The core of the problem that 373578bc was attempting to solve is
that diagnostics sometimes should be chained; one way of chaining
is the loc.expanded_from feature, which handles macro-like expansion,
but another is providing context.
Before this commit, context was provided using an ad-hoc override
of a diagnostic engine, which did not work in cases where diagnostic
engine was not threaded through the call stack. This commit uses
the newly added pythonparser context feature to elegantly handle
the problem.
Since LLVM 3.8, !dereferenceable is weaker, so we introduce
!unconditionally_dereferenceable (http://reviews.llvm.org/D18738)
to regain its functionality.
First, this calling convention doesn't actually exist in OR1K
and trying to use it in Asserts build causes an UNREACHABLE.
Second, I tried to introduce it and it does not appear to produce
any measurable benefit: not only OR1K has a ton of CSRs but also
it is quite hard, if not realistically impossible, to produce
the kind of register pressure that would be relieved by sparing
a few more CSRs for our exception raising function calls, since
temporaries don't have to be preserved before a noreturn call
and spilling over ten registers across an exceptional edge
is not something that the code we care about would do.
Third, it produces measurable drawbacks: it inflates code size
of check:* functions by adding spills. Of course, this could be
alleviated by making __artiq_raise coldcc as well, but what's
the point anyway?
Fascinatingly, the fact that you can mark call instructions with
!tbaa metadata is completely undocumented. Regardless, it is true:
a !tbaa metadata for an "immutable" type will cause
AliasAnalysis::getModRefBehavior to return OnlyReadsMemory for that
call site.
Don't bother marking loads with TBAA yet since we already place
!load.invariant on them (which is as good as the TBAA "immutable"
flag) and after that we're limited by lack of !nonnull anyway.
Also, add TBAA analysis passes in our pipeline to actually engage it.