From 925014689e7cd8ea57c8e6128513e5d9a3a43433 Mon Sep 17 00:00:00 2001 From: David Nadlinger Date: Sun, 14 Mar 2021 19:57:01 +0000 Subject: [PATCH] compiler: Properly implement NumPy array slicing Strided slicing of one-dimensional arrays (i.e. with non-trivial steps) might have previously been working, but would have had different semantics, as all slices were copies rather than a view into the original data. Fixing this in the future will require adding support for an index stride field/tuple to our array representation (and all the associated indexing logic). GitHub: Fixes #1627. --- .../compiler/transforms/artiq_ir_generator.py | 188 +++++++++++------- artiq/compiler/transforms/inferencer.py | 8 + artiq/test/lit/inferencer/error_array.py | 3 + artiq/test/lit/integration/array_slice.py | 24 +++ artiq/test/lit/regression/issue_1627.py | 13 ++ 5 files changed, 162 insertions(+), 74 deletions(-) create mode 100644 artiq/test/lit/integration/array_slice.py create mode 100644 artiq/test/lit/regression/issue_1627.py diff --git a/artiq/compiler/transforms/artiq_ir_generator.py b/artiq/compiler/transforms/artiq_ir_generator.py index 6c64ed555..4520ec049 100644 --- a/artiq/compiler/transforms/artiq_ir_generator.py +++ b/artiq/compiler/transforms/artiq_ir_generator.py @@ -1116,7 +1116,11 @@ class ARTIQIRGenerator(algorithm.Visitor): _readable_name(index)))) if self.current_assign is None: return indexed - else: # Slice + else: + # This is a slice. The endpoint checking logic is the same for both lists + # and NumPy arrays, but the actual implementations differ – while slices of + # built-in lists are always copies in Python, they are views sharing the + # same backing storage in NumPy. length = self.iterable_len(value, node.slice.type) if node.slice.lower is not None: @@ -1141,91 +1145,127 @@ class ARTIQIRGenerator(algorithm.Visitor): mapped_stop_index = self._map_index(length, stop_index, one_past_the_end=True, loc=node.begin_loc) - if node.slice.step is not None: - try: - old_assign, self.current_assign = self.current_assign, None - step = self.visit(node.slice.step) - finally: - self.current_assign = old_assign + if builtins.is_array(node.type): + # To implement strided slicing with the proper NumPy reference + # semantics, the pointer/length array representation will need to be + # extended by another field to hold a variable stride. + assert node.slice.step is None, ( + "array slices with non-trivial step " + "should have been disallowed during type inference") + # One-dimensionally slicing an array only affects the outermost + # dimension. + shape = self.append(ir.GetAttr(value, "shape")) + lengths = [ + self.append(ir.GetAttr(shape, i)) + for i in range(len(shape.type.elts)) + ] + + # Compute outermost length – zero for "backwards" indices. + raw_len = self.append( + ir.Arith(ast.Sub(loc=None), mapped_stop_index, mapped_start_index)) + is_neg_len = self.append( + ir.Compare(ast.Lt(loc=None), raw_len, ir.Constant(0, raw_len.type))) + outer_len = self.append( + ir.Select(is_neg_len, ir.Constant(0, raw_len.type), raw_len)) + new_shape = self._make_array_shape([outer_len] + lengths[1:]) + + # Offset buffer pointer by start index (times stride for inner dims). + stride = reduce( + lambda l, r: self.append(ir.Arith(ast.Mult(loc=None), l, r)), + lengths[1:], ir.Constant(1, lengths[0].type)) + offset = self.append( + ir.Arith(ast.Mult(loc=None), stride, mapped_start_index)) + buffer = self.append(ir.GetAttr(value, "buffer")) + new_buffer = self.append(ir.Offset(buffer, offset)) + + return self.append(ir.Alloc([new_buffer, new_shape], node.type)) + else: + if node.slice.step is not None: + try: + old_assign, self.current_assign = self.current_assign, None + step = self.visit(node.slice.step) + finally: + self.current_assign = old_assign + + self._make_check( + self.append(ir.Compare(ast.NotEq(loc=None), step, ir.Constant(0, step.type))), + lambda: self.alloc_exn(builtins.TException("ValueError"), + ir.Constant("step cannot be zero", builtins.TStr())), + loc=node.slice.step.loc) + else: + step = ir.Constant(1, node.slice.type) + counting_up = self.append(ir.Compare(ast.Gt(loc=None), step, + ir.Constant(0, step.type))) + + unstepped_size = self.append(ir.Arith(ast.Sub(loc=None), + mapped_stop_index, mapped_start_index)) + slice_size_a = self.append(ir.Arith(ast.FloorDiv(loc=None), unstepped_size, step)) + slice_size_b = self.append(ir.Arith(ast.Mod(loc=None), unstepped_size, step)) + rem_not_empty = self.append(ir.Compare(ast.NotEq(loc=None), slice_size_b, + ir.Constant(0, slice_size_b.type))) + slice_size_c = self.append(ir.Arith(ast.Add(loc=None), slice_size_a, + ir.Constant(1, slice_size_a.type))) + slice_size = self.append(ir.Select(rem_not_empty, + slice_size_c, slice_size_a, + name="slice.size")) self._make_check( - self.append(ir.Compare(ast.NotEq(loc=None), step, ir.Constant(0, step.type))), - lambda: self.alloc_exn(builtins.TException("ValueError"), - ir.Constant("step cannot be zero", builtins.TStr())), - loc=node.slice.step.loc) - else: - step = ir.Constant(1, node.slice.type) - counting_up = self.append(ir.Compare(ast.Gt(loc=None), step, - ir.Constant(0, step.type))) + self.append(ir.Compare(ast.LtE(loc=None), slice_size, length)), + lambda slice_size, length: self.alloc_exn(builtins.TException("ValueError"), + ir.Constant("slice size {0} is larger than iterable length {1}", + builtins.TStr()), + slice_size, length), + params=[slice_size, length], + loc=node.slice.loc) - unstepped_size = self.append(ir.Arith(ast.Sub(loc=None), - mapped_stop_index, mapped_start_index)) - slice_size_a = self.append(ir.Arith(ast.FloorDiv(loc=None), unstepped_size, step)) - slice_size_b = self.append(ir.Arith(ast.Mod(loc=None), unstepped_size, step)) - rem_not_empty = self.append(ir.Compare(ast.NotEq(loc=None), slice_size_b, - ir.Constant(0, slice_size_b.type))) - slice_size_c = self.append(ir.Arith(ast.Add(loc=None), slice_size_a, - ir.Constant(1, slice_size_a.type))) - slice_size = self.append(ir.Select(rem_not_empty, - slice_size_c, slice_size_a, - name="slice.size")) - self._make_check( - self.append(ir.Compare(ast.LtE(loc=None), slice_size, length)), - lambda slice_size, length: self.alloc_exn(builtins.TException("ValueError"), - ir.Constant("slice size {0} is larger than iterable length {1}", - builtins.TStr()), - slice_size, length), - params=[slice_size, length], - loc=node.slice.loc) + if self.current_assign is None: + is_neg_size = self.append(ir.Compare(ast.Lt(loc=None), + slice_size, ir.Constant(0, slice_size.type))) + abs_slice_size = self.append(ir.Select(is_neg_size, + ir.Constant(0, slice_size.type), slice_size)) + other_value = self.append(ir.Alloc([abs_slice_size], value.type, + name="slice.result")) + else: + other_value = self.current_assign - if self.current_assign is None: - is_neg_size = self.append(ir.Compare(ast.Lt(loc=None), - slice_size, ir.Constant(0, slice_size.type))) - abs_slice_size = self.append(ir.Select(is_neg_size, - ir.Constant(0, slice_size.type), slice_size)) - other_value = self.append(ir.Alloc([abs_slice_size], value.type, - name="slice.result")) - else: - other_value = self.current_assign + prehead = self.current_block - prehead = self.current_block + head = self.current_block = self.add_block("slice.head") + prehead.append(ir.Branch(head)) - head = self.current_block = self.add_block("slice.head") - prehead.append(ir.Branch(head)) + index = self.append(ir.Phi(node.slice.type, + name="slice.index")) + index.add_incoming(mapped_start_index, prehead) + other_index = self.append(ir.Phi(node.slice.type, + name="slice.resindex")) + other_index.add_incoming(ir.Constant(0, node.slice.type), prehead) - index = self.append(ir.Phi(node.slice.type, - name="slice.index")) - index.add_incoming(mapped_start_index, prehead) - other_index = self.append(ir.Phi(node.slice.type, - name="slice.resindex")) - other_index.add_incoming(ir.Constant(0, node.slice.type), prehead) + # Still within bounds? + bounded_up = self.append(ir.Compare(ast.Lt(loc=None), index, mapped_stop_index)) + bounded_down = self.append(ir.Compare(ast.Gt(loc=None), index, mapped_stop_index)) + within_bounds = self.append(ir.Select(counting_up, bounded_up, bounded_down)) - # Still within bounds? - bounded_up = self.append(ir.Compare(ast.Lt(loc=None), index, mapped_stop_index)) - bounded_down = self.append(ir.Compare(ast.Gt(loc=None), index, mapped_stop_index)) - within_bounds = self.append(ir.Select(counting_up, bounded_up, bounded_down)) + body = self.current_block = self.add_block("slice.body") - body = self.current_block = self.add_block("slice.body") + if self.current_assign is None: + elem = self.iterable_get(value, index) + self.append(ir.SetElem(other_value, other_index, elem)) + else: + elem = self.append(ir.GetElem(self.current_assign, other_index)) + self.append(ir.SetElem(value, index, elem)) - if self.current_assign is None: - elem = self.iterable_get(value, index) - self.append(ir.SetElem(other_value, other_index, elem)) - else: - elem = self.append(ir.GetElem(self.current_assign, other_index)) - self.append(ir.SetElem(value, index, elem)) + next_index = self.append(ir.Arith(ast.Add(loc=None), index, step)) + index.add_incoming(next_index, body) + next_other_index = self.append(ir.Arith(ast.Add(loc=None), other_index, + ir.Constant(1, node.slice.type))) + other_index.add_incoming(next_other_index, body) + self.append(ir.Branch(head)) - next_index = self.append(ir.Arith(ast.Add(loc=None), index, step)) - index.add_incoming(next_index, body) - next_other_index = self.append(ir.Arith(ast.Add(loc=None), other_index, - ir.Constant(1, node.slice.type))) - other_index.add_incoming(next_other_index, body) - self.append(ir.Branch(head)) + tail = self.current_block = self.add_block("slice.tail") + head.append(ir.BranchIf(within_bounds, body, tail)) - tail = self.current_block = self.add_block("slice.tail") - head.append(ir.BranchIf(within_bounds, body, tail)) - - if self.current_assign is None: - return other_value + if self.current_assign is None: + return other_value def visit_TupleT(self, node): if self.current_assign is None: diff --git a/artiq/compiler/transforms/inferencer.py b/artiq/compiler/transforms/inferencer.py index a8bb6cbee..d77db91d4 100644 --- a/artiq/compiler/transforms/inferencer.py +++ b/artiq/compiler/transforms/inferencer.py @@ -269,6 +269,14 @@ class Inferencer(algorithm.Visitor): else: self._unify_iterable(element=node, collection=node.value) elif isinstance(node.slice, ast.Slice): + if builtins.is_array(node.value.type): + if node.slice.step is not None: + diag = diagnostic.Diagnostic( + "error", + "strided slicing not yet supported for NumPy arrays", {}, + node.slice.step.loc, []) + self.engine.process(diag) + return self._unify(node.type, node.value.type, node.loc, node.value.loc) else: # ExtSlice pass # error emitted above diff --git a/artiq/test/lit/inferencer/error_array.py b/artiq/test/lit/inferencer/error_array.py index 5e79f99e6..8099ef9d8 100644 --- a/artiq/test/lit/inferencer/error_array.py +++ b/artiq/test/lit/inferencer/error_array.py @@ -9,5 +9,8 @@ b = array([1, 2, 3]) # CHECK-L: ${LINE:+1}: error: too many indices for array of dimension 1 b[1, 2] +# CHECK-L: ${LINE:+1}: error: strided slicing not yet supported for NumPy arrays +b[::-1] + # CHECK-L: ${LINE:+1}: error: array attributes cannot be assigned to b.shape = (5, ) diff --git a/artiq/test/lit/integration/array_slice.py b/artiq/test/lit/integration/array_slice.py new file mode 100644 index 000000000..6c37f8366 --- /dev/null +++ b/artiq/test/lit/integration/array_slice.py @@ -0,0 +1,24 @@ +# RUN: %python -m artiq.compiler.testbench.jit %s + +a = array([0, 1, 2, 3]) + +b = a[2:3] +assert b.shape == (1,) +assert b[0] == 2 +b[0] = 5 +assert a[2] == 5 + +b = a[3:2] +assert b.shape == (0,) + +c = array([[0, 1], [2, 3]]) + +d = c[:1] +assert d.shape == (1, 2) +assert d[0, 0] == 0 +assert d[0, 1] == 1 +d[0, 0] = 5 +assert c[0, 0] == 5 + +d = c[1:0] +assert d.shape == (0, 2) diff --git a/artiq/test/lit/regression/issue_1627.py b/artiq/test/lit/regression/issue_1627.py new file mode 100644 index 000000000..828ef3a9f --- /dev/null +++ b/artiq/test/lit/regression/issue_1627.py @@ -0,0 +1,13 @@ +# RUN: %python -m artiq.compiler.testbench.embedding %s + +from artiq.language.core import * +from artiq.language.types import * +import numpy as np + +n = 2 +data = np.zeros((n, n)) + + +@kernel +def entrypoint(): + print(data[:n])