1
0
forked from M-Labs/artiq

doc: add note about Sinara requiring ARTIQ-4+

This commit is contained in:
Sebastien Bourdeauducq 2018-04-12 15:18:04 +08:00
parent e93a07bc8d
commit 66817e3b82
2 changed files with 2 additions and 2 deletions

View File

@ -9,7 +9,7 @@ It is maintained and developed by `M-Labs <https://m-labs.hk>`_ and the initial
The system features a high-level programming language that helps describing complex experiments, which is compiled and executed on dedicated hardware with nanosecond timing resolution and sub-microsecond latency. It includes graphical user interfaces to parametrize and schedule experiments and to visualize and explore the results.
ARTIQ uses FPGA hardware to perform its time-critical tasks. The `Sinara hardware <https://github.com/sinara-hw>`_, and in particular the Kasli FPGA carrier, is designed to work with ARTIQ.
ARTIQ uses FPGA hardware to perform its time-critical tasks. The `Sinara hardware <https://github.com/sinara-hw>`_, and in particular the Kasli FPGA carrier, is designed to work with ARTIQ (support for Sinara is available in ARTIQ-4 and above).
ARTIQ is designed to be portable to hardware platforms from different vendors and FPGA manufacturers.
Several different configurations of a `high-end FPGA evaluation kit <http://www.xilinx.com/products/boards-and-kits/ek-k7-kc705-g.html>`_ are also used and supported. FPGA platforms can be combined with any number of additional peripherals, either already accessible from ARTIQ or made accessible with little effort.

View File

@ -10,7 +10,7 @@ It is maintained and developed by `M-Labs <https://m-labs.hk>`_ and the initial
The system features a high-level programming language that helps describing complex experiments, which is compiled and executed on dedicated hardware with nanosecond timing resolution and sub-microsecond latency. It includes graphical user interfaces to parametrize and schedule experiments and to visualize and explore the results.
ARTIQ uses FPGA hardware to perform its time-critical tasks. The `Sinara hardware <https://github.com/sinara-hw>`_, and in particular the Kasli FPGA carrier, is designed to work with ARTIQ.
ARTIQ uses FPGA hardware to perform its time-critical tasks. The `Sinara hardware <https://github.com/sinara-hw>`_, and in particular the Kasli FPGA carrier, is designed to work with ARTIQ (support for Sinara is available in ARTIQ-4 and above).
ARTIQ is designed to be portable to hardware platforms from different vendors and FPGA manufacturers.
Several different configurations of a `high-end FPGA evaluation kit <http://www.xilinx.com/products/boards-and-kits/ek-k7-kc705-g.html>`_ are also used and supported. FPGA platforms can be combined with any number of additional peripherals, either already accessible from ARTIQ or made accessible with little effort.