1
0
forked from M-Labs/artiq

coefficients: cleanup and refactor some code into CoefficientSource

This commit is contained in:
Robert Jördens 2015-04-18 21:21:11 -06:00
parent 904bcd247f
commit 0b8d496b62

View File

@ -46,7 +46,7 @@ class UnivariateMultiSparseSpline(UnivariateMultiSpline):
def pad_const(x, n, axis=0): def pad_const(x, n, axis=0):
"""Prefix and postfix the array `x` by `n` repetitions of the first and """Prefix and postfix the array `x` by `n` repetitions of the first and
last vlaue along `axis`. last value along `axis`.
""" """
a = np.repeat(x.take([0], axis), n, axis) a = np.repeat(x.take([0], axis), n, axis)
b = np.repeat(x.take([-1], axis), n, axis) b = np.repeat(x.take([-1], axis), n, axis)
@ -86,9 +86,9 @@ class CoefficientSource:
def crop_x(self, start, stop, num=2): def crop_x(self, start, stop, num=2):
"""Return an array of valid sample positions. """Return an array of valid sample positions.
This function needs to be implemented only if this This method needs to be overloaded if this `CoefficientSource`
`CoefficientSource` does not support sampling at arbitrary does not support sampling at arbitrary positions or at arbitrary
positions. density.
:param start: First sample position. :param start: First sample position.
:param stop: Last sample position. :param stop: Last sample position.
@ -99,15 +99,23 @@ class CoefficientSource:
return np.linspace(start, stop, num) return np.linspace(start, stop, num)
def scale_x(self, x, scale): def scale_x(self, x, scale):
# TODO: This could be moved to the the Driver/Mediator code as it is
# device-specific.
"""Scale and round sample positions. """Scale and round sample positions.
The sample times may need to be changed and/or decimated if
incompatible with hardware requirements.
:param x: Input sample positions in data space. :param x: Input sample positions in data space.
:param scale: Data space position to cycles conversion scale, :param scale: Data space position to cycles conversion scale,
in units of x-units per clock cycle. in units of x-units per clock cycle.
:return: `x_sample`, the rounded sample positions and `durations`, the :return: `x_sample`, the rounded sample positions and `durations`, the
integer durations of the individual samples in cycles. integer durations of the individual samples in cycles.
""" """
raise NotImplementedError t = np.rint(x/scale)
x_sample = t*scale
durations = np.diff(t).astype(np.int)
return x_sample, durations
def __call__(self, x, **kwargs): def __call__(self, x, **kwargs):
"""Perform sampling and return coefficients. """Perform sampling and return coefficients.
@ -118,25 +126,18 @@ class CoefficientSource:
raise NotImplementedError raise NotImplementedError
def get_segment_data(self, start, stop, scale, cutoff=1e-12, def get_segment_data(self, start, stop, scale, cutoff=1e-12,
min_duration=1, min_length=20,
target="bias", variable="amplitude"): target="bias", variable="amplitude"):
"""Build wavesynth segment data. """Build wavesynth segment data.
:param start: see `crop_x()`. :param start: see `crop_x()`.
:param stop: see `crop_x()`. :param stop: see `crop_x()`.
:param scale: see `scale_x()`. :param scale: see `scale_x()`.
:param num: see `crop_x()`.
:param cutoff: coefficient cutoff towards zero to compress data. :param cutoff: coefficient cutoff towards zero to compress data.
:param min_duration: Minimum duration of a line.
:param min_length: Minimum segment length to space triggers.
""" """
x = self.crop_x(start, stop) x = self.crop_x(start, stop)
x_sample, durations = self.scale_x(x, scale) x_sample, durations = self.scale_x(x, scale)
coefficients = self(x_sample) coefficients = self(x_sample)
np.clip(np.fabs(durations), min_duration, None, out=durations) if len(x_sample) == 1 and start == stop:
if len(durations) == 1:
durations[0] = max(durations[0], min_length)
if start == stop:
coefficients = coefficients[:1] coefficients = coefficients[:1]
# rescale coefficients accordingly # rescale coefficients accordingly
coefficients *= (scale*np.sign(durations))**np.arange( coefficients *= (scale*np.sign(durations))**np.arange(
@ -146,12 +147,14 @@ class CoefficientSource:
return build_segment(durations, coefficients, target=target, return build_segment(durations, coefficients, target=target,
variable=variable) variable=variable)
def extend_segment(self, segment, *args, **kwargs): def extend_segment(self, segment, trigger=True, *args, **kwargs):
"""Extend a wavesynth segment. """Extend a wavesynth segment.
See `get_segment()` for arguments. See `get_segment()` for arguments.
""" """
for line in self.get_segment_data(*args, **kwargs): for i, line in enumerate(self.get_segment_data(*args, **kwargs)):
if i == 0:
line["trigger"] = True
segment.add_line(**line) segment.add_line(**line)
@ -183,36 +186,42 @@ class SplineSource(CoefficientSource):
x = self.x[ia:ib] x = self.x[ia:ib]
return np.r_[start, x, stop] return np.r_[start, x, stop]
def scale_x(self, x, scale, nudge=1e-9): def scale_x(self, x, scale, min_duration=1, min_length=20):
"""
Due to minimum duration and/or minimum segment length constraints
this method may drop samples from `x_sample` or adjust `durations` to
comply. But `x_sample` and `durations` should be kept consistent.
:param min_duration: Minimum duration of a line.
:param min_length: Minimum segment length to space triggers.
"""
# We want to only sample a spline at t_knot + epsilon # We want to only sample a spline at t_knot + epsilon
# where the highest order derivative has just jumped # where the highest order derivative has just jumped
# and is valid at least up to the next knot after t_knot. # and is valid at least up to the next knot after t_knot.
# #
# To ensure that we are on the right side of a knot: # To ensure that we are on the correct side of a knot:
# * only ever increase t when rounding (for increasing t) # * only ever increase t when rounding (for increasing t)
# * or only ever decrease it (for decreasing t) # * or only ever decrease it (for decreasing t)
# t = x/scale
# The highest derivative is discontinuous at t inc = np.diff(t) >= 0
# and the correct value for a segment is obtained
# for t_int >= t_float == t_knot (and v.v. for t decreasing).
x = x/scale
inc = np.diff(x) >= 0
inc = np.r_[inc, inc[-1]] inc = np.r_[inc, inc[-1]]
x = np.where(inc, np.ceil(x + nudge), np.floor(x - nudge)) t = np.where(inc, np.ceil(t), np.floor(t))
if len(x) > 1 and x[0] == x[1]: dt = np.diff(t.astype(np.int))
x = x[1:]
if len(x) > 1 and x[-2] == x[-1]: valid = np.absolute(dt) >= min_duration
x = x[:-1] dt = dt[valid]
x_sample = x[:-1]*scale t = t[np.r_[True, valid]]
durations = np.diff(x.astype(np.int)) if dt.shape[0] == 1:
return x_sample, durations dt[0] = max(dt[0], min_length)
x_sample = t[:-1]*scale
return x_sample, dt
def __call__(self, x): def __call__(self, x):
return self.spline(x) return self.spline(x)
class ComposingSplineSource(SplineSource): class ComposingSplineSource(SplineSource):
# TODO # TODO: verify, test, document
def __init__(self, x, y, components, order=4, pad_dx=1.): def __init__(self, x, y, components, order=4, pad_dx=1.):
self.x = np.asanyarray(x) self.x = np.asanyarray(x)
assert self.x.ndim == 1 assert self.x.ndim == 1
@ -236,18 +245,18 @@ class ComposingSplineSource(SplineSource):
components, self.x, order) components, self.x, order)
def __call__(self, t, gain={}, offset={}): def __call__(self, t, gain={}, offset={}):
der = list((set(self.components.n) | set(offset)) & set(self.der)) der = list((set(self.components.n) | set(offset))
& set(range(len(self.splines))))
u = np.zeros((self.splines[0].order, len(self.splines[0].s), len(t))) u = np.zeros((self.splines[0].order, len(self.splines[0].s), len(t)))
# der, order, ele, t # der, order, ele, t
p = np.array([self.splines[i](t) for i in der]) p = np.array([self.splines[i](t) for i in der])
# order, der, None, t
s = self.components(t)
s_gain = np.array([gain.get(_, 1.) for _ in self.components.n]) s_gain = np.array([gain.get(_, 1.) for _ in self.components.n])
s = s[:, :, None, :]*s_gain[None, :, None, None] # order, der, None, t
s = self.components(t)[:, :, None, :]*s_gain[None, :, None, None]
for k, v in offset.items(): for k, v in offset.items():
if v and k in self.der: if v:
u += v*p[self.der.index(k)] u += v*p[k]
ps = p[[self.der.index(_) for _ in self.shims.der]] ps = p[self.shims.n]
for i in range(u.shape[1]): for i in range(u.shape[1]):
for j in range(i + 1): for j in range(i + 1):
u[i] += binom(i, j)*(s[j]*ps[:, i - j]).sum(0) u[i] += binom(i, j)*(s[j]*ps[:, i - j]).sum(0)