nac3/nac3core/src/codegen/expr.rs

2572 lines
103 KiB
Rust

use std::{collections::HashMap, convert::TryInto, iter::once, iter::zip};
use crate::{
codegen::{
classes::{
ArrayLikeIndexer, ArrayLikeValue, ArraySliceValue, ListValue, NDArrayValue, ProxyValue,
RangeValue, TypedArrayLikeAccessor, UntypedArrayLikeAccessor,
},
concrete_type::{ConcreteFuncArg, ConcreteTypeEnum, ConcreteTypeStore},
gen_in_range_check, get_llvm_abi_type, get_llvm_type,
irrt::*,
llvm_intrinsics::{call_expect, call_float_floor, call_float_pow, call_float_powi},
numpy,
stmt::{gen_if_else_expr_callback, gen_raise, gen_var},
CodeGenContext, CodeGenTask,
},
symbol_resolver::{SymbolValue, ValueEnum},
toplevel::{
helper::PrimDef,
numpy::{make_ndarray_ty, unpack_ndarray_var_tys},
DefinitionId, TopLevelDef,
},
typecheck::{
magic_methods::{binop_assign_name, binop_name, unaryop_name},
typedef::{FunSignature, FuncArg, Type, TypeEnum, TypeVarId, Unifier, VarMap},
},
};
use inkwell::{
attributes::{Attribute, AttributeLoc},
types::{AnyType, BasicType, BasicTypeEnum},
values::{BasicValueEnum, CallSiteValue, FunctionValue, IntValue, PointerValue},
AddressSpace, IntPredicate,
};
use itertools::{chain, izip, Either, Itertools};
use nac3parser::ast::{
self, Boolop, Comprehension, Constant, Expr, ExprKind, Location, Operator, StrRef,
};
use super::{llvm_intrinsics::call_memcpy_generic, need_sret, CodeGenerator};
pub fn get_subst_key(
unifier: &mut Unifier,
obj: Option<Type>,
fun_vars: &VarMap,
filter: Option<&Vec<TypeVarId>>,
) -> String {
let mut vars = obj
.map(|ty| {
let TypeEnum::TObj { params, .. } = &*unifier.get_ty(ty) else { unreachable!() };
params.clone()
})
.unwrap_or_default();
vars.extend(fun_vars);
let sorted = vars.keys().filter(|id| filter.map_or(true, |v| v.contains(id))).sorted();
sorted
.map(|id| {
unifier.internal_stringify(
vars[id],
&mut |id| id.to_string(),
&mut |id| id.to_string(),
&mut None,
)
})
.join(", ")
}
impl<'ctx, 'a> CodeGenContext<'ctx, 'a> {
/// Builds a sequence of `getelementptr` and `load` instructions which stores the value of a
/// struct field into an LLVM value.
pub fn build_gep_and_load(
&mut self,
ptr: PointerValue<'ctx>,
index: &[IntValue<'ctx>],
name: Option<&str>,
) -> BasicValueEnum<'ctx> {
let gep = unsafe { self.builder.build_gep(ptr, index, "") }.unwrap();
self.builder.build_load(gep, name.unwrap_or_default()).unwrap()
}
fn get_subst_key(
&mut self,
obj: Option<Type>,
fun: &FunSignature,
filter: Option<&Vec<TypeVarId>>,
) -> String {
get_subst_key(&mut self.unifier, obj, &fun.vars, filter)
}
pub fn get_attr_index(&mut self, ty: Type, attr: StrRef) -> usize {
let obj_id = match &*self.unifier.get_ty(ty) {
TypeEnum::TObj { obj_id, .. } => *obj_id,
// we cannot have other types, virtual type should be handled by function calls
_ => unreachable!(),
};
let def = &self.top_level.definitions.read()[obj_id.0];
let index = if let TopLevelDef::Class { fields, .. } = &*def.read() {
fields.iter().find_position(|x| x.0 == attr).unwrap().0
} else {
unreachable!()
};
index
}
pub fn gen_symbol_val<G: CodeGenerator + ?Sized>(
&mut self,
generator: &mut G,
val: &SymbolValue,
ty: Type,
) -> BasicValueEnum<'ctx> {
match val {
SymbolValue::I32(v) => self.ctx.i32_type().const_int(*v as u64, true).into(),
SymbolValue::I64(v) => self.ctx.i64_type().const_int(*v as u64, true).into(),
SymbolValue::U32(v) => self.ctx.i32_type().const_int(u64::from(*v), false).into(),
SymbolValue::U64(v) => self.ctx.i64_type().const_int(*v, false).into(),
SymbolValue::Bool(v) => self.ctx.i8_type().const_int(u64::from(*v), true).into(),
SymbolValue::Double(v) => self.ctx.f64_type().const_float(*v).into(),
SymbolValue::Str(v) => {
let str_ptr = self
.builder
.build_global_string_ptr(v, "const")
.map(|v| v.as_pointer_value().into())
.unwrap();
let size = generator.get_size_type(self.ctx).const_int(v.len() as u64, false);
let ty = self.get_llvm_type(generator, self.primitives.str).into_struct_type();
ty.const_named_struct(&[str_ptr, size.into()]).into()
}
SymbolValue::Tuple(ls) => {
let vals = ls.iter().map(|v| self.gen_symbol_val(generator, v, ty)).collect_vec();
let fields = vals.iter().map(BasicValueEnum::get_type).collect_vec();
let ty = self.ctx.struct_type(&fields, false);
let ptr = gen_var(self, ty.into(), Some("tuple")).unwrap();
let zero = self.ctx.i32_type().const_zero();
unsafe {
for (i, val) in vals.into_iter().enumerate() {
let p = self
.builder
.build_in_bounds_gep(
ptr,
&[zero, self.ctx.i32_type().const_int(i as u64, false)],
"elemptr",
)
.unwrap();
self.builder.build_store(p, val).unwrap();
}
}
self.builder.build_load(ptr, "tup_val").unwrap()
}
SymbolValue::OptionSome(v) => {
let ty = match self.unifier.get_ty_immutable(ty).as_ref() {
TypeEnum::TObj { obj_id, params, .. }
if *obj_id == self.primitives.option.obj_id(&self.unifier).unwrap() =>
{
*params.iter().next().unwrap().1
}
_ => unreachable!("must be option type"),
};
let val = self.gen_symbol_val(generator, v, ty);
let ptr = generator
.gen_var_alloc(self, val.get_type(), Some("default_opt_some"))
.unwrap();
self.builder.build_store(ptr, val).unwrap();
ptr.into()
}
SymbolValue::OptionNone => {
let ty = match self.unifier.get_ty_immutable(ty).as_ref() {
TypeEnum::TObj { obj_id, params, .. }
if *obj_id == self.primitives.option.obj_id(&self.unifier).unwrap() =>
{
*params.iter().next().unwrap().1
}
_ => unreachable!("must be option type"),
};
let actual_ptr_type =
self.get_llvm_type(generator, ty).ptr_type(AddressSpace::default());
actual_ptr_type.const_null().into()
}
}
}
/// See [`get_llvm_type`].
pub fn get_llvm_type<G: CodeGenerator + ?Sized>(
&mut self,
generator: &mut G,
ty: Type,
) -> BasicTypeEnum<'ctx> {
get_llvm_type(
self.ctx,
&self.module,
generator,
&mut self.unifier,
self.top_level,
&mut self.type_cache,
ty,
)
}
/// See [`get_llvm_abi_type`].
pub fn get_llvm_abi_type<G: CodeGenerator + ?Sized>(
&mut self,
generator: &mut G,
ty: Type,
) -> BasicTypeEnum<'ctx> {
get_llvm_abi_type(
self.ctx,
&self.module,
generator,
&mut self.unifier,
self.top_level,
&mut self.type_cache,
&self.primitives,
ty,
)
}
/// Generates an LLVM variable for a [constant value][value] with a given [type][ty].
pub fn gen_const<G: CodeGenerator + ?Sized>(
&mut self,
generator: &mut G,
value: &Constant,
ty: Type,
) -> Option<BasicValueEnum<'ctx>> {
match value {
Constant::Bool(v) => {
assert!(self.unifier.unioned(ty, self.primitives.bool));
let ty = self.ctx.i8_type();
Some(ty.const_int(u64::from(*v), false).into())
}
Constant::Int(val) => {
let ty = if self.unifier.unioned(ty, self.primitives.int32)
|| self.unifier.unioned(ty, self.primitives.uint32)
{
self.ctx.i32_type()
} else if self.unifier.unioned(ty, self.primitives.int64)
|| self.unifier.unioned(ty, self.primitives.uint64)
{
self.ctx.i64_type()
} else {
unreachable!()
};
Some(ty.const_int(*val as u64, false).into())
}
Constant::Float(v) => {
assert!(self.unifier.unioned(ty, self.primitives.float));
let ty = self.ctx.f64_type();
Some(ty.const_float(*v).into())
}
Constant::Tuple(v) => {
let ty = self.unifier.get_ty(ty);
let types =
if let TypeEnum::TTuple { ty } = &*ty { ty.clone() } else { unreachable!() };
let values = zip(types, v.iter())
.map_while(|(ty, v)| self.gen_const(generator, v, ty))
.collect_vec();
if values.len() == v.len() {
let types = values.iter().map(BasicValueEnum::get_type).collect_vec();
let ty = self.ctx.struct_type(&types, false);
Some(ty.const_named_struct(&values).into())
} else {
None
}
}
Constant::Str(v) => {
assert!(self.unifier.unioned(ty, self.primitives.str));
if let Some(v) = self.const_strings.get(v) {
Some(*v)
} else {
let str_ptr = self
.builder
.build_global_string_ptr(v, "const")
.map(|v| v.as_pointer_value().into())
.unwrap();
let size = generator.get_size_type(self.ctx).const_int(v.len() as u64, false);
let ty = self.get_llvm_type(generator, self.primitives.str);
let val =
ty.into_struct_type().const_named_struct(&[str_ptr, size.into()]).into();
self.const_strings.insert(v.to_string(), val);
Some(val)
}
}
Constant::Ellipsis => {
let msg = self.gen_string(generator, "NotImplementedError");
self.raise_exn(
generator,
"0:NotImplementedError",
msg,
[None, None, None],
self.current_loc,
);
None
}
_ => unreachable!(),
}
}
/// Generates a binary operation `op` between two integral operands `lhs` and `rhs`.
pub fn gen_int_ops<G: CodeGenerator + ?Sized>(
&mut self,
generator: &mut G,
op: Operator,
lhs: BasicValueEnum<'ctx>,
rhs: BasicValueEnum<'ctx>,
signed: bool,
) -> BasicValueEnum<'ctx> {
let (BasicValueEnum::IntValue(lhs), BasicValueEnum::IntValue(rhs)) = (lhs, rhs) else {
unreachable!()
};
let float = self.ctx.f64_type();
match (op, signed) {
(Operator::Add, _) => {
self.builder.build_int_add(lhs, rhs, "add").map(Into::into).unwrap()
}
(Operator::Sub, _) => {
self.builder.build_int_sub(lhs, rhs, "sub").map(Into::into).unwrap()
}
(Operator::Mult, _) => {
self.builder.build_int_mul(lhs, rhs, "mul").map(Into::into).unwrap()
}
(Operator::Div, true) => {
let left = self.builder.build_signed_int_to_float(lhs, float, "i2f").unwrap();
let right = self.builder.build_signed_int_to_float(rhs, float, "i2f").unwrap();
self.builder.build_float_div(left, right, "fdiv").map(Into::into).unwrap()
}
(Operator::Div, false) => {
let left = self.builder.build_unsigned_int_to_float(lhs, float, "i2f").unwrap();
let right = self.builder.build_unsigned_int_to_float(rhs, float, "i2f").unwrap();
self.builder.build_float_div(left, right, "fdiv").map(Into::into).unwrap()
}
(Operator::Mod, true) => {
self.builder.build_int_signed_rem(lhs, rhs, "mod").map(Into::into).unwrap()
}
(Operator::Mod, false) => {
self.builder.build_int_unsigned_rem(lhs, rhs, "mod").map(Into::into).unwrap()
}
(Operator::BitOr, _) => self.builder.build_or(lhs, rhs, "or").map(Into::into).unwrap(),
(Operator::BitXor, _) => {
self.builder.build_xor(lhs, rhs, "xor").map(Into::into).unwrap()
}
(Operator::BitAnd, _) => {
self.builder.build_and(lhs, rhs, "and").map(Into::into).unwrap()
}
// Sign-ness of bitshift operators are always determined by the left operand
(Operator::LShift | Operator::RShift, signed) => {
// RHS operand is always 32 bits
assert_eq!(rhs.get_type().get_bit_width(), 32);
let common_type = lhs.get_type();
let rhs = if common_type.get_bit_width() > 32 {
if signed {
self.builder.build_int_s_extend(rhs, common_type, "").unwrap()
} else {
self.builder.build_int_z_extend(rhs, common_type, "").unwrap()
}
} else {
rhs
};
let rhs_gez = self
.builder
.build_int_compare(IntPredicate::SGE, rhs, common_type.const_zero(), "")
.unwrap();
self.make_assert(
generator,
rhs_gez,
"ValueError",
"negative shift count",
[None, None, None],
self.current_loc,
);
match op {
Operator::LShift => {
self.builder.build_left_shift(lhs, rhs, "lshift").map(Into::into).unwrap()
}
Operator::RShift => self
.builder
.build_right_shift(lhs, rhs, signed, "rshift")
.map(Into::into)
.unwrap(),
_ => unreachable!(),
}
}
(Operator::FloorDiv, true) => {
self.builder.build_int_signed_div(lhs, rhs, "floordiv").map(Into::into).unwrap()
}
(Operator::FloorDiv, false) => {
self.builder.build_int_unsigned_div(lhs, rhs, "floordiv").map(Into::into).unwrap()
}
(Operator::Pow, s) => integer_power(generator, self, lhs, rhs, s).into(),
// special implementation?
(Operator::MatMult, _) => unreachable!(),
}
}
/// Generates a binary operation `op` between two floating-point operands `lhs` and `rhs`.
pub fn gen_float_ops(
&mut self,
op: Operator,
lhs: BasicValueEnum<'ctx>,
rhs: BasicValueEnum<'ctx>,
) -> BasicValueEnum<'ctx> {
let (BasicValueEnum::FloatValue(lhs), BasicValueEnum::FloatValue(rhs)) = (lhs, rhs) else {
unreachable!(
"Expected (FloatValue, FloatValue), got ({}, {})",
lhs.get_type(),
rhs.get_type()
)
};
match op {
Operator::Add => {
self.builder.build_float_add(lhs, rhs, "fadd").map(Into::into).unwrap()
}
Operator::Sub => {
self.builder.build_float_sub(lhs, rhs, "fsub").map(Into::into).unwrap()
}
Operator::Mult => {
self.builder.build_float_mul(lhs, rhs, "fmul").map(Into::into).unwrap()
}
Operator::Div => {
self.builder.build_float_div(lhs, rhs, "fdiv").map(Into::into).unwrap()
}
Operator::Mod => {
self.builder.build_float_rem(lhs, rhs, "fmod").map(Into::into).unwrap()
}
Operator::FloorDiv => {
let div = self.builder.build_float_div(lhs, rhs, "fdiv").unwrap();
call_float_floor(self, div, Some("floor")).into()
}
Operator::Pow => call_float_pow(self, lhs, rhs, Some("f_pow")).into(),
// special implementation?
_ => unimplemented!(),
}
}
pub fn build_call_or_invoke(
&mut self,
fun: FunctionValue<'ctx>,
params: &[BasicValueEnum<'ctx>],
call_name: &str,
) -> Option<BasicValueEnum<'ctx>> {
let mut loc_params: Vec<BasicValueEnum<'ctx>> = Vec::new();
let mut return_slot = None;
let loc = self.debug_info.0.create_debug_location(
self.ctx,
self.current_loc.row as u32,
self.current_loc.column as u32,
self.debug_info.2,
None,
);
self.builder.set_current_debug_location(loc);
if fun.count_params() > 0 {
let sret_id = Attribute::get_named_enum_kind_id("sret");
let byref_id = Attribute::get_named_enum_kind_id("byref");
let byval_id = Attribute::get_named_enum_kind_id("byval");
let offset = if fun.get_enum_attribute(AttributeLoc::Param(0), sret_id).is_some() {
return_slot = Some(
self.builder
.build_alloca(
fun.get_type().get_param_types()[0]
.into_pointer_type()
.get_element_type()
.into_struct_type(),
call_name,
)
.unwrap(),
);
loc_params.push((*return_slot.as_ref().unwrap()).into());
1
} else {
0
};
for (i, param) in params.iter().enumerate() {
let loc = AttributeLoc::Param((i + offset) as u32);
if fun.get_enum_attribute(loc, byref_id).is_some()
|| fun.get_enum_attribute(loc, byval_id).is_some()
{
// lazy update
if loc_params.is_empty() {
loc_params.extend(params[0..i + offset].iter().copied());
}
let slot = gen_var(self, param.get_type(), Some(call_name)).unwrap();
loc_params.push(slot.into());
self.builder.build_store(slot, *param).unwrap();
} else if !loc_params.is_empty() {
loc_params.push(*param);
}
}
}
let params = if loc_params.is_empty() { params } else { &loc_params };
let params = fun
.get_type()
.get_param_types()
.into_iter()
.zip(params.iter())
.map(|(ty, val)| match (ty, val.get_type()) {
(BasicTypeEnum::PointerType(arg_ty), BasicTypeEnum::PointerType(val_ty))
if {
ty != val.get_type()
&& arg_ty.get_element_type().is_struct_type()
&& val_ty.get_element_type().is_struct_type()
} =>
{
self.builder.build_bitcast(*val, arg_ty, "call_arg_cast").unwrap()
}
_ => *val,
})
.collect_vec();
let result = if let Some(target) = self.unwind_target {
let current = self.builder.get_insert_block().unwrap().get_parent().unwrap();
let then_block = self.ctx.append_basic_block(current, &format!("after.{call_name}"));
let result = self
.builder
.build_invoke(fun, &params, then_block, target, call_name)
.map(CallSiteValue::try_as_basic_value)
.map(Either::left)
.unwrap();
self.builder.position_at_end(then_block);
result
} else {
let param: Vec<_> = params.iter().map(|v| (*v).into()).collect();
self.builder
.build_call(fun, &param, call_name)
.map(CallSiteValue::try_as_basic_value)
.map(Either::left)
.unwrap()
};
if let Some(slot) = return_slot {
Some(self.builder.build_load(slot, call_name).unwrap())
} else {
result
}
}
/// Helper function for generating a LLVM variable storing a [String].
pub fn gen_string<G, S>(&mut self, generator: &mut G, s: S) -> BasicValueEnum<'ctx>
where
G: CodeGenerator + ?Sized,
S: Into<String>,
{
self.gen_const(generator, &Constant::Str(s.into()), self.primitives.str).unwrap()
}
pub fn raise_exn<G: CodeGenerator + ?Sized>(
&mut self,
generator: &mut G,
name: &str,
msg: BasicValueEnum<'ctx>,
params: [Option<IntValue<'ctx>>; 3],
loc: Location,
) {
let zelf = if let Some(exception_val) = self.exception_val {
exception_val
} else {
let ty = self.get_llvm_type(generator, self.primitives.exception).into_pointer_type();
let zelf_ty: BasicTypeEnum = ty.get_element_type().into_struct_type().into();
let zelf = generator.gen_var_alloc(self, zelf_ty, Some("exn")).unwrap();
*self.exception_val.insert(zelf)
};
let int32 = self.ctx.i32_type();
let zero = int32.const_zero();
unsafe {
let id_ptr = self.builder.build_in_bounds_gep(zelf, &[zero, zero], "exn.id").unwrap();
let id = self.resolver.get_string_id(name);
self.builder.build_store(id_ptr, int32.const_int(id as u64, false)).unwrap();
let ptr = self
.builder
.build_in_bounds_gep(zelf, &[zero, int32.const_int(5, false)], "exn.msg")
.unwrap();
self.builder.build_store(ptr, msg).unwrap();
let i64_zero = self.ctx.i64_type().const_zero();
for (i, attr_ind) in [6, 7, 8].iter().enumerate() {
let ptr = self
.builder
.build_in_bounds_gep(
zelf,
&[zero, int32.const_int(*attr_ind, false)],
"exn.param",
)
.unwrap();
let val = params[i].map_or(i64_zero, |v| {
self.builder.build_int_s_extend(v, self.ctx.i64_type(), "sext").unwrap()
});
self.builder.build_store(ptr, val).unwrap();
}
}
gen_raise(generator, self, Some(&zelf.into()), loc);
}
pub fn make_assert<G: CodeGenerator + ?Sized>(
&mut self,
generator: &mut G,
cond: IntValue<'ctx>,
err_name: &str,
err_msg: &str,
params: [Option<IntValue<'ctx>>; 3],
loc: Location,
) {
let err_msg = self.gen_string(generator, err_msg);
self.make_assert_impl(generator, cond, err_name, err_msg, params, loc);
}
pub fn make_assert_impl<G: CodeGenerator + ?Sized>(
&mut self,
generator: &mut G,
cond: IntValue<'ctx>,
err_name: &str,
err_msg: BasicValueEnum<'ctx>,
params: [Option<IntValue<'ctx>>; 3],
loc: Location,
) {
let i1 = self.ctx.bool_type();
let i1_true = i1.const_all_ones();
// we assume that the condition is most probably true, so the normal path is the most
// probable path
// even if this assumption is violated, it does not matter as exception unwinding is
// slow anyway...
let cond = call_expect(self, cond, i1_true, Some("expect"));
let current_bb = self.builder.get_insert_block().unwrap();
let current_fun = current_bb.get_parent().unwrap();
let then_block = self.ctx.insert_basic_block_after(current_bb, "succ");
let exn_block = self.ctx.append_basic_block(current_fun, "fail");
self.builder.build_conditional_branch(cond, then_block, exn_block).unwrap();
self.builder.position_at_end(exn_block);
self.raise_exn(generator, err_name, err_msg, params, loc);
self.builder.position_at_end(then_block);
}
}
/// See [`CodeGenerator::gen_constructor`].
pub fn gen_constructor<'ctx, 'a, G: CodeGenerator>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, 'a>,
signature: &FunSignature,
def: &TopLevelDef,
params: Vec<(Option<StrRef>, ValueEnum<'ctx>)>,
) -> Result<BasicValueEnum<'ctx>, String> {
let TopLevelDef::Class { methods, .. } = def else { unreachable!() };
// TODO: what about other fields that require alloca?
let fun_id = methods.iter().find(|method| method.0 == "__init__".into()).map(|method| method.2);
let ty = ctx.get_llvm_type(generator, signature.ret).into_pointer_type();
let zelf_ty: BasicTypeEnum = ty.get_element_type().try_into().unwrap();
let zelf: BasicValueEnum<'ctx> =
ctx.builder.build_alloca(zelf_ty, "alloca").map(Into::into).unwrap();
// call `__init__` if there is one
if let Some(fun_id) = fun_id {
let mut sign = signature.clone();
sign.ret = ctx.primitives.none;
generator.gen_call(ctx, Some((signature.ret, zelf.into())), (&sign, fun_id), params)?;
}
Ok(zelf)
}
/// See [`CodeGenerator::gen_func_instance`].
pub fn gen_func_instance<'ctx>(
ctx: &mut CodeGenContext<'ctx, '_>,
obj: &Option<(Type, ValueEnum<'ctx>)>,
fun: (&FunSignature, &mut TopLevelDef, String),
id: usize,
) -> Result<String, String> {
let (
sign,
TopLevelDef::Function {
name, instance_to_symbol, instance_to_stmt, var_id, resolver, ..
},
key,
) = fun
else {
unreachable!()
};
if let Some(sym) = instance_to_symbol.get(&key) {
return Ok(sym.clone());
}
let symbol = format!("{}.{}", name, instance_to_symbol.len());
instance_to_symbol.insert(key, symbol.clone());
let mut filter = var_id.clone();
if let Some((obj_ty, _)) = &obj {
if let TypeEnum::TObj { params, .. } = &*ctx.unifier.get_ty(*obj_ty) {
filter.extend(params.keys());
}
}
let key = ctx.get_subst_key(obj.as_ref().map(|a| a.0), sign, Some(&filter));
let instance = instance_to_stmt.get(&key).unwrap();
let mut store = ConcreteTypeStore::new();
let mut cache = HashMap::new();
let subst = sign
.vars
.iter()
.map(|(id, ty)| {
(
*instance.subst.get(id).unwrap(),
store.from_unifier_type(&mut ctx.unifier, &ctx.primitives, *ty, &mut cache),
)
})
.collect();
let mut signature = store.from_signature(&mut ctx.unifier, &ctx.primitives, sign, &mut cache);
if let Some(obj) = &obj {
let zelf = store.from_unifier_type(&mut ctx.unifier, &ctx.primitives, obj.0, &mut cache);
let ConcreteTypeEnum::TFunc { args, .. } = &mut signature else { unreachable!() };
args.insert(0, ConcreteFuncArg { name: "self".into(), ty: zelf, default_value: None });
}
let signature = store.add_cty(signature);
ctx.registry.add_task(CodeGenTask {
symbol_name: symbol.clone(),
body: instance.body.clone(),
resolver: resolver.as_ref().unwrap().clone(),
calls: instance.calls.clone(),
subst,
signature,
store,
unifier_index: instance.unifier_id,
id,
});
Ok(symbol)
}
/// See [`CodeGenerator::gen_call`].
pub fn gen_call<'ctx, G: CodeGenerator>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
obj: Option<(Type, ValueEnum<'ctx>)>,
fun: (&FunSignature, DefinitionId),
params: Vec<(Option<StrRef>, ValueEnum<'ctx>)>,
) -> Result<Option<BasicValueEnum<'ctx>>, String> {
let definition = ctx.top_level.definitions.read().get(fun.1 .0).cloned().unwrap();
let id;
let key;
let param_vals;
let is_extern;
let symbol = {
// make sure this lock guard is dropped at the end of this scope...
let def = definition.read();
match &*def {
TopLevelDef::Function {
instance_to_symbol,
instance_to_stmt,
codegen_callback,
..
} => {
if let Some(callback) = codegen_callback {
return callback.run(ctx, obj, fun, params, generator);
}
is_extern = instance_to_stmt.is_empty();
let old_key = ctx.get_subst_key(obj.as_ref().map(|a| a.0), fun.0, None);
let mut keys = fun.0.args.clone();
let mut mapping = HashMap::new();
for (key, value) in params {
mapping.insert(key.unwrap_or_else(|| keys.remove(0).name), value);
}
// default value handling
for k in keys {
if mapping.get(&k.name).is_some() {
continue;
}
mapping.insert(
k.name,
ctx.gen_symbol_val(generator, &k.default_value.unwrap(), k.ty).into(),
);
}
// reorder the parameters
let mut real_params = fun
.0
.args
.iter()
.map(|arg| (mapping.remove(&arg.name).unwrap(), arg.ty))
.collect_vec();
if let Some(obj) = &obj {
real_params.insert(0, (obj.1.clone(), obj.0));
}
let static_params = real_params
.iter()
.enumerate()
.filter_map(|(i, (v, _))| {
if let ValueEnum::Static(s) = v {
Some((i, s.clone()))
} else {
None
}
})
.collect_vec();
id = {
let ids = static_params
.iter()
.map(|(i, v)| (*i, v.get_unique_identifier()))
.collect_vec();
let mut store = ctx.static_value_store.lock();
if let Some(index) = store.lookup.get(&ids) {
*index
} else {
let length = store.store.len();
store.lookup.insert(ids, length);
store.store.push(static_params.into_iter().collect());
length
}
};
// special case: extern functions
key = if instance_to_stmt.is_empty() {
String::new()
} else {
format!("{id}:{old_key}")
};
param_vals = real_params
.into_iter()
.map(|(p, t)| p.to_basic_value_enum(ctx, generator, t))
.collect::<Result<Vec<_>, String>>()?;
instance_to_symbol.get(&key).cloned().ok_or_else(String::new)
}
TopLevelDef::Class { .. } => {
return Ok(Some(generator.gen_constructor(ctx, fun.0, &def, params)?))
}
}
}
.or_else(|_: String| {
generator.gen_func_instance(ctx, obj.clone(), (fun.0, &mut *definition.write(), key), id)
})?;
let fun_val = ctx.module.get_function(&symbol).unwrap_or_else(|| {
let mut args = fun.0.args.clone();
if let Some(obj) = &obj {
args.insert(0, FuncArg { name: "self".into(), ty: obj.0, default_value: None });
}
let ret_type = if ctx.unifier.unioned(fun.0.ret, ctx.primitives.none) {
None
} else {
Some(ctx.get_llvm_abi_type(generator, fun.0.ret))
};
let has_sret = ret_type.map_or(false, |ret_type| need_sret(ret_type));
let mut byrefs = Vec::new();
let mut params = args
.iter()
.enumerate()
.map(|(i, arg)| {
match ctx.get_llvm_abi_type(generator, arg.ty) {
BasicTypeEnum::StructType(ty) if is_extern => {
byrefs.push((i, ty));
ty.ptr_type(AddressSpace::default()).into()
}
x => x,
}
.into()
})
.collect_vec();
if has_sret {
params.insert(0, ret_type.unwrap().ptr_type(AddressSpace::default()).into());
}
let fun_ty = match ret_type {
Some(ret_type) if !has_sret => ret_type.fn_type(&params, false),
_ => ctx.ctx.void_type().fn_type(&params, false),
};
let fun_val = ctx.module.add_function(&symbol, fun_ty, None);
let offset = if has_sret {
fun_val.add_attribute(
AttributeLoc::Param(0),
ctx.ctx.create_type_attribute(
Attribute::get_named_enum_kind_id("sret"),
ret_type.unwrap().as_any_type_enum(),
),
);
1
} else {
0
};
// The attribute ID used to mark arguments of a structure type.
// Structure-Typed parameters of extern functions must **not** be marked as `byval`, as
// `byval` explicitly specifies that the argument is to be passed on the stack, which breaks
// on most ABIs where the first several arguments are expected to be passed in registers.
let passing_attr_id =
Attribute::get_named_enum_kind_id(if is_extern { "byref" } else { "byval" });
for (i, ty) in byrefs {
fun_val.add_attribute(
AttributeLoc::Param((i as u32) + offset),
ctx.ctx.create_type_attribute(passing_attr_id, ty.as_any_type_enum()),
);
}
fun_val
});
// Convert boolean parameter values into i1
let param_vals = fun_val
.get_params()
.iter()
.zip(param_vals)
.map(|(p, v)| {
if p.is_int_value() && v.is_int_value() {
let expected_ty = p.into_int_value().get_type();
let param_val = v.into_int_value();
if expected_ty.get_bit_width() == 1 && param_val.get_type().get_bit_width() != 1 {
generator.bool_to_i1(ctx, param_val)
} else {
param_val
}
.into()
} else {
v
}
})
.collect_vec();
Ok(ctx.build_call_or_invoke(fun_val, &param_vals, "call"))
}
/// Generates three LLVM variables representing the start, stop, and step values of a [range] class
/// respectively.
pub fn destructure_range<'ctx>(
ctx: &mut CodeGenContext<'ctx, '_>,
range: RangeValue<'ctx>,
) -> (IntValue<'ctx>, IntValue<'ctx>, IntValue<'ctx>) {
let start = range.load_start(ctx, None);
let end = range.load_end(ctx, None);
let step = range.load_step(ctx, None);
(start, end, step)
}
/// Allocates a List structure with the given [type][ty] and [length]. The name of the resulting
/// LLVM value is `{name}.addr`, or `list.addr` if [name] is not specified.
///
/// Returns an instance of [`PointerValue`] pointing to the List structure. The List structure is
/// defined as `type { ty*, size_t }` in LLVM, where the first element stores the pointer to the
/// data, and the second element stores the size of the List.
pub fn allocate_list<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ty: BasicTypeEnum<'ctx>,
length: IntValue<'ctx>,
name: Option<&str>,
) -> ListValue<'ctx> {
let size_t = generator.get_size_type(ctx.ctx);
// List structure; type { ty*, size_t }
let arr_ty =
ctx.ctx.struct_type(&[ty.ptr_type(AddressSpace::default()).into(), size_t.into()], false);
let arr_str_ptr = ctx
.builder
.build_alloca(arr_ty, format!("{}.addr", name.unwrap_or("list")).as_str())
.unwrap();
let list = ListValue::from_ptr_val(arr_str_ptr, size_t, Some("list"));
let length = ctx.builder.build_int_z_extend(length, size_t, "").unwrap();
list.store_size(ctx, generator, length);
list.create_data(ctx, ty, None);
list
}
/// Generates LLVM IR for a [list comprehension expression][expr].
pub fn gen_comprehension<'ctx, G: CodeGenerator>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
expr: &Expr<Option<Type>>,
) -> Result<Option<BasicValueEnum<'ctx>>, String> {
let ExprKind::ListComp { elt, generators } = &expr.node else { unreachable!() };
let current = ctx.builder.get_insert_block().unwrap().get_parent().unwrap();
let init_bb = ctx.ctx.append_basic_block(current, "listcomp.init");
let test_bb = ctx.ctx.append_basic_block(current, "listcomp.test");
let body_bb = ctx.ctx.append_basic_block(current, "listcomp.body");
let cont_bb = ctx.ctx.append_basic_block(current, "listcomp.cont");
ctx.builder.build_unconditional_branch(init_bb).unwrap();
ctx.builder.position_at_end(init_bb);
let Comprehension { target, iter, ifs, .. } = &generators[0];
let iter_val = if let Some(v) = generator.gen_expr(ctx, iter)? {
v.to_basic_value_enum(ctx, generator, iter.custom.unwrap())?
} else {
for bb in [test_bb, body_bb, cont_bb] {
ctx.builder.position_at_end(bb);
ctx.builder.build_unreachable().unwrap();
}
return Ok(None);
};
let int32 = ctx.ctx.i32_type();
let size_t = generator.get_size_type(ctx.ctx);
let zero_size_t = size_t.const_zero();
let zero_32 = int32.const_zero();
let index = generator.gen_var_alloc(ctx, size_t.into(), Some("index.addr"))?;
ctx.builder.build_store(index, zero_size_t).unwrap();
let elem_ty = ctx.get_llvm_type(generator, elt.custom.unwrap());
let is_range = ctx.unifier.unioned(iter.custom.unwrap(), ctx.primitives.range);
let list;
let list_content;
if is_range {
let iter_val = RangeValue::from_ptr_val(iter_val.into_pointer_value(), Some("range"));
let (start, stop, step) = destructure_range(ctx, iter_val);
let diff = ctx.builder.build_int_sub(stop, start, "diff").unwrap();
// add 1 to the length as the value is rounded to zero
// the length may be 1 more than the actual length if the division is exact, but the
// length is a upper bound only anyway so it does not matter.
let length = ctx.builder.build_int_signed_div(diff, step, "div").unwrap();
let length = ctx.builder.build_int_add(length, int32.const_int(1, false), "add1").unwrap();
// in case length is non-positive
let is_valid =
ctx.builder.build_int_compare(IntPredicate::SGT, length, zero_32, "check").unwrap();
let list_alloc_size = ctx
.builder
.build_select(
is_valid,
ctx.builder.build_int_z_extend_or_bit_cast(length, size_t, "z_ext_len").unwrap(),
zero_size_t,
"listcomp.alloc_size",
)
.unwrap();
list = allocate_list(
generator,
ctx,
elem_ty,
list_alloc_size.into_int_value(),
Some("listcomp.addr"),
);
list_content = list.data().base_ptr(ctx, generator);
let i = generator.gen_store_target(ctx, target, Some("i.addr"))?.unwrap();
ctx.builder
.build_store(i, ctx.builder.build_int_sub(start, step, "start_init").unwrap())
.unwrap();
ctx.builder
.build_conditional_branch(gen_in_range_check(ctx, start, stop, step), test_bb, cont_bb)
.unwrap();
ctx.builder.position_at_end(test_bb);
// add and test
let tmp = ctx
.builder
.build_int_add(
ctx.builder.build_load(i, "i").map(BasicValueEnum::into_int_value).unwrap(),
step,
"start_loop",
)
.unwrap();
ctx.builder.build_store(i, tmp).unwrap();
ctx.builder
.build_conditional_branch(gen_in_range_check(ctx, tmp, stop, step), body_bb, cont_bb)
.unwrap();
ctx.builder.position_at_end(body_bb);
} else {
let length = ctx
.build_gep_and_load(
iter_val.into_pointer_value(),
&[zero_size_t, int32.const_int(1, false)],
Some("length"),
)
.into_int_value();
list = allocate_list(generator, ctx, elem_ty, length, Some("listcomp"));
list_content = list.data().base_ptr(ctx, generator);
let counter = generator.gen_var_alloc(ctx, size_t.into(), Some("counter.addr"))?;
// counter = -1
ctx.builder.build_store(counter, size_t.const_int(u64::MAX, true)).unwrap();
ctx.builder.build_unconditional_branch(test_bb).unwrap();
ctx.builder.position_at_end(test_bb);
let tmp = ctx.builder.build_load(counter, "i").map(BasicValueEnum::into_int_value).unwrap();
let tmp = ctx.builder.build_int_add(tmp, size_t.const_int(1, false), "inc").unwrap();
ctx.builder.build_store(counter, tmp).unwrap();
let cmp = ctx.builder.build_int_compare(IntPredicate::SLT, tmp, length, "cmp").unwrap();
ctx.builder.build_conditional_branch(cmp, body_bb, cont_bb).unwrap();
ctx.builder.position_at_end(body_bb);
let arr_ptr = ctx
.build_gep_and_load(
iter_val.into_pointer_value(),
&[zero_size_t, zero_32],
Some("arr.addr"),
)
.into_pointer_value();
let val = ctx.build_gep_and_load(arr_ptr, &[tmp], Some("val"));
generator.gen_assign(ctx, target, val.into())?;
}
// Emits the content of `cont_bb`
let emit_cont_bb =
|ctx: &CodeGenContext<'ctx, '_>, generator: &dyn CodeGenerator, list: ListValue<'ctx>| {
ctx.builder.position_at_end(cont_bb);
list.store_size(
ctx,
generator,
ctx.builder.build_load(index, "index").map(BasicValueEnum::into_int_value).unwrap(),
);
};
for cond in ifs {
let result = if let Some(v) = generator.gen_expr(ctx, cond)? {
v.to_basic_value_enum(ctx, generator, cond.custom.unwrap())?.into_int_value()
} else {
// Bail if the predicate is an ellipsis - Emit cont_bb contents in case the
// no element matches the predicate
emit_cont_bb(ctx, generator, list);
return Ok(None);
};
let result = generator.bool_to_i1(ctx, result);
let succ = ctx.ctx.append_basic_block(current, "then");
ctx.builder.build_conditional_branch(result, succ, test_bb).unwrap();
ctx.builder.position_at_end(succ);
}
let Some(elem) = generator.gen_expr(ctx, elt)? else {
// Similarly, bail if the generator expression is an ellipsis, but keep cont_bb contents
emit_cont_bb(ctx, generator, list);
return Ok(None);
};
let i = ctx.builder.build_load(index, "i").map(BasicValueEnum::into_int_value).unwrap();
let elem_ptr = unsafe { ctx.builder.build_gep(list_content, &[i], "elem_ptr") }.unwrap();
let val = elem.to_basic_value_enum(ctx, generator, elt.custom.unwrap())?;
ctx.builder.build_store(elem_ptr, val).unwrap();
ctx.builder
.build_store(
index,
ctx.builder.build_int_add(i, size_t.const_int(1, false), "inc").unwrap(),
)
.unwrap();
ctx.builder.build_unconditional_branch(test_bb).unwrap();
emit_cont_bb(ctx, generator, list);
Ok(Some(list.as_base_value().into()))
}
/// Generates LLVM IR for a binary operator expression using the [`Type`] and
/// [LLVM value][`BasicValueEnum`] of the operands.
pub fn gen_binop_expr_with_values<'ctx, G: CodeGenerator>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
left: (&Option<Type>, BasicValueEnum<'ctx>),
op: Operator,
right: (&Option<Type>, BasicValueEnum<'ctx>),
loc: Location,
is_aug_assign: bool,
) -> Result<Option<ValueEnum<'ctx>>, String> {
let (left_ty, left_val) = left;
let (right_ty, right_val) = right;
let ty1 = ctx.unifier.get_representative(left_ty.unwrap());
let ty2 = ctx.unifier.get_representative(right_ty.unwrap());
// we can directly compare the types, because we've got their representatives
// which would be unchanged until further unification, which we would never do
// when doing code generation for function instances
if ty1 == ty2 && [ctx.primitives.int32, ctx.primitives.int64].contains(&ty1) {
Ok(Some(ctx.gen_int_ops(generator, op, left_val, right_val, true).into()))
} else if ty1 == ty2 && [ctx.primitives.uint32, ctx.primitives.uint64].contains(&ty1) {
Ok(Some(ctx.gen_int_ops(generator, op, left_val, right_val, false).into()))
} else if [Operator::LShift, Operator::RShift].contains(&op) {
let signed = [ctx.primitives.int32, ctx.primitives.int64].contains(&ty1);
Ok(Some(ctx.gen_int_ops(generator, op, left_val, right_val, signed).into()))
} else if ty1 == ty2 && ctx.primitives.float == ty1 {
Ok(Some(ctx.gen_float_ops(op, left_val, right_val).into()))
} else if ty1 == ctx.primitives.float && ty2 == ctx.primitives.int32 {
// Pow is the only operator that would pass typecheck between float and int
assert_eq!(op, Operator::Pow);
let res = call_float_powi(
ctx,
left_val.into_float_value(),
right_val.into_int_value(),
Some("f_pow_i"),
);
Ok(Some(res.into()))
} else if ty1.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id())
|| ty2.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id())
{
let llvm_usize = generator.get_size_type(ctx.ctx);
let is_ndarray1 = ty1.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id());
let is_ndarray2 = ty2.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id());
if is_ndarray1 && is_ndarray2 {
let (ndarray_dtype1, _) = unpack_ndarray_var_tys(&mut ctx.unifier, ty1);
let (ndarray_dtype2, _) = unpack_ndarray_var_tys(&mut ctx.unifier, ty2);
assert!(ctx.unifier.unioned(ndarray_dtype1, ndarray_dtype2));
let left_val =
NDArrayValue::from_ptr_val(left_val.into_pointer_value(), llvm_usize, None);
let right_val =
NDArrayValue::from_ptr_val(right_val.into_pointer_value(), llvm_usize, None);
let res = if op == Operator::MatMult {
// MatMult is the only binop which is not an elementwise op
numpy::ndarray_matmul_2d(
generator,
ctx,
ndarray_dtype1,
if is_aug_assign { Some(left_val) } else { None },
left_val,
right_val,
)?
} else {
numpy::ndarray_elementwise_binop_impl(
generator,
ctx,
ndarray_dtype1,
if is_aug_assign { Some(left_val) } else { None },
(left_val.as_base_value().into(), false),
(right_val.as_base_value().into(), false),
|generator, ctx, (lhs, rhs)| {
gen_binop_expr_with_values(
generator,
ctx,
(&Some(ndarray_dtype1), lhs),
op,
(&Some(ndarray_dtype2), rhs),
ctx.current_loc,
is_aug_assign,
)?
.unwrap()
.to_basic_value_enum(
ctx,
generator,
ndarray_dtype1,
)
},
)?
};
Ok(Some(res.as_base_value().into()))
} else {
let (ndarray_dtype, _) =
unpack_ndarray_var_tys(&mut ctx.unifier, if is_ndarray1 { ty1 } else { ty2 });
let ndarray_val = NDArrayValue::from_ptr_val(
if is_ndarray1 { left_val } else { right_val }.into_pointer_value(),
llvm_usize,
None,
);
let res = numpy::ndarray_elementwise_binop_impl(
generator,
ctx,
ndarray_dtype,
if is_aug_assign { Some(ndarray_val) } else { None },
(left_val, !is_ndarray1),
(right_val, !is_ndarray2),
|generator, ctx, (lhs, rhs)| {
gen_binop_expr_with_values(
generator,
ctx,
(&Some(ndarray_dtype), lhs),
op,
(&Some(ndarray_dtype), rhs),
ctx.current_loc,
is_aug_assign,
)?
.unwrap()
.to_basic_value_enum(ctx, generator, ndarray_dtype)
},
)?;
Ok(Some(res.as_base_value().into()))
}
} else {
let left_ty_enum = ctx.unifier.get_ty_immutable(left_ty.unwrap());
let TypeEnum::TObj { fields, obj_id, .. } = left_ty_enum.as_ref() else {
unreachable!("must be tobj")
};
let (op_name, id) = {
let (binop_name, binop_assign_name) =
(binop_name(op).into(), binop_assign_name(op).into());
// if is aug_assign, try aug_assign operator first
if is_aug_assign && fields.contains_key(&binop_assign_name) {
(binop_assign_name, *obj_id)
} else {
(binop_name, *obj_id)
}
};
let signature = if let Some(call) = ctx.calls.get(&loc.into()) {
ctx.unifier.get_call_signature(*call).unwrap()
} else {
let left_enum_ty = ctx.unifier.get_ty_immutable(left_ty.unwrap());
let TypeEnum::TObj { fields, .. } = left_enum_ty.as_ref() else {
unreachable!("must be tobj")
};
let fn_ty = fields.get(&op_name).unwrap().0;
let fn_ty_enum = ctx.unifier.get_ty_immutable(fn_ty);
let TypeEnum::TFunc(sig) = fn_ty_enum.as_ref() else { unreachable!() };
sig.clone()
};
let fun_id = {
let defs = ctx.top_level.definitions.read();
let obj_def = defs.get(id.0).unwrap().read();
let TopLevelDef::Class { methods, .. } = &*obj_def else { unreachable!() };
methods.iter().find(|method| method.0 == op_name).unwrap().2
};
generator
.gen_call(
ctx,
Some((left_ty.unwrap(), left_val.into())),
(&signature, fun_id),
vec![(None, right_val.into())],
)
.map(|f| f.map(Into::into))
}
}
/// Generates LLVM IR for a binary operator expression.
///
/// * `left` - The left-hand side of the binary operator.
/// * `op` - The operator applied on the operands.
/// * `right` - The right-hand side of the binary operator.
/// * `loc` - The location of the full expression.
/// * `is_aug_assign` - Whether the binary operator expression is also an assignment operator.
pub fn gen_binop_expr<'ctx, G: CodeGenerator>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
left: &Expr<Option<Type>>,
op: Operator,
right: &Expr<Option<Type>>,
loc: Location,
is_aug_assign: bool,
) -> Result<Option<ValueEnum<'ctx>>, String> {
let left_val = if let Some(v) = generator.gen_expr(ctx, left)? {
v.to_basic_value_enum(ctx, generator, left.custom.unwrap())?
} else {
return Ok(None);
};
let right_val = if let Some(v) = generator.gen_expr(ctx, right)? {
v.to_basic_value_enum(ctx, generator, right.custom.unwrap())?
} else {
return Ok(None);
};
gen_binop_expr_with_values(
generator,
ctx,
(&left.custom, left_val),
op,
(&right.custom, right_val),
loc,
is_aug_assign,
)
}
/// Generates LLVM IR for a unary operator expression using the [`Type`] and
/// [LLVM value][`BasicValueEnum`] of the operands.
pub fn gen_unaryop_expr_with_values<'ctx, G: CodeGenerator>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
op: ast::Unaryop,
operand: (&Option<Type>, BasicValueEnum<'ctx>),
) -> Result<Option<ValueEnum<'ctx>>, String> {
let (ty, val) = operand;
let ty = ctx.unifier.get_representative(ty.unwrap());
Ok(Some(if ty == ctx.primitives.bool {
let val = val.into_int_value();
if op == ast::Unaryop::Not {
let not = ctx.builder.build_not(val, "not").unwrap();
let not_bool =
ctx.builder.build_and(not, not.get_type().const_int(1, false), "").unwrap();
not_bool.into()
} else {
let llvm_i32 = ctx.ctx.i32_type();
gen_unaryop_expr_with_values(
generator,
ctx,
op,
(
&Some(ctx.primitives.int32),
ctx.builder.build_int_z_extend(val, llvm_i32, "").map(Into::into).unwrap(),
),
)?
.unwrap()
}
} else if [
ctx.primitives.int32,
ctx.primitives.int64,
ctx.primitives.uint32,
ctx.primitives.uint64,
]
.contains(&ty)
{
let val = val.into_int_value();
match op {
ast::Unaryop::USub => ctx.builder.build_int_neg(val, "neg").map(Into::into).unwrap(),
ast::Unaryop::Invert => ctx.builder.build_not(val, "not").map(Into::into).unwrap(),
ast::Unaryop::Not => ctx
.builder
.build_xor(val, val.get_type().const_all_ones(), "not")
.map(Into::into)
.unwrap(),
ast::Unaryop::UAdd => val.into(),
}
} else if ty == ctx.primitives.float {
let val = val.into_float_value();
match op {
ast::Unaryop::USub => ctx.builder.build_float_neg(val, "neg").map(Into::into).unwrap(),
ast::Unaryop::Not => ctx
.builder
.build_float_compare(
inkwell::FloatPredicate::OEQ,
val,
val.get_type().const_zero(),
"not",
)
.map(Into::into)
.unwrap(),
_ => val.into(),
}
} else if ty.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id()) {
let llvm_usize = generator.get_size_type(ctx.ctx);
let (ndarray_dtype, _) = unpack_ndarray_var_tys(&mut ctx.unifier, ty);
let val = NDArrayValue::from_ptr_val(val.into_pointer_value(), llvm_usize, None);
// ndarray uses `~` rather than `not` to perform elementwise inversion, convert it before
// passing it to the elementwise codegen function
let op = if ndarray_dtype.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::Bool.id()) {
if op == ast::Unaryop::Invert {
ast::Unaryop::Not
} else {
unreachable!("ufunc {} not supported for ndarray[bool, N]", unaryop_name(op))
}
} else {
op
};
let res = numpy::ndarray_elementwise_unaryop_impl(
generator,
ctx,
ndarray_dtype,
None,
val,
|generator, ctx, val| {
gen_unaryop_expr_with_values(generator, ctx, op, (&Some(ndarray_dtype), val))?
.unwrap()
.to_basic_value_enum(ctx, generator, ndarray_dtype)
},
)?;
res.as_base_value().into()
} else {
unimplemented!()
}))
}
/// Generates LLVM IR for a unary operator expression.
///
/// * `op` - The operator applied on the operand.
/// * `operand` - The unary operand.
pub fn gen_unaryop_expr<'ctx, G: CodeGenerator>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
op: ast::Unaryop,
operand: &Expr<Option<Type>>,
) -> Result<Option<ValueEnum<'ctx>>, String> {
let val = if let Some(v) = generator.gen_expr(ctx, operand)? {
v.to_basic_value_enum(ctx, generator, operand.custom.unwrap())?
} else {
return Ok(None);
};
gen_unaryop_expr_with_values(generator, ctx, op, (&operand.custom, val))
}
/// Generates LLVM IR for a comparison operator expression using the [`Type`] and
/// [LLVM value][`BasicValueEnum`] of the operands.
pub fn gen_cmpop_expr_with_values<'ctx, G: CodeGenerator>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
left: (Option<Type>, BasicValueEnum<'ctx>),
ops: &[ast::Cmpop],
comparators: &[(Option<Type>, BasicValueEnum<'ctx>)],
) -> Result<Option<ValueEnum<'ctx>>, String> {
debug_assert_eq!(comparators.len(), ops.len());
if comparators.len() == 1 {
let left_ty = ctx.unifier.get_representative(left.0.unwrap());
let right_ty = ctx.unifier.get_representative(comparators[0].0.unwrap());
if left_ty.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id())
|| right_ty.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id())
{
let llvm_usize = generator.get_size_type(ctx.ctx);
let (Some(left_ty), lhs) = left else { unreachable!() };
let (Some(right_ty), rhs) = comparators[0] else { unreachable!() };
let op = ops[0];
let is_ndarray1 =
left_ty.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id());
let is_ndarray2 =
right_ty.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id());
return if is_ndarray1 && is_ndarray2 {
let (ndarray_dtype1, _) = unpack_ndarray_var_tys(&mut ctx.unifier, left_ty);
let (ndarray_dtype2, _) = unpack_ndarray_var_tys(&mut ctx.unifier, right_ty);
assert!(ctx.unifier.unioned(ndarray_dtype1, ndarray_dtype2));
let left_val =
NDArrayValue::from_ptr_val(lhs.into_pointer_value(), llvm_usize, None);
let res = numpy::ndarray_elementwise_binop_impl(
generator,
ctx,
ctx.primitives.bool,
None,
(left_val.as_base_value().into(), false),
(rhs, false),
|generator, ctx, (lhs, rhs)| {
let val = gen_cmpop_expr_with_values(
generator,
ctx,
(Some(ndarray_dtype1), lhs),
&[op],
&[(Some(ndarray_dtype2), rhs)],
)?
.unwrap()
.to_basic_value_enum(
ctx,
generator,
ctx.primitives.bool,
)?;
Ok(generator.bool_to_i8(ctx, val.into_int_value()).into())
},
)?;
Ok(Some(res.as_base_value().into()))
} else {
let (ndarray_dtype, _) = unpack_ndarray_var_tys(
&mut ctx.unifier,
if is_ndarray1 { left_ty } else { right_ty },
);
let res = numpy::ndarray_elementwise_binop_impl(
generator,
ctx,
ctx.primitives.bool,
None,
(lhs, !is_ndarray1),
(rhs, !is_ndarray2),
|generator, ctx, (lhs, rhs)| {
let val = gen_cmpop_expr_with_values(
generator,
ctx,
(Some(ndarray_dtype), lhs),
&[op],
&[(Some(ndarray_dtype), rhs)],
)?
.unwrap()
.to_basic_value_enum(
ctx,
generator,
ctx.primitives.bool,
)?;
Ok(generator.bool_to_i8(ctx, val.into_int_value()).into())
},
)?;
Ok(Some(res.as_base_value().into()))
};
}
}
let cmp_val = izip!(chain(once(&left), comparators.iter()), comparators.iter(), ops.iter(),)
.fold(Ok(None), |prev: Result<Option<_>, String>, (lhs, rhs, op)| {
let (left_ty, lhs) = lhs;
let (right_ty, rhs) = rhs;
let left_ty = ctx.unifier.get_representative(left_ty.unwrap());
let right_ty = ctx.unifier.get_representative(right_ty.unwrap());
let current = if [
ctx.primitives.int32,
ctx.primitives.int64,
ctx.primitives.uint32,
ctx.primitives.uint64,
ctx.primitives.bool,
]
.contains(&left_ty)
{
assert!(ctx.unifier.unioned(left_ty, right_ty));
let use_unsigned_ops =
[ctx.primitives.uint32, ctx.primitives.uint64].contains(&left_ty);
let lhs = lhs.into_int_value();
let rhs = rhs.into_int_value();
let op = match op {
ast::Cmpop::Eq | ast::Cmpop::Is => IntPredicate::EQ,
ast::Cmpop::NotEq => IntPredicate::NE,
_ if left_ty == ctx.primitives.bool => unreachable!(),
ast::Cmpop::Lt => {
if use_unsigned_ops {
IntPredicate::ULT
} else {
IntPredicate::SLT
}
}
ast::Cmpop::LtE => {
if use_unsigned_ops {
IntPredicate::ULE
} else {
IntPredicate::SLE
}
}
ast::Cmpop::Gt => {
if use_unsigned_ops {
IntPredicate::UGT
} else {
IntPredicate::SGT
}
}
ast::Cmpop::GtE => {
if use_unsigned_ops {
IntPredicate::UGE
} else {
IntPredicate::SGE
}
}
_ => unreachable!(),
};
ctx.builder.build_int_compare(op, lhs, rhs, "cmp").unwrap()
} else if left_ty == ctx.primitives.float {
assert!(ctx.unifier.unioned(left_ty, right_ty));
let lhs = lhs.into_float_value();
let rhs = rhs.into_float_value();
let op = match op {
ast::Cmpop::Eq | ast::Cmpop::Is => inkwell::FloatPredicate::OEQ,
ast::Cmpop::NotEq => inkwell::FloatPredicate::ONE,
ast::Cmpop::Lt => inkwell::FloatPredicate::OLT,
ast::Cmpop::LtE => inkwell::FloatPredicate::OLE,
ast::Cmpop::Gt => inkwell::FloatPredicate::OGT,
ast::Cmpop::GtE => inkwell::FloatPredicate::OGE,
_ => unreachable!(),
};
ctx.builder.build_float_compare(op, lhs, rhs, "cmp").unwrap()
} else {
unimplemented!()
};
Ok(prev?.map(|v| ctx.builder.build_and(v, current, "cmp").unwrap()).or(Some(current)))
})?;
Ok(Some(match cmp_val {
Some(v) => v.into(),
None => return Ok(None),
}))
}
/// Generates LLVM IR for a comparison operator expression.
///
/// * `left` - The left-hand side of the comparison operator.
/// * `ops` - The (possibly chained) operators applied on the operands.
/// * `comparators` - The right-hand side of the binary operator.
pub fn gen_cmpop_expr<'ctx, G: CodeGenerator>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
left: &Expr<Option<Type>>,
ops: &[ast::Cmpop],
comparators: &[Expr<Option<Type>>],
) -> Result<Option<ValueEnum<'ctx>>, String> {
let left_val = if let Some(v) = generator.gen_expr(ctx, left)? {
v.to_basic_value_enum(ctx, generator, left.custom.unwrap())?
} else {
return Ok(None);
};
let comparator_vals = comparators
.iter()
.map(|cmptor| {
Ok(if let Some(v) = generator.gen_expr(ctx, cmptor)? {
Some((
cmptor.custom,
v.to_basic_value_enum(ctx, generator, cmptor.custom.unwrap())?,
))
} else {
None
})
})
.take_while(|v| if let Ok(v) = v { v.is_some() } else { true })
.collect::<Result<Vec<_>, String>>()?;
let comparator_vals = if comparator_vals.len() == comparators.len() {
comparator_vals.into_iter().map(Option::unwrap).collect_vec()
} else {
return Ok(None);
};
gen_cmpop_expr_with_values(
generator,
ctx,
(left.custom, left_val),
ops,
comparator_vals.as_slice(),
)
}
/// Generates code for a subscript expression on an `ndarray`.
///
/// * `ty` - The `Type` of the `NDArray` elements.
/// * `ndims` - The `Type` of the `NDArray` number-of-dimensions `Literal`.
/// * `v` - The `NDArray` value.
/// * `slice` - The slice expression used to subscript into the `ndarray`.
fn gen_ndarray_subscript_expr<'ctx, G: CodeGenerator>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ty: Type,
ndims: Type,
v: NDArrayValue<'ctx>,
slice: &Expr<Option<Type>>,
) -> Result<Option<ValueEnum<'ctx>>, String> {
let llvm_i1 = ctx.ctx.bool_type();
let llvm_i32 = ctx.ctx.i32_type();
let llvm_usize = generator.get_size_type(ctx.ctx);
let TypeEnum::TLiteral { values, .. } = &*ctx.unifier.get_ty_immutable(ndims) else {
unreachable!()
};
let ndims = values
.iter()
.map(|ndim| match *ndim {
SymbolValue::U64(v) => Ok(v),
SymbolValue::U32(v) => Ok(u64::from(v)),
SymbolValue::I32(v) => u64::try_from(v)
.map_err(|_| format!("Expected non-negative literal for ndarray.ndims, got {v}")),
SymbolValue::I64(v) => u64::try_from(v)
.map_err(|_| format!("Expected non-negative literal for ndarray.ndims, got {v}")),
_ => unreachable!(),
})
.collect::<Result<Vec<_>, _>>()?;
assert!(!ndims.is_empty());
let ndarray_ndims_ty = ctx
.unifier
.get_fresh_literal(ndims.iter().map(|v| SymbolValue::U64(v - 1)).collect(), None);
let ndarray_ty =
make_ndarray_ty(&mut ctx.unifier, &ctx.primitives, Some(ty), Some(ndarray_ndims_ty));
let llvm_pndarray_t = ctx.get_llvm_type(generator, ndarray_ty).into_pointer_type();
let llvm_ndarray_t = llvm_pndarray_t.get_element_type().into_struct_type();
let llvm_ndarray_data_t = ctx.get_llvm_type(generator, ty).as_basic_type_enum();
// Check that len is non-zero
let len = v.load_ndims(ctx);
ctx.make_assert(
generator,
ctx.builder.build_int_compare(IntPredicate::SGT, len, llvm_usize.const_zero(), "").unwrap(),
"0:IndexError",
"too many indices for array: array is {0}-dimensional but 1 were indexed",
[Some(len), None, None],
slice.location,
);
// Normalizes a possibly-negative index to its corresponding positive index
let normalize_index = |generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
index: IntValue<'ctx>,
dim: u64| {
gen_if_else_expr_callback(
generator,
ctx,
|_, ctx| {
Ok(ctx
.builder
.build_int_compare(IntPredicate::SGE, index, index.get_type().const_zero(), "")
.unwrap())
},
|_, _| Ok(Some(index)),
|generator, ctx| {
let llvm_i32 = ctx.ctx.i32_type();
let len = unsafe {
v.dim_sizes().get_typed_unchecked(
ctx,
generator,
&llvm_usize.const_int(dim, true),
None,
)
};
let index = ctx
.builder
.build_int_add(
len,
ctx.builder.build_int_s_extend(index, llvm_usize, "").unwrap(),
"",
)
.unwrap();
Ok(Some(ctx.builder.build_int_truncate(index, llvm_i32, "").unwrap()))
},
)
.map(|v| v.map(BasicValueEnum::into_int_value))
};
// Converts a slice expression into a slice-range tuple
let expr_to_slice = |generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
node: &ExprKind<Option<Type>>,
dim: u64| {
match node {
ExprKind::Constant { value: Constant::Int(v), .. } => {
let Some(index) =
normalize_index(generator, ctx, llvm_i32.const_int(*v as u64, true), dim)?
else {
return Ok(None);
};
Ok(Some((index, index, llvm_i32.const_int(1, true))))
}
ExprKind::Slice { lower, upper, step } => {
let dim_sz = unsafe {
v.dim_sizes().get_typed_unchecked(
ctx,
generator,
&llvm_usize.const_int(dim, false),
None,
)
};
handle_slice_indices(lower, upper, step, ctx, generator, dim_sz)
}
_ => {
let Some(index) = generator.gen_expr(ctx, slice)? else { return Ok(None) };
let index = index
.to_basic_value_enum(ctx, generator, slice.custom.unwrap())?
.into_int_value();
let Some(index) = normalize_index(generator, ctx, index, dim)? else {
return Ok(None);
};
Ok(Some((index, index, llvm_i32.const_int(1, true))))
}
}
};
Ok(Some(match &slice.node {
ExprKind::Tuple { elts, .. } => {
let slices = elts
.iter()
.enumerate()
.map(|(dim, elt)| expr_to_slice(generator, ctx, &elt.node, dim as u64))
.take_while_inclusive(|slice| slice.as_ref().is_ok_and(Option::is_some))
.collect::<Result<Vec<_>, _>>()?;
if slices.len() < elts.len() {
return Ok(None);
}
let slices = slices.into_iter().map(Option::unwrap).collect_vec();
numpy::ndarray_sliced_copy(generator, ctx, ty, v, &slices)?.as_base_value().into()
}
ExprKind::Slice { .. } => {
let Some(slice) = expr_to_slice(generator, ctx, &slice.node, 0)? else {
return Ok(None);
};
numpy::ndarray_sliced_copy(generator, ctx, ty, v, &[slice])?.as_base_value().into()
}
_ => {
let index = if let Some(index) = generator.gen_expr(ctx, slice)? {
index.to_basic_value_enum(ctx, generator, slice.custom.unwrap())?.into_int_value()
} else {
return Ok(None);
};
let Some(index) = normalize_index(generator, ctx, index, 0)? else { return Ok(None) };
let index_addr = generator.gen_var_alloc(ctx, index.get_type().into(), None)?;
ctx.builder.build_store(index_addr, index).unwrap();
if ndims.len() == 1 && ndims[0] == 1 {
// Accessing an element from a 1-dimensional `ndarray`
return Ok(Some(
v.data()
.get(
ctx,
generator,
&ArraySliceValue::from_ptr_val(
index_addr,
llvm_usize.const_int(1, false),
None,
),
None,
)
.into(),
));
}
// Accessing an element from a multi-dimensional `ndarray`
// Create a new array, remove the top dimension from the dimension-size-list, and copy the
// elements over
let subscripted_ndarray = generator.gen_var_alloc(ctx, llvm_ndarray_t.into(), None)?;
let ndarray = NDArrayValue::from_ptr_val(subscripted_ndarray, llvm_usize, None);
let num_dims = v.load_ndims(ctx);
ndarray.store_ndims(
ctx,
generator,
ctx.builder.build_int_sub(num_dims, llvm_usize.const_int(1, false), "").unwrap(),
);
let ndarray_num_dims = ndarray.load_ndims(ctx);
ndarray.create_dim_sizes(ctx, llvm_usize, ndarray_num_dims);
let ndarray_num_dims = ndarray.load_ndims(ctx);
let v_dims_src_ptr = unsafe {
v.dim_sizes().ptr_offset_unchecked(
ctx,
generator,
&llvm_usize.const_int(1, false),
None,
)
};
call_memcpy_generic(
ctx,
ndarray.dim_sizes().base_ptr(ctx, generator),
v_dims_src_ptr,
ctx.builder
.build_int_mul(ndarray_num_dims, llvm_usize.size_of(), "")
.map(Into::into)
.unwrap(),
llvm_i1.const_zero(),
);
let ndarray_num_elems = call_ndarray_calc_size(
generator,
ctx,
&ndarray.dim_sizes().as_slice_value(ctx, generator),
(None, None),
);
ndarray.create_data(ctx, llvm_ndarray_data_t, ndarray_num_elems);
let v_data_src_ptr = v.data().ptr_offset(
ctx,
generator,
&ArraySliceValue::from_ptr_val(index_addr, llvm_usize.const_int(1, false), None),
None,
);
call_memcpy_generic(
ctx,
ndarray.data().base_ptr(ctx, generator),
v_data_src_ptr,
ctx.builder
.build_int_mul(ndarray_num_elems, llvm_ndarray_data_t.size_of().unwrap(), "")
.map(Into::into)
.unwrap(),
llvm_i1.const_zero(),
);
ndarray.as_base_value().into()
}
}))
}
/// See [`CodeGenerator::gen_expr`].
pub fn gen_expr<'ctx, G: CodeGenerator>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
expr: &Expr<Option<Type>>,
) -> Result<Option<ValueEnum<'ctx>>, String> {
ctx.current_loc = expr.location;
let int32 = ctx.ctx.i32_type();
let usize = generator.get_size_type(ctx.ctx);
let zero = int32.const_int(0, false);
let loc = ctx.debug_info.0.create_debug_location(
ctx.ctx,
ctx.current_loc.row as u32,
ctx.current_loc.column as u32,
ctx.debug_info.2,
None,
);
ctx.builder.set_current_debug_location(loc);
Ok(Some(match &expr.node {
ExprKind::Constant { value, .. } => {
let ty = expr.custom.unwrap();
let Some(const_val) = ctx.gen_const(generator, value, ty) else { return Ok(None) };
const_val.into()
}
ExprKind::Name { id, .. } if id == &"none".into() => {
match (
ctx.unifier.get_ty(expr.custom.unwrap()).as_ref(),
ctx.unifier.get_ty(ctx.primitives.option).as_ref(),
) {
(TypeEnum::TObj { obj_id, params, .. }, TypeEnum::TObj { obj_id: opt_id, .. })
if *obj_id == *opt_id =>
{
ctx.get_llvm_type(generator, *params.iter().next().unwrap().1)
.ptr_type(AddressSpace::default())
.const_null()
.into()
}
_ => unreachable!("must be option type"),
}
}
ExprKind::Name { id, .. } => match ctx.var_assignment.get(id) {
Some((ptr, None, _)) => {
ctx.builder.build_load(*ptr, id.to_string().as_str()).map(Into::into).unwrap()
}
Some((_, Some(static_value), _)) => ValueEnum::Static(static_value.clone()),
None => {
let resolver = ctx.resolver.clone();
resolver.get_symbol_value(*id, ctx).unwrap()
}
},
ExprKind::List { elts, .. } => {
// this shall be optimized later for constant primitive lists...
// we should use memcpy for that instead of generating thousands of stores
let elements = elts
.iter()
.map(|x| generator.gen_expr(ctx, x))
.take_while(|v| !matches!(v, Ok(None)))
.collect::<Result<Vec<_>, _>>()?;
let elements = elements
.into_iter()
.zip(elts)
.map(|(v, x)| v.unwrap().to_basic_value_enum(ctx, generator, x.custom.unwrap()))
.collect::<Result<Vec<_>, _>>()?;
if elements.len() < elts.len() {
return Ok(None);
}
let ty = if elements.is_empty() {
let TypeEnum::TList { ty } = &*ctx.unifier.get_ty(expr.custom.unwrap()) else {
unreachable!()
};
ctx.get_llvm_type(generator, *ty)
} else {
elements[0].get_type()
};
let length = generator.get_size_type(ctx.ctx).const_int(elements.len() as u64, false);
let arr_str_ptr = allocate_list(generator, ctx, ty, length, Some("list"));
let arr_ptr = arr_str_ptr.data();
for (i, v) in elements.iter().enumerate() {
let elem_ptr = arr_ptr.ptr_offset(
ctx,
generator,
&usize.const_int(i as u64, false),
Some("elem_ptr"),
);
ctx.builder.build_store(elem_ptr, *v).unwrap();
}
arr_str_ptr.as_base_value().into()
}
ExprKind::Tuple { elts, .. } => {
let elements_val = elts
.iter()
.map(|x| generator.gen_expr(ctx, x))
.take_while(|v| !matches!(v, Ok(None)))
.collect::<Result<Vec<_>, _>>()?;
let element_val = elements_val
.into_iter()
.zip(elts)
.map(|(v, x)| v.unwrap().to_basic_value_enum(ctx, generator, x.custom.unwrap()))
.collect::<Result<Vec<_>, _>>()?;
if element_val.len() < elts.len() {
return Ok(None);
}
let element_ty = element_val.iter().map(BasicValueEnum::get_type).collect_vec();
let tuple_ty = ctx.ctx.struct_type(&element_ty, false);
let tuple_ptr = ctx.builder.build_alloca(tuple_ty, "tuple").unwrap();
for (i, v) in element_val.into_iter().enumerate() {
unsafe {
let ptr = ctx
.builder
.build_in_bounds_gep(
tuple_ptr,
&[zero, int32.const_int(i as u64, false)],
"ptr",
)
.unwrap();
ctx.builder.build_store(ptr, v).unwrap();
}
}
ctx.builder.build_load(tuple_ptr, "tup_val").map(Into::into).unwrap()
}
ExprKind::Attribute { value, attr, .. } => {
// note that we would handle class methods directly in calls
match generator.gen_expr(ctx, value)? {
Some(ValueEnum::Static(v)) => v.get_field(*attr, ctx).map_or_else(
|| {
let v = v.to_basic_value_enum(ctx, generator, value.custom.unwrap())?;
let index = ctx.get_attr_index(value.custom.unwrap(), *attr);
Ok(ValueEnum::Dynamic(ctx.build_gep_and_load(
v.into_pointer_value(),
&[zero, int32.const_int(index as u64, false)],
None,
))) as Result<_, String>
},
Ok,
)?,
Some(ValueEnum::Dynamic(v)) => {
let index = ctx.get_attr_index(value.custom.unwrap(), *attr);
ValueEnum::Dynamic(ctx.build_gep_and_load(
v.into_pointer_value(),
&[zero, int32.const_int(index as u64, false)],
None,
))
}
None => return Ok(None),
}
}
ExprKind::BoolOp { op, values } => {
// requires conditional branches for short-circuiting...
let left = if let Some(v) = generator.gen_expr(ctx, &values[0])? {
v.to_basic_value_enum(ctx, generator, values[0].custom.unwrap())?.into_int_value()
} else {
return Ok(None);
};
let left = generator.bool_to_i1(ctx, left);
let current = ctx.builder.get_insert_block().unwrap().get_parent().unwrap();
let a_bb = ctx.ctx.append_basic_block(current, "a");
let b_bb = ctx.ctx.append_basic_block(current, "b");
let cont_bb = ctx.ctx.append_basic_block(current, "cont");
ctx.builder.build_conditional_branch(left, a_bb, b_bb).unwrap();
let (a, b) = match op {
Boolop::Or => {
ctx.builder.position_at_end(a_bb);
let a = ctx.ctx.i8_type().const_int(1, false);
ctx.builder.build_unconditional_branch(cont_bb).unwrap();
ctx.builder.position_at_end(b_bb);
let b = if let Some(v) = generator.gen_expr(ctx, &values[1])? {
let b = v
.to_basic_value_enum(ctx, generator, values[1].custom.unwrap())?
.into_int_value();
let b = generator.bool_to_i8(ctx, b);
ctx.builder.build_unconditional_branch(cont_bb).unwrap();
Some(b)
} else {
None
};
(Some(a), b)
}
Boolop::And => {
ctx.builder.position_at_end(a_bb);
let a = if let Some(v) = generator.gen_expr(ctx, &values[1])? {
let a = v
.to_basic_value_enum(ctx, generator, values[1].custom.unwrap())?
.into_int_value();
let a = generator.bool_to_i8(ctx, a);
ctx.builder.build_unconditional_branch(cont_bb).unwrap();
Some(a)
} else {
None
};
ctx.builder.position_at_end(b_bb);
let b = ctx.ctx.i8_type().const_zero();
ctx.builder.build_unconditional_branch(cont_bb).unwrap();
(a, Some(b))
}
};
ctx.builder.position_at_end(cont_bb);
match (a, b) {
(Some(a), Some(b)) => {
let phi = ctx.builder.build_phi(ctx.ctx.i8_type(), "").unwrap();
phi.add_incoming(&[(&a, a_bb), (&b, b_bb)]);
phi.as_basic_value().into()
}
(Some(a), None) => a.into(),
(None, Some(b)) => b.into(),
(None, None) => unreachable!(),
}
}
ExprKind::BinOp { op, left, right } => {
return gen_binop_expr(generator, ctx, left, *op, right, expr.location, false);
}
ExprKind::UnaryOp { op, operand } => return gen_unaryop_expr(generator, ctx, *op, operand),
ExprKind::Compare { left, ops, comparators } => {
return gen_cmpop_expr(generator, ctx, left, ops, comparators)
}
ExprKind::IfExp { test, body, orelse } => {
let test = match generator.gen_expr(ctx, test)? {
Some(v) => {
v.to_basic_value_enum(ctx, generator, test.custom.unwrap())?.into_int_value()
}
None => return Ok(None),
};
let test = generator.bool_to_i1(ctx, test);
let body_ty = body.custom.unwrap();
let is_none = ctx.unifier.get_representative(body_ty) == ctx.primitives.none;
let result = if is_none {
None
} else {
let llvm_ty = ctx.get_llvm_type(generator, body_ty);
Some(ctx.builder.build_alloca(llvm_ty, "if_exp_result").unwrap())
};
let current = ctx.builder.get_insert_block().unwrap().get_parent().unwrap();
let then_bb = ctx.ctx.append_basic_block(current, "then");
let else_bb = ctx.ctx.append_basic_block(current, "else");
let cont_bb = ctx.ctx.append_basic_block(current, "cont");
ctx.builder.build_conditional_branch(test, then_bb, else_bb).unwrap();
ctx.builder.position_at_end(then_bb);
let a = generator.gen_expr(ctx, body)?;
if let Some(a) = a {
match result {
None => None,
Some(v) => {
let a = a.to_basic_value_enum(ctx, generator, body.custom.unwrap())?;
Some(ctx.builder.build_store(v, a))
}
};
ctx.builder.build_unconditional_branch(cont_bb).unwrap();
}
ctx.builder.position_at_end(else_bb);
let b = generator.gen_expr(ctx, orelse)?;
if let Some(b) = b {
match result {
None => None,
Some(v) => {
let b = b.to_basic_value_enum(ctx, generator, orelse.custom.unwrap())?;
Some(ctx.builder.build_store(v, b))
}
};
ctx.builder.build_unconditional_branch(cont_bb).unwrap();
}
ctx.builder.position_at_end(cont_bb);
if let Some(v) = result {
ctx.builder.build_load(v, "if_exp_val_load").map(Into::into).unwrap()
} else {
return Ok(None);
}
}
ExprKind::Call { func, args, keywords } => {
let mut params = args
.iter()
.map(|arg| generator.gen_expr(ctx, arg))
.take_while(|expr| !matches!(expr, Ok(None)))
.map(|expr| Ok((None, expr?.unwrap())) as Result<_, String>)
.collect::<Result<Vec<_>, _>>()?;
if params.len() < args.len() {
return Ok(None);
}
let kw_iter = keywords.iter().map(|kw| {
Ok((
Some(*kw.node.arg.as_ref().unwrap()),
generator.gen_expr(ctx, &kw.node.value)?.unwrap(),
)) as Result<_, String>
});
let kw_iter = kw_iter.collect::<Result<Vec<_>, _>>()?;
params.extend(kw_iter);
let call = ctx.calls.get(&expr.location.into());
let signature = if let Some(call) = call {
ctx.unifier.get_call_signature(*call).unwrap()
} else {
let ty = func.custom.unwrap();
let TypeEnum::TFunc(sign) = &*ctx.unifier.get_ty(ty) else { unreachable!() };
sign.clone()
};
let func = func.as_ref();
match &func.node {
ExprKind::Name { id, .. } => {
// TODO: handle primitive casts and function pointers
let fun = ctx.resolver.get_identifier_def(*id).map_err(|e| {
format!("{} (at {})", e.iter().next().unwrap(), func.location)
})?;
return Ok(generator
.gen_call(ctx, None, (&signature, fun), params)?
.map(Into::into));
}
ExprKind::Attribute { value, attr, .. } => {
let Some(val) = generator.gen_expr(ctx, value)? else { return Ok(None) };
let id = if let TypeEnum::TObj { obj_id, .. } =
&*ctx.unifier.get_ty(value.custom.unwrap())
{
*obj_id
} else {
unreachable!()
};
let fun_id = {
let defs = ctx.top_level.definitions.read();
let obj_def = defs.get(id.0).unwrap().read();
let TopLevelDef::Class { methods, .. } = &*obj_def else { unreachable!() };
methods.iter().find(|method| method.0 == *attr).unwrap().2
};
// directly generate code for option.unwrap
// since it needs to return static value to optimize for kernel invariant
if attr == &"unwrap".into()
&& id == ctx.primitives.option.obj_id(&ctx.unifier).unwrap()
{
match val {
ValueEnum::Static(v) => {
return match v.get_field("_nac3_option".into(), ctx) {
// if is none, raise exception directly
None => {
let err_msg = ctx.gen_string(generator, "");
let current_fun = ctx
.builder
.get_insert_block()
.unwrap()
.get_parent()
.unwrap();
let unreachable_block = ctx.ctx.append_basic_block(
current_fun,
"unwrap_none_unreachable",
);
let exn_block = ctx.ctx.append_basic_block(
current_fun,
"unwrap_none_exception",
);
ctx.builder.build_unconditional_branch(exn_block).unwrap();
ctx.builder.position_at_end(exn_block);
ctx.raise_exn(
generator,
"0:UnwrapNoneError",
err_msg,
[None, None, None],
ctx.current_loc,
);
ctx.builder.position_at_end(unreachable_block);
let ptr = ctx
.get_llvm_type(generator, value.custom.unwrap())
.into_pointer_type()
.const_null();
Ok(Some(
ctx.builder
.build_load(ptr, "unwrap_none_unreachable_load")
.map(Into::into)
.unwrap(),
))
}
Some(v) => Ok(Some(v)),
};
}
ValueEnum::Dynamic(BasicValueEnum::PointerValue(ptr)) => {
let not_null =
ctx.builder.build_is_not_null(ptr, "unwrap_not_null").unwrap();
ctx.make_assert(
generator,
not_null,
"0:UnwrapNoneError",
"",
[None, None, None],
expr.location,
);
return Ok(Some(
ctx.builder
.build_load(ptr, "unwrap_some_load")
.map(Into::into)
.unwrap(),
));
}
ValueEnum::Dynamic(_) => unreachable!("option must be static or ptr"),
}
}
// Reset current_loc back to the location of the call
ctx.current_loc = expr.location;
return Ok(generator
.gen_call(
ctx,
Some((value.custom.unwrap(), val)),
(&signature, fun_id),
params,
)?
.map(Into::into));
}
_ => unimplemented!(),
}
}
ExprKind::Subscript { value, slice, .. } => {
match &*ctx.unifier.get_ty(value.custom.unwrap()) {
TypeEnum::TList { ty } => {
let v = if let Some(v) = generator.gen_expr(ctx, value)? {
v.to_basic_value_enum(ctx, generator, value.custom.unwrap())?
.into_pointer_value()
} else {
return Ok(None);
};
let v = ListValue::from_ptr_val(v, usize, Some("arr"));
let ty = ctx.get_llvm_type(generator, *ty);
if let ExprKind::Slice { lower, upper, step } = &slice.node {
let one = int32.const_int(1, false);
let Some((start, end, step)) = handle_slice_indices(
lower,
upper,
step,
ctx,
generator,
v.load_size(ctx, None),
)?
else {
return Ok(None);
};
let length = calculate_len_for_slice_range(
generator,
ctx,
start,
ctx.builder
.build_select(
ctx.builder
.build_int_compare(IntPredicate::SLT, step, zero, "is_neg")
.unwrap(),
ctx.builder.build_int_sub(end, one, "e_min_one").unwrap(),
ctx.builder.build_int_add(end, one, "e_add_one").unwrap(),
"final_e",
)
.map(BasicValueEnum::into_int_value)
.unwrap(),
step,
);
let res_array_ret = allocate_list(generator, ctx, ty, length, Some("ret"));
let Some(res_ind) = handle_slice_indices(
&None,
&None,
&None,
ctx,
generator,
res_array_ret.load_size(ctx, None),
)?
else {
return Ok(None);
};
list_slice_assignment(
generator,
ctx,
ty,
res_array_ret,
res_ind,
v,
(start, end, step),
);
res_array_ret.as_base_value().into()
} else {
let len = v.load_size(ctx, Some("len"));
let raw_index = if let Some(v) = generator.gen_expr(ctx, slice)? {
v.to_basic_value_enum(ctx, generator, slice.custom.unwrap())?
.into_int_value()
} else {
return Ok(None);
};
let raw_index = ctx
.builder
.build_int_s_extend(raw_index, generator.get_size_type(ctx.ctx), "sext")
.unwrap();
// handle negative index
let is_negative = ctx
.builder
.build_int_compare(
IntPredicate::SLT,
raw_index,
generator.get_size_type(ctx.ctx).const_zero(),
"is_neg",
)
.unwrap();
let adjusted =
ctx.builder.build_int_add(raw_index, len, "adjusted").unwrap();
let index = ctx
.builder
.build_select(is_negative, adjusted, raw_index, "index")
.map(BasicValueEnum::into_int_value)
.unwrap();
// unsigned less than is enough, because negative index after adjustment is
// bigger than the length (for unsigned cmp)
let bound_check = ctx
.builder
.build_int_compare(IntPredicate::ULT, index, len, "inbound")
.unwrap();
ctx.make_assert(
generator,
bound_check,
"0:IndexError",
"index {0} out of bounds 0:{1}",
[Some(raw_index), Some(len), None],
expr.location,
);
v.data().get(ctx, generator, &index, None).into()
}
}
TypeEnum::TObj { obj_id, params, .. } if *obj_id == PrimDef::NDArray.id() => {
let (ty, ndims) = params.iter().map(|(_, ty)| ty).collect_tuple().unwrap();
let v = if let Some(v) = generator.gen_expr(ctx, value)? {
v.to_basic_value_enum(ctx, generator, value.custom.unwrap())?
.into_pointer_value()
} else {
return Ok(None);
};
let v = NDArrayValue::from_ptr_val(v, usize, None);
return gen_ndarray_subscript_expr(generator, ctx, *ty, *ndims, v, slice);
}
TypeEnum::TTuple { .. } => {
let index: u32 =
if let ExprKind::Constant { value: Constant::Int(v), .. } = &slice.node {
(*v).try_into().unwrap()
} else {
unreachable!("tuple subscript must be const int after type check");
};
match generator.gen_expr(ctx, value)? {
Some(ValueEnum::Dynamic(v)) => {
let v = v.into_struct_value();
ctx.builder.build_extract_value(v, index, "tup_elem").unwrap().into()
}
Some(ValueEnum::Static(v)) => {
if let Some(v) = v.get_tuple_element(index) {
v
} else {
let tup = v
.to_basic_value_enum(ctx, generator, value.custom.unwrap())?
.into_struct_value();
ctx.builder
.build_extract_value(tup, index, "tup_elem")
.unwrap()
.into()
}
}
None => return Ok(None),
}
}
_ => unreachable!("should not be other subscriptable types after type check"),
}
}
ExprKind::ListComp { .. } => {
if let Some(v) = gen_comprehension(generator, ctx, expr)? {
v.into()
} else {
return Ok(None);
}
}
_ => unimplemented!(),
}))
}