#![warn(clippy::all)] #![allow(clippy::clone_double_ref)] extern crate num_bigint; extern crate inkwell; extern crate rustpython_parser; pub mod expression_inference; pub mod inference_core; pub mod statement_check; mod magic_methods; pub mod primitives; pub mod typedef; pub mod context; use std::error::Error; use std::fmt; use std::path::Path; use std::collections::HashMap; use num_traits::cast::ToPrimitive; use rustpython_parser::ast; use inkwell::OptimizationLevel; use inkwell::builder::Builder; use inkwell::context::Context; use inkwell::module::Module; use inkwell::targets::*; use inkwell::types; use inkwell::types::BasicType; use inkwell::values; use inkwell::{IntPredicate, FloatPredicate}; use inkwell::basic_block; use inkwell::passes; #[derive(Debug)] enum CompileErrorKind { Unsupported(&'static str), MissingTypeAnnotation, UnknownTypeAnnotation, IncompatibleTypes, UnboundIdentifier, BreakOutsideLoop, Internal(&'static str) } impl fmt::Display for CompileErrorKind { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { match self { CompileErrorKind::Unsupported(feature) => write!(f, "The following Python feature is not supported by NAC3: {}", feature), CompileErrorKind::MissingTypeAnnotation => write!(f, "Missing type annotation"), CompileErrorKind::UnknownTypeAnnotation => write!(f, "Unknown type annotation"), CompileErrorKind::IncompatibleTypes => write!(f, "Incompatible types"), CompileErrorKind::UnboundIdentifier => write!(f, "Unbound identifier"), CompileErrorKind::BreakOutsideLoop => write!(f, "Break outside loop"), CompileErrorKind::Internal(details) => write!(f, "Internal compiler error: {}", details), } } } #[derive(Debug)] pub struct CompileError { location: ast::Location, kind: CompileErrorKind, } impl fmt::Display for CompileError { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { write!(f, "{}, at {}", self.kind, self.location) } } impl Error for CompileError {} type CompileResult = Result; pub struct CodeGen<'ctx> { context: &'ctx Context, module: Module<'ctx>, pass_manager: passes::PassManager>, builder: Builder<'ctx>, current_source_location: ast::Location, namespace: HashMap>, break_bb: Option>, } impl<'ctx> CodeGen<'ctx> { pub fn new(context: &'ctx Context) -> CodeGen<'ctx> { let module = context.create_module("kernel"); let pass_manager = passes::PassManager::create(&module); pass_manager.add_instruction_combining_pass(); pass_manager.add_reassociate_pass(); pass_manager.add_gvn_pass(); pass_manager.add_cfg_simplification_pass(); pass_manager.add_basic_alias_analysis_pass(); pass_manager.add_promote_memory_to_register_pass(); pass_manager.add_instruction_combining_pass(); pass_manager.add_reassociate_pass(); pass_manager.initialize(); let i32_type = context.i32_type(); let fn_type = i32_type.fn_type(&[i32_type.into()], false); module.add_function("output", fn_type, None); CodeGen { context, module, pass_manager, builder: context.create_builder(), current_source_location: ast::Location::default(), namespace: HashMap::new(), break_bb: None, } } fn set_source_location(&mut self, location: ast::Location) { self.current_source_location = location; } fn compile_error(&self, kind: CompileErrorKind) -> CompileError { CompileError { location: self.current_source_location, kind } } fn get_basic_type(&self, name: &str) -> CompileResult> { match name { "bool" => Ok(self.context.bool_type().into()), "int32" => Ok(self.context.i32_type().into()), "int64" => Ok(self.context.i64_type().into()), "float32" => Ok(self.context.f32_type().into()), "float64" => Ok(self.context.f64_type().into()), _ => Err(self.compile_error(CompileErrorKind::UnknownTypeAnnotation)) } } fn compile_function_def( &mut self, name: &str, args: &ast::Parameters, body: &ast::Suite, decorator_list: &[ast::Expression], returns: &Option, is_async: bool, ) -> CompileResult> { if is_async { return Err(self.compile_error(CompileErrorKind::Unsupported("async functions"))) } for decorator in decorator_list.iter() { self.set_source_location(decorator.location); if let ast::ExpressionType::Identifier { name } = &decorator.node { if name != "kernel" && name != "portable" { return Err(self.compile_error(CompileErrorKind::Unsupported("custom decorators"))) } } else { return Err(self.compile_error(CompileErrorKind::Unsupported("decorator must be an identifier"))) } } let args_type = args.args.iter().map(|val| { self.set_source_location(val.location); if let Some(annotation) = &val.annotation { if let ast::ExpressionType::Identifier { name } = &annotation.node { Ok(self.get_basic_type(&name)?) } else { Err(self.compile_error(CompileErrorKind::Unsupported("type annotation must be an identifier"))) } } else { Err(self.compile_error(CompileErrorKind::MissingTypeAnnotation)) } }).collect::>>()?; let return_type = if let Some(returns) = returns { self.set_source_location(returns.location); if let ast::ExpressionType::Identifier { name } = &returns.node { if name == "None" { None } else { Some(self.get_basic_type(name)?) } } else { return Err(self.compile_error(CompileErrorKind::Unsupported("type annotation must be an identifier"))) } } else { None }; let fn_type = match return_type { Some(ty) => ty.fn_type(&args_type, false), None => self.context.void_type().fn_type(&args_type, false) }; let function = self.module.add_function(name, fn_type, None); let basic_block = self.context.append_basic_block(function, "entry"); self.builder.position_at_end(basic_block); for (n, arg) in args.args.iter().enumerate() { let param = function.get_nth_param(n as u32).unwrap(); let alloca = self.builder.build_alloca(param.get_type(), &arg.arg); self.builder.build_store(alloca, param); self.namespace.insert(arg.arg.clone(), alloca); } self.compile_suite(body, return_type)?; Ok(function) } fn compile_expression( &mut self, expression: &ast::Expression ) -> CompileResult> { self.set_source_location(expression.location); match &expression.node { ast::ExpressionType::True => Ok(self.context.bool_type().const_int(1, false).into()), ast::ExpressionType::False => Ok(self.context.bool_type().const_int(0, false).into()), ast::ExpressionType::Number { value: ast::Number::Integer { value } } => { let mut bits = value.bits(); if value.sign() == num_bigint::Sign::Minus { bits += 1; } match bits { 0..=32 => Ok(self.context.i32_type().const_int(value.to_i32().unwrap() as _, true).into()), 33..=64 => Ok(self.context.i64_type().const_int(value.to_i64().unwrap() as _, true).into()), _ => Err(self.compile_error(CompileErrorKind::Unsupported("integers larger than 64 bits"))) } }, ast::ExpressionType::Number { value: ast::Number::Float { value } } => { Ok(self.context.f64_type().const_float(*value).into()) }, ast::ExpressionType::Identifier { name } => { match self.namespace.get(name) { Some(value) => Ok(self.builder.build_load(*value, name).into()), None => Err(self.compile_error(CompileErrorKind::UnboundIdentifier)) } }, ast::ExpressionType::Unop { op, a } => { let a = self.compile_expression(&a)?; match (op, a) { (ast::UnaryOperator::Pos, values::BasicValueEnum::IntValue(a)) => Ok(a.into()), (ast::UnaryOperator::Pos, values::BasicValueEnum::FloatValue(a)) => Ok(a.into()), (ast::UnaryOperator::Neg, values::BasicValueEnum::IntValue(a)) => Ok(self.builder.build_int_neg(a, "tmpneg").into()), (ast::UnaryOperator::Neg, values::BasicValueEnum::FloatValue(a)) => Ok(self.builder.build_float_neg(a, "tmpneg").into()), (ast::UnaryOperator::Inv, values::BasicValueEnum::IntValue(a)) => Ok(self.builder.build_not(a, "tmpnot").into()), (ast::UnaryOperator::Not, values::BasicValueEnum::IntValue(a)) => { // boolean "not" if a.get_type().get_bit_width() != 1 { Err(self.compile_error(CompileErrorKind::Unsupported("unimplemented unary operation"))) } else { Ok(self.builder.build_not(a, "tmpnot").into()) } }, _ => Err(self.compile_error(CompileErrorKind::Unsupported("unimplemented unary operation"))), } }, ast::ExpressionType::Binop { a, op, b } => { let a = self.compile_expression(&a)?; let b = self.compile_expression(&b)?; if a.get_type() != b.get_type() { return Err(self.compile_error(CompileErrorKind::IncompatibleTypes)); } use ast::Operator::*; match (op, a, b) { (Add, values::BasicValueEnum::IntValue(a), values::BasicValueEnum::IntValue(b)) => Ok(self.builder.build_int_add(a, b, "tmpadd").into()), (Sub, values::BasicValueEnum::IntValue(a), values::BasicValueEnum::IntValue(b)) => Ok(self.builder.build_int_sub(a, b, "tmpsub").into()), (Mult, values::BasicValueEnum::IntValue(a), values::BasicValueEnum::IntValue(b)) => Ok(self.builder.build_int_mul(a, b, "tmpmul").into()), (Add, values::BasicValueEnum::FloatValue(a), values::BasicValueEnum::FloatValue(b)) => Ok(self.builder.build_float_add(a, b, "tmpadd").into()), (Sub, values::BasicValueEnum::FloatValue(a), values::BasicValueEnum::FloatValue(b)) => Ok(self.builder.build_float_sub(a, b, "tmpsub").into()), (Mult, values::BasicValueEnum::FloatValue(a), values::BasicValueEnum::FloatValue(b)) => Ok(self.builder.build_float_mul(a, b, "tmpmul").into()), (Div, values::BasicValueEnum::FloatValue(a), values::BasicValueEnum::FloatValue(b)) => Ok(self.builder.build_float_div(a, b, "tmpdiv").into()), (FloorDiv, values::BasicValueEnum::IntValue(a), values::BasicValueEnum::IntValue(b)) => Ok(self.builder.build_int_signed_div(a, b, "tmpdiv").into()), _ => Err(self.compile_error(CompileErrorKind::Unsupported("unimplemented binary operation"))), } }, ast::ExpressionType::Compare { vals, ops } => { let mut vals = vals.iter(); let mut ops = ops.iter(); let mut result = None; let mut a = self.compile_expression(vals.next().unwrap())?; loop { if let Some(op) = ops.next() { let b = self.compile_expression(vals.next().unwrap())?; if a.get_type() != b.get_type() { return Err(self.compile_error(CompileErrorKind::IncompatibleTypes)); } let this_result = match (a, b) { (values::BasicValueEnum::IntValue(a), values::BasicValueEnum::IntValue(b)) => { match op { ast::Comparison::Equal => self.builder.build_int_compare(IntPredicate::EQ, a, b, "tmpeq"), ast::Comparison::NotEqual => self.builder.build_int_compare(IntPredicate::NE, a, b, "tmpne"), ast::Comparison::Less => self.builder.build_int_compare(IntPredicate::SLT, a, b, "tmpslt"), ast::Comparison::LessOrEqual => self.builder.build_int_compare(IntPredicate::SLE, a, b, "tmpsle"), ast::Comparison::Greater => self.builder.build_int_compare(IntPredicate::SGT, a, b, "tmpsgt"), ast::Comparison::GreaterOrEqual => self.builder.build_int_compare(IntPredicate::SGE, a, b, "tmpsge"), _ => return Err(self.compile_error(CompileErrorKind::Unsupported("special comparison"))), } }, (values::BasicValueEnum::FloatValue(a), values::BasicValueEnum::FloatValue(b)) => { match op { ast::Comparison::Equal => self.builder.build_float_compare(FloatPredicate::OEQ, a, b, "tmpoeq"), ast::Comparison::NotEqual => self.builder.build_float_compare(FloatPredicate::UNE, a, b, "tmpune"), ast::Comparison::Less => self.builder.build_float_compare(FloatPredicate::OLT, a, b, "tmpolt"), ast::Comparison::LessOrEqual => self.builder.build_float_compare(FloatPredicate::OLE, a, b, "tmpole"), ast::Comparison::Greater => self.builder.build_float_compare(FloatPredicate::OGT, a, b, "tmpogt"), ast::Comparison::GreaterOrEqual => self.builder.build_float_compare(FloatPredicate::OGE, a, b, "tmpoge"), _ => return Err(self.compile_error(CompileErrorKind::Unsupported("special comparison"))), } }, _ => return Err(self.compile_error(CompileErrorKind::Unsupported("comparison of non-numerical types"))), }; match result { Some(last) => { result = Some(self.builder.build_and(last, this_result, "tmpand")); } None => { result = Some(this_result); } } a = b; } else { return Ok(result.unwrap().into()) } } }, ast::ExpressionType::Call { function, args, keywords } => { if !keywords.is_empty() { return Err(self.compile_error(CompileErrorKind::Unsupported("keyword arguments"))) } let args = args.iter().map(|val| self.compile_expression(val)) .collect::>>()?; self.set_source_location(expression.location); if let ast::ExpressionType::Identifier { name } = &function.node { match (name.as_str(), args[0]) { ("int32", values::BasicValueEnum::IntValue(a)) => { let nbits = a.get_type().get_bit_width(); if nbits < 32 { Ok(self.builder.build_int_s_extend(a, self.context.i32_type(), "tmpsext").into()) } else if nbits > 32 { Ok(self.builder.build_int_truncate(a, self.context.i32_type(), "tmptrunc").into()) } else { Ok(a.into()) } }, ("int64", values::BasicValueEnum::IntValue(a)) => { let nbits = a.get_type().get_bit_width(); if nbits < 64 { Ok(self.builder.build_int_s_extend(a, self.context.i64_type(), "tmpsext").into()) } else { Ok(a.into()) } }, ("int32", values::BasicValueEnum::FloatValue(a)) => { Ok(self.builder.build_float_to_signed_int(a, self.context.i32_type(), "tmpfptosi").into()) }, ("int64", values::BasicValueEnum::FloatValue(a)) => { Ok(self.builder.build_float_to_signed_int(a, self.context.i64_type(), "tmpfptosi").into()) }, ("float32", values::BasicValueEnum::IntValue(a)) => { Ok(self.builder.build_signed_int_to_float(a, self.context.f32_type(), "tmpsitofp").into()) }, ("float64", values::BasicValueEnum::IntValue(a)) => { Ok(self.builder.build_signed_int_to_float(a, self.context.f64_type(), "tmpsitofp").into()) }, ("float32", values::BasicValueEnum::FloatValue(a)) => { if a.get_type() == self.context.f64_type() { Ok(self.builder.build_float_trunc(a, self.context.f32_type(), "tmptrunc").into()) } else { Ok(a.into()) } }, ("float64", values::BasicValueEnum::FloatValue(a)) => { if a.get_type() == self.context.f32_type() { Ok(self.builder.build_float_ext(a, self.context.f64_type(), "tmpext").into()) } else { Ok(a.into()) } }, ("output", values::BasicValueEnum::IntValue(a)) => { let fn_value = self.module.get_function("output").unwrap(); Ok(self.builder.build_call(fn_value, &[a.into()], "call") .try_as_basic_value().left().unwrap()) }, _ => Err(self.compile_error(CompileErrorKind::Unsupported("unrecognized call"))) } } else { return Err(self.compile_error(CompileErrorKind::Unsupported("function must be an identifier"))) } }, _ => return Err(self.compile_error(CompileErrorKind::Unsupported("unimplemented expression"))), } } fn compile_statement( &mut self, statement: &ast::Statement, return_type: Option ) -> CompileResult<()> { self.set_source_location(statement.location); use ast::StatementType::*; match &statement.node { Assign { targets, value } => { let value = self.compile_expression(value)?; for target in targets.iter() { self.set_source_location(target.location); if let ast::ExpressionType::Identifier { name } = &target.node { let builder = &self.builder; let target = self.namespace.entry(name.clone()).or_insert_with( || builder.build_alloca(value.get_type(), name)); if target.get_type() != value.get_type().ptr_type(inkwell::AddressSpace::Generic) { return Err(self.compile_error(CompileErrorKind::IncompatibleTypes)); } builder.build_store(*target, value); } else { return Err(self.compile_error(CompileErrorKind::Unsupported("assignment target must be an identifier"))) } } }, Expression { expression } => { self.compile_expression(expression)?; }, If { test, body, orelse } => { let test = self.compile_expression(test)?; if test.get_type() != self.context.bool_type().into() { return Err(self.compile_error(CompileErrorKind::IncompatibleTypes)); } let parent = self.builder.get_insert_block().unwrap().get_parent().unwrap(); let then_bb = self.context.append_basic_block(parent, "then"); let else_bb = self.context.append_basic_block(parent, "else"); let cont_bb = self.context.append_basic_block(parent, "ifcont"); self.builder.build_conditional_branch(test.into_int_value(), then_bb, else_bb); self.builder.position_at_end(then_bb); self.compile_suite(body, return_type)?; self.builder.build_unconditional_branch(cont_bb); self.builder.position_at_end(else_bb); if let Some(orelse) = orelse { self.compile_suite(orelse, return_type)?; } self.builder.build_unconditional_branch(cont_bb); self.builder.position_at_end(cont_bb); }, While { test, body, orelse } => { let parent = self.builder.get_insert_block().unwrap().get_parent().unwrap(); let test_bb = self.context.append_basic_block(parent, "test"); self.builder.build_unconditional_branch(test_bb); self.builder.position_at_end(test_bb); let test = self.compile_expression(test)?; if test.get_type() != self.context.bool_type().into() { return Err(self.compile_error(CompileErrorKind::IncompatibleTypes)); } let then_bb = self.context.append_basic_block(parent, "then"); let else_bb = self.context.append_basic_block(parent, "else"); let cont_bb = self.context.append_basic_block(parent, "ifcont"); self.builder.build_conditional_branch(test.into_int_value(), then_bb, else_bb); self.break_bb = Some(cont_bb); self.builder.position_at_end(then_bb); self.compile_suite(body, return_type)?; self.builder.build_unconditional_branch(test_bb); self.builder.position_at_end(else_bb); if let Some(orelse) = orelse { self.compile_suite(orelse, return_type)?; } self.builder.build_unconditional_branch(cont_bb); self.builder.position_at_end(cont_bb); self.break_bb = None; }, Break => { if let Some(bb) = self.break_bb { self.builder.build_unconditional_branch(bb); let parent = self.builder.get_insert_block().unwrap().get_parent().unwrap(); let unreachable_bb = self.context.append_basic_block(parent, "unreachable"); self.builder.position_at_end(unreachable_bb); } else { return Err(self.compile_error(CompileErrorKind::BreakOutsideLoop)); } } Return { value: Some(value) } => { if let Some(return_type) = return_type { let value = self.compile_expression(value)?; if value.get_type() != return_type { return Err(self.compile_error(CompileErrorKind::IncompatibleTypes)); } self.builder.build_return(Some(&value)); } else { return Err(self.compile_error(CompileErrorKind::IncompatibleTypes)); } }, Return { value: None } => { if !return_type.is_none() { return Err(self.compile_error(CompileErrorKind::IncompatibleTypes)); } self.builder.build_return(None); }, Pass => (), _ => return Err(self.compile_error(CompileErrorKind::Unsupported("special statement"))), } Ok(()) } fn compile_suite( &mut self, suite: &ast::Suite, return_type: Option ) -> CompileResult<()> { for statement in suite.iter() { self.compile_statement(statement, return_type)?; } Ok(()) } pub fn compile_toplevel(&mut self, statement: &ast::Statement) -> CompileResult<()> { self.set_source_location(statement.location); if let ast::StatementType::FunctionDef { is_async, name, args, body, decorator_list, returns, } = &statement.node { let function = self.compile_function_def(name, args, body, decorator_list, returns, *is_async)?; self.pass_manager.run_on(&function); Ok(()) } else { Err(self.compile_error(CompileErrorKind::Internal("top-level is not a function definition"))) } } pub fn print_ir(&self) { self.module.print_to_stderr(); } pub fn output(&self, filename: &str) { //let triple = TargetTriple::create("riscv32-none-linux-gnu"); let triple = TargetMachine::get_default_triple(); let target = Target::from_triple(&triple) .expect("couldn't create target from target triple"); let target_machine = target .create_target_machine( &triple, "", "", OptimizationLevel::Default, RelocMode::Default, CodeModel::Default, ) .expect("couldn't create target machine"); target_machine .write_to_file(&self.module, FileType::Object, Path::new(filename)) .expect("couldn't write module to file"); } }