use std::cell::RefCell; use nac3parser::ast::fold::Fold; use crate::{ typecheck::type_inferencer::{FunctionData, Inferencer}, codegen::expr::get_subst_key, }; use super::*; pub struct ComposerConfig { pub kernel_ann: Option<&'static str>, pub kernel_invariant_ann: &'static str, } impl Default for ComposerConfig { fn default() -> Self { ComposerConfig { kernel_ann: None, kernel_invariant_ann: "Invariant" } } } type DefAst = (Arc>, Option>); pub struct TopLevelComposer { // list of top level definitions, same as top level context pub definition_ast_list: Vec, // start as a primitive unifier, will add more top_level defs inside pub unifier: Unifier, // primitive store pub primitives_ty: PrimitiveStore, // keyword list to prevent same user-defined name pub keyword_list: HashSet, // to prevent duplicate definition pub defined_names: HashSet, // get the class def id of a class method pub method_class: HashMap, // number of built-in function and classes in the definition list, later skip pub builtin_num: usize, pub core_config: ComposerConfig, } impl Default for TopLevelComposer { fn default() -> Self { Self::new(vec![], Default::default()).0 } } impl TopLevelComposer { /// return a composer and things to make a "primitive" symbol resolver, so that the symbol /// resolver can later figure out primitive type definitions when passed a primitive type name pub fn new( builtins: Vec<(StrRef, FunSignature, Arc)>, core_config: ComposerConfig ) -> (Self, HashMap, HashMap) { let mut primitives = Self::make_primitives(); let (mut definition_ast_list, builtin_name_list) = builtins::get_builtins(&mut primitives); let primitives_ty = primitives.0; let mut unifier = primitives.1; let mut keyword_list: HashSet = HashSet::from_iter(vec![ "Generic".into(), "virtual".into(), "list".into(), "tuple".into(), "int32".into(), "int64".into(), "float".into(), "bool".into(), "none".into(), "None".into(), "range".into(), "str".into(), "self".into(), "Kernel".into(), "KernelInvariant".into(), ]); let defined_names: HashSet = Default::default(); let method_class: HashMap = Default::default(); let mut builtin_id: HashMap = Default::default(); let mut builtin_ty: HashMap = Default::default(); for (id, name) in builtin_name_list.iter().rev().enumerate() { let name = (**name).into(); let id = definition_ast_list.len() - id - 1; let def = definition_ast_list[id].0.read(); if let TopLevelDef::Function { simple_name, signature, .. } = &*def { assert!(name == *simple_name); builtin_ty.insert(name, *signature); builtin_id.insert(name, DefinitionId(id)); } else { unreachable!() } } for (name, sig, codegen_callback) in builtins { let fun_sig = unifier.add_ty(TypeEnum::TFunc(RefCell::new(sig))); builtin_ty.insert(name, fun_sig); builtin_id.insert(name, DefinitionId(definition_ast_list.len())); definition_ast_list.push(( Arc::new(RwLock::new(TopLevelDef::Function { name: name.into(), simple_name: name, signature: fun_sig, instance_to_stmt: Default::default(), instance_to_symbol: Default::default(), var_id: Default::default(), resolver: None, codegen_callback: Some(codegen_callback), })), None, )); keyword_list.insert(name); } ( TopLevelComposer { builtin_num: definition_ast_list.len(), definition_ast_list, primitives_ty, unifier, keyword_list, defined_names, method_class, core_config, }, builtin_id, builtin_ty, ) } pub fn make_top_level_context(&self) -> TopLevelContext { TopLevelContext { definitions: RwLock::new( self.definition_ast_list.iter().map(|(x, ..)| x.clone()).collect_vec(), ) .into(), // NOTE: only one for now unifiers: Arc::new(RwLock::new(vec![( self.unifier.get_shared_unifier(), self.primitives_ty, )])), personality_symbol: None, } } pub fn extract_def_list(&self) -> Vec>> { self.definition_ast_list.iter().map(|(def, ..)| def.clone()).collect_vec() } /// register, just remember the names of top level classes/function /// and check duplicate class/method/function definition pub fn register_top_level( &mut self, ast: ast::Stmt<()>, resolver: Option>, mod_path: String, ) -> Result<(StrRef, DefinitionId, Option), String> { let defined_names = &mut self.defined_names; match &ast.node { ast::StmtKind::ClassDef { name: class_name, body, .. } => { if self.keyword_list.contains(class_name) { return Err("cannot use keyword as a class name".into()); } if !defined_names.insert({ let mut n = mod_path.clone(); n.push_str(&class_name.to_string()); n }) { return Err("duplicate definition of class".into()); } let class_name = *class_name; let class_def_id = self.definition_ast_list.len(); // since later when registering class method, ast will still be used, // here push None temporarily, later will move the ast inside let constructor_ty = self.unifier.get_fresh_var().0; let mut class_def_ast = ( Arc::new(RwLock::new(Self::make_top_level_class_def( class_def_id, resolver.clone(), class_name, Some(constructor_ty), ))), None, ); // parse class def body and register class methods into the def list. // module's symbol resolver would not know the name of the class methods, // thus cannot return their definition_id type MethodInfo = ( // the simple method name without class name StrRef, // in this top level def, method name is prefixed with the class name Arc>, DefinitionId, Type, ast::Stmt<()>, ); let mut class_method_name_def_ids: Vec = Vec::new(); // we do not push anything to the def list, so we keep track of the index // and then push in the correct order after the for loop let mut class_method_index_offset = 0; let mut contains_constructor = false; let init_id = "__init__".into(); for b in body { if let ast::StmtKind::FunctionDef { name: method_name, .. } = &b.node { if method_name == &init_id { contains_constructor = true; } if self.keyword_list.contains(method_name) { return Err("cannot use keyword as a method name".into()); } let global_class_method_name = { let mut n = mod_path.clone(); n.push_str( Self::make_class_method_name( class_name.into(), &method_name.to_string(), ) .as_str(), ); n }; if !defined_names.insert(global_class_method_name.clone()) { return Err("duplicate class method definition".into()); } let method_def_id = self.definition_ast_list.len() + { // plus 1 here since we already have the class def class_method_index_offset += 1; class_method_index_offset }; // dummy method define here let dummy_method_type = self.unifier.get_fresh_var(); class_method_name_def_ids.push(( *method_name, RwLock::new(Self::make_top_level_function_def( global_class_method_name, *method_name, // later unify with parsed type dummy_method_type.0, resolver.clone(), )) .into(), DefinitionId(method_def_id), dummy_method_type.0, b.clone(), )); } else { // do nothing continue; } } // move the ast to the entry of the class in the ast_list class_def_ast.1 = Some(ast); // get the methods into the top level class_def for (name, _, id, ty, ..) in &class_method_name_def_ids { let mut class_def = class_def_ast.0.write(); if let TopLevelDef::Class { methods, .. } = class_def.deref_mut() { methods.push((*name, *ty, *id)); self.method_class.insert(*id, DefinitionId(class_def_id)); } else { unreachable!() } } // now class_def_ast and class_method_def_ast_ids are ok, put them into actual def list in correct order self.definition_ast_list.push(class_def_ast); for (_, def, _, _, ast) in class_method_name_def_ids { self.definition_ast_list.push((def, Some(ast))); } let result_ty = if contains_constructor { Some(constructor_ty) } else { None }; Ok((class_name, DefinitionId(class_def_id), result_ty)) } ast::StmtKind::FunctionDef { name, .. } => { // if self.keyword_list.contains(name) { // return Err("cannot use keyword as a top level function name".into()); // } let global_fun_name = { let mut n = mod_path; n.push_str(&name.to_string()); n }; if !defined_names.insert(global_fun_name.clone()) { return Err("duplicate top level function define".into()); } let fun_name = *name; let ty_to_be_unified = self.unifier.get_fresh_var().0; // add to the definition list self.definition_ast_list.push(( RwLock::new(Self::make_top_level_function_def( global_fun_name, *name, // dummy here, unify with correct type later ty_to_be_unified, resolver, )) .into(), Some(ast), )); // return Ok(( fun_name, DefinitionId(self.definition_ast_list.len() - 1), Some(ty_to_be_unified), )) } _ => Err("only registrations of top level classes/functions are supported".into()), } } pub fn start_analysis(&mut self, inference: bool) -> Result<(), String> { self.analyze_top_level_class_type_var()?; self.analyze_top_level_class_bases()?; self.analyze_top_level_class_fields_methods()?; self.analyze_top_level_function()?; if inference { self.analyze_function_instance()?; } Ok(()) } /// step 1, analyze the type vars associated with top level class fn analyze_top_level_class_type_var(&mut self) -> Result<(), String> { let def_list = &self.definition_ast_list; let temp_def_list = self.extract_def_list(); let unifier = self.unifier.borrow_mut(); let primitives_store = &self.primitives_ty; // skip 5 to skip analyzing the primitives for (class_def, class_ast) in def_list.iter().skip(self.builtin_num) { // only deal with class def here let mut class_def = class_def.write(); let (class_bases_ast, class_def_type_vars, class_resolver) = { if let TopLevelDef::Class { type_vars, resolver, .. } = class_def.deref_mut() { if let Some(ast::Located { node: ast::StmtKind::ClassDef { bases, .. }, .. }) = class_ast { (bases, type_vars, resolver) } else { unreachable!("must be both class") } } else { continue; } }; let class_resolver = class_resolver.as_ref().unwrap(); let class_resolver = class_resolver.deref(); let mut is_generic = false; for b in class_bases_ast { match &b.node { // analyze typevars bounded to the class, // only support things like `class A(Generic[T, V])`, // things like `class A(Generic[T, V, ImportedModule.T])` is not supported // i.e. only simple names are allowed in the subscript // should update the TopLevelDef::Class.typevars and the TypeEnum::TObj.params ast::ExprKind::Subscript { value, slice, .. } if { matches!( &value.node, ast::ExprKind::Name { id, .. } if id == &"Generic".into() ) } => { if !is_generic { is_generic = true; } else { return Err("Only single Generic[...] can be in bases".into()); } let type_var_list: Vec<&ast::Expr<()>>; // if `class A(Generic[T, V, G])` if let ast::ExprKind::Tuple { elts, .. } = &slice.node { type_var_list = elts.iter().collect_vec(); // `class A(Generic[T])` } else { type_var_list = vec![slice.deref()]; } // parse the type vars let type_vars = type_var_list .into_iter() .map(|e| { class_resolver.parse_type_annotation( &temp_def_list, unifier, primitives_store, e, ) }) .collect::, _>>()?; // check if all are unique type vars let all_unique_type_var = { let mut occured_type_var_id: HashSet = HashSet::new(); type_vars.iter().all(|x| { let ty = unifier.get_ty(*x); if let TypeEnum::TVar { id, .. } = ty.as_ref() { occured_type_var_id.insert(*id) } else { false } }) }; if !all_unique_type_var { return Err("expect unique type variables".into()); } // add to TopLevelDef class_def_type_vars.extend(type_vars); } // if others, do nothing in this function _ => continue, } } } Ok(()) } /// step 2, base classes. /// now that the type vars of all classes are done, handle base classes and /// put Self class into the ancestors list. We only allow single inheritance fn analyze_top_level_class_bases(&mut self) -> Result<(), String> { if self.unifier.top_level.is_none() { let ctx = Arc::new(self.make_top_level_context()); self.unifier.top_level = Some(ctx); } let temp_def_list = self.extract_def_list(); let unifier = self.unifier.borrow_mut(); // first, only push direct parent into the list // skip 5 to skip analyzing the primitives for (class_def, class_ast) in self.definition_ast_list.iter_mut().skip(self.builtin_num) { let mut class_def = class_def.write(); let (class_def_id, class_bases, class_ancestors, class_resolver, class_type_vars) = { if let TopLevelDef::Class { ancestors, resolver, object_id, type_vars, .. } = class_def.deref_mut() { if let Some(ast::Located { node: ast::StmtKind::ClassDef { bases, .. }, .. }) = class_ast { (object_id, bases, ancestors, resolver, type_vars) } else { unreachable!("must be both class") } } else { continue; } }; let class_resolver = class_resolver.as_ref().unwrap(); let class_resolver = class_resolver.deref(); let mut has_base = false; for b in class_bases { // type vars have already been handled, so skip on `Generic[...]` if matches!( &b.node, ast::ExprKind::Subscript { value, .. } if matches!( &value.node, ast::ExprKind::Name { id, .. } if id == &"Generic".into() ) ) { continue; } if has_base { return Err("a class def can only have at most one base class \ declaration and one generic declaration" .into()); } has_base = true; // the function parse_ast_to make sure that no type var occured in // bast_ty if it is a CustomClassKind let base_ty = parse_ast_to_type_annotation_kinds( class_resolver, &temp_def_list, unifier, &self.primitives_ty, b, vec![(*class_def_id, class_type_vars.clone())].into_iter().collect(), )?; if let TypeAnnotation::CustomClass { .. } = &base_ty { class_ancestors.push(base_ty); } else { return Err("class base declaration can only be custom class".into()); } } } // second, get all ancestors let mut ancestors_store: HashMap> = Default::default(); // skip 5 to skip analyzing the primitives for (class_def, _) in self.definition_ast_list.iter().skip(self.builtin_num) { let class_def = class_def.read(); let (class_ancestors, class_id) = { if let TopLevelDef::Class { ancestors, object_id, .. } = class_def.deref() { (ancestors, *object_id) } else { continue; } }; ancestors_store.insert( class_id, // if class has direct parents, get all ancestors of its parents. Else just empty if class_ancestors.is_empty() { vec![] } else { Self::get_all_ancestors_helper(&class_ancestors[0], temp_def_list.as_slice())? }, ); } // insert the ancestors to the def list // skip 5 to skip analyzing the primitives for (class_def, _) in self.definition_ast_list.iter_mut().skip(self.builtin_num) { let mut class_def = class_def.write(); let (class_ancestors, class_id, class_type_vars) = { if let TopLevelDef::Class { ancestors, object_id, type_vars, .. } = class_def.deref_mut() { (ancestors, *object_id, type_vars) } else { continue; } }; let ans = ancestors_store.get_mut(&class_id).unwrap(); class_ancestors.append(ans); // insert self type annotation to the front of the vector to maintain the order class_ancestors .insert(0, make_self_type_annotation(class_type_vars.as_slice(), class_id)); } Ok(()) } /// step 3, class fields and methods fn analyze_top_level_class_fields_methods(&mut self) -> Result<(), String> { let temp_def_list = self.extract_def_list(); let primitives = &self.primitives_ty; let def_ast_list = &self.definition_ast_list; let unifier = self.unifier.borrow_mut(); let mut type_var_to_concrete_def: HashMap = HashMap::new(); // skip 5 to skip analyzing the primitives for (class_def, class_ast) in def_ast_list.iter().skip(self.builtin_num) { if matches!(&*class_def.read(), TopLevelDef::Class { .. }) { Self::analyze_single_class_methods_fields( class_def.clone(), &class_ast.as_ref().unwrap().node, &temp_def_list, unifier, primitives, &mut type_var_to_concrete_def, (&self.keyword_list, &self.core_config) )? } } // println!("type_var_to_concrete_def1: {:?}", type_var_to_concrete_def); // handle the inheritanced methods and fields let mut current_ancestor_depth: usize = 2; loop { let mut finished = true; for (class_def, _) in def_ast_list.iter().skip(self.builtin_num) { let mut class_def = class_def.write(); if let TopLevelDef::Class { ancestors, .. } = class_def.deref() { // if the length of the ancestor is equal to the current depth // it means that all the ancestors of the class is handled if ancestors.len() == current_ancestor_depth { finished = false; Self::analyze_single_class_ancestors( class_def.deref_mut(), &temp_def_list, unifier, primitives, &mut type_var_to_concrete_def, )?; } } } if finished { break; } else { current_ancestor_depth += 1; } if current_ancestor_depth > def_ast_list.len() + 1 { unreachable!("cannot be longer than the whole top level def list") } } // println!("type_var_to_concrete_def3: {:?}\n", type_var_to_concrete_def); // unification of previously assigned typevar for (ty, def) in type_var_to_concrete_def { // println!( // "{:?}_{} -> {:?}\n", // ty, // unifier.stringify(ty, // &mut |id| format!("class{}", id), // &mut |id| format!("tvar{}", id) // ), // def // ); let target_ty = get_type_from_type_annotation_kinds(&temp_def_list, unifier, primitives, &def)?; unifier.unify(ty, target_ty)?; } Ok(()) } /// step 4, after class methods are done, top level functions have nothing unknown fn analyze_top_level_function(&mut self) -> Result<(), String> { let def_list = &self.definition_ast_list; let keyword_list = &self.keyword_list; let temp_def_list = self.extract_def_list(); let unifier = self.unifier.borrow_mut(); let primitives_store = &self.primitives_ty; // skip 5 to skip analyzing the primitives for (function_def, function_ast) in def_list.iter().skip(self.builtin_num) { let mut function_def = function_def.write(); let function_def = function_def.deref_mut(); let function_ast = if let Some(x) = function_ast.as_ref() { x } else { // if let TopLevelDef::Function { name, .. } = `` continue; }; if let TopLevelDef::Function { signature: dummy_ty, resolver, var_id, .. } = function_def { if matches!(unifier.get_ty(*dummy_ty).as_ref(), TypeEnum::TFunc(_)) { // already have a function type, is class method, skip continue; } if let ast::StmtKind::FunctionDef { args, returns, .. } = &function_ast.node { let resolver = resolver.as_ref(); let resolver = resolver.unwrap(); let resolver = resolver.deref(); let mut function_var_map: HashMap = HashMap::new(); let arg_types = { // make sure no duplicate parameter let mut defined_paramter_name: HashSet<_> = HashSet::new(); let have_unique_fuction_parameter_name = args.args.iter().all(|x| { defined_paramter_name.insert(x.node.arg) && !keyword_list.contains(&x.node.arg) }); if !have_unique_fuction_parameter_name { return Err("top level function must have unique parameter names \ and names thould not be the same as the keywords" .into()); } let arg_with_default: Vec<(&ast::Located>, Option<&ast::Expr>)> = args .args .iter() .rev() .zip(args .defaults .iter() .rev() .map(|x| -> Option<&ast::Expr> { Some(x) }) .chain(std::iter::repeat(None)) ).collect_vec(); arg_with_default .iter() .rev() .map(|(x, default)| -> Result { let annotation = x .node .annotation .as_ref() .ok_or_else(|| { format!( "function parameter `{}` at {} need type annotation", x.node.arg, x.location ) })? .as_ref(); let type_annotation = parse_ast_to_type_annotation_kinds( resolver, temp_def_list.as_slice(), unifier, primitives_store, annotation, // NOTE: since only class need this, for function // it should be fine to be empty map HashMap::new(), )?; let type_vars_within = get_type_var_contained_in_type_annotation(&type_annotation) .into_iter() .map(|x| -> Result<(u32, Type), String> { if let TypeAnnotation::TypeVar(ty) = x { Ok((Self::get_var_id(ty, unifier)?, ty)) } else { unreachable!("must be type var annotation kind") } }) .collect::, _>>()?; for (id, ty) in type_vars_within { if let Some(prev_ty) = function_var_map.insert(id, ty) { // if already have the type inserted, make sure they are the same thing assert_eq!(prev_ty, ty); } } let ty = get_type_from_type_annotation_kinds( temp_def_list.as_ref(), unifier, primitives_store, &type_annotation, )?; Ok(FuncArg { name: x.node.arg, ty, default_value: match default { None => None, Some(default) => Some({ let v = Self::parse_parameter_default_value(default, resolver)?; Self::check_default_param_type( &v, &type_annotation, primitives_store, unifier ).map_err(|err| format!("{} at {}", err, x.location))?; v }) } }) }) .collect::, _>>()? }; let return_ty = { if let Some(returns) = returns { let return_ty_annotation = { let return_annotation = returns.as_ref(); parse_ast_to_type_annotation_kinds( resolver, &temp_def_list, unifier, primitives_store, return_annotation, // NOTE: since only class need this, for function // it should be fine to be empty map HashMap::new(), )? }; let type_vars_within = get_type_var_contained_in_type_annotation(&return_ty_annotation) .into_iter() .map(|x| -> Result<(u32, Type), String> { if let TypeAnnotation::TypeVar(ty) = x { Ok((Self::get_var_id(ty, unifier)?, ty)) } else { unreachable!("must be type var here") } }) .collect::, _>>()?; for (id, ty) in type_vars_within { if let Some(prev_ty) = function_var_map.insert(id, ty) { // if already have the type inserted, make sure they are the same thing assert_eq!(prev_ty, ty); } } get_type_from_type_annotation_kinds( &temp_def_list, unifier, primitives_store, &return_ty_annotation, )? } else { primitives_store.none } }; var_id.extend_from_slice(function_var_map .iter() .filter_map(|(id, ty)| { if matches!(&*unifier.get_ty(*ty), TypeEnum::TVar { range, .. } if range.borrow().is_empty()) { None } else { Some(*id) } }) .collect_vec() .as_slice() ); let function_ty = unifier.add_ty(TypeEnum::TFunc( FunSignature { args: arg_types, ret: return_ty, vars: function_var_map } .into(), )); unifier .unify(*dummy_ty, function_ty) .map_err(|old| format!("{} at {}", old, function_ast.location))?; } else { unreachable!("must be both function"); } } else { // not top level function def, skip continue; } } Ok(()) } fn analyze_single_class_methods_fields( class_def: Arc>, class_ast: &ast::StmtKind<()>, temp_def_list: &[Arc>], unifier: &mut Unifier, primitives: &PrimitiveStore, type_var_to_concrete_def: &mut HashMap, core_info: (&HashSet, &ComposerConfig), ) -> Result<(), String> { let (keyword_list, core_config) = core_info; let mut class_def = class_def.write(); let ( class_id, _class_name, _class_bases_ast, class_body_ast, _class_ancestor_def, class_fields_def, class_methods_def, class_type_vars_def, class_resolver, ) = if let TopLevelDef::Class { object_id, ancestors, fields, methods, resolver, type_vars, .. } = &mut *class_def { if let ast::StmtKind::ClassDef { name, bases, body, .. } = &class_ast { (*object_id, *name, bases, body, ancestors, fields, methods, type_vars, resolver) } else { unreachable!("here must be class def ast"); } } else { unreachable!("here must be toplevel class def"); }; let class_resolver = class_resolver.as_ref().unwrap(); let class_resolver = class_resolver.as_ref(); let mut defined_fields: HashSet<_> = HashSet::new(); for b in class_body_ast { match &b.node { ast::StmtKind::FunctionDef { args, returns, name, .. } => { let (method_dummy_ty, method_id) = Self::get_class_method_def_info(class_methods_def, *name)?; // the method var map can surely include the class's generic parameters let mut method_var_map: HashMap = class_type_vars_def .iter() .map(|ty| { if let TypeEnum::TVar { id, .. } = unifier.get_ty(*ty).as_ref() { (*id, *ty) } else { unreachable!("must be type var here") } }) .collect(); let arg_types: Vec = { // check method parameters cannot have same name let mut defined_paramter_name: HashSet<_> = HashSet::new(); let zelf: StrRef = "self".into(); let have_unique_fuction_parameter_name = args.args.iter().all(|x| { defined_paramter_name.insert(x.node.arg) && (!keyword_list.contains(&x.node.arg) || x.node.arg == zelf) }); if !have_unique_fuction_parameter_name { return Err("class method must have unique parameter names \ and names thould not be the same as the keywords" .into()); } if name == &"__init__".into() && !defined_paramter_name.contains(&zelf) { return Err("__init__ function must have a `self` parameter".into()); } if !defined_paramter_name.contains(&zelf) { return Err("currently does not support static method".into()); } let mut result = Vec::new(); let arg_with_default: Vec<(&ast::Located>, Option<&ast::Expr>)> = args .args .iter() .rev() .zip(args .defaults .iter() .rev() .map(|x| -> Option<&ast::Expr> { Some(x) }) .chain(std::iter::repeat(None)) ).collect_vec(); for (x, default) in arg_with_default.into_iter().rev() { let name = x.node.arg; if name != zelf { let type_ann = { let annotation_expr = x .node .annotation .as_ref() .ok_or_else(|| { format!( "type annotation for `{}` at {} needed", x.node.arg, x.location ) })? .as_ref(); parse_ast_to_type_annotation_kinds( class_resolver, temp_def_list, unifier, primitives, annotation_expr, vec![(class_id, class_type_vars_def.clone())] .into_iter() .collect(), )? }; // find type vars within this method parameter type annotation let type_vars_within = get_type_var_contained_in_type_annotation(&type_ann); // handle the class type var and the method type var for type_var_within in type_vars_within { if let TypeAnnotation::TypeVar(ty) = type_var_within { let id = Self::get_var_id(ty, unifier)?; if let Some(prev_ty) = method_var_map.insert(id, ty) { // if already in the list, make sure they are the same? assert_eq!(prev_ty, ty); } } else { unreachable!("must be type var annotation"); } } // finish handling type vars let dummy_func_arg = FuncArg { name, ty: unifier.get_fresh_var().0, default_value: match default { None => None, Some(default) => { if name == "self".into() { return Err(format!("`self` parameter cannot take default value at {}", x.location)); } Some({ let v = Self::parse_parameter_default_value(default, class_resolver)?; Self::check_default_param_type(&v, &type_ann, primitives, unifier) .map_err(|err| format!("{} at {}", err, x.location))?; v }) } } }; // push the dummy type and the type annotation // into the list for later unification type_var_to_concrete_def .insert(dummy_func_arg.ty, type_ann.clone()); result.push(dummy_func_arg) } } result }; let ret_type = { if let Some(result) = returns { let result = result.as_ref(); let annotation = parse_ast_to_type_annotation_kinds( class_resolver, temp_def_list, unifier, primitives, result, vec![(class_id, class_type_vars_def.clone())].into_iter().collect(), )?; // find type vars within this return type annotation let type_vars_within = get_type_var_contained_in_type_annotation(&annotation); // handle the class type var and the method type var for type_var_within in type_vars_within { if let TypeAnnotation::TypeVar(ty) = type_var_within { let id = Self::get_var_id(ty, unifier)?; if let Some(prev_ty) = method_var_map.insert(id, ty) { // if already in the list, make sure they are the same? assert_eq!(prev_ty, ty); } } else { unreachable!("must be type var annotation"); } } let dummy_return_type = unifier.get_fresh_var().0; type_var_to_concrete_def.insert(dummy_return_type, annotation.clone()); dummy_return_type } else { // if do not have return annotation, return none // for uniform handling, still use type annoatation let dummy_return_type = unifier.get_fresh_var().0; type_var_to_concrete_def.insert( dummy_return_type, TypeAnnotation::Primitive(primitives.none), ); dummy_return_type } }; if let TopLevelDef::Function { var_id, .. } = temp_def_list.get(method_id.0).unwrap().write().deref_mut() { var_id.extend_from_slice(method_var_map .iter() .filter_map(|(id, ty)| { if matches!(&*unifier.get_ty(*ty), TypeEnum::TVar { range, .. } if range.borrow().is_empty()) { None } else { Some(*id) } }) .collect_vec() .as_slice() ); } else { unreachable!() } let method_type = unifier.add_ty(TypeEnum::TFunc( FunSignature { args: arg_types, ret: ret_type, vars: method_var_map } .into(), )); // unify now since function type is not in type annotation define // which should be fine since type within method_type will be subst later unifier.unify(method_dummy_ty, method_type)?; } ast::StmtKind::AnnAssign { target, annotation, value: None, .. } => { if let ast::ExprKind::Name { id: attr, .. } = &target.node { if defined_fields.insert(attr.to_string()) { let dummy_field_type = unifier.get_fresh_var().0; // handle Kernel[T], KernelInvariant[T] let (annotation, mutable) = match &annotation.node { ast::ExprKind::Subscript { value, slice, .. } if matches!( &value.node, ast::ExprKind::Name { id, .. } if id == &core_config.kernel_invariant_ann.into() ) => (slice, false), ast::ExprKind::Subscript { value, slice, .. } if matches!( &value.node, ast::ExprKind::Name { id, .. } if core_config.kernel_ann.map_or(false, |c| id == &c.into()) ) => (slice, true), _ if core_config.kernel_ann.is_none() => (annotation, true), _ => continue // ignore fields annotated otherwise }; class_fields_def.push((*attr, dummy_field_type, mutable)); let annotation = parse_ast_to_type_annotation_kinds( class_resolver, temp_def_list, unifier, primitives, annotation.as_ref(), vec![(class_id, class_type_vars_def.clone())].into_iter().collect(), )?; // find type vars within this return type annotation let type_vars_within = get_type_var_contained_in_type_annotation(&annotation); // handle the class type var and the method type var for type_var_within in type_vars_within { if let TypeAnnotation::TypeVar(t) = type_var_within { if !class_type_vars_def.contains(&t) { return Err("class fields can only use type \ vars declared as class generic type vars" .into()); } } else { unreachable!("must be type var annotation"); } } type_var_to_concrete_def.insert(dummy_field_type, annotation); } else { return Err("same class fields defined twice".into()); } } else { return Err("unsupported statement type in class definition body".into()); } } ast::StmtKind::Pass { .. } => {} ast::StmtKind::Expr { value: _, .. } => {} // typically a docstring; ignoring all expressions matches CPython behavior _ => return Err("unsupported statement type in class definition body".into()), } } Ok(()) } fn analyze_single_class_ancestors( class_def: &mut TopLevelDef, temp_def_list: &[Arc>], unifier: &mut Unifier, _primitives: &PrimitiveStore, type_var_to_concrete_def: &mut HashMap, ) -> Result<(), String> { let ( _class_id, class_ancestor_def, class_fields_def, class_methods_def, _class_type_vars_def, _class_resolver, ) = if let TopLevelDef::Class { object_id, ancestors, fields, methods, resolver, type_vars, .. } = class_def { (*object_id, ancestors, fields, methods, type_vars, resolver) } else { unreachable!("here must be class def ast"); }; // since when this function is called, the ancestors of the direct parent // are supposed to be already handled, so we only need to deal with the direct parent let base = class_ancestor_def.get(1).unwrap(); if let TypeAnnotation::CustomClass { id, params: _ } = base { let base = temp_def_list.get(id.0).unwrap(); let base = base.read(); if let TopLevelDef::Class { methods, fields, .. } = &*base { // handle methods override // since we need to maintain the order, create a new list let mut new_child_methods: Vec<(StrRef, Type, DefinitionId)> = Vec::new(); let mut is_override: HashSet = HashSet::new(); for (anc_method_name, anc_method_ty, anc_method_def_id) in methods { // find if there is a method with same name in the child class let mut to_be_added = (*anc_method_name, *anc_method_ty, *anc_method_def_id); for (class_method_name, class_method_ty, class_method_defid) in class_methods_def.iter() { if class_method_name == anc_method_name { // ignore and handle self // if is __init__ method, no need to check return type let ok = class_method_name == &"__init__".into() || Self::check_overload_function_type( *class_method_ty, *anc_method_ty, unifier, type_var_to_concrete_def, ); if !ok { return Err("method has same name as ancestors' method, but incompatible type".into()); } // mark it as added is_override.insert(*class_method_name); to_be_added = (*class_method_name, *class_method_ty, *class_method_defid); break; } } new_child_methods.push(to_be_added); } // add those that are not overriding method to the new_child_methods for (class_method_name, class_method_ty, class_method_defid) in class_methods_def.iter() { if !is_override.contains(class_method_name) { new_child_methods.push(( *class_method_name, *class_method_ty, *class_method_defid, )); } } // use the new_child_methods to replace all the elements in `class_methods_def` class_methods_def.drain(..); class_methods_def.extend(new_child_methods); // handle class fields let mut new_child_fields: Vec<(StrRef, Type, bool)> = Vec::new(); // let mut is_override: HashSet<_> = HashSet::new(); for (anc_field_name, anc_field_ty, mutable) in fields { let to_be_added = (*anc_field_name, *anc_field_ty, *mutable); // find if there is a fields with the same name in the child class for (class_field_name, ..) in class_fields_def.iter() { if class_field_name == anc_field_name { return Err(format!( "field `{}` has already declared in the ancestor classes", class_field_name )); } } new_child_fields.push(to_be_added); } for (class_field_name, class_field_ty, mutable) in class_fields_def.iter() { if !is_override.contains(class_field_name) { new_child_fields.push((*class_field_name, *class_field_ty, *mutable)); } } class_fields_def.drain(..); class_fields_def.extend(new_child_fields); } else { unreachable!("must be top level class def") } } else { unreachable!("must be class type annotation") } Ok(()) } /// step 5, analyze and call type inferecer to fill the `instance_to_stmt` of topleveldef::function fn analyze_function_instance(&mut self) -> Result<(), String> { // first get the class contructor type correct for the following type check in function body // also do class field instantiation check for (def, ast) in self.definition_ast_list.iter().skip(self.builtin_num) { let class_def = def.read(); if let TopLevelDef::Class { constructor, methods, fields, type_vars, name: class_name, object_id, resolver: _, .. } = &*class_def { let mut init_id: Option = None; // get the class contructor type correct let (contor_args, contor_type_vars) = { let mut constructor_args: Vec = Vec::new(); let mut type_vars: HashMap = HashMap::new(); for (name, func_sig, id) in methods { if name == &"__init__".into() { init_id = Some(*id); if let TypeEnum::TFunc(sig) = self.unifier.get_ty(*func_sig).as_ref() { let FunSignature { args, vars, .. } = &*sig.borrow(); constructor_args.extend_from_slice(args); type_vars.extend(vars); } else { unreachable!("must be typeenum::tfunc") } } } (constructor_args, type_vars) }; let self_type = get_type_from_type_annotation_kinds( self.extract_def_list().as_slice(), &mut self.unifier, &self.primitives_ty, &make_self_type_annotation(type_vars, *object_id), )?; let contor_type = self.unifier.add_ty(TypeEnum::TFunc( FunSignature { args: contor_args, ret: self_type, vars: contor_type_vars } .into(), )); self.unifier .unify(constructor.unwrap(), contor_type) .map_err(|old| format!("{} at {}", old, ast.as_ref().unwrap().location))?; // class field instantiation check if let (Some(init_id), false) = (init_id, fields.is_empty()) { let init_ast = self.definition_ast_list.get(init_id.0).unwrap().1.as_ref().unwrap(); if let ast::StmtKind::FunctionDef { name, body, .. } = &init_ast.node { if name != &"__init__".into() { unreachable!("must be init function here") } let all_inited = Self::get_all_assigned_field(body.as_slice())?; for (f, _, _) in fields { if !all_inited.contains(f) { return Err(format!( "fields `{}` of class `{}` not fully initialized", f, class_name )); } } } } } } let ctx = Arc::new(self.make_top_level_context()); // type inference inside function body for (id, (def, ast)) in self.definition_ast_list.iter().enumerate().skip(self.builtin_num) { let mut function_def = def.write(); if let TopLevelDef::Function { instance_to_stmt, instance_to_symbol, name, simple_name, signature, resolver, var_id: insted_vars, .. } = &mut *function_def { if let TypeEnum::TFunc(func_sig) = self.unifier.get_ty(*signature).as_ref() { let FunSignature { args, ret, vars } = &*func_sig.borrow(); // None if is not class method let uninst_self_type = { if let Some(class_id) = self.method_class.get(&DefinitionId(id)) { let class_def = self.definition_ast_list.get(class_id.0).unwrap(); let class_def = class_def.0.read(); if let TopLevelDef::Class { type_vars, .. } = &*class_def { let ty_ann = make_self_type_annotation(type_vars, *class_id); let self_ty = get_type_from_type_annotation_kinds( self.extract_def_list().as_slice(), &mut self.unifier, &self.primitives_ty, &ty_ann, )?; Some((self_ty, type_vars.clone())) } else { unreachable!("must be class def") } } else { None } }; // carefully handle those with bounds, without bounds and no typevars // if class methods, `vars` also contains all class typevars here let (type_var_subst_comb, no_range_vars) = { let unifier = &mut self.unifier; let mut no_ranges: Vec = Vec::new(); let var_ids = vars.keys().copied().collect_vec(); let var_combs = vars .iter() .map(|(_, ty)| { unifier.get_instantiations(*ty).unwrap_or_else(|| { let rigid = unifier.get_fresh_rigid_var().0; no_ranges.push(rigid); vec![rigid] }) }) .multi_cartesian_product() .collect_vec(); let mut result: Vec> = Default::default(); for comb in var_combs { result.push(var_ids.clone().into_iter().zip(comb).collect()); } // NOTE: if is empty, means no type var, append a empty subst, ok to do this? if result.is_empty() { result.push(HashMap::new()) } (result, no_ranges) }; for subst in type_var_subst_comb { // for each instance let inst_ret = self.unifier.subst(*ret, &subst).unwrap_or(*ret); let inst_args = { let unifier = &mut self.unifier; args.iter() .map(|a| FuncArg { name: a.name, ty: unifier.subst(a.ty, &subst).unwrap_or(a.ty), default_value: a.default_value.clone(), }) .collect_vec() }; let self_type = { let unifier = &mut self.unifier; uninst_self_type .clone() .map(|(self_type, type_vars)| { let subst_for_self = { let class_ty_var_ids = type_vars .iter() .map(|x| { if let TypeEnum::TVar { id, .. } = &*unifier.get_ty(*x) { *id } else { unreachable!("must be type var here"); } }) .collect::>(); subst .iter() .filter_map(|(ty_var_id, ty_var_target)| { if class_ty_var_ids.contains(ty_var_id) { Some((*ty_var_id, *ty_var_target)) } else { None } }) .collect::>() }; unifier.subst(self_type, &subst_for_self).unwrap_or(self_type) }) }; let mut identifiers = { // NOTE: none and function args? let mut result: HashSet<_> = HashSet::new(); result.insert("None".into()); if self_type.is_some() { result.insert("self".into()); } result.extend(inst_args.iter().map(|x| x.name)); result }; let mut calls: HashMap = HashMap::new(); let mut inferencer = Inferencer { top_level: ctx.as_ref(), defined_identifiers: identifiers.clone(), function_data: &mut FunctionData { resolver: resolver.as_ref().unwrap().clone(), return_type: if self .unifier .unioned(inst_ret, self.primitives_ty.none) { None } else { Some(inst_ret) }, // NOTE: allowed type vars bound_variables: no_range_vars.clone(), }, unifier: &mut self.unifier, variable_mapping: { // NOTE: none and function args? let mut result: HashMap = HashMap::new(); result.insert("None".into(), self.primitives_ty.none); if let Some(self_ty) = self_type { result.insert("self".into(), self_ty); } result.extend(inst_args.iter().map(|x| (x.name, x.ty))); result }, primitives: &self.primitives_ty, virtual_checks: &mut Vec::new(), calls: &mut calls, }; let fun_body = if let ast::StmtKind::FunctionDef { body, decorator_list, .. } = ast.clone().unwrap().node { if !decorator_list.is_empty() && matches!(&decorator_list[0].node, ast::ExprKind::Name{ id, .. } if id == &"extern".into()) { instance_to_symbol.insert("".into(), simple_name.to_string()); continue; } body } else { unreachable!("must be function def ast") } .into_iter() .map(|b| inferencer.fold_stmt(b)) .collect::, _>>()?; let returned = inferencer.check_block(fun_body.as_slice(), &mut identifiers)?; if !self.unifier.unioned(inst_ret, self.primitives_ty.none) && !returned { let def_ast_list = &self.definition_ast_list; let ret_str = self.unifier.stringify( inst_ret, &mut |id| { if let TopLevelDef::Class { name, .. } = &*def_ast_list[id].0.read() { name.to_string() } else { unreachable!("must be class id here") } }, &mut |id| format!("tvar{}", id), ); return Err(format!( "expected return type of `{}` in function `{}` at {}", ret_str, name, ast.as_ref().unwrap().location )); } instance_to_stmt.insert( get_subst_key( &mut self.unifier, self_type, &subst, Some(insted_vars), ), FunInstance { body: Arc::new(fun_body), unifier_id: 0, calls: Arc::new(calls), subst, }, ); } } else { unreachable!("must be typeenum::tfunc") } } else { continue; } } Ok(()) } }