forked from M-Labs/artiq
compiler: Implement 1D-/2D- array transpose
Left generic transpose (shape order inversion) for now, as that would be less ugly if we implement forwarding to Python function bodies for array function implementations. Needs a runtime test case.
This commit is contained in:
parent
faea886c44
commit
be7d78253f
@ -26,6 +26,9 @@ unary_fp_runtime_calls = [
|
|||||||
("arctan", "atan"),
|
("arctan", "atan"),
|
||||||
]
|
]
|
||||||
|
|
||||||
|
#: Array handling builtins (special treatment due to allocations).
|
||||||
|
numpy_builtins = ["transpose"]
|
||||||
|
|
||||||
|
|
||||||
def unary_fp_type(name):
|
def unary_fp_type(name):
|
||||||
return types.TExternalFunction(OrderedDict([("arg", builtins.TFloat())]),
|
return types.TExternalFunction(OrderedDict([("arg", builtins.TFloat())]),
|
||||||
@ -36,6 +39,8 @@ numpy_map = {
|
|||||||
getattr(numpy, symbol): unary_fp_type(mangle)
|
getattr(numpy, symbol): unary_fp_type(mangle)
|
||||||
for symbol, mangle in (unary_fp_intrinsics + unary_fp_runtime_calls)
|
for symbol, mangle in (unary_fp_intrinsics + unary_fp_runtime_calls)
|
||||||
}
|
}
|
||||||
|
for name in numpy_builtins:
|
||||||
|
numpy_map[getattr(numpy, name)] = types.TBuiltinFunction("numpy." + name)
|
||||||
|
|
||||||
|
|
||||||
def match(obj):
|
def match(obj):
|
||||||
|
@ -2217,6 +2217,51 @@ class ARTIQIRGenerator(algorithm.Visitor):
|
|||||||
return result
|
return result
|
||||||
else:
|
else:
|
||||||
assert False
|
assert False
|
||||||
|
elif types.is_builtin(typ, "numpy.transpose"):
|
||||||
|
if len(node.args) == 1 and len(node.keywords) == 0:
|
||||||
|
arg, = map(self.visit, node.args)
|
||||||
|
|
||||||
|
num_dims = arg.type.find()["num_dims"].value
|
||||||
|
if num_dims == 1:
|
||||||
|
# No-op as per NumPy semantics.
|
||||||
|
return arg
|
||||||
|
assert num_dims == 2
|
||||||
|
arg_shape = self.append(ir.GetAttr(arg, "shape"))
|
||||||
|
dim0 = self.append(ir.GetAttr(arg_shape, 0))
|
||||||
|
dim1 = self.append(ir.GetAttr(arg_shape, 1))
|
||||||
|
shape = self._make_array_shape([dim1, dim0])
|
||||||
|
result = self._allocate_new_array(node.type.find()["elt"], shape)
|
||||||
|
arg_buffer = self.append(ir.GetAttr(arg, "buffer"))
|
||||||
|
result_buffer = self.append(ir.GetAttr(result, "buffer"))
|
||||||
|
|
||||||
|
def outer_gen(idx1):
|
||||||
|
arg_base = self.append(ir.Offset(arg_buffer, idx1))
|
||||||
|
result_offset = self.append(ir.Arith(ast.Mult(loc=None), idx1,
|
||||||
|
dim0))
|
||||||
|
result_base = self.append(ir.Offset(result_buffer, result_offset))
|
||||||
|
|
||||||
|
def inner_gen(idx0):
|
||||||
|
arg_offset = self.append(
|
||||||
|
ir.Arith(ast.Mult(loc=None), idx0, dim1))
|
||||||
|
val = self.append(ir.GetElem(arg_base, arg_offset))
|
||||||
|
self.append(ir.SetElem(result_base, idx0, val))
|
||||||
|
return self.append(
|
||||||
|
ir.Arith(ast.Add(loc=None), idx0, ir.Constant(1,
|
||||||
|
idx0.type)))
|
||||||
|
|
||||||
|
self._make_loop(
|
||||||
|
ir.Constant(0, self._size_type), lambda idx0: self.append(
|
||||||
|
ir.Compare(ast.Lt(loc=None), idx0, dim0)), inner_gen)
|
||||||
|
return self.append(
|
||||||
|
ir.Arith(ast.Add(loc=None), idx1, ir.Constant(1, idx1.type)))
|
||||||
|
|
||||||
|
self._make_loop(
|
||||||
|
ir.Constant(0, self._size_type),
|
||||||
|
lambda idx1: self.append(ir.Compare(ast.Lt(loc=None), idx1, dim1)),
|
||||||
|
outer_gen)
|
||||||
|
return result
|
||||||
|
else:
|
||||||
|
assert False
|
||||||
elif types.is_builtin(typ, "print"):
|
elif types.is_builtin(typ, "print"):
|
||||||
self.polymorphic_print([self.visit(arg) for arg in node.args],
|
self.polymorphic_print([self.visit(arg) for arg in node.args],
|
||||||
separator=" ", suffix="\n")
|
separator=" ", suffix="\n")
|
||||||
|
@ -1074,6 +1074,45 @@ class Inferencer(algorithm.Visitor):
|
|||||||
arg1.loc, None)
|
arg1.loc, None)
|
||||||
else:
|
else:
|
||||||
diagnose(valid_forms())
|
diagnose(valid_forms())
|
||||||
|
elif types.is_builtin(typ, "numpy.transpose"):
|
||||||
|
valid_forms = lambda: [
|
||||||
|
valid_form("transpose(x: array(elt='a, num_dims=1)) -> array(elt='a, num_dims=1)"),
|
||||||
|
valid_form("transpose(x: array(elt='a, num_dims=2)) -> array(elt='a, num_dims=2)")
|
||||||
|
]
|
||||||
|
|
||||||
|
if len(node.args) == 1 and len(node.keywords) == 0:
|
||||||
|
arg, = node.args
|
||||||
|
|
||||||
|
if types.is_var(arg.type):
|
||||||
|
pass # undetermined yet
|
||||||
|
elif not builtins.is_array(arg.type):
|
||||||
|
note = diagnostic.Diagnostic(
|
||||||
|
"note", "this expression has type {type}",
|
||||||
|
{"type": types.TypePrinter().name(arg.type)}, arg.loc)
|
||||||
|
diag = diagnostic.Diagnostic(
|
||||||
|
"error",
|
||||||
|
"the argument of {builtin}() must be an array",
|
||||||
|
{"builtin": typ.find().name},
|
||||||
|
node.func.loc,
|
||||||
|
notes=[note])
|
||||||
|
self.engine.process(diag)
|
||||||
|
else:
|
||||||
|
num_dims = arg.type.find()["num_dims"].value
|
||||||
|
if num_dims not in (1, 2):
|
||||||
|
note = diagnostic.Diagnostic(
|
||||||
|
"note", "argument is {num_dims}-dimensional",
|
||||||
|
{"num_dims": num_dims}, arg.loc)
|
||||||
|
diag = diagnostic.Diagnostic(
|
||||||
|
"error",
|
||||||
|
"{builtin}() is currently only supported for up to "
|
||||||
|
"two-dimensional arrays", {"builtin": typ.find().name},
|
||||||
|
node.func.loc,
|
||||||
|
notes=[note])
|
||||||
|
self.engine.process(diag)
|
||||||
|
else:
|
||||||
|
self._unify(node.type, arg.type, node.loc, None)
|
||||||
|
else:
|
||||||
|
diagnose(valid_forms())
|
||||||
elif types.is_builtin(typ, "rtio_log"):
|
elif types.is_builtin(typ, "rtio_log"):
|
||||||
valid_forms = lambda: [
|
valid_forms = lambda: [
|
||||||
valid_form("rtio_log(channel:str, args...) -> None"),
|
valid_form("rtio_log(channel:str, args...) -> None"),
|
||||||
|
22
artiq/test/lit/embedding/array_transpose.py
Normal file
22
artiq/test/lit/embedding/array_transpose.py
Normal file
@ -0,0 +1,22 @@
|
|||||||
|
# RUN: %python -m artiq.compiler.testbench.embedding %s
|
||||||
|
|
||||||
|
from artiq.language.core import *
|
||||||
|
from artiq.language.types import *
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
@kernel
|
||||||
|
def entrypoint():
|
||||||
|
# FIXME: This needs to be a runtime test (but numpy.* integration is
|
||||||
|
# currently embedding-only).
|
||||||
|
a = np.array([1, 2, 3])
|
||||||
|
b = np.transpose(a)
|
||||||
|
assert a.shape == b.shape
|
||||||
|
for i in range(len(a)):
|
||||||
|
assert a[i] == b[i]
|
||||||
|
|
||||||
|
c = np.array([[1, 2, 3], [4, 5, 6]])
|
||||||
|
d = np.transpose(c)
|
||||||
|
assert c.shape == d.shape
|
||||||
|
for i in range(2):
|
||||||
|
for j in range(3):
|
||||||
|
assert c[i][j] == d[j][i]
|
Loading…
Reference in New Issue
Block a user