1
0
forked from M-Labs/artiq

doc: update overview slides

This commit is contained in:
Sebastien Bourdeauducq 2015-03-03 22:44:19 +00:00
parent 15d09c0b94
commit 6062b42117
2 changed files with 246 additions and 105 deletions

View File

@ -1,92 +1,177 @@
\documentclass{beamer} \documentclass[final,presentation,compress]{beamer}
\usepackage{marvosym} \usepackage[mathcal]{euler}
\usepackage{wasysym} \usepackage{amsmath, amssymb, amsopn} %amssymb,amstext
\usepackage{siunitx} \usepackage[cm-default]{fontspec}
\usepackage{moreverb} \usepackage{xltxtra}
\usepackage{lato} \usepackage[english]{babel}
\usepackage{multicol}
\usepackage{multimedia}
\usepackage{tikz}
\usetikzlibrary{arrows,shapes,snakes,positioning,backgrounds,decorations,graphs}
\definecolor{ethblue}{rgb}{0, 0.2, 0.3568}
\usepackage{minted}
\definecolor{UniBlue}{RGB}{43,61,81} \mode<presentation>
\definecolor{UniBlueHL}{RGB}{67,98,129} {
\definecolor{UniGreen}{RGB}{54,188,123} \useoutertheme{default} % simplistic
\setbeamertemplate{headline}[default] % kill the headline
\setbeamertemplate{navigation symbols}{} % no navigaton stuff in lr corner
\useinnertheme{circles}
\setbeamercolor*{palette primary}{use=structure,fg=white,bg=ethblue!70}
\setbeamercolor*{palette secondary}{use=structure,fg=white,bg=ethblue!80}
\setbeamercolor*{palette tertiary}{use=structure,fg=white,bg=ethblue!90}
\setbeamercolor*{palette quaternary}{use=structure,fg=white,bg=ethblue!100}
\setbeamercolor*{structure}{fg=ethblue!70}
\hypersetup{
}
\setbeamercovered{invisible}
}
\renewcommand*{\familydefault}{fla} \graphicspath{{fig//}}
\renewcommand*{\sfdefault}{fla}
\setbeamercolor{title}{fg=white} \title{The ARTIQ experiment control system}
\setbeamercolor{frametitle}{fg=UniGreen} \author[S]{{\bf S\'ebastien~Bourdeauducq}}
\setbeamercolor{structure}{fg=white} \institute[S]{
\setbeamercolor{normal text}{fg=white} M-Labs Ltd, Hong Kong -- \url{http://m-labs.hk}
\setbeamercolor{background canvas}{bg=UniBlue} }
\begin{document} \begin{document}
\fontseries{l}\selectfont
\title{ARTIQ} \begin{frame}[plain]
\subtitle{A new control system for trapped ion experiments} \titlepage
\author{\fontseries{el}\selectfont S\'ebastien Bourdeauducq} \tikz[overlay,remember picture]\node[anchor=south,above=-.5cm] at (current page.south)
\date{\fontseries{el}\selectfont july 2014} {\includegraphics[width=\paperwidth]{hong_kong}};
\tikz[overlay,remember picture]\node[anchor=south east, fill=white,
\frame{\titlepage} inner sep=.3mm] at (current page.south east) {%
\tiny David Iliff, CC-BY-SA};
\begin{frame}
\frametitle{\fontseries{l}\selectfont Key points}
\begin{itemize}
\item High performance --- nanosecond resolution, hundreds of ns latency
\item Expressive --- describe algorithms with few lines of code
\item Portable --- treat FPGA boards as commodity
\item Modular --- separate components as much as possible
\item Flexible --- hard-code as little as possible
\end{itemize}
\end{frame} \end{frame}
\begin{frame} \begin{frame}
\frametitle{\fontseries{l}\selectfont Kernels} \includegraphics[width=\columnwidth]{jost_trap-3}
\begin{itemize} \end{frame}
\item The real-time parts of the experiments
\item Written in a subset of Python \begin{frame}
\item Executed on a CPU embedded in a FPGA (\textit{core device}) \frametitle{Quantum gate sequences (NIST)}
\item Special constructs to specify timing \includegraphics[width=\columnwidth]{gate_sequence}
\end{itemize} \end{frame}
\begin{frame}
\begin{tikzpicture}[box/.style={rectangle,fill=white}]
\node[inner sep=0] {\includegraphics[width=\columnwidth]{lab}};\pause
%\draw[help lines,white] (-4, -3) grid (4, 3);
\node[box] at (-4, -2) {FPGA};
\node[box] at (3.5, 0) {ion trap};
\node[box] at (-3, 3) {$\sim$10 attenuators};
\node[box] at (2, 2) {$\sim$50 DAC};
\node[box] at (-4, 0) {$\sim$20 DDS};
\node[box] at (-2, 1) {$\sim$50 GPIO};
\node[box] at (.5, 0) {$\sim$10 motors};
\node[box] at (2, -2) {$\sim$10 power supplies};
\node[box] at (4, -3) {$\sim$10 lasers};
\end{tikzpicture}
\end{frame}
\begin{frame}
\frametitle{Enter ARTIQ}
\alert{A}dvanced \alert{R}eal-\alert{T}ime \alert{I}nfrastructure for \alert{Q}uantum physics
\footnotesize
\begin{itemize}
\item High performance --- nanosecond resolution, hundreds of ns latency
\item Expressive --- describe algorithms with few lines of code
\item Portable --- treat hardware, especially FPGA boards, as commodity
\item Modular --- separate components as much as possible
\item Flexible --- hard-code as little as possible
\end{itemize}
\end{frame} \end{frame}
\begin{frame}[fragile] \begin{frame}[fragile]
\frametitle{\fontseries{l}\selectfont Timing} \frametitle{Define a simple timing language}
\begin{itemize} \footnotesize
\item Exact time of interactions with the outside world is kept in an internal variable
\item That variable only loosely tracks the execution time of CPU instructions \begin{minted}[frame=leftline]{python}
\item The value of that variable is exchanged with the \textit{RTIO core} that does precise timing trigger.sync() # wait for trigger input
\end{itemize} start = now() # capture trigger time
\begin{verbatimtab} for i in range(3):
self.mains_sync.wait_edge() delay(5*us)
for i in range(10): dds.pulse(900*MHz, 7*us) # first pulse 5 µs after trigger
delay(10*us) at(start + 1*ms) # re-reference time-line
self.X.pulse(100*MHz, 100*us) dds.pulse(200*MHz, 11*us) # exactly 1 ms after trigger
\end{verbatimtab} \end{minted}
\center First X pulse is emitted exactly \SI{10}{\micro\second} after mains edge
\begin{itemize}
\item Written in a subset of Python
\item Executed on a CPU embedded on a FPGA (the \emph{core device})
\item \verb!now(), at(), delay()! describe time-line of an experiment
\item Exact time is kept in an internal variable
\item That variable only loosely tracks the execution time of CPU instructions
\item The value of that variable is exchanged with the RTIO fabric that
does precise timing
\end{itemize}
\end{frame} \end{frame}
\begin{frame}[fragile]
\frametitle{\fontseries{l}\selectfont Parallel and sequential blocks}
\begin{itemize}
\item All statements in a \verb!parallel! block are executed at the same exact time
\item A \verb!parallel! block can spawn a \verb!sequential! block, where exact time increases
\item \verb!Parallel! and \verb!sequential! blocks can be arbitrarily nested
\end{itemize}
\begin{verbatimtab}
with parallel:
with sequential:
self.a.pulse(100*MHz, 20*us)
self.b.pulse(200*MHz, 20*us)
with sequential:
self.c.pulse(300*MHz, 10*us)
self.d.pulse(400*MHz, 20*us)
\end{verbatimtab}
\end{frame}
\begin{frame}[fragile] \begin{frame}[fragile]
\frametitle{\fontseries{l}\selectfont Object orientation and code reuse} \frametitle{Convenient syntax additions}
\begin{verbatimtab} \footnotesize
class Main(AutoDB): \begin{minted}[frame=leftline]{python}
with sequential:
with parallel:
a.pulse(100*MHz, 10*us)
b.pulse(200*MHz, 20*us)
with parallel:
c.pulse(300*MHz, 30*us)
d.pulse(400*MHz, 20*us)
\end{minted}
\begin{itemize}
\item Experiments are inherently parallel:
simultaneous laser pulses, parallel cooling of ions in different trap zones
\item \verb!parallel! and \verb!sequential! contexts with arbitrary nesting
\item \verb!a! and \verb!b! pulses both start at the same time
\item \verb!c! and \verb!d! pulses both start when \verb!a! and \verb!b! are both done
(after 20\,µs)
\item Implemented by inlining, loop-unrolling, and interleaving
\end{itemize}
\end{frame}
\begin{frame}[fragile]
\frametitle{Physical quantities, hardware granularity}
\footnotesize
\begin{minted}[frame=leftline]{python}
n = 1000
dt = 1.2345*ns
f = 345*MHz
dds.on(f, phase=0) # must round to integer tuning word
for i in range(n):
delay(dt) # must round to native cycles
dt_raw = time_to_cycles(dt) # integer number of cycles
f_raw = dds.frequency_to_ftw(f) # integer frequency tuning word
# determine correct phase despite accumulation of rounding errors
phi = n*cycles_to_time(dt_raw)*dds.ftw_to_frequency(f_raw)
\end{minted}
\begin{itemize}
\item Need well defined conversion and rounding of physical quantities
(time, frequency, phase, etc.) to hardware granularity and back
\item Complicated because of calibration, offsets, cable delays,
non-linearities
\item No generic way to do it automatically and correctly
\item $\rightarrow$ need to do it explicitly where it matters
\end{itemize}
\end{frame}
\begin{frame}[fragile]
\frametitle{Invite organizing experiment components and code reuse}
\footnotesize
\begin{minted}[frame=leftline]{python}
class Experiment:
def build(self): def build(self):
self.ion1 = Ion(...) self.ion1 = Ion(...)
self.ion2 = Ion(...) self.ion2 = Ion(...)
@ -94,48 +179,104 @@ class Main(AutoDB):
@kernel @kernel
def run(self): def run(self):
with parallel:
self.ion1.cool(duration=10*us) self.ion1.cool(duration=10*us)
self.ion2.cool(frequency=...) self.ion2.cool(frequency=...)
self.transporter.move(speed=...) self.transporter.move(speed=...)
delay(100*ms)
self.ion1.detect(duration=...) self.ion1.detect(duration=...)
\end{verbatimtab} \end{minted}
\end{frame} \end{frame}
\begin{frame}[fragile] \begin{frame}[fragile]
\frametitle{\fontseries{l}\selectfont Communication with the kernel} \frametitle{RPC to handle distributed non-RT hardware}
\begin{itemize} \footnotesize
\item When the kernel function calls a non-kernel function, it generates a RPC
\item The callee is executed on the host \begin{minted}[frame=leftline]{python}
\item The callee may receive parameters from the kernel and may return a value to the kernel class Experiment:
\item The kernel must have a loose real-time constraint (a long \verb!delay!) to cover communication and host delays def prepare(self): # runs on the host
\item Mechanism to report results and control slow devices self.motor.move_to(20*mm) # slow RS232 motor controller
\end{itemize}
@kernel
def run(self): # runs on the RT core device
self.prepare() # converted into an RPC
\end{minted}
\begin{itemize}
\item When a kernel function calls a non-kernel function, it generates a RPC
\item The callee is executed on the host
\item Mechanism to report results and control slow devices
\item The kernel must have a loose real-time constraint (a long \verb!delay!)
or means of re-synchronization to cover communication, host, and device delays
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Kernel deployment to the core device}
\footnotesize
\begin{itemize}
\item RPC and exception mappings are generated
\item Constants and small kernels are inlined
\item Small loops are unrolled
\item Statements in parallel blocks are interleaved
\item Time is converted to RTIO clock cycles
\item The Python AST is converted to LLVM IR
\item The LLVM IR is compiled to OpenRISC machine code
\item The OpenRISC binary is sent to the core device
\item The runtime in the core device links and runs the kernel
\item The kernel calls the runtime for communication (RPC) and interfacing
with core device peripherals (RTIO, DDS)
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Higher level features}
\footnotesize
\begin{itemize}
\item Device management: drivers, remote devices, device database
\item Parameter database \\
e.g.\ ion properties such as qubit flopping frequency
\item Scheduling of experiments \\
e.g.\ calibrations, queue
\item Archival of results (HDF5 format)
\item Graphical user interface \\
run with arguments, schedule, real-time plotting
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Short-term hardware support}
\footnotesize
\begin{itemize}
\item Core device: Papilio Pro, Pipistrello, KC705
\item High speed DDS with AD9858 and AD9914 \\
(direct core device, $ < 25$ channels)
\item Waveform generation: PDQ (NIST), PXI6733
\item Lab Brick Digital Attenuators
\item Novatech 409B DDS
\item Thorlabs motor controllers
\end{itemize}
\end{frame} \end{frame}
\begin{frame} \begin{frame}
\frametitle{\fontseries{l}\selectfont Kernel deployment process} \begin{center}
\begin{enumerate} \includegraphics[width=3cm]{../../logo/artiq.pdf} \\
\item Constants and called kernels are inlined \url{http://m-labs.hk/artiq}
\item Loops are unrolled \end{center}
\item Statements from concurrent sequential blocks are interleaved. Threads are currently unsupported.
\item Time is converted to RTIO clock units \footnotesize
\item The Python AST is converted to LLVM IR \begin{itemize}
\item The LLVM IR is compiled to OpenRISC machine code \item Public mailing list (with archives)
\item The OpenRISC binary is sent to the core device \item Full source code, BSD licensed
\item The runtime in the core device links and run the kernel \item Design applicable beyond ion trapping (superconducting qubits,
\item The kernel calls the runtime for communication (RPC) and access to core device peripherals (RTIO, DDS) neutral atoms...)
\end{enumerate} \end{itemize}
\end{frame} \textit{Thanks to Robert J\"ordens, Joe Britton, Daniel Slichter and other members of the NIST Ion Storage Group for their support in developing ARTIQ.}
\begin{frame}[fragile]
\frametitle{\fontseries{l}\selectfont Channels and parameters}
\begin{itemize}
\item A kernel is a method of a class
\item The entry point for an experiment is called \verb!run! --- may or may not be a kernel
\item The \verb!AutoDB! class manages channels and parameters
\item If channels/parameters are passed as constructor arguments, those are used
\item Otherwise, they are looked up in the device and parameter databases
\end{itemize}
\end{frame} \end{frame}
\end{document} \end{document}

Binary file not shown.

After

Width:  |  Height:  |  Size: 208 KiB