGroup(self.table)
actiongroup.setExclusive(True)
self.ccbp_global_ignore = QtGui.QAction("Ignore requests", self.table)
self.ccbp_global_ignore = QtWidgets.QAction("Ignore requests", self.table)
self.ccbp_global_ignore.setCheckable(True)
ccbp_global_menu.addAction(self.ccbp_global_ignore)
actiongroup.addAction(self.ccbp_global_ignore)
self.ccbp_global_create = QtGui.QAction("Create applets", self.table)
self.ccbp_global_create = QtWidgets.QAction("Create applets", self.table)
self.ccbp_global_create.setCheckable(True)
self.ccbp_global_create.setChecked(True)
ccbp_global_menu.addAction(self.ccbp_global_create)
actiongroup.addAction(self.ccbp_global_create)
self.ccbp_global_enable = QtGui.QAction("Create and enable/disable applets",
self.table)
self.ccbp_global_enable = QtWidgets.QAction("Create and enable/disable applets",
self.table)
self.ccbp_global_enable.setCheckable(True)
ccbp_global_menu.addAction(self.ccbp_global_enable)
actiongroup.addAction(self.ccbp_global_enable)
ccbp_global_action = QtGui.QAction("Global CCB policy", self.table)
ccbp_global_action = QtWidgets.QAction("Global CCB policy", self.table)
ccbp_global_action.setMenu(ccbp_global_menu)
self.table.addAction(ccbp_global_action)
@ -151,16 +149,15 @@ class AppletsCCBDock(applets.AppletsDock):
corresponds to a single group. If ``group`` is ``None`` or an empty
list, it corresponds to the root.
``command`` gives the command line used to run the applet, as if it was
started from a shell. The dashboard substitutes variables such as
``$python`` that gives the complete file name of the Python interpreter
running the dashboard.
``command`` gives the command line used to run the applet, as if it
was started from a shell. The dashboard substitutes variables such as
``$python`` that gives the complete file name of the Python
interpreter running the dashboard.
If the name already exists (after following any specified groups), the
command or code of the existing applet with that name is replaced, and
the applet is restarted and shown at its previous position. If not, a
new applet entry is created and the applet is shown at any position on
the screen.
the applet is shown at its previous position. If not, a new applet
entry is created and the applet is shown at any position on the screen.
If the group(s) do not exist, they are created.
@ -184,19 +181,11 @@ class AppletsCCBDock(applets.AppletsDock):
else:
spec = {"ty": "code", "code": code, "command": command}
if applet is None:
logger.debug("Applet %s does not exist: creating", name)
applet = self.new(name=name, spec=spec, parent=parent)
else:
if spec != self.get_spec(applet):
logger.debug("Applet %s already exists: updating existing spec", name)
self.set_spec(applet, spec)
if applet.applet_dock:
asyncio.ensure_future(applet.applet_dock.restart())
else:
logger.debug("Applet %s already exists and no update required", name)
self.set_spec(applet, spec)
if ccbp == "enable":
applet.setCheckState(0, QtCore.Qt.CheckState.Checked)
applet.setCheckState(0, QtCore.Qt.Checked)
def ccb_disable_applet(self, name, group=None):
"""Disables an applet.
@ -216,7 +205,7 @@ class AppletsCCBDock(applets.AppletsDock):
return
parent, applet = self.locate_applet(name, group, False)
if applet is not None:
applet.setCheckState(0, QtCore.Qt.CheckState.Unchecked)
applet.setCheckState(0, QtCore.Qt.Unchecked)
def ccb_disable_applet_group(self, group):
"""Disables all the applets in a group.
@ -246,7 +235,7 @@ class AppletsCCBDock(applets.AppletsDock):
return
else:
wi = nwi
wi.setCheckState(0, QtCore.Qt.CheckState.Unchecked)
wi.setCheckState(0, QtCore.Qt.Unchecked)
def ccb_notify(self, message):
try:

View File

@ -2,168 +2,88 @@ import asyncio
import logging
import numpy as np
from PyQt6 import QtCore, QtGui, QtWidgets
from sipyco import pyon
from PyQt5 import QtCore, QtWidgets
from artiq.tools import scale_from_metadata, short_format, exc_to_warning
from artiq.gui.tools import LayoutWidget
from artiq.tools import short_format
from artiq.gui.tools import LayoutWidget, QRecursiveFilterProxyModel
from artiq.gui.models import DictSyncTreeSepModel
from artiq.gui.scientific_spinbox import ScientificSpinBox
logger = logging.getLogger(__name__)
async def rename(key, new_key, value, metadata, persist, dataset_ctl):
if key != new_key:
await dataset_ctl.delete(key)
await dataset_ctl.set(new_key, value, metadata=metadata, persist=persist)
class CreateEditDialog(QtWidgets.QDialog):
def __init__(self, parent, dataset_ctl, key=None, value=None, metadata=None, persist=False):
class Editor(QtWidgets.QDialog):
def __init__(self, parent, dataset_ctl, key, value):
QtWidgets.QDialog.__init__(self, parent=parent)
self.dataset_ctl = dataset_ctl
self.key = key
self.initial_type = type(value)
self.setWindowTitle("Create dataset" if key is None else "Edit dataset")
self.setWindowTitle("Edit dataset")
grid = QtWidgets.QGridLayout()
grid.setRowMinimumHeight(1, 40)
grid.setColumnMinimumWidth(2, 60)
self.setLayout(grid)
grid.addWidget(QtWidgets.QLabel("Name:"), 0, 0)
self.name_widget = QtWidgets.QLineEdit()
grid.addWidget(self.name_widget, 0, 1)
grid.addWidget(QtWidgets.QLabel(key), 0, 1)
grid.addWidget(QtWidgets.QLabel("Value:"), 1, 0)
self.value_widget = QtWidgets.QLineEdit()
self.value_widget.setPlaceholderText('PYON (Python)')
grid.addWidget(self.value_widget, 1, 1)
self.data_type = QtWidgets.QLabel("data type")
grid.addWidget(self.data_type, 1, 2)
self.value_widget.textChanged.connect(self.dtype)
grid.addWidget(self.get_edit_widget(value), 1, 1)
grid.addWidget(QtWidgets.QLabel("Unit:"), 2, 0)
self.unit_widget = QtWidgets.QLineEdit()
grid.addWidget(self.unit_widget, 2, 1)
grid.addWidget(QtWidgets.QLabel("Scale:"), 3, 0)
self.scale_widget = QtWidgets.QLineEdit()
grid.addWidget(self.scale_widget, 3, 1)
grid.addWidget(QtWidgets.QLabel("Precision:"), 4, 0)
self.precision_widget = QtWidgets.QLineEdit()
grid.addWidget(self.precision_widget, 4, 1)
grid.addWidget(QtWidgets.QLabel("Persist:"), 5, 0)
self.box_widget = QtWidgets.QCheckBox()
grid.addWidget(self.box_widget, 5, 1)
self.ok = QtWidgets.QPushButton('&Ok')
self.ok.setEnabled(False)
self.cancel = QtWidgets.QPushButton('&Cancel')
self.buttons = QtWidgets.QDialogButtonBox(self)
self.buttons.addButton(
self.ok, QtWidgets.QDialogButtonBox.ButtonRole.AcceptRole)
self.buttons.addButton(
self.cancel, QtWidgets.QDialogButtonBox.ButtonRole.RejectRole)
grid.setRowStretch(6, 1)
grid.addWidget(self.buttons, 7, 0, 1, 3, alignment=QtCore.Qt.AlignmentFlag.AlignHCenter)
self.buttons.accepted.connect(self.accept)
self.buttons.rejected.connect(self.reject)
self.key = key
self.name_widget.setText(key)
value_edit_string = self.value_to_edit_string(value)
if metadata is not None:
scale = scale_from_metadata(metadata)
t = value.dtype if value is np.ndarray else type(value)
if scale != 1 and np.issubdtype(t, np.number):
# degenerates to float type
value_edit_string = self.value_to_edit_string(value / scale)
self.unit_widget.setText(metadata.get('unit', ''))
self.scale_widget.setText(str(metadata.get('scale', '')))
self.precision_widget.setText(str(metadata.get('precision', '')))
self.value_widget.setText(value_edit_string)
self.box_widget.setChecked(persist)
buttons = QtWidgets.QDialogButtonBox(
QtWidgets.QDialogButtonBox.Ok | QtWidgets.QDialogButtonBox.Cancel)
grid.setRowStretch(2, 1)
grid.addWidget(buttons, 3, 0, 1, 2)
buttons.accepted.connect(self.accept)
buttons.rejected.connect(self.reject)
def accept(self):
key = self.name_widget.text()
value = self.value_widget.text()
persist = self.box_widget.isChecked()
unit = self.unit_widget.text()
scale = self.scale_widget.text()
precision = self.precision_widget.text()
metadata = {}
if unit != "":
metadata['unit'] = unit
if scale != "":
metadata['scale'] = float(scale)
if precision != "":
metadata['precision'] = int(precision)
scale = scale_from_metadata(metadata)
value = self.parse_edit_string(value)
t = value.dtype if value is np.ndarray else type(value)
if scale != 1 and np.issubdtype(t, np.number):
# degenerates to float type
value = float(value * scale)
if self.key and self.key != key:
asyncio.ensure_future(exc_to_warning(rename(self.key, key, value, metadata, persist,
self.dataset_ctl)))
else:
asyncio.ensure_future(exc_to_warning(self.dataset_ctl.set(key, value, metadata=metadata,
persist=persist)))
self.key = key
value = self.initial_type(self.get_edit_widget_value())
asyncio.ensure_future(self.dataset_ctl.set(self.key, value))
QtWidgets.QDialog.accept(self)
def dtype(self):
txt = self.value_widget.text()
try:
result = self.parse_edit_string(txt)
# ensure only pyon compatible types are permissable
pyon.encode(result)
except:
pixmap = self.style().standardPixmap(
QtWidgets.QStyle.StandardPixmap.SP_MessageBoxWarning)
self.data_type.setPixmap(pixmap)
self.ok.setEnabled(False)
else:
self.data_type.setText(type(result).__name__)
self.ok.setEnabled(True)
def get_edit_widget(self, initial_value):
raise NotImplementedError
@staticmethod
def parse_edit_string(s):
if s == "":
raise TypeError
_eval_dict = {
"__builtins__": {},
"array": np.array,
"null": np.nan,
"inf": np.inf
}
for t_ in pyon._numpy_scalar:
_eval_dict[t_] = eval("np.{}".format(t_), {"np": np})
return eval(s, _eval_dict, {})
def get_edit_widget_value(self):
raise NotImplementedError
@staticmethod
def value_to_edit_string(v):
t = type(v)
r = ""
if isinstance(v, np.generic):
r += t.__name__
r += "("
r += repr(v)
r += ")"
elif v is None:
return r
else:
r += repr(v)
return r
class NumberEditor(Editor):
def get_edit_widget(self, initial_value):
self.edit_widget = ScientificSpinBox()
self.edit_widget.setDecimals(13)
self.edit_widget.setPrecision()
self.edit_widget.setRelativeStep()
self.edit_widget.setValue(float(initial_value))
return self.edit_widget
def get_edit_widget_value(self):
return self.edit_widget.value()
class BoolEditor(Editor):
def get_edit_widget(self, initial_value):
self.edit_widget = QtWidgets.QCheckBox()
self.edit_widget.setChecked(bool(initial_value))
return self.edit_widget
def get_edit_widget_value(self):
return self.edit_widget.isChecked()
class StringEditor(Editor):
def get_edit_widget(self, initial_value):
self.edit_widget = QtWidgets.QLineEdit()
self.edit_widget.setText(initial_value)
return self.edit_widget
def get_edit_widget_value(self):
return self.edit_widget.text()
class Model(DictSyncTreeSepModel):
def __init__(self, init):
def __init__(self, init):
DictSyncTreeSepModel.__init__(self, ".",
["Dataset", "Persistent", "Value"],
init)
@ -172,17 +92,17 @@ class Model(DictSyncTreeSepModel):
if column == 1:
return "Y" if v[0] else "N"
elif column == 2:
return short_format(v[1], v[2])
return short_format(v[1])
else:
raise ValueError
class DatasetsDock(QtWidgets.QDockWidget):
def __init__(self, dataset_sub, dataset_ctl):
def __init__(self, datasets_sub, dataset_ctl):
QtWidgets.QDockWidget.__init__(self, "Datasets")
self.setObjectName("Datasets")
self.setFeatures(QtWidgets.QDockWidget.DockWidgetFeature.DockWidgetMovable |
QtWidgets.QDockWidget.DockWidgetFeature.DockWidgetFloatable)
self.setFeatures(QtWidgets.QDockWidget.DockWidgetMovable |
QtWidgets.QDockWidget.DockWidgetFloatable)
self.dataset_ctl = dataset_ctl
grid = LayoutWidget()
@ -194,31 +114,26 @@ class DatasetsDock(QtWidgets.QDockWidget):
grid.addWidget(self.search, 0, 0)
self.table = QtWidgets.QTreeView()
self.table.setSelectionBehavior(QtWidgets.QAbstractItemView.SelectionBehavior.SelectRows)
self.table.setSelectionBehavior(QtWidgets.QAbstractItemView.SelectRows)
self.table.setSelectionMode(
QtWidgets.QAbstractItemView.SelectionMode.SingleSelection)
QtWidgets.QAbstractItemView.SingleSelection)
grid.addWidget(self.table, 1, 0)
self.table.setContextMenuPolicy(QtCore.Qt.ContextMenuPolicy.ActionsContextMenu)
create_action = QtGui.QAction("New dataset", self.table)
create_action.triggered.connect(self.create_clicked)
create_action.setShortcut("CTRL+N")
create_action.setShortcutContext(QtCore.Qt.ShortcutContext.WidgetShortcut)
self.table.addAction(create_action)
edit_action = QtGui.QAction("Edit dataset", self.table)
self.table.setContextMenuPolicy(QtCore.Qt.ActionsContextMenu)
edit_action = QtWidgets.QAction("Edit dataset", self.table)
edit_action.triggered.connect(self.edit_clicked)
edit_action.setShortcut("RETURN")
edit_action.setShortcutContext(QtCore.Qt.ShortcutContext.WidgetShortcut)
edit_action.setShortcutContext(QtCore.Qt.WidgetShortcut)
self.table.doubleClicked.connect(self.edit_clicked)
self.table.addAction(edit_action)
delete_action = QtGui.QAction("Delete dataset", self.table)
delete_action = QtWidgets.QAction("Delete dataset", self.table)
delete_action.triggered.connect(self.delete_clicked)
delete_action.setShortcut("DELETE")
delete_action.setShortcutContext(QtCore.Qt.ShortcutContext.WidgetShortcut)
delete_action.setShortcutContext(QtCore.Qt.WidgetShortcut)
self.table.addAction(delete_action)
self.table_model = Model(dict())
dataset_sub.add_setmodel_callback(self.set_model)
datasets_sub.add_setmodel_callback(self.set_model)
def _search_datasets(self):
if hasattr(self, "table_model_filter"):
@ -227,22 +142,29 @@ class DatasetsDock(QtWidgets.QDockWidget):
def set_model(self, model):
self.table_model = model
self.table_model_filter = QtCore.QSortFilterProxyModel()
self.table_model_filter.setRecursiveFilteringEnabled(True)
self.table_model_filter = QRecursiveFilterProxyModel()
self.table_model_filter.setSourceModel(self.table_model)
self.table.setModel(self.table_model_filter)
def create_clicked(self):
CreateEditDialog(self, self.dataset_ctl).open()
def edit_clicked(self):
idx = self.table.selectedIndexes()
if idx:
idx = self.table_model_filter.mapToSource(idx[0])
key = self.table_model.index_to_key(idx)
if key is not None:
persist, value, metadata = self.table_model.backing_store[key]
CreateEditDialog(self, self.dataset_ctl, key, value, metadata, persist).open()
persist, value = self.table_model.backing_store[key]
t = type(value)
if np.issubdtype(t, np.number):
dialog_cls = NumberEditor
elif np.issubdtype(t, np.bool_):
dialog_cls = BoolEditor
elif np.issubdtype(t, np.unicode_):
dialog_cls = StringEditor
else:
logger.error("Cannot edit dataset %s: "
"type %s is not supported", key, t)
return
dialog_cls(self, self.dataset_ctl, key, value).open()
def delete_clicked(self):
idx = self.table.selectedIndexes()

View File

@ -4,15 +4,12 @@ import os
from functools import partial
from collections import OrderedDict
from PyQt6 import QtCore, QtGui, QtWidgets
from PyQt5 import QtCore, QtGui, QtWidgets
import h5py
from sipyco import pyon
from artiq.gui.entries import procdesc_to_entry, EntryTreeWidget
from artiq.gui.fuzzy_select import FuzzySelectWidget
from artiq.gui.tools import (LayoutWidget, log_level_to_name, get_open_file_name)
from artiq.tools import parse_devarg_override, unparse_devarg_override
from artiq.gui.tools import LayoutWidget, log_level_to_name, get_open_file_name
from artiq.gui.entries import procdesc_to_entry, ScanEntry
from artiq.protocols import pyon
logger = logging.getLogger(__name__)
@ -24,33 +21,117 @@ logger = logging.getLogger(__name__)
# 2. file:<class name>@<file name>
class _ArgumentEditor(EntryTreeWidget):
class _WheelFilter(QtCore.QObject):
def eventFilter(self, obj, event):
if (event.type() == QtCore.QEvent.Wheel and
event.modifiers() != QtCore.Qt.NoModifier):
event.ignore()
return True
return False
class _ArgumentEditor(QtWidgets.QTreeWidget):
def __init__(self, manager, dock, expurl):
self.manager = manager
self.expurl = expurl
self.dock = dock
EntryTreeWidget.__init__(self)
QtWidgets.QTreeWidget.__init__(self)
self.setColumnCount(3)
self.header().setStretchLastSection(False)
if hasattr(self.header(), "setSectionResizeMode"):
set_resize_mode = self.header().setSectionResizeMode
else:
set_resize_mode = self.header().setResizeMode
set_resize_mode(0, QtWidgets.QHeaderView.ResizeToContents)
set_resize_mode(1, QtWidgets.QHeaderView.Stretch)
set_resize_mode(2, QtWidgets.QHeaderView.ResizeToContents)
self.header().setVisible(False)
self.setSelectionMode(self.NoSelection)
self.setHorizontalScrollMode(self.ScrollPerPixel)
self.setVerticalScrollMode(self.ScrollPerPixel)
self.setStyleSheet("QTreeWidget {background: " +
self.palette().midlight().color().name() + " ;}")
self.viewport().installEventFilter(_WheelFilter(self.viewport()))
self._groups = dict()
self._arg_to_widgets = dict()
arguments = self.manager.get_submission_arguments(self.expurl)
if not arguments:
self.insertTopLevelItem(0, QtWidgets.QTreeWidgetItem(["No arguments"]))
self.addTopLevelItem(QtWidgets.QTreeWidgetItem(["No arguments"]))
gradient = QtGui.QLinearGradient(
0, 0, 0, QtGui.QFontMetrics(self.font()).lineSpacing()*2.5)
gradient.setColorAt(0, self.palette().base().color())
gradient.setColorAt(1, self.palette().midlight().color())
for name, argument in arguments.items():
self.set_argument(name, argument)
widgets = dict()
self._arg_to_widgets[name] = widgets
self.quickStyleClicked.connect(dock.submit_clicked)
entry = procdesc_to_entry(argument["desc"])(argument)
widget_item = QtWidgets.QTreeWidgetItem([name])
if argument["tooltip"]:
widget_item.setToolTip(0, argument["tooltip"])
widgets["entry"] = entry
widgets["widget_item"] = widget_item
for col in range(3):
widget_item.setBackground(col, gradient)
font = widget_item.font(0)
font.setBold(True)
widget_item.setFont(0, font)
if argument["group"] is None:
self.addTopLevelItem(widget_item)
else:
self._get_group(argument["group"]).addChild(widget_item)
fix_layout = LayoutWidget()
widgets["fix_layout"] = fix_layout
fix_layout.addWidget(entry)
self.setItemWidget(widget_item, 1, fix_layout)
recompute_argument = QtWidgets.QToolButton()
recompute_argument.setToolTip("Re-run the experiment's build "
"method and take the default value")
recompute_argument.setIcon(
QtWidgets.QApplication.style().standardIcon(
QtWidgets.QStyle.SP_BrowserReload))
recompute_argument.clicked.connect(
partial(self._recompute_argument_clicked, name))
tool_buttons = LayoutWidget()
tool_buttons.addWidget(recompute_argument, 1)
disable_other_scans = QtWidgets.QToolButton()
widgets["disable_other_scans"] = disable_other_scans
disable_other_scans.setIcon(
QtWidgets.QApplication.style().standardIcon(
QtWidgets.QStyle.SP_DialogResetButton))
disable_other_scans.setToolTip("Disable all other scans in "
"this experiment")
disable_other_scans.clicked.connect(
partial(self._disable_other_scans, name))
tool_buttons.layout.setRowStretch(0, 1)
tool_buttons.layout.setRowStretch(3, 1)
tool_buttons.addWidget(disable_other_scans, 2)
if not isinstance(entry, ScanEntry):
disable_other_scans.setVisible(False)
self.setItemWidget(widget_item, 2, tool_buttons)
widget_item = QtWidgets.QTreeWidgetItem()
self.addTopLevelItem(widget_item)
recompute_arguments = QtWidgets.QPushButton("Recompute all arguments")
recompute_arguments.setIcon(
QtWidgets.QApplication.style().standardIcon(
QtWidgets.QStyle.StandardPixmap.SP_BrowserReload))
QtWidgets.QStyle.SP_BrowserReload))
recompute_arguments.clicked.connect(dock._recompute_arguments_clicked)
load_hdf5 = QtWidgets.QPushButton("Load HDF5")
load_hdf5.setIcon(QtWidgets.QApplication.style().standardIcon(
QtWidgets.QStyle.StandardPixmap.SP_DialogOpenButton))
QtWidgets.QStyle.SP_DialogOpenButton))
load_hdf5.clicked.connect(dock._load_hdf5_clicked)
buttons = LayoutWidget()
@ -60,74 +141,93 @@ class _ArgumentEditor(EntryTreeWidget):
buttons.layout.setColumnStretch(1, 0)
buttons.layout.setColumnStretch(2, 0)
buttons.layout.setColumnStretch(3, 1)
self.setItemWidget(self.bottom_item, 1, buttons)
self.setItemWidget(widget_item, 1, buttons)
def reset_entry(self, key):
asyncio.ensure_future(self._recompute_argument(key))
def _get_group(self, name):
if name in self._groups:
return self._groups[name]
group = QtWidgets.QTreeWidgetItem([name])
for col in range(3):
group.setBackground(col, self.palette().mid())
group.setForeground(col, self.palette().brightText())
font = group.font(col)
font.setBold(True)
group.setFont(col, font)
self.addTopLevelItem(group)
self._groups[name] = group
return group
def _recompute_argument_clicked(self, name):
asyncio.ensure_future(self._recompute_argument(name))
async def _recompute_argument(self, name):
try:
expdesc, _ = await self.manager.compute_expdesc(self.expurl)
arginfo = await self.manager.compute_arginfo(self.expurl)
except:
logger.error("Could not recompute argument '%s' of '%s'",
name, self.expurl, exc_info=True)
return
argument = self.manager.get_submission_arguments(self.expurl)[name]
procdesc = expdesc["arginfo"][name][0]
procdesc = arginfo[name][0]
state = procdesc_to_entry(procdesc).default_state(procdesc)
argument["desc"] = procdesc
argument["state"] = state
self.update_argument(name, argument)
self.dock.apply_colors()
def apply_color(self, palette, color):
self.setPalette(palette)
for child in self.findChildren(QtWidgets.QWidget):
child.setPalette(palette)
child.setAutoFillBackground(True)
items = self.findItems("*",
QtCore.Qt.MatchFlag.MatchWildcard | QtCore.Qt.MatchFlag.MatchRecursive)
for item in items:
for column in range(item.columnCount()):
item.setBackground(column, QtGui.QColor(color))
# Qt needs a setItemWidget() to handle layout correctly,
# simply replacing the entry inside the LayoutWidget
# results in a bug.
# Hooks that allow user-supplied argument editors to react to imminent user
# actions. Here, we always keep the manager-stored submission arguments
# up-to-date, so no further action is required.
def about_to_submit(self):
pass
widgets = self._arg_to_widgets[name]
def about_to_close(self):
pass
widgets["entry"].deleteLater()
widgets["entry"] = procdesc_to_entry(procdesc)(argument)
widgets["disable_other_scans"].setVisible(
isinstance(widgets["entry"], ScanEntry))
widgets["fix_layout"].deleteLater()
widgets["fix_layout"] = LayoutWidget()
widgets["fix_layout"].addWidget(widgets["entry"])
self.setItemWidget(widgets["widget_item"], 1, widgets["fix_layout"])
self.updateGeometries()
def _disable_other_scans(self, current_name):
for name, widgets in self._arg_to_widgets.items():
if (name != current_name
and isinstance(widgets["entry"], ScanEntry)):
widgets["entry"].disable()
def save_state(self):
expanded = []
for k, v in self._groups.items():
if v.isExpanded():
expanded.append(k)
return {
"expanded": expanded,
"scroll": self.verticalScrollBar().value()
}
def restore_state(self, state):
for e in state["expanded"]:
try:
self._groups[e].setExpanded(True)
except KeyError:
pass
self.verticalScrollBar().setValue(state["scroll"])
log_levels = ["DEBUG", "INFO", "WARNING", "ERROR", "CRITICAL"]
class _ColoredTitleBar(QtWidgets.QProxyStyle):
def __init__(self, color, style=None):
super().__init__(style)
self.color = color
def drawComplexControl(self, control, option, painter, widget=None):
if control == QtWidgets.QStyle.ComplexControl.CC_TitleBar:
option = QtWidgets.QStyleOptionTitleBar(option)
option.palette.setColor(QtGui.QPalette.ColorRole.Window, QtGui.QColor(self.color))
option.palette.setColor(QtGui.QPalette.ColorRole.Highlight, QtGui.QColor(self.color))
self.baseStyle().drawComplexControl(control, option, painter, widget)
class _ExperimentDock(QtWidgets.QMdiSubWindow):
sigClosed = QtCore.pyqtSignal()
def __init__(self, manager, expurl):
QtWidgets.QMdiSubWindow.__init__(self)
qfm = QtGui.QFontMetrics(self.font())
self.resize(100 * qfm.averageCharWidth(), 30 * qfm.lineSpacing())
self.resize(100*qfm.averageCharWidth(), 30*qfm.lineSpacing())
self.setWindowTitle(expurl)
self.setWindowIcon(QtWidgets.QApplication.style().standardIcon(
QtWidgets.QStyle.StandardPixmap.SP_FileDialogContentsView))
QtWidgets.QStyle.SP_FileDialogContentsView))
self.layout = QtWidgets.QGridLayout()
top_widget = QtWidgets.QWidget()
@ -139,8 +239,7 @@ class _ExperimentDock(QtWidgets.QMdiSubWindow):
self.manager = manager
self.expurl = expurl
editor_class = self.manager.get_argument_editor_class(expurl)
self.argeditor = editor_class(self.manager, self, self.expurl)
self.argeditor = _ArgumentEditor(self.manager, self, self.expurl)
self.layout.addWidget(self.argeditor, 0, 0, 1, 5)
self.layout.setRowStretch(0, 1)
@ -157,24 +256,23 @@ class _ExperimentDock(QtWidgets.QMdiSubWindow):
datetime.setDate(QtCore.QDate.currentDate())
else:
datetime.setDateTime(QtCore.QDateTime.fromMSecsSinceEpoch(
int(scheduling["due_date"] * 1000)))
scheduling["due_date"]*1000))
datetime_en.setChecked(scheduling["due_date"] is not None)
def update_datetime(dt):
scheduling["due_date"] = dt.toMSecsSinceEpoch() / 1000
scheduling["due_date"] = dt.toMSecsSinceEpoch()/1000
datetime_en.setChecked(True)
datetime.dateTimeChanged.connect(update_datetime)
def update_datetime_en(checked):
if checked:
due_date = datetime.dateTime().toMSecsSinceEpoch() / 1000
due_date = datetime.dateTime().toMSecsSinceEpoch()/1000
else:
due_date = None
scheduling["due_date"] = due_date
datetime_en.stateChanged.connect(update_datetime_en)
self.pipeline_name = QtWidgets.QLineEdit()
pipeline_name = self.pipeline_name
pipeline_name = QtWidgets.QLineEdit()
self.layout.addWidget(QtWidgets.QLabel("Pipeline:"), 1, 2)
self.layout.addWidget(pipeline_name, 1, 3)
@ -182,10 +280,9 @@ class _ExperimentDock(QtWidgets.QMdiSubWindow):
def update_pipeline_name(text):
scheduling["pipeline_name"] = text
pipeline_name.textChanged.connect(update_pipeline_name)
pipeline_name.textEdited.connect(update_pipeline_name)
self.priority = QtWidgets.QSpinBox()
priority = self.priority
priority = QtWidgets.QSpinBox()
priority.setRange(-99, 99)
self.layout.addWidget(QtWidgets.QLabel("Priority:"), 2, 0)
self.layout.addWidget(priority, 2, 1)
@ -196,11 +293,10 @@ class _ExperimentDock(QtWidgets.QMdiSubWindow):
scheduling["priority"] = value
priority.valueChanged.connect(update_priority)
self.flush = QtWidgets.QCheckBox("Flush")
flush = self.flush
flush = QtWidgets.QCheckBox("Flush")
flush.setToolTip("Flush the pipeline (of current- and higher-priority "
"experiments) before starting the experiment")
self.layout.addWidget(flush, 2, 2)
self.layout.addWidget(flush, 2, 2, 1, 2)
flush.setChecked(scheduling["flush"])
@ -208,21 +304,6 @@ class _ExperimentDock(QtWidgets.QMdiSubWindow):
scheduling["flush"] = bool(checked)
flush.stateChanged.connect(update_flush)
devarg_override = QtWidgets.QComboBox()
devarg_override.setEditable(True)
devarg_override.lineEdit().setPlaceholderText("Override device arguments")
devarg_override.lineEdit().setClearButtonEnabled(True)
devarg_override.insertItem(0, "core:analyze_at_run_end=True")
devarg_override.insertItem(1, "core:report_invariants=True")
self.layout.addWidget(devarg_override, 2, 3)
devarg_override.setCurrentText(options["devarg_override"])
def update_devarg_override(text):
options["devarg_override"] = text
devarg_override.editTextChanged.connect(update_devarg_override)
self.devarg_override = devarg_override
log_level = QtWidgets.QComboBox()
log_level.addItems(log_levels)
log_level.setCurrentIndex(1)
@ -243,11 +324,9 @@ class _ExperimentDock(QtWidgets.QMdiSubWindow):
if "repo_rev" in options:
repo_rev = QtWidgets.QLineEdit()
repo_rev.setPlaceholderText("current")
repo_rev.setClearButtonEnabled(True)
repo_rev_label = QtWidgets.QLabel("Rev / ref:")
repo_rev_label = QtWidgets.QLabel("Revision:")
repo_rev_label.setToolTip("Experiment repository revision "
"(commit ID) or reference (branch "
"or tag) to use")
"(commit ID) to use")
self.layout.addWidget(repo_rev_label, 3, 2)
self.layout.addWidget(repo_rev, 3, 3)
@ -264,28 +343,27 @@ class _ExperimentDock(QtWidgets.QMdiSubWindow):
submit = QtWidgets.QPushButton("Submit")
submit.setIcon(QtWidgets.QApplication.style().standardIcon(
QtWidgets.QStyle.StandardPixmap.SP_DialogOkButton))
QtWidgets.QStyle.SP_DialogOkButton))
submit.setToolTip("Schedule the experiment (Ctrl+Return)")
submit.setShortcut("CTRL+RETURN")
submit.setSizePolicy(QtWidgets.QSizePolicy.Policy.Expanding,
QtWidgets.QSizePolicy.Policy.Expanding)
submit.setSizePolicy(QtWidgets.QSizePolicy.Expanding,
QtWidgets.QSizePolicy.Expanding)
self.layout.addWidget(submit, 1, 4, 2, 1)
submit.clicked.connect(self.submit_clicked)
reqterm = QtWidgets.QPushButton("Terminate instances")
reqterm.setIcon(QtWidgets.QApplication.style().standardIcon(
QtWidgets.QStyle.StandardPixmap.SP_DialogCancelButton))
QtWidgets.QStyle.SP_DialogCancelButton))
reqterm.setToolTip("Request termination of instances (Ctrl+Backspace)")
reqterm.setShortcut("CTRL+BACKSPACE")
reqterm.setSizePolicy(QtWidgets.QSizePolicy.Policy.Expanding,
QtWidgets.QSizePolicy.Policy.Expanding)
reqterm.setSizePolicy(QtWidgets.QSizePolicy.Expanding,
QtWidgets.QSizePolicy.Expanding)
self.layout.addWidget(reqterm, 3, 4)
reqterm.clicked.connect(self.reqterm_clicked)
self.hdf5_load_directory = os.path.expanduser("~")
def submit_clicked(self):
self.argeditor.about_to_submit()
try:
self.manager.submit(self.expurl)
except:
@ -308,96 +386,26 @@ class _ExperimentDock(QtWidgets.QMdiSubWindow):
async def _recompute_arguments_task(self, overrides=dict()):
try:
expdesc, ui_name = await self.manager.compute_expdesc(self.expurl)
arginfo = await self.manager.compute_arginfo(self.expurl)
except:
logger.error("Could not recompute experiment description of '%s'",
logger.error("Could not recompute arguments of '%s'",
self.expurl, exc_info=True)
return
arginfo = expdesc["arginfo"]
for k, v in overrides.items():
# Some values (e.g. scans) may have multiple defaults in a list
if ("default" in arginfo[k][0] and isinstance(arginfo[k][0]["default"], list)):
if ("default" in arginfo[k][0]
and isinstance(arginfo[k][0]["default"], list)):
arginfo[k][0]["default"].insert(0, v)
else:
arginfo[k][0]["default"] = v
self.manager.initialize_submission_arguments(self.expurl, arginfo, ui_name)
self.manager.initialize_submission_arguments(self.expurl, arginfo)
argeditor_state = self.argeditor.save_state()
self.argeditor.deleteLater()
editor_class = self.manager.get_argument_editor_class(self.expurl)
self.argeditor = editor_class(self.manager, self, self.expurl)
self.layout.addWidget(self.argeditor, 0, 0, 1, 5)
self.argeditor = _ArgumentEditor(self.manager, self, self.expurl)
self.argeditor.restore_state(argeditor_state)
self.apply_colors()
def contextMenuEvent(self, event):
menu = QtWidgets.QMenu(self)
select_title_bar_color = menu.addAction("Select title bar color")
select_window_color = menu.addAction("Select window color")
reset_colors = menu.addAction("Reset to default colors")
menu.addSeparator()
reset_sched = menu.addAction("Reset scheduler settings")
action = menu.exec(self.mapToGlobal(event.pos()))
if action == select_title_bar_color:
self.select_color("title_bar")
elif action == select_window_color:
self.select_color("window")
elif action == reset_colors:
self.reset_colors()
elif action == reset_sched:
asyncio.ensure_future(self._recompute_sched_options_task())
def select_color(self, key):
color = QtWidgets.QColorDialog.getColor(
title=f"Select {key.replace('_', ' ').title()} color")
if color.isValid():
self.manager.set_color(self.expurl, key, color.name())
self.apply_colors()
def apply_colors(self):
colors = self.manager.get_colors(self.expurl)
if colors is None:
palette = QtWidgets.QApplication.palette()
colors = {
"window": palette.color(QtGui.QPalette.ColorRole.Window).name(),
"title_bar": palette.color(QtGui.QPalette.ColorRole.Highlight).name(),
}
self.manager.colors[self.expurl] = colors
colors["window_text"] = "#000000" if QtGui.QColor(
colors["window"]).lightness() > 128 else "#FFFFFF"
self.modify_palette(colors)
self.setStyle(_ColoredTitleBar(colors["title_bar"]))
self.argeditor.apply_color(self.palette(), (colors["window"]))
def modify_palette(self, colors):
palette = self.palette()
palette.setColor(QtGui.QPalette.ColorRole.Window, QtGui.QColor(colors["window"]))
palette.setColor(QtGui.QPalette.ColorRole.Base, QtGui.QColor(colors["window"]))
palette.setColor(QtGui.QPalette.ColorRole.Button, QtGui.QColor(colors["window"]))
palette.setColor(QtGui.QPalette.ColorRole.Text, QtGui.QColor(colors["window_text"]))
palette.setColor(QtGui.QPalette.ColorRole.ButtonText, QtGui.QColor(colors["window_text"]))
palette.setColor(QtGui.QPalette.ColorRole.WindowText, QtGui.QColor(colors["window_text"]))
self.setPalette(palette)
def reset_colors(self):
self.manager.reset_colors(self.expurl)
self.apply_colors()
async def _recompute_sched_options_task(self):
try:
expdesc, _ = await self.manager.compute_expdesc(self.expurl)
except:
logger.error("Could not recompute experiment description of '%s'",
self.expurl, exc_info=True)
return
sched_defaults = expdesc["scheduler_defaults"]
scheduling = self.manager.get_submission_scheduling(self.expurl)
scheduling.update(sched_defaults)
self.priority.setValue(scheduling["priority"])
self.pipeline_name.setText(scheduling["pipeline_name"])
self.flush.setChecked(scheduling["flush"])
self.layout.addWidget(self.argeditor, 0, 0, 1, 5)
def _load_hdf5_clicked(self):
asyncio.ensure_future(self._load_hdf5_task())
@ -423,14 +431,11 @@ class _ExperimentDock(QtWidgets.QMdiSubWindow):
return
try:
if "devarg_override" in expid:
self.devarg_override.setCurrentText(
unparse_devarg_override(expid["devarg_override"]))
self.log_level.setCurrentIndex(log_levels.index(
log_level_to_name(expid["log_level"])))
if "repo_rev" in expid and \
expid["repo_rev"] != "N/A" and \
hasattr(self, "repo_rev"):
if ("repo_rev" in expid and
expid["repo_rev"] != "N/A" and
hasattr(self, "repo_rev")):
self.repo_rev.setText(expid["repo_rev"])
except:
logger.error("Could not set submission options from HDF5 expid",
@ -440,7 +445,6 @@ class _ExperimentDock(QtWidgets.QMdiSubWindow):
await self._recompute_arguments_task(arguments)
def closeEvent(self, event):
self.argeditor.about_to_close()
self.sigClosed.emit()
QtWidgets.QMdiSubWindow.closeEvent(self, event)
@ -457,68 +461,8 @@ class _ExperimentDock(QtWidgets.QMdiSubWindow):
self.hdf5_load_directory = state["hdf5_load_directory"]
class _QuickOpenDialog(QtWidgets.QDialog):
"""Modal dialog for opening/submitting experiments from a
FuzzySelectWidget."""
closed = QtCore.pyqtSignal()
def __init__(self, manager):
super().__init__(manager.main_window)
self.setModal(True)
self.manager = manager
self.setWindowTitle("Quick open...")
layout = QtWidgets.QGridLayout(self)
layout.setSpacing(0)
layout.setContentsMargins(0, 0, 0, 0)
self.setLayout(layout)
# Find matching experiment names. Open experiments are preferred to
# matches from the repository to ease quick window switching.
open_exps = list(self.manager.open_experiments.keys())
repo_exps = set("repo:" + k
for k in self.manager.explist.keys()) - set(open_exps)
choices = [(o, 100) for o in open_exps] + [(r, 0) for r in repo_exps]
self.select_widget = FuzzySelectWidget(choices)
layout.addWidget(self.select_widget)
self.select_widget.aborted.connect(self.close)
self.select_widget.finished.connect(self._open_experiment)
font_metrics = QtGui.QFontMetrics(self.select_widget.line_edit.font())
self.select_widget.setMinimumWidth(font_metrics.averageCharWidth() * 70)
def done(self, r):
if self.select_widget:
self.select_widget.abort()
self.closed.emit()
QtWidgets.QDialog.done(self, r)
def _open_experiment(self, exp_name, modifiers):
if modifiers & QtCore.Qt.KeyboardModifier.ControlModifier:
try:
self.manager.submit(exp_name)
except:
# Not all open_experiments necessarily still exist in the explist
# (e.g. if the repository has been re-scanned since).
logger.warning("failed to submit experiment '%s'",
exp_name,
exc_info=True)
else:
self.manager.open_experiment(exp_name)
self.close()
class ExperimentManager:
#: Global registry for custom argument editor classes, indexed by the experiment
#: `argument_ui` string; can be populated by dashboard plugins such as ndscan.
#: If no handler for a requested UI name is found, the default built-in argument
#: editor will be used.
argument_ui_classes = dict()
def __init__(self, main_window, dataset_sub,
def __init__(self, main_window,
explist_sub, schedule_sub,
schedule_ctl, experiment_db_ctl):
self.main_window = main_window
@ -529,11 +473,7 @@ class ExperimentManager:
self.submission_scheduling = dict()
self.submission_options = dict()
self.submission_arguments = dict()
self.argument_ui_names = dict()
self.colors = dict()
self.datasets = dict()
dataset_sub.add_setmodel_callback(self.set_dataset_model)
self.explist = dict()
explist_sub.add_setmodel_callback(self.set_explist_model)
self.schedule = dict()
@ -541,34 +481,12 @@ class ExperimentManager:
self.open_experiments = dict()
self.is_quick_open_shown = False
quick_open_shortcut = QtGui.QShortcut(
QtGui.QKeySequence("Ctrl+P"),
main_window)
quick_open_shortcut.setContext(QtCore.Qt.ShortcutContext.ApplicationShortcut)
quick_open_shortcut.activated.connect(self.show_quick_open)
def set_dataset_model(self, model):
self.datasets = model
def set_explist_model(self, model):
self.explist = model.backing_store
def set_schedule_model(self, model):
self.schedule = model.backing_store
def set_color(self, expurl, key, value):
if expurl not in self.colors:
self.colors[expurl] = {}
self.colors[expurl][key] = value
def get_colors(self, expurl):
return self.colors.get(expurl)
def reset_colors(self, expurl):
if expurl in self.colors:
del self.colors[expurl]
def resolve_expurl(self, expurl):
if expurl[:5] == "repo:":
expinfo = self.explist[expurl[5:]]
@ -579,17 +497,6 @@ class ExperimentManager:
else:
raise ValueError("Malformed experiment URL")
def get_argument_editor_class(self, expurl):
ui_name = self.argument_ui_names.get(expurl, None)
if not ui_name and expurl[:5] == "repo:":
ui_name = self.explist.get(expurl[5:], {}).get("argument_ui", None)
if ui_name:
result = self.argument_ui_classes.get(ui_name, None)
if result:
return result
logger.warning("Ignoring unknown argument UI '%s'", ui_name)
return _ArgumentEditor
def get_submission_scheduling(self, expurl):
if expurl in self.submission_scheduling:
return self.submission_scheduling[expurl]
@ -601,8 +508,6 @@ class ExperimentManager:
"due_date": None,
"flush": False
}
if expurl[:5] == "repo:":
scheduling.update(self.explist[expurl[5:]]["scheduler_defaults"])
self.submission_scheduling[expurl] = scheduling
return scheduling
@ -612,15 +517,14 @@ class ExperimentManager:
else:
# mutated by _ExperimentDock
options = {
"log_level": logging.WARNING,
"devarg_override": ""
"log_level": logging.WARNING
}
if expurl[:5] == "repo:":
options["repo_rev"] = None
self.submission_options[expurl] = options
return options
def initialize_submission_arguments(self, expurl, arginfo, ui_name):
def initialize_submission_arguments(self, expurl, arginfo):
arguments = OrderedDict()
for name, (procdesc, group, tooltip) in arginfo.items():
state = procdesc_to_entry(procdesc).default_state(procdesc)
@ -631,24 +535,8 @@ class ExperimentManager:
"state": state, # mutated by entries
}
self.submission_arguments[expurl] = arguments
self.argument_ui_names[expurl] = ui_name
return arguments
def set_argument_value(self, expurl, name, value):
try:
argument = self.submission_arguments[expurl][name]
if argument["desc"]["ty"] == "Scannable":
ty = value["ty"]
argument["state"]["selected"] = ty
argument["state"][ty] = value
else:
argument["state"] = value
if expurl in self.open_experiments.keys():
self.open_experiments[expurl].argeditor.update_argument(name, argument)
except:
logger.warn("Failed to set value for argument \"{}\" in experiment: {}."
.format(name, expurl), exc_info=1)
def get_submission_arguments(self, expurl):
if expurl in self.submission_arguments:
return self.submission_arguments[expurl]
@ -656,9 +544,9 @@ class ExperimentManager:
if expurl[:5] != "repo:":
raise ValueError("Submission arguments must be preinitialized "
"when not using repository")
class_desc = self.explist[expurl[5:]]
return self.initialize_submission_arguments(expurl, class_desc["arginfo"],
class_desc.get("argument_ui", None))
arginfo = self.explist[expurl[5:]]["arginfo"]
arguments = self.initialize_submission_arguments(expurl, arginfo)
return arguments
def open_experiment(self, expurl):
if expurl in self.open_experiments:
@ -676,9 +564,8 @@ class ExperimentManager:
del self.submission_arguments[expurl]
dock = _ExperimentDock(self, expurl)
self.open_experiments[expurl] = dock
dock.setAttribute(QtCore.Qt.WidgetAttribute.WA_DeleteOnClose)
dock.setAttribute(QtCore.Qt.WA_DeleteOnClose)
self.main_window.centralWidget().addSubWindow(dock)
dock.apply_colors()
dock.show()
dock.sigClosed.connect(partial(self.on_dock_closed, expurl))
if expurl in self.dock_states:
@ -696,13 +583,8 @@ class ExperimentManager:
del self.open_experiments[expurl]
async def _submit_task(self, expurl, *args):
try:
rid = await self.schedule_ctl.submit(*args)
except KeyError:
expid = args[1]
logger.error("Submission failed - revision \"%s\" was not found", expid["repo_rev"])
else:
logger.info("Submitted '%s', RID is %d", expurl, rid)
rid = await self.schedule_ctl.submit(*args)
logger.info("Submitted '%s', RID is %d", expurl, rid)
def submit(self, expurl):
file, class_name, _ = self.resolve_expurl(expurl)
@ -715,14 +597,7 @@ class ExperimentManager:
entry_cls = procdesc_to_entry(argument["desc"])
argument_values[name] = entry_cls.state_to_value(argument["state"])
try:
devarg_override = parse_devarg_override(options["devarg_override"])
except:
logger.error("Failed to parse device argument overrides for %s", expurl)
return
expid = {
"devarg_override": devarg_override,
"log_level": options["log_level"],
"file": file,
"class_name": class_name,
@ -759,13 +634,13 @@ class ExperimentManager:
repo_match = "repo_rev" in expid
else:
repo_match = "repo_rev" not in expid
if repo_match and \
("file" in expid and expid["file"] == file) and \
expid["class_name"] == class_name:
if (repo_match and
expid["file"] == file and
expid["class_name"] == class_name):
rids.append(rid)
asyncio.ensure_future(self._request_term_multiple(rids))
async def compute_expdesc(self, expurl):
async def compute_arginfo(self, expurl):
file, class_name, use_repository = self.resolve_expurl(expurl)
if use_repository:
revision = self.get_submission_options(expurl)["repo_rev"]
@ -773,15 +648,13 @@ class ExperimentManager:
revision = None
description = await self.experiment_db_ctl.examine(
file, use_repository, revision)
class_desc = description[class_name]
return class_desc, class_desc.get("argument_ui", None)
return description[class_name]["arginfo"]
async def open_file(self, file):
description = await self.experiment_db_ctl.examine(file, False)
for class_name, class_desc in description.items():
expurl = "file:{}@{}".format(class_name, file)
self.initialize_submission_arguments(expurl, class_desc["arginfo"],
class_desc.get("argument_ui", None))
self.initialize_submission_arguments(expurl, class_desc["arginfo"])
if expurl in self.open_experiments:
self.open_experiments[expurl].close()
self.open_experiment(expurl)
@ -794,9 +667,7 @@ class ExperimentManager:
"options": self.submission_options,
"arguments": self.submission_arguments,
"docks": self.dock_states,
"argument_uis": self.argument_ui_names,
"open_docks": set(self.open_experiments.keys()),
"colors": self.colors
"open_docks": set(self.open_experiments.keys())
}
def restore_state(self, state):
@ -806,19 +677,5 @@ class ExperimentManager:
self.submission_scheduling = state["scheduling"]
self.submission_options = state["options"]
self.submission_arguments = state["arguments"]
self.argument_ui_names = state.get("argument_uis", {})
self.colors = state.get("colors", {})
for expurl in state["open_docks"]:
self.open_experiment(expurl)
def show_quick_open(self):
if self.is_quick_open_shown:
return
self.is_quick_open_shown = True
dialog = _QuickOpenDialog(self)
def closed():
self.is_quick_open_shown = False
dialog.closed.connect(closed)
dialog.show()

Some files were not shown because too many files have changed in this diff Show More