1
0
forked from M-Labs/artiq

Refactor, introduce experiment class, kernel decorator, parameters and channel objects

This commit is contained in:
Sebastien Bourdeauducq 2014-05-28 22:42:01 +02:00
parent 7409f095f1
commit 18ef03c545
5 changed files with 168 additions and 75 deletions

View File

@ -0,0 +1,70 @@
import itertools
class Experiment:
def __init__(self, *args, **kwargs):
channels = self.channels.split()
parameters = self.parameters.split()
argnames = channels + parameters
undef_args = list(argnames)
if len(argnames) < len(args):
raise TypeError("__init__() takes {} positional arguments but {} were given".format(len(argnames), len(args)))
for argname, value in itertools.chain(zip(argnames, args), kwargs.items()):
if hasattr(self, argname):
raise TypeError("__init__() got multiple values for argument '{}'".format(argname))
if argname not in argnames:
raise TypeError("__init__() got an unexpected keyword argument: '{}'".format(argname))
setattr(self, argname, value)
undef_args.remove(argname)
if undef_args:
raise TypeError("__init__() missing {} argument(s): ".format(len(undef_args),
", ".join(["'"+s+"'" for s in undef_args])))
self.kernel_attr_ro = set(parameters)
def kernel(arg):
if isinstance(arg, str):
def real_decorator(function):
def run_on_core(exp, *k_args, **k_kwargs):
getattr(exp, arg).run(function, exp, *k_args, **k_kwargs)
return run_on_core
return real_decorator
else:
def run_on_core(exp, *k_args, **k_kwargs):
exp.core.run(arg, exp, *k_args, **k_kwargs)
return run_on_core
class _DummyTimeManager:
def _not_implemented(self, *args, **kwargs):
raise NotImplementedError("Attempted to interpret kernel without a time manager")
enter_sequential = _not_implemented
exit = _not_implemented
take_time = _not_implemented
_time_manager = _DummyTimeManager()
def set_time_manager(time_manager):
global _time_manager
_time_manager = time_manager
# global namespace for interpreted kernels
class _Sequential:
def __enter__(self):
_time_manager.enter_sequential()
def __exit__(self, type, value, traceback):
_time_manager.exit()
sequential = _Sequential()
class _Parallel:
def __enter__(self):
_time_manager.enter_parallel()
def __exit__(self, type, value, traceback):
_time_manager.exit()
parallel = _Parallel()
def delay(duration):
_time_manager.take_time(duration.amount)

46
artiq/sim/devices.py Normal file
View File

@ -0,0 +1,46 @@
from random import Random
from artiq.language import units
from artiq.sim import time
class Core:
def run(self, function, *args, **kwargs):
return function(*args, **kwargs)
class Input:
def __init__(self, name, prng_seed=None, wait_max=20, count_max=100, wait_min=0, count_min=0):
self.name = name
self.wait_min = wait_min
self.wait_max = wait_max
self.count_min = count_min
self.count_max = count_max
self.prng = Random(prng_seed)
def wait_edge(self):
duration = self.prng.randrange(self.wait_min, self.wait_max)*units.ms
time.manager.event(("wait_edge", self.name, duration))
time.manager.take_time(duration.amount)
def count_gate(self, duration):
result = self.prng.randrange(self.count_min, self.count_max)
units.check_unit(duration, units.base_s_unit)
time.manager.event(("count_gate", self.name, duration, result))
time.manager.take_time(duration.amount)
return result
class WaveOutput:
def __init__(self, name):
self.name = name
def pulse(self, frequency, duration):
units.check_unit(frequency, units.base_Hz_unit)
units.check_unit(duration, units.base_s_unit)
time.manager.event(("pulse", self.name, frequency, duration))
time.manager.take_time(duration.amount)
class VoltageOutput:
def __init__(self, name):
self.name = name
def set(self, value):
time.manager.event(("set_voltage", self.name, value))

View File

@ -1,7 +1,6 @@
from random import Random
from operator import itemgetter from operator import itemgetter
from artiq import units from artiq.language import units, experiment
class SequentialTimeContext: class SequentialTimeContext:
def __init__(self, current_time): def __init__(self, current_time):
@ -21,7 +20,7 @@ class ParallelTimeContext:
if amount > self.block_duration: if amount > self.block_duration:
self.block_duration = amount self.block_duration = amount
class TimeManager: class Manager:
def __init__(self): def __init__(self):
self.stack = [SequentialTimeContext(0)] self.stack = [SequentialTimeContext(0)]
self.timeline = [] self.timeline = []
@ -38,8 +37,8 @@ class TimeManager:
old_context = self.stack.pop() old_context = self.stack.pop()
self.take_time(old_context.block_duration) self.take_time(old_context.block_duration)
def take_time(self, amount): def take_time(self, duration):
self.stack[-1].take_time(amount) self.stack[-1].take_time(duration)
def event(self, description): def event(self, description):
self.timeline.append((self.stack[-1].current_time, description)) self.timeline.append((self.stack[-1].current_time, description))
@ -57,48 +56,5 @@ class TimeManager:
prev_time = time prev_time = time
return r return r
# global namespace for interpreted kernels manager = Manager()
experiment.set_time_manager(manager)
time_manager = TimeManager()
prng = Random(42)
class _Sequential:
def __enter__(self):
time_manager.enter_sequential()
def __exit__(self, type, value, traceback):
time_manager.exit()
sequential = _Sequential()
class _Parallel:
def __enter__(self):
time_manager.enter_parallel()
def __exit__(self, type, value, traceback):
time_manager.exit()
parallel = _Parallel()
def delay(duration):
units.check_unit(duration, units.base_s_unit)
time_manager.take_time(duration.amount)
def wait_edge(input):
duration = prng.randrange(17)*units.ms
time_manager.event(("wait_edge", input, duration))
time_manager.take_time(duration.amount)
def pulse(output, frequency, duration):
units.check_unit(frequency, units.base_Hz_unit)
units.check_unit(duration, units.base_s_unit)
time_manager.event(("pulse", output, frequency, duration))
time_manager.take_time(duration.amount)
def count_gate(input, duration):
result = prng.randrange(100)
units.check_unit(duration, units.base_s_unit)
time_manager.event(("count_gate", input, duration, result))
time_manager.take_time(duration.amount)
return result
def set_dac_voltage(output):
time_manager.event(("set_dac_voltage", output))

View File

@ -1,30 +1,51 @@
from artiq.sim import * from artiq.language.units import *
from artiq.units import * from artiq.language.experiment import *
def al_clock_probe(spectroscopy_freq, A1, A2): class AluminumSpectroscopy(Experiment):
state_0_count = 0 channels = "core mains_sync laser_cooling spectroscopy spectroscopy_b state_detection pmt"
for count in range(100): parameters = "spectroscopy_freq photon_limit_low photon_limit_high"
wait_edge("mains_sync")
delay(10*us) @kernel
pulse("laser_cooling", 100*MHz, 100*us) def run(self):
delay(5*us) state_0_count = 0
with parallel: for count in range(100):
pulse("spectroscopy", spectroscopy_freq, 100*us) self.mains_sync.wait_edge()
with sequential: delay(10*us)
delay(50*us) self.laser_cooling.pulse(100*MHz, 100*us)
set_dac_voltage("spectroscopy_b")
delay(5*us)
while True:
delay(5*us) delay(5*us)
with parallel: with parallel:
pulse("state_detection", 100*MHz, 10*us) self.spectroscopy.pulse(self.spectroscopy_freq, 100*us)
photon_count = count_gate("pmt", 10*us) with sequential:
if photon_count < A1 or photon_count > A2: delay(50*us)
break self.spectroscopy_b.set(200)
if photon_count < A1: delay(5*us)
state_0_count += 1 while True:
return state_0_count delay(5*us)
with parallel:
self.state_detection.pulse(100*MHz, 10*us)
photon_count = self.pmt.count_gate(10*us)
if photon_count < self.photon_limit_low or photon_count > self.photon_limit_high:
break
if photon_count < self.photon_limit_low:
state_0_count += 1
return state_0_count
if __name__ == "__main__": if __name__ == "__main__":
al_clock_probe(30*MHz, 3, 30) from artiq.sim import devices as sd
print(time_manager.format_timeline()) from artiq.sim import time
exp = AluminumSpectroscopy(
core=sd.Core(),
mains_sync=sd.Input("mains_sync"),
laser_cooling=sd.WaveOutput("laser_cooling"),
spectroscopy=sd.WaveOutput("spectroscopy"),
spectroscopy_b=sd.VoltageOutput("spectroscopy_b"),
state_detection=sd.WaveOutput("state_detection"),
pmt=sd.Input("pmt"),
spectroscopy_freq=432*MHz,
photon_limit_low=10,
photon_limit_high=15
)
exp.run()
print(time.manager.format_timeline())