1
0
forked from M-Labs/artiq

py2llvm: complete rational arithmetic support

This commit is contained in:
Sebastien Bourdeauducq 2014-09-08 18:45:46 +08:00
parent 1133308dd5
commit 60368aa9e2
2 changed files with 201 additions and 103 deletions

View File

@ -8,33 +8,61 @@ from artiq.py2llvm.base_types import VBool, VInt
def _gcd(a, b): def _gcd(a, b):
if a < 0:
a = -a
while a: while a:
c = a c = a
a = b % a a = b % a
b = c b = c
return b return b
def init_module(module): def init_module(module):
funcdef = ast.parse(inspect.getsource(_gcd)).body[0] funcdef = ast.parse(inspect.getsource(_gcd)).body[0]
module.compile_function(funcdef, {"a": VInt(64), "b": VInt(64)}) module.compile_function(funcdef, {"a": VInt(64), "b": VInt(64)})
def _call_gcd(builder, a, b):
def _reduce(builder, a, b):
gcd_f = builder.basic_block.function.module.get_function_named("_gcd") gcd_f = builder.basic_block.function.module.get_function_named("_gcd")
return builder.call(gcd_f, [a, b]) gcd = builder.call(gcd_f, [a, b])
a = builder.sdiv(a, gcd)
def _frac_normalize(builder, numerator, denominator): b = builder.sdiv(b, gcd)
gcd = _call_gcd(builder, numerator, denominator) return a, b
numerator = builder.sdiv(numerator, gcd)
denominator = builder.sdiv(denominator, gcd)
return numerator, denominator
def _frac_make_ssa(builder, numerator, denominator): def _signnum(builder, a, b):
function = builder.basic_block.function
orig_block = builder.basic_block
swap_block = function.append_basic_block("sn_swap")
merge_block = function.append_basic_block("sn_merge")
condition = builder.icmp(
lc.ICMP_SLT, b, lc.Constant.int(lc.Type.int(64), 0))
builder.cbranch(condition, swap_block, merge_block)
builder.position_at_end(swap_block)
minusone = lc.Constant.int(lc.Type.int(64), -1)
a_swp = builder.mul(minusone, a)
b_swp = builder.mul(minusone, b)
builder.branch(merge_block)
builder.position_at_end(merge_block)
a_phi = builder.phi(lc.Type.int(64))
a_phi.add_incoming(a, orig_block)
a_phi.add_incoming(a_swp, swap_block)
b_phi = builder.phi(lc.Type.int(64))
b_phi.add_incoming(b, orig_block)
b_phi.add_incoming(b_swp, swap_block)
return a_phi, b_phi
def _make_ssa(builder, n, d):
value = lc.Constant.undef(lc.Type.vector(lc.Type.int(64), 2)) value = lc.Constant.undef(lc.Type.vector(lc.Type.int(64), 2))
value = builder.insert_element( value = builder.insert_element(
value, numerator, lc.Constant.int(lc.Type.int(), 0)) value, n, lc.Constant.int(lc.Type.int(), 0))
value = builder.insert_element( value = builder.insert_element(
value, denominator, lc.Constant.int(lc.Type.int(), 1)) value, d, lc.Constant.int(lc.Type.int(), 1))
return value return value
@ -52,29 +80,25 @@ class VFraction(VGeneric):
if not isinstance(other, VFraction): if not isinstance(other, VFraction):
raise TypeError raise TypeError
def _nd(self, builder, invert=False): def _nd(self, builder):
ssa_value = self.get_ssa_value(builder) ssa_value = self.get_ssa_value(builder)
numerator = builder.extract_element( a = builder.extract_element(
ssa_value, lc.Constant.int(lc.Type.int(), 0)) ssa_value, lc.Constant.int(lc.Type.int(), 0))
denominator = builder.extract_element( b = builder.extract_element(
ssa_value, lc.Constant.int(lc.Type.int(), 1)) ssa_value, lc.Constant.int(lc.Type.int(), 1))
if invert: return a, b
return denominator, numerator
else:
return numerator, denominator
def set_value_nd(self, builder, numerator, denominator): def set_value_nd(self, builder, a, b):
numerator = numerator.o_int64(builder).get_ssa_value(builder) a = a.o_int64(builder).get_ssa_value(builder)
denominator = denominator.o_int64(builder).get_ssa_value(builder) b = b.o_int64(builder).get_ssa_value(builder)
numerator, denominator = _frac_normalize( a, b = _reduce(builder, a, b)
builder, numerator, denominator) a, b = _signnum(builder, a, b)
self.set_ssa_value( self.set_ssa_value(builder, _make_ssa(builder, a, b))
builder, _frac_make_ssa(builder, numerator, denominator))
def set_value(self, builder, n): def set_value(self, builder, v):
if not isinstance(n, VFraction): if not isinstance(v, VFraction):
raise TypeError raise TypeError
self.set_ssa_value(builder, n.get_ssa_value(builder)) self.set_ssa_value(builder, v.get_ssa_value(builder))
def o_getattr(self, attr, builder): def o_getattr(self, attr, builder):
if attr == "numerator": if attr == "numerator":
@ -86,7 +110,8 @@ class VFraction(VGeneric):
r = VInt(64) r = VInt(64)
if builder is not None: if builder is not None:
elt = builder.extract_element( elt = builder.extract_element(
self.get_ssa_value(builder), lc.Constant.int(lc.Type.int(), idx)) self.get_ssa_value(builder),
lc.Constant.int(lc.Type.int(), idx))
r.set_ssa_value(builder, elt) r.set_ssa_value(builder, elt)
return r return r
@ -94,9 +119,9 @@ class VFraction(VGeneric):
r = VBool() r = VBool()
if builder is not None: if builder is not None:
zero = lc.Constant.int(lc.Type.int(64), 0) zero = lc.Constant.int(lc.Type.int(64), 0)
numerator = builder.extract_element( a = builder.extract_element(
self.get_ssa_value(builder), lc.Constant.int(lc.Type.int(), 0)) self.get_ssa_value(builder), lc.Constant.int(lc.Type.int(), 0))
r.set_ssa_value(builder, builder.icmp(lc.ICMP_NE, numerator, zero)) r.set_ssa_value(builder, builder.icmp(lc.ICMP_NE, a, zero))
return r return r
def o_intx(self, target_bits, builder): def o_intx(self, target_bits, builder):
@ -104,8 +129,8 @@ class VFraction(VGeneric):
return VInt(target_bits) return VInt(target_bits)
else: else:
r = VInt(64) r = VInt(64)
numerator, denominator = self._nd(builder) a, b = self._nd(builder)
r.set_ssa_value(builder, builder.sdiv(numerator, denominator)) r.set_ssa_value(builder, builder.sdiv(a, b))
return r.o_intx(target_bits, builder) return r.o_intx(target_bits, builder)
def o_roundx(self, target_bits, builder): def o_roundx(self, target_bits, builder):
@ -113,34 +138,36 @@ class VFraction(VGeneric):
return VInt(target_bits) return VInt(target_bits)
else: else:
r = VInt(64) r = VInt(64)
numerator, denominator = self._nd(builder) a, b = self._nd(builder)
h_denominator = builder.ashr(denominator, h_b = builder.ashr(b, lc.Constant.int(lc.Type.int(), 1))
lc.Constant.int(lc.Type.int(), 1)) a = builder.add(a, h_b)
r_numerator = builder.add(numerator, h_denominator) r.set_ssa_value(builder, builder.sdiv(a, b))
r.set_ssa_value(builder, builder.sdiv(r_numerator, denominator))
return r.o_intx(target_bits, builder) return r.o_intx(target_bits, builder)
def _o_eq_inv(self, other, builder, ne): def _o_eq_inv(self, other, builder, ne):
if isinstance(other, VFraction): if not isinstance(other, (VInt, VFraction)):
return NotImplemented
r = VBool() r = VBool()
if builder is not None: if builder is not None:
ee = [] if isinstance(other, VInt):
for i in range(2): other = other.o_int64(builder)
es = builder.extract_element( a, b = self._nd(builder)
self.get_ssa_value(builder), ssa_r = builder.and_(
lc.Constant.int(lc.Type.int(), i)) builder.icmp(lc.ICMP_EQ, a,
eo = builder.extract_element( other.get_ssa_value()),
other.get_ssa_value(builder), builder.icmp(lc.ICMP_EQ, b,
lc.Constant.int(lc.Type.int(), i)) lc.Constant.int(lc.Type.int(64), 1)))
ee.append(builder.icmp(lc.ICMP_EQ, es, eo)) else:
ssa_r = builder.and_(ee[0], ee[1]) a, b = self._nd(builder)
c, d = other._nd(builder)
ssa_r = builder.and_(
builder.icmp(lc.ICMP_EQ, a, c),
builder.icmp(lc.ICMP_EQ, b, d))
if ne: if ne:
ssa_r = builder.xor(ssa_r, ssa_r = builder.xor(ssa_r,
lc.Constant.int(lc.Type.int(1), 1)) lc.Constant.int(lc.Type.int(1), 1))
r.set_ssa_value(builder, ssa_r) r.set_ssa_value(builder, ssa_r)
return r return r
else:
return NotImplemented
def o_eq(self, other, builder): def o_eq(self, other, builder):
return self._o_eq_inv(other, builder, False) return self._o_eq_inv(other, builder, False)
@ -148,44 +175,71 @@ class VFraction(VGeneric):
def o_ne(self, other, builder): def o_ne(self, other, builder):
return self._o_eq_inv(other, builder, True) return self._o_eq_inv(other, builder, True)
def _o_muldiv(self, other, builder, div, invert=False): def _o_addsub(self, other, builder, sub, invert=False):
r = VFraction() if not isinstance(other, (VInt, VFraction)):
if isinstance(other, VInt):
if builder is None:
return r
else:
numerator, denominator = self._nd(builder, invert)
i = other.get_ssa_value(builder)
if div:
gcd = _call_gcd(builder, i, numerator)
i = builder.sdiv(i, gcd)
numerator = builder.sdiv(numerator, gcd)
denominator = builder.mul(denominator, i)
else:
gcd = _call_gcd(builder, i, denominator)
i = builder.sdiv(i, gcd)
denominator = builder.sdiv(denominator, gcd)
numerator = builder.mul(numerator, i)
self.set_ssa_value(builder, _frac_make_ssa(builder, numerator,
denominator))
elif isinstance(other, VFraction):
if builder is None:
return r
else:
numerator, denominator = self._nd(builder, invert)
onumerator, odenominator = other._nd(builder)
if div:
numerator = builder.mul(numerator, odenominator)
denominator = builder.mul(denominator, onumerator)
else:
numerator = builder.mul(numerator, onumerator)
denominator = builder.mul(denominator, odenominator)
numerator, denominator = _frac_normalize(builder, numerator,
denominator)
self.set_ssa_value(
builder, _frac_make_ssa(builder, numerator, denominator))
else:
return NotImplemented return NotImplemented
r = VFraction()
if builder is not None:
if isinstance(other, VInt):
i = other.o_int64(builder).get_ssa_value()
x, rd = self._nd(builder)
y = builder.mul(rd, i)
else:
a, b = self._nd(builder)
c, d = other._nd(builder)
rd = builder.mul(b, d)
x = builder.mul(a, d)
y = builder.mul(c, b)
if sub:
if invert:
rn = builder.sub(y, x)
else:
rn = builder.sub(x, y)
else:
rn = builder.add(x, y)
rn, rd = _reduce(builder, rn, rd) # rd is already > 0
r.set_ssa_value(builder, _make_ssa(builder, rn, rd))
return r
def o_add(self, other, builder):
return self._o_addsub(other, builder, False)
def o_sub(self, other, builder):
return self._o_addsub(other, builder, True)
def or_add(self, other, builder):
return self._o_addsub(other, builder, False)
def or_sub(self, other, builder):
return self._o_addsub(other, builder, False, True)
def _o_muldiv(self, other, builder, div, invert=False):
if not isinstance(other, (VFraction, VInt)):
return NotImplemented
r = VFraction()
if builder is not None:
a, b = self._nd(builder)
if invert:
a, b = b, a
if isinstance(other, VInt):
i = other.o_int64(builder).get_ssa_value(builder)
if div:
b = builder.mul(b, i)
else:
a = builder.mul(a, i)
else:
c, d = other._nd(builder)
if div:
a = builder.mul(a, d)
b = builder.mul(b, c)
else:
a = builder.mul(a, c)
b = builder.mul(b, d)
if div or invert:
a, b = _signnum(builder, a, b)
a, b = _reduce(builder, a, b)
r.set_ssa_value(builder, _make_ssa(builder, a, b))
return r
def o_mul(self, other, builder): def o_mul(self, other, builder):
return self._o_muldiv(other, builder, False) return self._o_muldiv(other, builder, False)

View File

@ -26,6 +26,7 @@ def test_types(choice):
else: else:
return x + c return x + c
class FunctionTypesCase(unittest.TestCase): class FunctionTypesCase(unittest.TestCase):
def setUp(self): def setUp(self):
self.ns = infer_function_types( self.ns = infer_function_types(
@ -80,19 +81,62 @@ def is_prime(x):
d += 1 d += 1
return True return True
def simplify_encode(n, d):
f = Fraction(n, d) def simplify_encode(a, b):
f = Fraction(a, b)
return f.numerator*1000 + f.denominator return f.numerator*1000 + f.denominator
def arith_encode(op, a, b, c, d):
if op == 1:
f = Fraction(a, b) - Fraction(c, d)
elif op == 2:
f = Fraction(a, b) + Fraction(c, d)
elif op == 3:
f = Fraction(a, b) * Fraction(c, d)
else:
f = Fraction(a, b) / Fraction(c, d)
return f.numerator*1000 + f.denominator
is_prime_c = CompiledFunction(is_prime, {"x": base_types.VInt()})
simplify_encode_c = CompiledFunction(
simplify_encode, {"a": base_types.VInt(), "b": base_types.VInt()})
arith_encode_c = CompiledFunction(
arith_encode, {
"op": base_types.VInt(),
"a": base_types.VInt(), "b": base_types.VInt(),
"c": base_types.VInt(), "d": base_types.VInt()})
class CodeGenCase(unittest.TestCase): class CodeGenCase(unittest.TestCase):
def test_is_prime(self): def test_is_prime(self):
is_prime_c = CompiledFunction(is_prime, {"x": base_types.VInt()})
for i in range(200): for i in range(200):
self.assertEqual(is_prime_c(i), is_prime(i)) self.assertEqual(is_prime_c(i), is_prime(i))
def test_frac_simplify(self): def test_frac_simplify(self):
simplify_encode_c = CompiledFunction( for a in range(5, 20):
simplify_encode, {"n": base_types.VInt(), "d": base_types.VInt()}) for b in range(5, 20):
for n in range(5, 20): self.assertEqual(
for d in range(5, 20): simplify_encode_c(a, b), simplify_encode(a, b))
self.assertEqual(simplify_encode_c(n, d), simplify_encode(n, d))
def _test_frac_arith(self, op):
for a in range(5, 10):
for b in range(5, 10):
for c in range(5, 10):
for d in range(5, 10):
self.assertEqual(
arith_encode_c(op, a, b, c, d),
arith_encode(op, a, b, c, d))
def test_frac_add(self):
self._test_frac_arith(0)
def test_frac_sub(self):
self._test_frac_arith(1)
def test_frac_mul(self):
self._test_frac_arith(2)
def test_frac_div(self):
self._test_frac_arith(3)