use core::result; use log::info; use libboard_zynq::{i2c::I2c, timer::GlobalTimer, time::Milliseconds}; use embedded_hal::blocking::delay::DelayUs; #[cfg(not(si5324_soft_reset))] use crate::pl::csr; type Result = result::Result; const ADDRESS: u8 = 0x68; #[cfg(not(si5324_soft_reset))] fn hard_reset(timer: &mut GlobalTimer) { unsafe { csr::si5324_rst_n::out_write(0); } timer.delay_us(1_000); unsafe { csr::si5324_rst_n::out_write(1); } timer.delay_us(10_000); } // NOTE: the logical parameters DO NOT MAP to physical values written // into registers. They have to be mapped; see the datasheet. // DSPLLsim reports the logical parameters in the design summary, not // the physical register values. pub struct FrequencySettings { pub n1_hs: u8, pub nc1_ls: u32, pub n2_hs: u8, pub n2_ls: u32, pub n31: u32, pub n32: u32, pub bwsel: u8, pub crystal_ref: bool } pub enum Input { Ckin1, Ckin2, } fn map_frequency_settings(settings: &FrequencySettings) -> Result { if settings.nc1_ls != 0 && (settings.nc1_ls % 2) == 1 { return Err("NC1_LS must be 0 or even") } if settings.nc1_ls > (1 << 20) { return Err("NC1_LS is too high") } if (settings.n2_ls % 2) == 1 { return Err("N2_LS must be even") } if settings.n2_ls > (1 << 20) { return Err("N2_LS is too high") } if settings.n31 > (1 << 19) { return Err("N31 is too high") } if settings.n32 > (1 << 19) { return Err("N32 is too high") } let r = FrequencySettings { n1_hs: match settings.n1_hs { 4 => 0b000, 5 => 0b001, 6 => 0b010, 7 => 0b011, 8 => 0b100, 9 => 0b101, 10 => 0b110, 11 => 0b111, _ => return Err("N1_HS has an invalid value") }, nc1_ls: settings.nc1_ls - 1, n2_hs: match settings.n2_hs { 4 => 0b000, 5 => 0b001, 6 => 0b010, 7 => 0b011, 8 => 0b100, 9 => 0b101, 10 => 0b110, 11 => 0b111, _ => return Err("N2_HS has an invalid value") }, n2_ls: settings.n2_ls - 1, n31: settings.n31 - 1, n32: settings.n32 - 1, bwsel: settings.bwsel, crystal_ref: settings.crystal_ref }; Ok(r) } fn write(i2c: &mut I2c, reg: u8, val: u8) -> Result<()> { i2c.start().unwrap(); if !i2c.write(ADDRESS << 1).unwrap() { return Err("Si5324 failed to ack write address") } if !i2c.write(reg).unwrap() { return Err("Si5324 failed to ack register") } if !i2c.write(val).unwrap() { return Err("Si5324 failed to ack value") } i2c.stop().unwrap(); Ok(()) } #[allow(dead_code)] fn write_no_ack_value(i2c: &mut I2c, reg: u8, val: u8) -> Result<()> { i2c.start().unwrap(); if !i2c.write(ADDRESS << 1).unwrap() { return Err("Si5324 failed to ack write address") } if !i2c.write(reg).unwrap() { return Err("Si5324 failed to ack register") } i2c.write(val).unwrap(); i2c.stop().unwrap(); Ok(()) } fn read(i2c: &mut I2c, reg: u8) -> Result { i2c.start().unwrap(); if !i2c.write(ADDRESS << 1).unwrap() { return Err("Si5324 failed to ack write address") } if !i2c.write(reg).unwrap() { return Err("Si5324 failed to ack register") } i2c.restart().unwrap(); if !i2c.write((ADDRESS << 1) | 1).unwrap() { return Err("Si5324 failed to ack read address") } let val = i2c.read(false).unwrap(); i2c.stop().unwrap(); Ok(val) } fn rmw(i2c: &mut I2c, reg: u8, f: F) -> Result<()> where F: Fn(u8) -> u8 { let value = read(i2c, reg)?; write(i2c, reg, f(value))?; Ok(()) } fn ident(i2c: &mut I2c) -> Result { Ok(((read(i2c, 134)? as u16) << 8) | (read(i2c, 135)? as u16)) } #[cfg(si5324_soft_reset)] fn soft_reset(i2c: &mut I2c, timer: &mut GlobalTimer) -> Result<()> { let val = read(i2c, 136)?; write_no_ack_value(i2c, 136, val | 0x80)?; timer.delay_us(10_000); Ok(()) } fn has_xtal(i2c: &mut I2c) -> Result { Ok((read(i2c, 129)? & 0x01) == 0) // LOSX_INT=0 } fn has_ckin(i2c: &mut I2c, input: Input) -> Result { match input { Input::Ckin1 => Ok((read(i2c, 129)? & 0x02) == 0), // LOS1_INT=0 Input::Ckin2 => Ok((read(i2c, 129)? & 0x04) == 0), // LOS2_INT=0 } } fn locked(i2c: &mut I2c) -> Result { Ok((read(i2c, 130)? & 0x01) == 0) // LOL_INT=0 } fn monitor_lock(i2c: &mut I2c, timer: &mut GlobalTimer) -> Result<()> { info!("waiting for Si5324 lock..."); let timeout = timer.get_time() + Milliseconds(20_000); while !locked(i2c)? { // Yes, lock can be really slow. if timer.get_time() > timeout { return Err("Si5324 lock timeout"); } } info!(" ...locked"); Ok(()) } fn init(i2c: &mut I2c, timer: &mut GlobalTimer) -> Result<()> { #[cfg(not(si5324_soft_reset))] hard_reset(timer); #[cfg(feature = "target_kasli_soc")] { i2c.pca954x_select(0x70, None)?; i2c.pca954x_select(0x71, Some(3))?; } #[cfg(feature = "target_zc706")] { i2c.pca954x_select(0x74, Some(4))?; } if ident(i2c)? != 0x0182 { return Err("Si5324 does not have expected product number"); } #[cfg(si5324_soft_reset)] soft_reset(i2c, timer)?; Ok(()) } pub fn bypass(i2c: &mut I2c, input: Input, timer: &mut GlobalTimer) -> Result<()> { let cksel_reg = match input { Input::Ckin1 => 0b00, Input::Ckin2 => 0b01, }; init(i2c, timer)?; rmw(i2c, 21, |v| v & 0xfe)?; // CKSEL_PIN=0 rmw(i2c, 3, |v| (v & 0x3f) | (cksel_reg << 6))?; // CKSEL_REG rmw(i2c, 4, |v| (v & 0x3f) | (0b00 << 6))?; // AUTOSEL_REG=b00 rmw(i2c, 6, |v| (v & 0xc0) | 0b111111)?; // SFOUT2_REG=b111 SFOUT1_REG=b111 rmw(i2c, 0, |v| (v & 0xfd) | 0x02)?; // BYPASS_REG=1 Ok(()) } pub fn setup(i2c: &mut I2c, settings: &FrequencySettings, input: Input, timer: &mut GlobalTimer) -> Result<()> { let s = map_frequency_settings(settings)?; let cksel_reg = match input { Input::Ckin1 => 0b00, Input::Ckin2 => 0b01, }; init(i2c, timer)?; if settings.crystal_ref { rmw(i2c, 0, |v| v | 0x40)?; // FREE_RUN=1 } rmw(i2c, 2, |v| (v & 0x0f) | (s.bwsel << 4))?; rmw(i2c, 21, |v| v & 0xfe)?; // CKSEL_PIN=0 rmw(i2c, 3, |v| (v & 0x2f) | (cksel_reg << 6) | 0x10)?; // CKSEL_REG, SQ_ICAL=1 rmw(i2c, 4, |v| (v & 0x3f) | (0b00 << 6))?; // AUTOSEL_REG=b00 rmw(i2c, 6, |v| (v & 0xc0) | 0b111111)?; // SFOUT2_REG=b111 SFOUT1_REG=b111 write(i2c, 25, (s.n1_hs << 5 ) as u8)?; write(i2c, 31, (s.nc1_ls >> 16) as u8)?; write(i2c, 32, (s.nc1_ls >> 8 ) as u8)?; write(i2c, 33, (s.nc1_ls) as u8)?; write(i2c, 34, (s.nc1_ls >> 16) as u8)?; // write to NC2_LS as well write(i2c, 35, (s.nc1_ls >> 8 ) as u8)?; write(i2c, 36, (s.nc1_ls) as u8)?; write(i2c, 40, (s.n2_hs << 5 ) as u8 | (s.n2_ls >> 16) as u8)?; write(i2c, 41, (s.n2_ls >> 8 ) as u8)?; write(i2c, 42, (s.n2_ls) as u8)?; write(i2c, 43, (s.n31 >> 16) as u8)?; write(i2c, 44, (s.n31 >> 8) as u8)?; write(i2c, 45, (s.n31) as u8)?; write(i2c, 46, (s.n32 >> 16) as u8)?; write(i2c, 47, (s.n32 >> 8) as u8)?; write(i2c, 48, (s.n32) as u8)?; rmw(i2c, 137, |v| v | 0x01)?; // FASTLOCK=1 rmw(i2c, 136, |v| v | 0x40)?; // ICAL=1 if !has_xtal(i2c)? { return Err("Si5324 misses XA/XB signal"); } if !has_ckin(i2c, input)? { return Err("Si5324 misses clock input signal"); } monitor_lock(i2c, timer)?; Ok(()) } pub fn select_input(i2c: &mut I2c, input: Input, timer: &mut GlobalTimer) -> Result<()> { let cksel_reg = match input { Input::Ckin1 => 0b00, Input::Ckin2 => 0b01, }; rmw(i2c, 3, |v| (v & 0x3f) | (cksel_reg << 6))?; if !has_ckin(i2c, input)? { return Err("Si5324 misses clock input signal"); } monitor_lock(i2c, timer)?; Ok(()) } #[cfg(has_siphaser)] pub mod siphaser { use super::*; use crate::pl::csr; pub fn select_recovered_clock(i2c: &mut I2c, rc: bool, timer: &mut GlobalTimer) -> Result<()> { let val = read(i2c, 3)?; write(i2c, 3, (val & 0xdf) | (1 << 5))?; // DHOLD=1 unsafe { csr::siphaser::switch_clocks_write(if rc { 1 } else { 0 }); } let val = read(i2c, 3)?; write(i2c, 3, (val & 0xdf) | (0 << 5))?; // DHOLD=0 monitor_lock(i2c, timer)?; Ok(()) } fn phase_shift(direction: u8, timer: &mut GlobalTimer) { unsafe { csr::siphaser::phase_shift_write(direction); while csr::siphaser::phase_shift_done_read() == 0 {} } // wait for the Si5324 loop to stabilize timer.delay_us(500); } fn has_error(timer: &mut GlobalTimer) -> bool { unsafe { csr::siphaser::error_write(1); } timer.delay_us(5_000); unsafe { csr::siphaser::error_read() != 0 } } fn find_edge(target: bool, timer: &mut GlobalTimer) -> Result { let mut nshifts = 0; let mut previous = has_error(timer); loop { phase_shift(1, timer); nshifts += 1; let current = has_error(timer); if previous != target && current == target { return Ok(nshifts); } if nshifts > 5000 { return Err("failed to find timing error edge"); } previous = current; } } pub fn calibrate_skew(timer: &mut GlobalTimer) -> Result<()> { let jitter_margin = 32; let lead = find_edge(false, timer)?; for _ in 0..jitter_margin { phase_shift(1, timer); } let width = find_edge(true, timer)? + jitter_margin; // width is 360 degrees (one full rotation of the phase between s/h limits) minus jitter info!("calibration successful, lead: {}, width: {} ({}deg)", lead, width, width*360/(56*8)); // Apply reverse phase shift for half the width to get into the // middle of the working region. for _ in 0..width/2 { phase_shift(0, timer); } Ok(()) } }