nac3/nac3core/src/codegen/expr.rs

873 lines
39 KiB
Rust

use std::{collections::HashMap, convert::TryInto, iter::once};
use crate::{
codegen::{
concrete_type::{ConcreteFuncArg, ConcreteTypeEnum, ConcreteTypeStore},
get_llvm_type, CodeGenContext, CodeGenTask,
},
symbol_resolver::SymbolValue,
toplevel::{DefinitionId, TopLevelDef},
typecheck::typedef::{FunSignature, FuncArg, Type, TypeEnum},
};
use inkwell::{
types::{BasicType, BasicTypeEnum},
values::{BasicValueEnum, IntValue, PointerValue},
AddressSpace,
};
use itertools::{chain, izip, zip, Itertools};
use rustpython_parser::ast::{
self, Boolop, Comprehension, Constant, Expr, ExprKind, Operator, StrRef,
};
use super::CodeGenerator;
impl<'ctx, 'a> CodeGenContext<'ctx, 'a> {
pub fn build_gep_and_load(
&mut self,
ptr: PointerValue<'ctx>,
index: &[IntValue<'ctx>],
) -> BasicValueEnum<'ctx> {
unsafe { self.builder.build_load(self.builder.build_gep(ptr, index, "gep"), "load") }
}
fn get_subst_key(
&mut self,
obj: Option<Type>,
fun: &FunSignature,
filter: Option<&Vec<u32>>,
) -> String {
let mut vars = obj
.map(|ty| {
if let TypeEnum::TObj { params, .. } = &*self.unifier.get_ty(ty) {
params.borrow().clone()
} else {
unreachable!()
}
})
.unwrap_or_default();
vars.extend(fun.vars.iter());
let sorted =
vars.keys().filter(|id| filter.map(|v| v.contains(id)).unwrap_or(true)).sorted();
sorted
.map(|id| {
self.unifier.stringify(vars[id], &mut |id| id.to_string(), &mut |id| id.to_string())
})
.join(", ")
}
pub fn get_attr_index(&mut self, ty: Type, attr: StrRef) -> usize {
let obj_id = match &*self.unifier.get_ty(ty) {
TypeEnum::TObj { obj_id, .. } => *obj_id,
// we cannot have other types, virtual type should be handled by function calls
_ => unreachable!(),
};
let def = &self.top_level.definitions.read()[obj_id.0];
let index = if let TopLevelDef::Class { fields, .. } = &*def.read() {
fields.iter().find_position(|x| x.0 == attr).unwrap().0
} else {
unreachable!()
};
index
}
fn gen_symbol_val(&mut self, val: &SymbolValue) -> BasicValueEnum<'ctx> {
match val {
SymbolValue::I32(v) => self.ctx.i32_type().const_int(*v as u64, true).into(),
SymbolValue::I64(v) => self.ctx.i64_type().const_int(*v as u64, true).into(),
SymbolValue::Bool(v) => self.ctx.bool_type().const_int(*v as u64, true).into(),
SymbolValue::Double(v) => self.ctx.f64_type().const_float(*v).into(),
SymbolValue::Tuple(ls) => {
let vals = ls.iter().map(|v| self.gen_symbol_val(v)).collect_vec();
let fields = vals.iter().map(|v| v.get_type()).collect_vec();
let ty = self.ctx.struct_type(&fields, false);
let ptr = self.builder.build_alloca(ty, "tuple");
let zero = self.ctx.i32_type().const_zero();
unsafe {
for (i, val) in vals.into_iter().enumerate() {
let p = self.builder.build_in_bounds_gep(
ptr,
&[zero, self.ctx.i32_type().const_int(i as u64, false)],
"elemptr",
);
self.builder.build_store(p, val);
}
}
ptr.into()
}
}
}
pub fn get_llvm_type(&mut self, ty: Type) -> BasicTypeEnum<'ctx> {
get_llvm_type(self.ctx, &mut self.unifier, self.top_level, &mut self.type_cache, ty)
}
fn gen_const(&mut self, value: &Constant, ty: Type) -> BasicValueEnum<'ctx> {
match value {
Constant::Bool(v) => {
assert!(self.unifier.unioned(ty, self.primitives.bool));
let ty = self.ctx.bool_type();
ty.const_int(if *v { 1 } else { 0 }, false).into()
}
Constant::Int(v) => {
let ty = if self.unifier.unioned(ty, self.primitives.int32) {
self.ctx.i32_type()
} else if self.unifier.unioned(ty, self.primitives.int64) {
self.ctx.i64_type()
} else {
unreachable!();
};
let val: i64 = v.try_into().unwrap();
ty.const_int(val as u64, false).into()
}
Constant::Float(v) => {
assert!(self.unifier.unioned(ty, self.primitives.float));
let ty = self.ctx.f64_type();
ty.const_float(*v).into()
}
Constant::Tuple(v) => {
let ty = self.unifier.get_ty(ty);
let types =
if let TypeEnum::TTuple { ty } = &*ty { ty.clone() } else { unreachable!() };
let values = zip(types.into_iter(), v.iter())
.map(|(ty, v)| self.gen_const(v, ty))
.collect_vec();
let types = values.iter().map(BasicValueEnum::get_type).collect_vec();
let ty = self.ctx.struct_type(&types, false);
ty.const_named_struct(&values).into()
}
_ => unreachable!(),
}
}
fn gen_int_ops(
&mut self,
op: &Operator,
lhs: BasicValueEnum<'ctx>,
rhs: BasicValueEnum<'ctx>,
) -> BasicValueEnum<'ctx> {
let (lhs, rhs) =
if let (BasicValueEnum::IntValue(lhs), BasicValueEnum::IntValue(rhs)) = (lhs, rhs) {
(lhs, rhs)
} else {
unreachable!()
};
match op {
Operator::Add => self.builder.build_int_add(lhs, rhs, "add").into(),
Operator::Sub => self.builder.build_int_sub(lhs, rhs, "sub").into(),
Operator::Mult => self.builder.build_int_mul(lhs, rhs, "mul").into(),
Operator::Div => {
let float = self.ctx.f64_type();
let left = self.builder.build_signed_int_to_float(lhs, float, "i2f");
let right = self.builder.build_signed_int_to_float(rhs, float, "i2f");
self.builder.build_float_div(left, right, "fdiv").into()
}
Operator::Mod => self.builder.build_int_signed_rem(lhs, rhs, "mod").into(),
Operator::BitOr => self.builder.build_or(lhs, rhs, "or").into(),
Operator::BitXor => self.builder.build_xor(lhs, rhs, "xor").into(),
Operator::BitAnd => self.builder.build_and(lhs, rhs, "and").into(),
Operator::LShift => self.builder.build_left_shift(lhs, rhs, "lshift").into(),
Operator::RShift => self.builder.build_right_shift(lhs, rhs, true, "rshift").into(),
Operator::FloorDiv => self.builder.build_int_signed_div(lhs, rhs, "floordiv").into(),
// special implementation?
Operator::Pow => unimplemented!(),
Operator::MatMult => unreachable!(),
}
}
fn gen_float_ops(
&mut self,
op: &Operator,
lhs: BasicValueEnum<'ctx>,
rhs: BasicValueEnum<'ctx>,
) -> BasicValueEnum<'ctx> {
let (lhs, rhs) = if let (BasicValueEnum::FloatValue(lhs), BasicValueEnum::FloatValue(rhs)) =
(lhs, rhs)
{
(lhs, rhs)
} else {
unreachable!()
};
match op {
Operator::Add => self.builder.build_float_add(lhs, rhs, "fadd").into(),
Operator::Sub => self.builder.build_float_sub(lhs, rhs, "fsub").into(),
Operator::Mult => self.builder.build_float_mul(lhs, rhs, "fmul").into(),
Operator::Div => self.builder.build_float_div(lhs, rhs, "fdiv").into(),
Operator::Mod => self.builder.build_float_rem(lhs, rhs, "fmod").into(),
Operator::FloorDiv => {
let div = self.builder.build_float_div(lhs, rhs, "fdiv");
let floor_intrinsic =
self.module.get_function("llvm.floor.f64").unwrap_or_else(|| {
let float = self.ctx.f64_type();
let fn_type = float.fn_type(&[float.into()], false);
self.module.add_function("llvm.floor.f64", fn_type, None)
});
self.builder
.build_call(floor_intrinsic, &[div.into()], "floor")
.try_as_basic_value()
.left()
.unwrap()
}
// special implementation?
_ => unimplemented!(),
}
}
}
pub fn gen_constructor<'ctx, 'a, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, 'a>,
signature: &FunSignature,
def: &TopLevelDef,
params: Vec<(Option<StrRef>, BasicValueEnum<'ctx>)>,
) -> BasicValueEnum<'ctx> {
match def {
TopLevelDef::Class { methods, .. } => {
// TODO: what about other fields that require alloca?
let mut fun_id = None;
for (name, _, id) in methods.iter() {
if name == &"__init__".into() {
fun_id = Some(*id);
}
}
let ty = ctx.get_llvm_type(signature.ret).into_pointer_type();
let zelf_ty: BasicTypeEnum = ty.get_element_type().try_into().unwrap();
let zelf = ctx.builder.build_alloca(zelf_ty, "alloca").into();
// call `__init__` if there is one
if let Some(fun_id) = fun_id {
let mut sign = signature.clone();
sign.ret = ctx.primitives.none;
generator.gen_call(ctx, Some((signature.ret, zelf)), (&sign, fun_id), params);
}
zelf
}
_ => unreachable!(),
}
}
pub fn gen_func_instance<'ctx, 'a>(
ctx: &mut CodeGenContext<'ctx, 'a>,
obj: Option<(Type, BasicValueEnum<'ctx>)>,
fun: (&FunSignature, &mut TopLevelDef, String),
) -> String {
if let (
sign,
TopLevelDef::Function {
name, instance_to_symbol, instance_to_stmt, var_id, resolver, ..
},
key,
) = fun
{
instance_to_symbol.get(&key).cloned().unwrap_or_else(|| {
let symbol = format!("{}.{}", name, instance_to_symbol.len());
instance_to_symbol.insert(key, symbol.clone());
let key = ctx.get_subst_key(obj.map(|a| a.0), sign, Some(var_id));
let instance = instance_to_stmt.get(&key).unwrap();
let mut store = ConcreteTypeStore::new();
let mut cache = HashMap::new();
let subst = sign
.vars
.iter()
.map(|(id, ty)| {
(
*instance.subst.get(id).unwrap(),
store.from_unifier_type(&mut ctx.unifier, &ctx.primitives, *ty, &mut cache),
)
})
.collect();
let mut signature =
store.from_signature(&mut ctx.unifier, &ctx.primitives, sign, &mut cache);
if let Some(obj) = &obj {
let zelf =
store.from_unifier_type(&mut ctx.unifier, &ctx.primitives, obj.0, &mut cache);
if let ConcreteTypeEnum::TFunc { args, .. } = &mut signature {
args.insert(
0,
ConcreteFuncArg { name: "self".into(), ty: zelf, default_value: None },
)
} else {
unreachable!()
}
}
let signature = store.add_cty(signature);
ctx.registry.add_task(CodeGenTask {
symbol_name: symbol.clone(),
body: instance.body.clone(),
resolver: resolver.as_ref().unwrap().clone(),
calls: instance.calls.clone(),
subst,
signature,
store,
unifier_index: instance.unifier_id,
});
symbol
})
} else {
unreachable!()
}
}
pub fn gen_call<'ctx, 'a, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, 'a>,
obj: Option<(Type, BasicValueEnum<'ctx>)>,
fun: (&FunSignature, DefinitionId),
params: Vec<(Option<StrRef>, BasicValueEnum<'ctx>)>,
) -> Option<BasicValueEnum<'ctx>> {
let definition = ctx.top_level.definitions.read().get(fun.1 .0).cloned().unwrap();
let key = ctx.get_subst_key(obj.map(|a| a.0), fun.0, None);
let symbol = {
// make sure this lock guard is dropped at the end of this scope...
let def = definition.read();
match &*def {
TopLevelDef::Function { instance_to_symbol, codegen_callback, .. } => {
if let Some(callback) = codegen_callback {
return callback.run(ctx, obj, fun, params);
}
instance_to_symbol.get(&key).cloned()
}
TopLevelDef::Class { .. } => {
return Some(generator.gen_constructor(ctx, fun.0, &*def, params))
}
}
}
.unwrap_or_else(|| {
generator.gen_func_instance(ctx, obj, (fun.0, &mut *definition.write(), key))
});
let fun_val = ctx.module.get_function(&symbol).unwrap_or_else(|| {
let mut args = fun.0.args.clone();
if let Some(obj) = &obj {
args.insert(0, FuncArg { name: "self".into(), ty: obj.0, default_value: None });
}
let params = args.iter().map(|arg| ctx.get_llvm_type(arg.ty)).collect_vec();
let fun_ty = if ctx.unifier.unioned(fun.0.ret, ctx.primitives.none) {
ctx.ctx.void_type().fn_type(&params, false)
} else {
ctx.get_llvm_type(fun.0.ret).fn_type(&params, false)
};
ctx.module.add_function(&symbol, fun_ty, None)
});
let mut keys = fun.0.args.clone();
let mut mapping = HashMap::new();
for (key, value) in params.into_iter() {
mapping.insert(key.unwrap_or_else(|| keys.remove(0).name), value);
}
// default value handling
for k in keys.into_iter() {
mapping.insert(k.name, ctx.gen_symbol_val(&k.default_value.unwrap()));
}
// reorder the parameters
let mut params = fun.0.args.iter().map(|arg| mapping.remove(&arg.name).unwrap()).collect_vec();
if let Some(obj) = obj {
params.insert(0, obj.1);
}
ctx.builder.build_call(fun_val, &params, "call").try_as_basic_value().left()
}
pub fn destructure_range<'ctx, 'a>(
ctx: &mut CodeGenContext<'ctx, 'a>,
range: PointerValue<'ctx>,
) -> (IntValue<'ctx>, IntValue<'ctx>, IntValue<'ctx>) {
let int32 = ctx.ctx.i32_type();
let start = ctx
.build_gep_and_load(range, &[int32.const_zero(), int32.const_int(0, false)])
.into_int_value();
let end = ctx
.build_gep_and_load(range, &[int32.const_zero(), int32.const_int(1, false)])
.into_int_value();
let step = ctx
.build_gep_and_load(range, &[int32.const_zero(), int32.const_int(2, false)])
.into_int_value();
(start, end, step)
}
pub fn allocate_list<'ctx, 'a>(
ctx: &mut CodeGenContext<'ctx, 'a>,
ty: BasicTypeEnum<'ctx>,
length: IntValue<'ctx>,
) -> PointerValue<'ctx> {
let arr_ptr = ctx.builder.build_array_alloca(ty, length, "tmparr");
let arr_ty = ctx.ctx.struct_type(
&[ctx.ctx.i32_type().into(), ty.ptr_type(AddressSpace::Generic).into()],
false,
);
let zero = ctx.ctx.i32_type().const_zero();
let arr_str_ptr = ctx.builder.build_alloca(arr_ty, "tmparrstr");
unsafe {
let len_ptr = ctx.builder.build_in_bounds_gep(arr_str_ptr, &[zero, zero], "len_ptr");
ctx.builder.build_store(len_ptr, length);
let ptr_to_arr = ctx.builder.build_in_bounds_gep(
arr_str_ptr,
&[zero, ctx.ctx.i32_type().const_int(1, false)],
"ptr_to_arr",
);
ctx.builder.build_store(ptr_to_arr, arr_ptr);
arr_str_ptr
}
}
pub fn gen_comprehension<'ctx, 'a, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, 'a>,
expr: &Expr<Option<Type>>,
) -> BasicValueEnum<'ctx> {
if let ExprKind::ListComp { elt, generators } = &expr.node {
let current = ctx.builder.get_insert_block().unwrap().get_parent().unwrap();
let test_bb = ctx.ctx.append_basic_block(current, "test");
let body_bb = ctx.ctx.append_basic_block(current, "body");
let cont_bb = ctx.ctx.append_basic_block(current, "cont");
let Comprehension { target, iter, ifs, .. } = &generators[0];
let iter_val = generator.gen_expr(ctx, iter).unwrap();
let int32 = ctx.ctx.i32_type();
let zero = int32.const_zero();
let index = generator.gen_var_alloc(ctx, ctx.primitives.int32);
// counter = -1
ctx.builder.build_store(index, ctx.ctx.i32_type().const_zero());
let elem_ty = ctx.get_llvm_type(elt.custom.unwrap());
let is_range = ctx.unifier.unioned(iter.custom.unwrap(), ctx.primitives.range);
let list;
let list_content;
if is_range {
let iter_val = iter_val.into_pointer_value();
let (start, end, step) = destructure_range(ctx, iter_val);
let diff = ctx.builder.build_int_sub(end, start, "diff");
// add 1 to the length as the value is rounded to zero
// the length may be 1 more than the actual length if the division is exact, but the
// length is a upper bound only anyway so it does not matter.
let length = ctx.builder.build_int_signed_div(diff, step, "div");
let length = ctx.builder.build_int_add(length, int32.const_int(1, false), "add1");
// in case length is non-positive
let is_valid =
ctx.builder.build_int_compare(inkwell::IntPredicate::SGT, length, zero, "check");
let normal = ctx.ctx.append_basic_block(current, "normal_list");
let empty = ctx.ctx.append_basic_block(current, "empty_list");
let list_init = ctx.ctx.append_basic_block(current, "list_init");
ctx.builder.build_conditional_branch(is_valid, normal, empty);
// normal: allocate a list
ctx.builder.position_at_end(normal);
let list_a = allocate_list(ctx, elem_ty, length);
ctx.builder.build_unconditional_branch(list_init);
ctx.builder.position_at_end(empty);
let list_b = allocate_list(ctx, elem_ty, zero);
ctx.builder.build_unconditional_branch(list_init);
ctx.builder.position_at_end(list_init);
let phi = ctx.builder.build_phi(list_a.get_type(), "phi");
phi.add_incoming(&[(&list_a, normal), (&list_b, empty)]);
list = phi.as_basic_value().into_pointer_value();
list_content = ctx
.build_gep_and_load(list, &[zero, int32.const_int(1, false)])
.into_pointer_value();
let i = generator.gen_store_target(ctx, target);
ctx.builder.build_store(i, ctx.builder.build_int_sub(start, step, "start_init"));
ctx.builder.build_unconditional_branch(test_bb);
ctx.builder.position_at_end(test_bb);
let sign = ctx.builder.build_int_compare(
inkwell::IntPredicate::SGT,
step,
int32.const_zero(),
"sign",
);
// add and test
let tmp = ctx.builder.build_int_add(
ctx.builder.build_load(i, "i").into_int_value(),
step,
"start_loop",
);
ctx.builder.build_store(i, tmp);
// // if step > 0, continue when i < end
let cmp1 = ctx.builder.build_int_compare(inkwell::IntPredicate::SLT, tmp, end, "cmp1");
// if step < 0, continue when i > end
let cmp2 = ctx.builder.build_int_compare(inkwell::IntPredicate::SGT, tmp, end, "cmp2");
let pos = ctx.builder.build_and(sign, cmp1, "pos");
let neg = ctx.builder.build_and(ctx.builder.build_not(sign, "inv"), cmp2, "neg");
ctx.builder.build_conditional_branch(
ctx.builder.build_or(pos, neg, "or"),
body_bb,
cont_bb,
);
ctx.builder.position_at_end(body_bb);
} else {
let length = ctx
.build_gep_and_load(iter_val.into_pointer_value(), &[zero, zero])
.into_int_value();
list = allocate_list(ctx, elem_ty, length);
list_content = ctx
.build_gep_and_load(list, &[zero, int32.const_int(1, false)])
.into_pointer_value();
let counter = generator.gen_var_alloc(ctx, ctx.primitives.int32);
// counter = -1
ctx.builder.build_store(counter, ctx.ctx.i32_type().const_int(u64::max_value(), true));
ctx.builder.build_unconditional_branch(test_bb);
ctx.builder.position_at_end(test_bb);
let tmp = ctx.builder.build_load(counter, "i").into_int_value();
let tmp = ctx.builder.build_int_add(tmp, int32.const_int(1, false), "inc");
ctx.builder.build_store(counter, tmp);
let cmp = ctx.builder.build_int_compare(inkwell::IntPredicate::SLT, tmp, length, "cmp");
ctx.builder.build_conditional_branch(cmp, body_bb, cont_bb);
ctx.builder.position_at_end(body_bb);
let arr_ptr = ctx
.build_gep_and_load(
iter_val.into_pointer_value(),
&[zero, int32.const_int(1, false)],
)
.into_pointer_value();
let val = ctx.build_gep_and_load(arr_ptr, &[tmp]);
generator.gen_assign(ctx, target, val);
}
for cond in ifs.iter() {
let result = generator.gen_expr(ctx, cond).unwrap().into_int_value();
let succ = ctx.ctx.append_basic_block(current, "then");
ctx.builder.build_conditional_branch(result, succ, test_bb);
ctx.builder.position_at_end(succ);
}
let elem = generator.gen_expr(ctx, elt).unwrap();
let i = ctx.builder.build_load(index, "i").into_int_value();
let elem_ptr = unsafe { ctx.builder.build_gep(list_content, &[i], "elem_ptr") };
ctx.builder.build_store(elem_ptr, elem);
ctx.builder
.build_store(index, ctx.builder.build_int_add(i, int32.const_int(1, false), "inc"));
ctx.builder.build_unconditional_branch(test_bb);
ctx.builder.position_at_end(cont_bb);
let len_ptr = unsafe { ctx.builder.build_gep(list, &[zero, zero], "length") };
ctx.builder.build_store(len_ptr, ctx.builder.build_load(index, "index"));
list.into()
} else {
unreachable!()
}
}
pub fn gen_expr<'ctx, 'a, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, 'a>,
expr: &Expr<Option<Type>>,
) -> Option<BasicValueEnum<'ctx>> {
let int32 = ctx.ctx.i32_type();
let zero = int32.const_int(0, false);
Some(match &expr.node {
ExprKind::Constant { value, .. } => {
let ty = expr.custom.unwrap();
ctx.gen_const(value, ty)
}
ExprKind::Name { id, .. } => {
let ptr = ctx.var_assignment.get(id);
if let Some(ptr) = ptr {
ctx.builder.build_load(*ptr, "load")
} else {
let resolver = ctx.resolver.clone();
resolver.get_symbol_value(*id, ctx).unwrap()
}
}
ExprKind::List { elts, .. } => {
// this shall be optimized later for constant primitive lists...
// we should use memcpy for that instead of generating thousands of stores
let elements = elts.iter().map(|x| generator.gen_expr(ctx, x).unwrap()).collect_vec();
let ty = if elements.is_empty() { int32.into() } else { elements[0].get_type() };
let length = int32.const_int(elements.len() as u64, false);
let arr_str_ptr = allocate_list(ctx, ty, length);
let arr_ptr = ctx
.build_gep_and_load(arr_str_ptr, &[zero, int32.const_int(1, false)])
.into_pointer_value();
unsafe {
for (i, v) in elements.iter().enumerate() {
let elem_ptr = ctx.builder.build_gep(
arr_ptr,
&[int32.const_int(i as u64, false)],
"elem_ptr",
);
ctx.builder.build_store(elem_ptr, *v);
}
}
arr_str_ptr.into()
}
ExprKind::Tuple { elts, .. } => {
let element_val =
elts.iter().map(|x| generator.gen_expr(ctx, x).unwrap()).collect_vec();
let element_ty = element_val.iter().map(BasicValueEnum::get_type).collect_vec();
let tuple_ty = ctx.ctx.struct_type(&element_ty, false);
let tuple_ptr = ctx.builder.build_alloca(tuple_ty, "tuple");
for (i, v) in element_val.into_iter().enumerate() {
unsafe {
let ptr = ctx.builder.build_in_bounds_gep(
tuple_ptr,
&[zero, int32.const_int(i as u64, false)],
"ptr",
);
ctx.builder.build_store(ptr, v);
}
}
tuple_ptr.into()
}
ExprKind::Attribute { value, attr, .. } => {
// note that we would handle class methods directly in calls
let index = ctx.get_attr_index(value.custom.unwrap(), *attr);
let ptr = generator.gen_expr(ctx, value).unwrap().into_pointer_value();
ctx.build_gep_and_load(ptr, &[zero, int32.const_int(index as u64, false)])
}
ExprKind::BoolOp { op, values } => {
// requires conditional branches for short-circuiting...
let left = generator.gen_expr(ctx, &values[0]).unwrap().into_int_value();
let current = ctx.builder.get_insert_block().unwrap().get_parent().unwrap();
let a_bb = ctx.ctx.append_basic_block(current, "a");
let b_bb = ctx.ctx.append_basic_block(current, "b");
let cont_bb = ctx.ctx.append_basic_block(current, "cont");
ctx.builder.build_conditional_branch(left, a_bb, b_bb);
let (a, b) = match op {
Boolop::Or => {
ctx.builder.position_at_end(a_bb);
let a = ctx.ctx.bool_type().const_int(1, false);
ctx.builder.build_unconditional_branch(cont_bb);
ctx.builder.position_at_end(b_bb);
let b = generator.gen_expr(ctx, &values[1]).unwrap().into_int_value();
ctx.builder.build_unconditional_branch(cont_bb);
(a, b)
}
Boolop::And => {
ctx.builder.position_at_end(a_bb);
let a = generator.gen_expr(ctx, &values[1]).unwrap().into_int_value();
ctx.builder.build_unconditional_branch(cont_bb);
ctx.builder.position_at_end(b_bb);
let b = ctx.ctx.bool_type().const_int(0, false);
ctx.builder.build_unconditional_branch(cont_bb);
(a, b)
}
};
ctx.builder.position_at_end(cont_bb);
let phi = ctx.builder.build_phi(ctx.ctx.bool_type(), "phi");
phi.add_incoming(&[(&a, a_bb), (&b, b_bb)]);
phi.as_basic_value()
}
ExprKind::BinOp { op, left, right } => {
let ty1 = ctx.unifier.get_representative(left.custom.unwrap());
let ty2 = ctx.unifier.get_representative(right.custom.unwrap());
let left = generator.gen_expr(ctx, left).unwrap();
let right = generator.gen_expr(ctx, right).unwrap();
// we can directly compare the types, because we've got their representatives
// which would be unchanged until further unification, which we would never do
// when doing code generation for function instances
if ty1 == ty2 && [ctx.primitives.int32, ctx.primitives.int64].contains(&ty1) {
ctx.gen_int_ops(op, left, right)
} else if ty1 == ty2 && ctx.primitives.float == ty1 {
ctx.gen_float_ops(op, left, right)
} else {
unimplemented!()
}
}
ExprKind::UnaryOp { op, operand } => {
let ty = ctx.unifier.get_representative(operand.custom.unwrap());
let val = generator.gen_expr(ctx, operand).unwrap();
if ty == ctx.primitives.bool {
let val = val.into_int_value();
match op {
ast::Unaryop::Invert | ast::Unaryop::Not => {
ctx.builder.build_not(val, "not").into()
}
_ => val.into(),
}
} else if [ctx.primitives.int32, ctx.primitives.int64].contains(&ty) {
let val = val.into_int_value();
match op {
ast::Unaryop::USub => ctx.builder.build_int_neg(val, "neg").into(),
ast::Unaryop::Invert => ctx.builder.build_not(val, "not").into(),
ast::Unaryop::Not => ctx
.builder
.build_int_compare(
inkwell::IntPredicate::EQ,
val,
val.get_type().const_zero(),
"not",
)
.into(),
_ => val.into(),
}
} else if ty == ctx.primitives.float {
let val =
if let BasicValueEnum::FloatValue(val) = val { val } else { unreachable!() };
match op {
ast::Unaryop::USub => ctx.builder.build_float_neg(val, "neg").into(),
ast::Unaryop::Not => ctx
.builder
.build_float_compare(
inkwell::FloatPredicate::OEQ,
val,
val.get_type().const_zero(),
"not",
)
.into(),
_ => val.into(),
}
} else {
unimplemented!()
}
}
ExprKind::Compare { left, ops, comparators } => {
izip!(chain(once(left.as_ref()), comparators.iter()), comparators.iter(), ops.iter(),)
.fold(None, |prev, (lhs, rhs, op)| {
let ty = ctx.unifier.get_representative(lhs.custom.unwrap());
let current =
if [ctx.primitives.int32, ctx.primitives.int64, ctx.primitives.bool]
.contains(&ty)
{
let (lhs, rhs) = if let (
BasicValueEnum::IntValue(lhs),
BasicValueEnum::IntValue(rhs),
) = (
generator.gen_expr(ctx, lhs).unwrap(),
generator.gen_expr(ctx, rhs).unwrap(),
) {
(lhs, rhs)
} else {
unreachable!()
};
let op = match op {
ast::Cmpop::Eq | ast::Cmpop::Is => inkwell::IntPredicate::EQ,
ast::Cmpop::NotEq => inkwell::IntPredicate::NE,
ast::Cmpop::Lt => inkwell::IntPredicate::SLT,
ast::Cmpop::LtE => inkwell::IntPredicate::SLE,
ast::Cmpop::Gt => inkwell::IntPredicate::SGT,
ast::Cmpop::GtE => inkwell::IntPredicate::SGE,
_ => unreachable!(),
};
ctx.builder.build_int_compare(op, lhs, rhs, "cmp")
} else if ty == ctx.primitives.float {
let (lhs, rhs) = if let (
BasicValueEnum::FloatValue(lhs),
BasicValueEnum::FloatValue(rhs),
) = (
generator.gen_expr(ctx, lhs).unwrap(),
generator.gen_expr(ctx, rhs).unwrap(),
) {
(lhs, rhs)
} else {
unreachable!()
};
let op = match op {
ast::Cmpop::Eq | ast::Cmpop::Is => inkwell::FloatPredicate::OEQ,
ast::Cmpop::NotEq => inkwell::FloatPredicate::ONE,
ast::Cmpop::Lt => inkwell::FloatPredicate::OLT,
ast::Cmpop::LtE => inkwell::FloatPredicate::OLE,
ast::Cmpop::Gt => inkwell::FloatPredicate::OGT,
ast::Cmpop::GtE => inkwell::FloatPredicate::OGE,
_ => unreachable!(),
};
ctx.builder.build_float_compare(op, lhs, rhs, "cmp")
} else {
unimplemented!()
};
prev.map(|v| ctx.builder.build_and(v, current, "cmp")).or(Some(current))
})
.unwrap()
.into() // as there should be at least 1 element, it should never be none
}
ExprKind::IfExp { test, body, orelse } => {
let test = generator.gen_expr(ctx, test).unwrap().into_int_value();
let current = ctx.builder.get_insert_block().unwrap().get_parent().unwrap();
let then_bb = ctx.ctx.append_basic_block(current, "then");
let else_bb = ctx.ctx.append_basic_block(current, "else");
let cont_bb = ctx.ctx.append_basic_block(current, "cont");
ctx.builder.build_conditional_branch(test, then_bb, else_bb);
ctx.builder.position_at_end(then_bb);
let a = generator.gen_expr(ctx, body).unwrap();
ctx.builder.build_unconditional_branch(cont_bb);
ctx.builder.position_at_end(else_bb);
let b = generator.gen_expr(ctx, orelse).unwrap();
ctx.builder.build_unconditional_branch(cont_bb);
ctx.builder.position_at_end(cont_bb);
let phi = ctx.builder.build_phi(a.get_type(), "ifexpr");
phi.add_incoming(&[(&a, then_bb), (&b, else_bb)]);
phi.as_basic_value()
}
ExprKind::Call { func, args, keywords } => {
let mut params =
args.iter().map(|arg| (None, generator.gen_expr(ctx, arg).unwrap())).collect_vec();
let kw_iter = keywords.iter().map(|kw| {
(
Some(*kw.node.arg.as_ref().unwrap()),
generator.gen_expr(ctx, &kw.node.value).unwrap(),
)
});
params.extend(kw_iter);
let call = ctx.calls.get(&expr.location.into());
let signature = match call {
Some(call) => ctx.unifier.get_call_signature(*call).unwrap(),
None => {
let ty = func.custom.unwrap();
if let TypeEnum::TFunc(sign) = &*ctx.unifier.get_ty(ty) {
sign.borrow().clone()
} else {
unreachable!()
}
}
};
match &func.as_ref().node {
ExprKind::Name { id, .. } => {
// TODO: handle primitive casts and function pointers
let fun = ctx.resolver.get_identifier_def(*id).expect("Unknown identifier");
return generator.gen_call(ctx, None, (&signature, fun), params);
}
ExprKind::Attribute { value, attr, .. } => {
let val = generator.gen_expr(ctx, value).unwrap();
let id = if let TypeEnum::TObj { obj_id, .. } =
&*ctx.unifier.get_ty(value.custom.unwrap())
{
*obj_id
} else {
unreachable!()
};
let fun_id = {
let defs = ctx.top_level.definitions.read();
let obj_def = defs.get(id.0).unwrap().read();
if let TopLevelDef::Class { methods, .. } = &*obj_def {
let mut fun_id = None;
for (name, _, id) in methods.iter() {
if name == attr {
fun_id = Some(*id);
}
}
fun_id.unwrap()
} else {
unreachable!()
}
};
return generator.gen_call(
ctx,
Some((value.custom.unwrap(), val)),
(&signature, fun_id),
params,
);
}
_ => unimplemented!(),
}
}
ExprKind::Subscript { value, slice, .. } => {
if let TypeEnum::TList { .. } = &*ctx.unifier.get_ty(value.custom.unwrap()) {
if let ExprKind::Slice { .. } = slice.node {
unimplemented!()
} else {
// TODO: bound check
let v = generator.gen_expr(ctx, value).unwrap().into_pointer_value();
let index = generator.gen_expr(ctx, slice).unwrap().into_int_value();
let arr_ptr =
ctx.build_gep_and_load(v, &[int32.const_zero(), int32.const_int(1, false)]);
ctx.build_gep_and_load(arr_ptr.into_pointer_value(), &[index])
}
} else {
let v = generator.gen_expr(ctx, value).unwrap().into_pointer_value();
let index = generator.gen_expr(ctx, slice).unwrap().into_int_value();
ctx.build_gep_and_load(v, &[int32.const_zero(), index])
}
}
ExprKind::ListComp { .. } => gen_comprehension(generator, ctx, expr),
_ => unimplemented!(),
})
}