implemented statement check

This commit is contained in:
pca006132 2021-01-05 12:17:45 +08:00
parent e1efb47ad2
commit ff41cdb000
5 changed files with 262 additions and 116 deletions

View File

@ -22,14 +22,14 @@ pub struct InferenceContext<'a> {
primitives: Vec<Type>, primitives: Vec<Type>,
/// list of variable instances /// list of variable instances
variables: Vec<Type>, variables: Vec<Type>,
/// identifier to (type, readable) mapping. /// identifier to type mapping.
/// an identifier might be defined earlier but has no value (for some code path), thus not sym_table: HashMap<&'a str, Type>,
/// readable.
sym_table: HashMap<&'a str, (Type, bool)>,
/// resolution function reference, that may resolve unbounded identifiers to some type /// resolution function reference, that may resolve unbounded identifiers to some type
resolution_fn: Box<dyn FnMut(&str) -> Result<Type, String>>, resolution_fn: Box<dyn FnMut(&str) -> Result<Type, String>>,
/// stack /// stack
stack: ContextStack<'a>, stack: ContextStack<'a>,
/// return type
result: Option<Type>,
} }
// non-trivial implementations here // non-trivial implementations here
@ -56,6 +56,7 @@ impl<'a> InferenceContext<'a> {
var_defs: Vec::new(), var_defs: Vec::new(),
sym_def: Vec::new(), sym_def: Vec::new(),
}, },
result: None,
} }
} }
@ -63,7 +64,7 @@ impl<'a> InferenceContext<'a> {
/// variable assignment would be limited within the scope (not readable outside), and type /// variable assignment would be limited within the scope (not readable outside), and type
/// variable type guard would be limited within the scope. /// variable type guard would be limited within the scope.
/// returns the list of variables assigned within the scope, and the result of the function /// returns the list of variables assigned within the scope, and the result of the function
pub fn with_scope<F, R>(&mut self, f: F) -> (Vec<&'a str>, R) pub fn with_scope<F, R>(&mut self, f: F) -> (Vec<(&'a str, Type)>, R)
where where
F: FnOnce(&mut Self) -> R, F: FnOnce(&mut Self) -> R,
{ {
@ -84,8 +85,8 @@ impl<'a> InferenceContext<'a> {
let (_, level) = self.stack.sym_def.last().unwrap(); let (_, level) = self.stack.sym_def.last().unwrap();
if *level > self.stack.level { if *level > self.stack.level {
let (name, _) = self.stack.sym_def.pop().unwrap(); let (name, _) = self.stack.sym_def.pop().unwrap();
self.sym_table.remove(name).unwrap(); let ty = self.sym_table.remove(name).unwrap();
poped_names.push(name); poped_names.push((name, ty));
} else { } else {
break; break;
} }
@ -96,19 +97,15 @@ impl<'a> InferenceContext<'a> {
/// assign a type to an identifier. /// assign a type to an identifier.
/// may return error if the identifier was defined but with different type /// may return error if the identifier was defined but with different type
pub fn assign(&mut self, name: &'a str, ty: Type) -> Result<Type, String> { pub fn assign(&mut self, name: &'a str, ty: Type) -> Result<Type, String> {
if let Some((t, x)) = self.sym_table.get_mut(name) { if let Some(t) = self.sym_table.get_mut(name) {
if t == &ty { if t == &ty {
if !*x {
self.stack.sym_def.push((name, self.stack.level));
}
*x = true;
Ok(ty) Ok(ty)
} else { } else {
Err("different types".into()) Err("different types".into())
} }
} else { } else {
self.stack.sym_def.push((name, self.stack.level)); self.stack.sym_def.push((name, self.stack.level));
self.sym_table.insert(name, (ty.clone(), true)); self.sym_table.insert(name, ty.clone());
Ok(ty) Ok(ty)
} }
} }
@ -122,12 +119,8 @@ impl<'a> InferenceContext<'a> {
/// may return error if the identifier is not defined, and cannot be resolved with the /// may return error if the identifier is not defined, and cannot be resolved with the
/// resolution function. /// resolution function.
pub fn resolve(&mut self, name: &str) -> Result<Type, String> { pub fn resolve(&mut self, name: &str) -> Result<Type, String> {
if let Some((t, x)) = self.sym_table.get(name) { if let Some(t) = self.sym_table.get(name) {
if *x {
Ok(t.clone()) Ok(t.clone())
} else {
Err("may not have value".into())
}
} else { } else {
self.resolution_fn.as_mut()(name) self.resolution_fn.as_mut()(name)
} }
@ -139,6 +132,10 @@ impl<'a> InferenceContext<'a> {
std::mem::swap(self.top_level.var_defs.get_mut(id.0).unwrap(), &mut def); std::mem::swap(self.top_level.var_defs.get_mut(id.0).unwrap(), &mut def);
self.stack.var_defs.push((id.0, def, self.stack.level)); self.stack.var_defs.push((id.0, def, self.stack.level));
} }
pub fn set_result(&mut self, result: Option<Type>) {
self.result = result;
}
} }
// trivial getters: // trivial getters:
@ -168,6 +165,9 @@ impl<'a> InferenceContext<'a> {
pub fn get_type(&self, name: &str) -> Option<Type> { pub fn get_type(&self, name: &str) -> Option<Type> {
self.top_level.get_type(name) self.top_level.get_type(name)
} }
pub fn get_result(&self) -> Option<Type> {
self.result.clone()
}
} }
impl TypeEnum { impl TypeEnum {

View File

@ -303,7 +303,7 @@ fn infer_if_expr<'b: 'a, 'a>(
} }
} }
fn infer_simple_binding<'a: 'b, 'b>( pub fn infer_simple_binding<'a: 'b, 'b>(
ctx: &mut InferenceContext<'b>, ctx: &mut InferenceContext<'b>,
name: &'a Expression, name: &'a Expression,
ty: Type, ty: Type,

View File

@ -7,7 +7,7 @@ extern crate rustpython_parser;
pub mod expression_inference; pub mod expression_inference;
pub mod inference_core; pub mod inference_core;
pub mod statement_inference; pub mod statement_check;
mod magic_methods; mod magic_methods;
pub mod primitives; pub mod primitives;
pub mod typedef; pub mod typedef;

View File

@ -0,0 +1,241 @@
use crate::context::InferenceContext;
use crate::expression_inference::{infer_expr, infer_simple_binding};
use crate::inference_core::resolve_call;
use crate::magic_methods::binop_assign_name;
use crate::primitives::*;
use crate::typedef::{Type, TypeEnum::*};
use rustpython_parser::ast::*;
pub fn check_stmts<'b: 'a, 'a>(
ctx: &mut InferenceContext<'a>,
stmts: &'b [Statement],
) -> Result<bool, String> {
for stmt in stmts.iter() {
match &stmt.node {
StatementType::Assign { targets, value } => {
check_assign(ctx, targets.as_slice(), &value)?;
}
StatementType::AugAssign { target, op, value } => {
check_aug_assign(ctx, &target, op, &value)?;
}
StatementType::If { test, body, orelse } => {
check_if(ctx, test, body.as_slice(), orelse)?;
}
StatementType::While { test, body, orelse } => {
check_while_stmt(ctx, test, body.as_slice(), orelse)?;
}
StatementType::For {
is_async,
target,
iter,
body,
orelse,
} => {
if *is_async {
return Err("async for is not supported".to_string());
}
check_for_stmt(ctx, target, iter, body.as_slice(), orelse)?;
}
StatementType::Return { value } => {
let result = ctx.get_result();
let t = if let Some(value) = value {
infer_expr(ctx, value)?
} else {
None
};
return if t == result {
Ok(true)
} else {
Err("return type mismatch".to_string())
};
}
StatementType::Continue | StatementType::Break => {
continue;
}
_ => return Err("not supported".to_string()),
}
}
Ok(false)
}
fn get_target_type<'b: 'a, 'a>(
ctx: &mut InferenceContext<'a>,
target: &'b Expression,
) -> Result<Type, String> {
match &target.node {
ExpressionType::Subscript { a, b } => {
let int32 = ctx.get_primitive(INT32_TYPE);
if infer_expr(ctx, &a)? == Some(int32) {
let b = get_target_type(ctx, &b)?;
if let ParametricType(LIST_TYPE, t) = b.as_ref() {
Ok(t[0].clone())
} else {
Err("subscript is only supported for list".to_string())
}
} else {
Err("subscript must be int32".to_string())
}
}
ExpressionType::Attribute { value, name } => {
let t = get_target_type(ctx, &value)?;
let base = t.get_base(ctx).ok_or_else(|| "no attributes".to_string())?;
Ok(base
.fields
.get(name.as_str())
.ok_or_else(|| "no such attribute")?
.clone())
}
ExpressionType::Identifier { name } => Ok(ctx.resolve(name.as_str())?),
_ => Err("not supported".to_string()),
}
}
fn check_stmt_binding<'b: 'a, 'a>(
ctx: &mut InferenceContext<'a>,
target: &'b Expression,
ty: Type,
) -> Result<(), String> {
match &target.node {
ExpressionType::Identifier { name } => {
if name.as_str() == "_" {
Ok(())
} else {
match ctx.resolve(name.as_str()) {
Ok(t) if t == ty => Ok(()),
Err(_) => {
ctx.assign(name.as_str(), ty).unwrap();
Ok(())
}
_ => Err("conflicting type".into()),
}
}
}
ExpressionType::Tuple { elements } => {
if let ParametricType(TUPLE_TYPE, ls) = ty.as_ref() {
if ls.len() != elements.len() {
return Err("incorrect pattern length".into());
}
for (x, y) in elements.iter().zip(ls.iter()) {
check_stmt_binding(ctx, x, y.clone())?;
}
Ok(())
} else {
Err("pattern matching supports tuple only".into())
}
}
_ => {
let t = get_target_type(ctx, target)?;
if ty == t {
Ok(())
} else {
Err("type mismatch".into())
}
}
}
}
fn check_assign<'b: 'a, 'a>(
ctx: &mut InferenceContext<'a>,
targets: &'b [Expression],
value: &'b Expression,
) -> Result<(), String> {
let ty = infer_expr(ctx, value)?.ok_or_else(|| "no value".to_string())?;
for t in targets.iter() {
check_stmt_binding(ctx, t, ty.clone())?;
}
Ok(())
}
fn check_aug_assign<'b: 'a, 'a>(
ctx: &mut InferenceContext<'a>,
target: &'b Expression,
op: &'b Operator,
value: &'b Expression,
) -> Result<(), String> {
let left = infer_expr(ctx, target)?.ok_or_else(|| "no value".to_string())?;
let right = infer_expr(ctx, value)?.ok_or_else(|| "no value".to_string())?;
let fun = binop_assign_name(op);
resolve_call(ctx, Some(left), fun, &[right])?;
Ok(())
}
fn check_if<'b: 'a, 'a>(
ctx: &mut InferenceContext<'a>,
test: &'b Expression,
body: &'b [Statement],
orelse: &'b Option<Suite>,
) -> Result<bool, String> {
let boolean = ctx.get_primitive(BOOL_TYPE);
let t = infer_expr(ctx, test)?;
if t == Some(boolean) {
let (names, result) = ctx.with_scope(|ctx| check_stmts(ctx, body));
let returned = result?;
if let Some(orelse) = orelse {
let (names2, result) = ctx.with_scope(|ctx| check_stmts(ctx, orelse.as_slice()));
let returned = returned && result?;
for (name, ty) in names.iter() {
for (name2, ty2) in names2.iter() {
if *name == *name2 && ty == ty2 {
ctx.assign(name, ty.clone()).unwrap();
}
}
}
Ok(returned)
} else {
Ok(false)
}
} else {
Err("condition should be bool".to_string())
}
}
fn check_while_stmt<'b: 'a, 'a>(
ctx: &mut InferenceContext<'a>,
test: &'b Expression,
body: &'b [Statement],
orelse: &'b Option<Suite>,
) -> Result<bool, String> {
let boolean = ctx.get_primitive(BOOL_TYPE);
let t = infer_expr(ctx, test)?;
if t == Some(boolean) {
// to check what variables are defined, we would have to do a graph analysis...
// not implemented now
let (_, result) = ctx.with_scope(|ctx| check_stmts(ctx, body));
result?;
if let Some(orelse) = orelse {
let (_, result) = ctx.with_scope(|ctx| check_stmts(ctx, orelse.as_slice()));
result?;
}
// to check whether the loop returned on every possible path, we need to analyse the graph,
// not implemented now
Ok(false)
} else {
Err("condition should be bool".to_string())
}
}
fn check_for_stmt<'b: 'a, 'a>(
ctx: &mut InferenceContext<'a>,
target: &'b Expression,
iter: &'b Expression,
body: &'b [Statement],
orelse: &'b Option<Suite>,
) -> Result<bool, String> {
let ty = infer_expr(ctx, iter)?.ok_or_else(|| "no value".to_string())?;
if let ParametricType(LIST_TYPE, ls) = ty.as_ref() {
let (_, result) = ctx.with_scope(|ctx| {
infer_simple_binding(ctx, target, ls[0].clone())?;
check_stmts(ctx, body)
});
result?;
if let Some(orelse) = orelse {
let (_, result) = ctx.with_scope(|ctx| check_stmts(ctx, orelse.as_slice()));
result?;
}
// to check whether the loop returned on every possible path, we need to analyse the graph,
// not implemented now
Ok(false)
} else {
Err("only list can be iterated over".to_string())
}
}

View File

@ -1,95 +0,0 @@
use crate::context::InferenceContext;
use crate::expression_inference::infer_expr;
use crate::inference_core::resolve_call;
use crate::magic_methods::*;
use crate::primitives::*;
use crate::typedef::{Type, TypeEnum::*};
use rustpython_parser::ast::*;
fn get_target_type<'b: 'a, 'a>(
ctx: &mut InferenceContext<'a>,
target: &'b Expression,
) -> Result<Type, String> {
match &target.node {
ExpressionType::Subscript { a, b } => {
let int32 = ctx.get_primitive(INT32_TYPE);
if infer_expr(ctx, &a)? == Some(int32) {
let b = get_target_type(ctx, &b)?;
if let ParametricType(LIST_TYPE, t) = b.as_ref() {
Ok(t[0].clone())
} else {
Err("subscript is only supported for list".to_string())
}
} else {
Err("subscript must be int32".to_string())
}
}
ExpressionType::Attribute { value, name } => {
let t = get_target_type(ctx, &value)?;
let base = t.get_base(ctx).ok_or_else(|| "no attributes".to_string())?;
Ok(base
.fields
.get(name.as_str())
.ok_or_else(|| "no such attribute")?
.clone())
}
ExpressionType::Identifier { name } => Ok(ctx.resolve(name.as_str())?),
_ => Err("not supported".to_string()),
}
}
fn check_stmt_binding<'b: 'a, 'a>(
ctx: &mut InferenceContext<'a>,
target: &'b Expression,
ty: Type,
) -> Result<(), String> {
match &target.node {
ExpressionType::Identifier { name } => {
if name.as_str() == "_" {
Ok(())
} else {
match ctx.resolve(name.as_str()) {
Ok(t) if t == ty => Ok(()),
Err(_) => {
ctx.assign(name.as_str(), ty).unwrap();
Ok(())
}
_ => Err("conflicting type".into()),
}
}
}
ExpressionType::Tuple { elements } => {
if let ParametricType(TUPLE_TYPE, ls) = ty.as_ref() {
if ls.len() != elements.len() {
return Err("incorrect pattern length".into());
}
for (x, y) in elements.iter().zip(ls.iter()) {
check_stmt_binding(ctx, x, y.clone())?;
}
Ok(())
} else {
Err("pattern matching supports tuple only".into())
}
}
_ => {
let t = get_target_type(ctx, target)?;
if ty == t {
Ok(())
} else {
Err("type mismatch".into())
}
}
}
}
fn check_assign<'b: 'a, 'a>(
ctx: &mut InferenceContext<'a>,
targets: &'b [Expression],
value: &'b Expression,
) -> Result<(), String> {
let ty = infer_expr(ctx, value)?.ok_or_else(|| "no value".to_string())?;
for t in targets.iter() {
check_stmt_binding(ctx, t, ty.clone())?;
}
Ok(())
}