//! Traits, helpers, and type definitions for core I/O functionality. //! //! The `std::io` module contains a number of common things you'll need //! when doing input and output. The most core part of this module is //! the [`Read`] and [`Write`] traits, which provide the //! most general interface for reading and writing input and output. //! //! # Read and Write //! //! Because they are traits, [`Read`] and [`Write`] are implemented by a number //! of other types, and you can implement them for your types too. As such, //! you'll see a few different types of I/O throughout the documentation in //! this module: [`File`]s, [`TcpStream`]s, and sometimes even [`Vec`]s. For //! example, [`Read`] adds a [`read`][`Read::read`] method, which we can use on //! [`File`]s: //! //! ```no_run //! use std::io; //! use std::io::prelude::*; //! use std::fs::File; //! //! fn main() -> io::Result<()> { //! let mut f = File::open("foo.txt")?; //! let mut buffer = [0; 10]; //! //! // read up to 10 bytes //! let n = f.read(&mut buffer)?; //! //! println!("The bytes: {:?}", &buffer[..n]); //! Ok(()) //! } //! ``` //! //! [`Read`] and [`Write`] are so important, implementors of the two traits have a //! nickname: readers and writers. So you'll sometimes see 'a reader' instead //! of 'a type that implements the [`Read`] trait'. Much easier! //! //! ## Seek and BufRead //! //! Beyond that, there are two important traits that are provided: [`Seek`] //! and [`BufRead`]. Both of these build on top of a reader to control //! how the reading happens. [`Seek`] lets you control where the next byte is //! coming from: //! //! ```no_run //! use std::io; //! use std::io::prelude::*; //! use std::io::SeekFrom; //! use std::fs::File; //! //! fn main() -> io::Result<()> { //! let mut f = File::open("foo.txt")?; //! let mut buffer = [0; 10]; //! //! // skip to the last 10 bytes of the file //! f.seek(SeekFrom::End(-10))?; //! //! // read up to 10 bytes //! let n = f.read(&mut buffer)?; //! //! println!("The bytes: {:?}", &buffer[..n]); //! Ok(()) //! } //! ``` //! //! [`BufRead`] uses an internal buffer to provide a number of other ways to read, but //! to show it off, we'll need to talk about buffers in general. Keep reading! //! //! ## BufReader and BufWriter //! //! Byte-based interfaces are unwieldy and can be inefficient, as we'd need to be //! making near-constant calls to the operating system. To help with this, //! `std::io` comes with two structs, [`BufReader`] and [`BufWriter`], which wrap //! readers and writers. The wrapper uses a buffer, reducing the number of //! calls and providing nicer methods for accessing exactly what you want. //! //! For example, [`BufReader`] works with the [`BufRead`] trait to add extra //! methods to any reader: //! //! ```no_run //! use std::io; //! use std::io::prelude::*; //! use std::io::BufReader; //! use std::fs::File; //! //! fn main() -> io::Result<()> { //! let f = File::open("foo.txt")?; //! let mut reader = BufReader::new(f); //! let mut buffer = String::new(); //! //! // read a line into buffer //! reader.read_line(&mut buffer)?; //! //! println!("{}", buffer); //! Ok(()) //! } //! ``` //! //! [`BufWriter`] doesn't add any new ways of writing; it just buffers every call //! to [`write`][`Write::write`]: //! //! ```no_run //! use std::io; //! use std::io::prelude::*; //! use std::io::BufWriter; //! use std::fs::File; //! //! fn main() -> io::Result<()> { //! let f = File::create("foo.txt")?; //! { //! let mut writer = BufWriter::new(f); //! //! // write a byte to the buffer //! writer.write(&[42])?; //! //! } // the buffer is flushed once writer goes out of scope //! //! Ok(()) //! } //! ``` //! //! ## Standard input and output //! //! A very common source of input is standard input: //! //! ```no_run //! use std::io; //! //! fn main() -> io::Result<()> { //! let mut input = String::new(); //! //! io::stdin().read_line(&mut input)?; //! //! println!("You typed: {}", input.trim()); //! Ok(()) //! } //! ``` //! //! Note that you cannot use the [`?` operator] in functions that do not return //! a [`Result`][`Result`]. Instead, you can call [`.unwrap()`] //! or `match` on the return value to catch any possible errors: //! //! ```no_run //! use std::io; //! //! let mut input = String::new(); //! //! io::stdin().read_line(&mut input).unwrap(); //! ``` //! //! And a very common source of output is standard output: //! //! ```no_run //! use std::io; //! use std::io::prelude::*; //! //! fn main() -> io::Result<()> { //! io::stdout().write(&[42])?; //! Ok(()) //! } //! ``` //! //! Of course, using [`io::stdout`] directly is less common than something like //! [`println!`]. //! //! ## Iterator types //! //! A large number of the structures provided by `std::io` are for various //! ways of iterating over I/O. For example, [`Lines`] is used to split over //! lines: //! //! ```no_run //! use std::io; //! use std::io::prelude::*; //! use std::io::BufReader; //! use std::fs::File; //! //! fn main() -> io::Result<()> { //! let f = File::open("foo.txt")?; //! let reader = BufReader::new(f); //! //! for line in reader.lines() { //! println!("{}", line?); //! } //! Ok(()) //! } //! ``` //! //! ## Functions //! //! There are a number of [functions][functions-list] that offer access to various //! features. For example, we can use three of these functions to copy everything //! from standard input to standard output: //! //! ```no_run //! use std::io; //! //! fn main() -> io::Result<()> { //! io::copy(&mut io::stdin(), &mut io::stdout())?; //! Ok(()) //! } //! ``` //! //! [functions-list]: #functions-1 //! //! ## io::Result //! //! Last, but certainly not least, is [`io::Result`]. This type is used //! as the return type of many `std::io` functions that can cause an error, and //! can be returned from your own functions as well. Many of the examples in this //! module use the [`?` operator]: //! //! ``` //! use std::io; //! //! fn read_input() -> io::Result<()> { //! let mut input = String::new(); //! //! io::stdin().read_line(&mut input)?; //! //! println!("You typed: {}", input.trim()); //! //! Ok(()) //! } //! ``` //! //! The return type of `read_input()`, [`io::Result<()>`][`io::Result`], is a very //! common type for functions which don't have a 'real' return value, but do want to //! return errors if they happen. In this case, the only purpose of this function is //! to read the line and print it, so we use `()`. //! //! ## Platform-specific behavior //! //! Many I/O functions throughout the standard library are documented to indicate //! what various library or syscalls they are delegated to. This is done to help //! applications both understand what's happening under the hood as well as investigate //! any possibly unclear semantics. Note, however, that this is informative, not a binding //! contract. The implementation of many of these functions are subject to change over //! time and may call fewer or more syscalls/library functions. //! //! [`Read`]: trait.Read.html //! [`Write`]: trait.Write.html //! [`Seek`]: trait.Seek.html //! [`BufRead`]: trait.BufRead.html //! [`File`]: ../fs/struct.File.html //! [`TcpStream`]: ../net/struct.TcpStream.html //! [`Vec`]: ../vec/struct.Vec.html //! [`BufReader`]: struct.BufReader.html //! [`BufWriter`]: struct.BufWriter.html //! [`Write::write`]: trait.Write.html#tymethod.write //! [`io::stdout`]: fn.stdout.html //! [`println!`]: ../macro.println.html //! [`Lines`]: struct.Lines.html //! [`io::Result`]: type.Result.html //! [`?` operator]: ../../book/appendix-02-operators.html //! [`Read::read`]: trait.Read.html#tymethod.read //! [`Result`]: ../result/enum.Result.html //! [`.unwrap()`]: ../result/enum.Result.html#method.unwrap use core::cmp; use core::fmt; use core::ptr; use core::slice; use core::str; #[cfg(feature="collections")] pub use self::buffered::IntoInnerError; #[cfg(feature="collections")] pub use self::buffered::{BufReader, BufWriter, LineWriter}; pub use self::cursor::Cursor; pub use self::error::{Error, ErrorKind, Result}; pub use self::util::{copy, empty, repeat, sink, Empty, Repeat, Sink}; #[cfg(feature="collections")] mod buffered; mod cursor; mod error; mod impls; pub mod prelude; mod util; #[cfg(feature="collections")] use collections::{ vec::Vec, string::String, }; const DEFAULT_BUF_SIZE: usize = 8 * 1024; #[cfg(feature="collections")] struct Guard<'a> { buf: &'a mut Vec, len: usize, } #[cfg(feature="collections")] impl Drop for Guard<'_> { fn drop(&mut self) { unsafe { self.buf.set_len(self.len); } } } // A few methods below (read_to_string, read_line) will append data into a // `String` buffer, but we need to be pretty careful when doing this. The // implementation will just call `.as_mut_vec()` and then delegate to a // byte-oriented reading method, but we must ensure that when returning we never // leave `buf` in a state such that it contains invalid UTF-8 in its bounds. // // To this end, we use an RAII guard (to protect against panics) which updates // the length of the string when it is dropped. This guard initially truncates // the string to the prior length and only after we've validated that the // new contents are valid UTF-8 do we allow it to set a longer length. // // The unsafety in this function is twofold: // // 1. We're looking at the raw bytes of `buf`, so we take on the burden of UTF-8 // checks. // 2. We're passing a raw buffer to the function `f`, and it is expected that // the function only *appends* bytes to the buffer. We'll get undefined // behavior if existing bytes are overwritten to have non-UTF-8 data. #[cfg(feature="collections")] fn append_to_string(buf: &mut String, f: F) -> Result where F: FnOnce(&mut Vec) -> Result, { unsafe { let mut g = Guard { len: buf.len(), buf: buf.as_mut_vec() }; let ret = f(g.buf); if str::from_utf8(&g.buf[g.len..]).is_err() { ret.and_then(|_| { Err(Error::new(ErrorKind::InvalidData, "stream did not contain valid UTF-8")) }) } else { g.len = g.buf.len(); ret } } } // This uses an adaptive system to extend the vector when it fills. We want to // avoid paying to allocate and zero a huge chunk of memory if the reader only // has 4 bytes while still making large reads if the reader does have a ton // of data to return. Simply tacking on an extra DEFAULT_BUF_SIZE space every // time is 4,500 times (!) slower than a default reservation size of 32 if the // reader has a very small amount of data to return. // // Because we're extending the buffer with uninitialized data for trusted // readers, we need to make sure to truncate that if any of this panics. #[cfg(feature="collections")] fn read_to_end(r: &mut R, buf: &mut Vec) -> Result { read_to_end_with_reservation(r, buf, |_| 32) } #[cfg(feature="collections")] fn read_to_end_with_reservation( r: &mut R, buf: &mut Vec, mut reservation_size: F, ) -> Result where R: Read + ?Sized, F: FnMut(&R) -> usize, { let start_len = buf.len(); let mut g = Guard { len: buf.len(), buf }; let ret; loop { if g.len == g.buf.len() { unsafe { // FIXME(danielhenrymantilla): #42788 // // - This creates a (mut) reference to a slice of // _uninitialized_ integers, which is **undefined behavior** // // - Only the standard library gets to soundly "ignore" this, // based on its privileged knowledge of unstable rustc // internals; g.buf.reserve(reservation_size(r)); let capacity = g.buf.capacity(); g.buf.set_len(capacity); r.initializer().initialize(&mut g.buf[g.len..]); } } match r.read(&mut g.buf[g.len..]) { Ok(0) => { ret = Ok(g.len - start_len); break; } Ok(n) => g.len += n, Err(ref e) if e.kind() == ErrorKind::Interrupted => {} Err(e) => { ret = Err(e); break; } } } ret } /// The `Read` trait allows for reading bytes from a source. /// /// Implementors of the `Read` trait are called 'readers'. /// /// Readers are defined by one required method, [`read()`]. Each call to [`read()`] /// will attempt to pull bytes from this source into a provided buffer. A /// number of other methods are implemented in terms of [`read()`], giving /// implementors a number of ways to read bytes while only needing to implement /// a single method. /// /// Readers are intended to be composable with one another. Many implementors /// throughout [`std::io`] take and provide types which implement the `Read` /// trait. /// /// Please note that each call to [`read()`] may involve a system call, and /// therefore, using something that implements [`BufRead`], such as /// [`BufReader`], will be more efficient. /// /// # Examples /// /// [`File`]s implement `Read`: /// /// ```no_run /// use std::io; /// use std::io::prelude::*; /// use std::fs::File; /// /// fn main() -> io::Result<()> { /// let mut f = File::open("foo.txt")?; /// let mut buffer = [0; 10]; /// /// // read up to 10 bytes /// f.read(&mut buffer)?; /// /// let mut buffer = Vec::new(); /// // read the whole file /// f.read_to_end(&mut buffer)?; /// /// // read into a String, so that you don't need to do the conversion. /// let mut buffer = String::new(); /// f.read_to_string(&mut buffer)?; /// /// // and more! See the other methods for more details. /// Ok(()) /// } /// ``` /// /// Read from [`&str`] because [`&[u8]`][slice] implements `Read`: /// /// ```no_run /// # use std::io; /// use std::io::prelude::*; /// /// fn main() -> io::Result<()> { /// let mut b = "This string will be read".as_bytes(); /// let mut buffer = [0; 10]; /// /// // read up to 10 bytes /// b.read(&mut buffer)?; /// /// // etc... it works exactly as a File does! /// Ok(()) /// } /// ``` /// /// [`read()`]: trait.Read.html#tymethod.read /// [`std::io`]: ../../std/io/index.html /// [`File`]: ../fs/struct.File.html /// [`BufRead`]: trait.BufRead.html /// [`BufReader`]: struct.BufReader.html /// [`&str`]: ../../std/primitive.str.html /// [slice]: ../../std/primitive.slice.html pub trait Read { /// Pull some bytes from this source into the specified buffer, returning /// how many bytes were read. /// /// This function does not provide any guarantees about whether it blocks /// waiting for data, but if an object needs to block for a read and cannot, /// it will typically signal this via an [`Err`] return value. /// /// If the return value of this method is [`Ok(n)`], then it must be /// guaranteed that `0 <= n <= buf.len()`. A nonzero `n` value indicates /// that the buffer `buf` has been filled in with `n` bytes of data from this /// source. If `n` is `0`, then it can indicate one of two scenarios: /// /// 1. This reader has reached its "end of file" and will likely no longer /// be able to produce bytes. Note that this does not mean that the /// reader will *always* no longer be able to produce bytes. /// 2. The buffer specified was 0 bytes in length. /// /// No guarantees are provided about the contents of `buf` when this /// function is called, implementations cannot rely on any property of the /// contents of `buf` being true. It is recommended that *implementations* /// only write data to `buf` instead of reading its contents. /// /// Correspondingly, however, *callers* of this method may not assume any guarantees /// about how the implementation uses `buf`. The trait is safe to implement, /// so it is possible that the code that's supposed to write to the buffer might also read /// from it. It is your responsibility to make sure that `buf` is initialized /// before calling `read`. Calling `read` with an uninitialized `buf` (of the kind one /// obtains via [`MaybeUninit`]) is not safe, and can lead to undefined behavior. /// /// [`MaybeUninit`]: ../mem/union.MaybeUninit.html /// /// # Errors /// /// If this function encounters any form of I/O or other error, an error /// variant will be returned. If an error is returned then it must be /// guaranteed that no bytes were read. /// /// An error of the [`ErrorKind::Interrupted`] kind is non-fatal and the read /// operation should be retried if there is nothing else to do. /// /// # Examples /// /// [`File`]s implement `Read`: /// /// [`Err`]: ../../std/result/enum.Result.html#variant.Err /// [`Ok(n)`]: ../../std/result/enum.Result.html#variant.Ok /// [`ErrorKind::Interrupted`]: ../../std/io/enum.ErrorKind.html#variant.Interrupted /// [`File`]: ../fs/struct.File.html /// /// ```no_run /// use std::io; /// use std::io::prelude::*; /// use std::fs::File; /// /// fn main() -> io::Result<()> { /// let mut f = File::open("foo.txt")?; /// let mut buffer = [0; 10]; /// /// // read up to 10 bytes /// let n = f.read(&mut buffer[..])?; /// /// println!("The bytes: {:?}", &buffer[..n]); /// Ok(()) /// } /// ``` fn read(&mut self, buf: &mut [u8]) -> Result; /// Determines if this `Read`er can work with buffers of uninitialized /// memory. /// /// The default implementation returns an initializer which will zero /// buffers. /// /// If a `Read`er guarantees that it can work properly with uninitialized /// memory, it should call [`Initializer::nop()`]. See the documentation for /// [`Initializer`] for details. /// /// The behavior of this method must be independent of the state of the /// `Read`er - the method only takes `&self` so that it can be used through /// trait objects. /// /// # Safety /// /// This method is unsafe because a `Read`er could otherwise return a /// non-zeroing `Initializer` from another `Read` type without an `unsafe` /// block. /// /// [`Initializer::nop()`]: ../../std/io/struct.Initializer.html#method.nop /// [`Initializer`]: ../../std/io/struct.Initializer.html #[inline] unsafe fn initializer(&self) -> Initializer { Initializer::zeroing() } /// Read all bytes until EOF in this source, placing them into `buf`. /// /// All bytes read from this source will be appended to the specified buffer /// `buf`. This function will continuously call [`read()`] to append more data to /// `buf` until [`read()`] returns either [`Ok(0)`] or an error of /// non-[`ErrorKind::Interrupted`] kind. /// /// If successful, this function will return the total number of bytes read. /// /// # Errors /// /// If this function encounters an error of the kind /// [`ErrorKind::Interrupted`] then the error is ignored and the operation /// will continue. /// /// If any other read error is encountered then this function immediately /// returns. Any bytes which have already been read will be appended to /// `buf`. /// /// # Examples /// /// [`File`]s implement `Read`: /// /// [`read()`]: trait.Read.html#tymethod.read /// [`Ok(0)`]: ../../std/result/enum.Result.html#variant.Ok /// [`ErrorKind::Interrupted`]: ../../std/io/enum.ErrorKind.html#variant.Interrupted /// [`File`]: ../fs/struct.File.html /// /// ```no_run /// use std::io; /// use std::io::prelude::*; /// use std::fs::File; /// /// fn main() -> io::Result<()> { /// let mut f = File::open("foo.txt")?; /// let mut buffer = Vec::new(); /// /// // read the whole file /// f.read_to_end(&mut buffer)?; /// Ok(()) /// } /// ``` /// /// (See also the [`std::fs::read`] convenience function for reading from a /// file.) /// /// [`std::fs::read`]: ../fs/fn.read.html #[cfg(feature="collections")] fn read_to_end(&mut self, buf: &mut Vec) -> Result { read_to_end(self, buf) } /// Read all bytes until EOF in this source, appending them to `buf`. /// /// If successful, this function returns the number of bytes which were read /// and appended to `buf`. /// /// # Errors /// /// If the data in this stream is *not* valid UTF-8 then an error is /// returned and `buf` is unchanged. /// /// See [`read_to_end`][readtoend] for other error semantics. /// /// [readtoend]: #method.read_to_end /// /// # Examples /// /// [`File`][file]s implement `Read`: /// /// [file]: ../fs/struct.File.html /// /// ```no_run /// use std::io; /// use std::io::prelude::*; /// use std::fs::File; /// /// fn main() -> io::Result<()> { /// let mut f = File::open("foo.txt")?; /// let mut buffer = String::new(); /// /// f.read_to_string(&mut buffer)?; /// Ok(()) /// } /// ``` /// /// (See also the [`std::fs::read_to_string`] convenience function for /// reading from a file.) /// /// [`std::fs::read_to_string`]: ../fs/fn.read_to_string.html #[cfg(feature="collections")] fn read_to_string(&mut self, buf: &mut String) -> Result { // Note that we do *not* call `.read_to_end()` here. We are passing // `&mut Vec` (the raw contents of `buf`) into the `read_to_end` // method to fill it up. An arbitrary implementation could overwrite the // entire contents of the vector, not just append to it (which is what // we are expecting). // // To prevent extraneously checking the UTF-8-ness of the entire buffer // we pass it to our hardcoded `read_to_end` implementation which we // know is guaranteed to only read data into the end of the buffer. append_to_string(buf, |b| read_to_end(self, b)) } /// Read the exact number of bytes required to fill `buf`. /// /// This function reads as many bytes as necessary to completely fill the /// specified buffer `buf`. /// /// No guarantees are provided about the contents of `buf` when this /// function is called, implementations cannot rely on any property of the /// contents of `buf` being true. It is recommended that implementations /// only write data to `buf` instead of reading its contents. /// /// # Errors /// /// If this function encounters an error of the kind /// [`ErrorKind::Interrupted`] then the error is ignored and the operation /// will continue. /// /// If this function encounters an "end of file" before completely filling /// the buffer, it returns an error of the kind [`ErrorKind::UnexpectedEof`]. /// The contents of `buf` are unspecified in this case. /// /// If any other read error is encountered then this function immediately /// returns. The contents of `buf` are unspecified in this case. /// /// If this function returns an error, it is unspecified how many bytes it /// has read, but it will never read more than would be necessary to /// completely fill the buffer. /// /// # Examples /// /// [`File`]s implement `Read`: /// /// [`File`]: ../fs/struct.File.html /// [`ErrorKind::Interrupted`]: ../../std/io/enum.ErrorKind.html#variant.Interrupted /// [`ErrorKind::UnexpectedEof`]: ../../std/io/enum.ErrorKind.html#variant.UnexpectedEof /// /// ```no_run /// use std::io; /// use std::io::prelude::*; /// use std::fs::File; /// /// fn main() -> io::Result<()> { /// let mut f = File::open("foo.txt")?; /// let mut buffer = [0; 10]; /// /// // read exactly 10 bytes /// f.read_exact(&mut buffer)?; /// Ok(()) /// } /// ``` fn read_exact(&mut self, mut buf: &mut [u8]) -> Result<()> { while !buf.is_empty() { match self.read(buf) { Ok(0) => break, Ok(n) => { let tmp = buf; buf = &mut tmp[n..]; } Err(ref e) if e.kind() == ErrorKind::Interrupted => {} Err(e) => return Err(e), } } if !buf.is_empty() { Err(Error::new(ErrorKind::UnexpectedEof, "failed to fill whole buffer")) } else { Ok(()) } } /// Creates a "by reference" adaptor for this instance of `Read`. /// /// The returned adaptor also implements `Read` and will simply borrow this /// current reader. /// /// # Examples /// /// [`File`][file]s implement `Read`: /// /// [file]: ../fs/struct.File.html /// /// ```no_run /// use std::io; /// use std::io::Read; /// use std::fs::File; /// /// fn main() -> io::Result<()> { /// let mut f = File::open("foo.txt")?; /// let mut buffer = Vec::new(); /// let mut other_buffer = Vec::new(); /// /// { /// let reference = f.by_ref(); /// /// // read at most 5 bytes /// reference.take(5).read_to_end(&mut buffer)?; /// /// } // drop our &mut reference so we can use f again /// /// // original file still usable, read the rest /// f.read_to_end(&mut other_buffer)?; /// Ok(()) /// } /// ``` fn by_ref(&mut self) -> &mut Self where Self: Sized, { self } /// Transforms this `Read` instance to an [`Iterator`] over its bytes. /// /// The returned type implements [`Iterator`] where the `Item` is /// [`Result`]`<`[`u8`]`, `[`io::Error`]`>`. /// The yielded item is [`Ok`] if a byte was successfully read and [`Err`] /// otherwise. EOF is mapped to returning [`None`] from this iterator. /// /// # Examples /// /// [`File`][file]s implement `Read`: /// /// [file]: ../fs/struct.File.html /// [`Iterator`]: ../../std/iter/trait.Iterator.html /// [`Result`]: ../../std/result/enum.Result.html /// [`io::Error`]: ../../std/io/struct.Error.html /// [`u8`]: ../../std/primitive.u8.html /// [`Ok`]: ../../std/result/enum.Result.html#variant.Ok /// [`Err`]: ../../std/result/enum.Result.html#variant.Err /// [`None`]: ../../std/option/enum.Option.html#variant.None /// /// ```no_run /// use std::io; /// use std::io::prelude::*; /// use std::fs::File; /// /// fn main() -> io::Result<()> { /// let mut f = File::open("foo.txt")?; /// /// for byte in f.bytes() { /// println!("{}", byte.unwrap()); /// } /// Ok(()) /// } /// ``` fn bytes(self) -> Bytes where Self: Sized, { Bytes { inner: self } } /// Creates an adaptor which will chain this stream with another. /// /// The returned `Read` instance will first read all bytes from this object /// until EOF is encountered. Afterwards the output is equivalent to the /// output of `next`. /// /// # Examples /// /// [`File`][file]s implement `Read`: /// /// [file]: ../fs/struct.File.html /// /// ```no_run /// use std::io; /// use std::io::prelude::*; /// use std::fs::File; /// /// fn main() -> io::Result<()> { /// let mut f1 = File::open("foo.txt")?; /// let mut f2 = File::open("bar.txt")?; /// /// let mut handle = f1.chain(f2); /// let mut buffer = String::new(); /// /// // read the value into a String. We could use any Read method here, /// // this is just one example. /// handle.read_to_string(&mut buffer)?; /// Ok(()) /// } /// ``` fn chain(self, next: R) -> Chain where Self: Sized, { Chain { first: self, second: next, done_first: false } } /// Creates an adaptor which will read at most `limit` bytes from it. /// /// This function returns a new instance of `Read` which will read at most /// `limit` bytes, after which it will always return EOF ([`Ok(0)`]). Any /// read errors will not count towards the number of bytes read and future /// calls to [`read()`] may succeed. /// /// # Examples /// /// [`File`]s implement `Read`: /// /// [`File`]: ../fs/struct.File.html /// [`Ok(0)`]: ../../std/result/enum.Result.html#variant.Ok /// [`read()`]: trait.Read.html#tymethod.read /// /// ```no_run /// use std::io; /// use std::io::prelude::*; /// use std::fs::File; /// /// fn main() -> io::Result<()> { /// let mut f = File::open("foo.txt")?; /// let mut buffer = [0; 5]; /// /// // read at most five bytes /// let mut handle = f.take(5); /// /// handle.read(&mut buffer)?; /// Ok(()) /// } /// ``` fn take(self, limit: u64) -> Take where Self: Sized, { Take { inner: self, limit } } } /// A type used to conditionally initialize buffers passed to `Read` methods. #[derive(Debug)] pub struct Initializer(bool); impl Initializer { /// Returns a new `Initializer` which will zero out buffers. #[inline] pub fn zeroing() -> Initializer { Initializer(true) } /// Returns a new `Initializer` which will not zero out buffers. /// /// # Safety /// /// This may only be called by `Read`ers which guarantee that they will not /// read from buffers passed to `Read` methods, and that the return value of /// the method accurately reflects the number of bytes that have been /// written to the head of the buffer. #[inline] pub unsafe fn nop() -> Initializer { Initializer(false) } /// Indicates if a buffer should be initialized. #[inline] pub fn should_initialize(&self) -> bool { self.0 } /// Initializes a buffer if necessary. #[inline] pub fn initialize(&self, buf: &mut [u8]) { if self.should_initialize() { unsafe { ptr::write_bytes(buf.as_mut_ptr(), 0, buf.len()) } } } } /// A trait for objects which are byte-oriented sinks. /// /// Implementors of the `Write` trait are sometimes called 'writers'. /// /// Writers are defined by two required methods, [`write`] and [`flush`]: /// /// * The [`write`] method will attempt to write some data into the object, /// returning how many bytes were successfully written. /// /// * The [`flush`] method is useful for adaptors and explicit buffers /// themselves for ensuring that all buffered data has been pushed out to the /// 'true sink'. /// /// Writers are intended to be composable with one another. Many implementors /// throughout [`std::io`] take and provide types which implement the `Write` /// trait. /// /// [`write`]: #tymethod.write /// [`flush`]: #tymethod.flush /// [`std::io`]: index.html /// /// # Examples /// /// ```no_run /// use std::io::prelude::*; /// use std::fs::File; /// /// fn main() -> std::io::Result<()> { /// let data = b"some bytes"; /// /// let mut pos = 0; /// let mut buffer = File::create("foo.txt")?; /// /// while pos < data.len() { /// let bytes_written = buffer.write(&data[pos..])?; /// pos += bytes_written; /// } /// Ok(()) /// } /// ``` /// /// The trait also provides convenience methods like [`write_all`], which calls /// `write` in a loop until its entire input has been written. /// /// [`write_all`]: #method.write_all pub trait Write { /// Write a buffer into this writer, returning how many bytes were written. /// /// This function will attempt to write the entire contents of `buf`, but /// the entire write may not succeed, or the write may also generate an /// error. A call to `write` represents *at most one* attempt to write to /// any wrapped object. /// /// Calls to `write` are not guaranteed to block waiting for data to be /// written, and a write which would otherwise block can be indicated through /// an [`Err`] variant. /// /// If the return value is [`Ok(n)`] then it must be guaranteed that /// `n <= buf.len()`. A return value of `0` typically means that the /// underlying object is no longer able to accept bytes and will likely not /// be able to in the future as well, or that the buffer provided is empty. /// /// # Errors /// /// Each call to `write` may generate an I/O error indicating that the /// operation could not be completed. If an error is returned then no bytes /// in the buffer were written to this writer. /// /// It is **not** considered an error if the entire buffer could not be /// written to this writer. /// /// An error of the [`ErrorKind::Interrupted`] kind is non-fatal and the /// write operation should be retried if there is nothing else to do. /// /// [`Err`]: ../../std/result/enum.Result.html#variant.Err /// [`Ok(n)`]: ../../std/result/enum.Result.html#variant.Ok /// [`ErrorKind::Interrupted`]: ../../std/io/enum.ErrorKind.html#variant.Interrupted /// /// # Examples /// /// ```no_run /// use std::io::prelude::*; /// use std::fs::File; /// /// fn main() -> std::io::Result<()> { /// let mut buffer = File::create("foo.txt")?; /// /// // Writes some prefix of the byte string, not necessarily all of it. /// buffer.write(b"some bytes")?; /// Ok(()) /// } /// ``` fn write(&mut self, buf: &[u8]) -> Result; /// Flush this output stream, ensuring that all intermediately buffered /// contents reach their destination. /// /// # Errors /// /// It is considered an error if not all bytes could be written due to /// I/O errors or EOF being reached. /// /// # Examples /// /// ```no_run /// use std::io::prelude::*; /// use std::io::BufWriter; /// use std::fs::File; /// /// fn main() -> std::io::Result<()> { /// let mut buffer = BufWriter::new(File::create("foo.txt")?); /// /// buffer.write_all(b"some bytes")?; /// buffer.flush()?; /// Ok(()) /// } /// ``` fn flush(&mut self) -> Result<()>; /// Attempts to write an entire buffer into this writer. /// /// This method will continuously call [`write`] until there is no more data /// to be written or an error of non-[`ErrorKind::Interrupted`] kind is /// returned. This method will not return until the entire buffer has been /// successfully written or such an error occurs. The first error that is /// not of [`ErrorKind::Interrupted`] kind generated from this method will be /// returned. /// /// If the buffer contains no data, this will never call [`write`]. /// /// # Errors /// /// This function will return the first error of /// non-[`ErrorKind::Interrupted`] kind that [`write`] returns. /// /// [`ErrorKind::Interrupted`]: ../../std/io/enum.ErrorKind.html#variant.Interrupted /// [`write`]: #tymethod.write /// /// # Examples /// /// ```no_run /// use std::io::prelude::*; /// use std::fs::File; /// /// fn main() -> std::io::Result<()> { /// let mut buffer = File::create("foo.txt")?; /// /// buffer.write_all(b"some bytes")?; /// Ok(()) /// } /// ``` fn write_all(&mut self, mut buf: &[u8]) -> Result<()> { while !buf.is_empty() { match self.write(buf) { Ok(0) => { return Err(Error::new(ErrorKind::WriteZero, "failed to write whole buffer")); } Ok(n) => buf = &buf[n..], Err(ref e) if e.kind() == ErrorKind::Interrupted => {} Err(e) => return Err(e), } } Ok(()) } /// Attempts to write multiple buffers into this writer. /// /// This method will continuously call [`write_vectored`] until there is no /// more data to be written or an error of non-[`ErrorKind::Interrupted`] /// kind is returned. This method will not return until all buffers have /// been successfully written or such an error occurs. The first error that /// is not of [`ErrorKind::Interrupted`] kind generated from this method /// will be returned. /// /// If the buffer contains no data, this will never call [`write_vectored`]. /// /// [`write_vectored`]: #method.write_vectored /// [`ErrorKind::Interrupted`]: ../../std/io/enum.ErrorKind.html#variant.Interrupted /// /// # Notes /// /// /// Unlike `io::Write::write_vectored`, this takes a *mutable* reference to /// a slice of `IoSlice`s, not an immutable one. That's because we need to /// modify the slice to keep track of the bytes already written. /// /// Once this function returns, the contents of `bufs` are unspecified, as /// this depends on how many calls to `write_vectored` were necessary. It is /// best to understand this function as taking ownership of `bufs` and to /// not use `bufs` afterwards. The underlying buffers, to which the /// `IoSlice`s point (but not the `IoSlice`s themselves), are unchanged and /// can be reused. /// /// # Examples /// /// ``` /// #![feature(write_all_vectored)] /// # fn main() -> std::io::Result<()> { /// /// use std::io::{Write, IoSlice}; /// /// let mut writer = Vec::new(); /// let bufs = &mut [ /// IoSlice::new(&[1]), /// IoSlice::new(&[2, 3]), /// IoSlice::new(&[4, 5, 6]), /// ]; /// /// writer.write_all_vectored(bufs)?; /// // Note: the contents of `bufs` is now undefined, see the Notes section. /// /// assert_eq!(writer, &[1, 2, 3, 4, 5, 6]); /// # Ok(()) } /// ``` /*fn write_all_vectored(&mut self, mut bufs: &mut [IoSlice<'_>]) -> Result<()> { while !bufs.is_empty() { match self.write_vectored(bufs) { Ok(0) => { return Err(Error::new(ErrorKind::WriteZero, "failed to write whole buffer")); } Ok(n) => bufs = IoSlice::advance(mem::take(&mut bufs), n), Err(ref e) if e.kind() == ErrorKind::Interrupted => {} Err(e) => return Err(e), } } Ok(()) }*/ /// Writes a formatted string into this writer, returning any error /// encountered. /// /// This method is primarily used to interface with the /// [`format_args!`][formatargs] macro, but it is rare that this should /// explicitly be called. The [`write!`][write] macro should be favored to /// invoke this method instead. /// /// [formatargs]: ../macro.format_args.html /// [write]: ../macro.write.html /// /// This function internally uses the [`write_all`][writeall] method on /// this trait and hence will continuously write data so long as no errors /// are received. This also means that partial writes are not indicated in /// this signature. /// /// [writeall]: #method.write_all /// /// # Errors /// /// This function will return any I/O error reported while formatting. /// /// # Examples /// /// ```no_run /// use std::io::prelude::*; /// use std::fs::File; /// /// fn main() -> std::io::Result<()> { /// let mut buffer = File::create("foo.txt")?; /// /// // this call /// write!(buffer, "{:.*}", 2, 1.234567)?; /// // turns into this: /// buffer.write_fmt(format_args!("{:.*}", 2, 1.234567))?; /// Ok(()) /// } /// ``` fn write_fmt(&mut self, fmt: fmt::Arguments<'_>) -> Result<()> { // Create a shim which translates a Write to a fmt::Write and saves // off I/O errors. instead of discarding them struct Adaptor<'a, T: ?Sized + 'a> { inner: &'a mut T, error: Result<()>, } impl fmt::Write for Adaptor<'_, T> { fn write_str(&mut self, s: &str) -> fmt::Result { match self.inner.write_all(s.as_bytes()) { Ok(()) => Ok(()), Err(e) => { self.error = Err(e); Err(fmt::Error) } } } } let mut output = Adaptor { inner: self, error: Ok(()) }; match fmt::write(&mut output, fmt) { Ok(()) => Ok(()), Err(..) => { // check if the error came from the underlying `Write` or not if output.error.is_err() { output.error } else { Err(Error::new(ErrorKind::Other, "formatter error")) } } } } /// Creates a "by reference" adaptor for this instance of `Write`. /// /// The returned adaptor also implements `Write` and will simply borrow this /// current writer. /// /// # Examples /// /// ```no_run /// use std::io::Write; /// use std::fs::File; /// /// fn main() -> std::io::Result<()> { /// let mut buffer = File::create("foo.txt")?; /// /// let reference = buffer.by_ref(); /// /// // we can use reference just like our original buffer /// reference.write_all(b"some bytes")?; /// Ok(()) /// } /// ``` fn by_ref(&mut self) -> &mut Self where Self: Sized, { self } } /// The `Seek` trait provides a cursor which can be moved within a stream of /// bytes. /// /// The stream typically has a fixed size, allowing seeking relative to either /// end or the current offset. /// /// # Examples /// /// [`File`][file]s implement `Seek`: /// /// [file]: ../fs/struct.File.html /// /// ```no_run /// use std::io; /// use std::io::prelude::*; /// use std::fs::File; /// use std::io::SeekFrom; /// /// fn main() -> io::Result<()> { /// let mut f = File::open("foo.txt")?; /// /// // move the cursor 42 bytes from the start of the file /// f.seek(SeekFrom::Start(42))?; /// Ok(()) /// } /// ``` pub trait Seek { /// Seek to an offset, in bytes, in a stream. /// /// A seek beyond the end of a stream is allowed, but behavior is defined /// by the implementation. /// /// If the seek operation completed successfully, /// this method returns the new position from the start of the stream. /// That position can be used later with [`SeekFrom::Start`]. /// /// # Errors /// /// Seeking to a negative offset is considered an error. /// /// [`SeekFrom::Start`]: enum.SeekFrom.html#variant.Start fn seek(&mut self, pos: SeekFrom) -> Result; /// Returns the length of this stream (in bytes). /// /// This method is implemented using up to three seek operations. If this /// method returns successfully, the seek position is unchanged (i.e. the /// position before calling this method is the same as afterwards). /// However, if this method returns an error, the seek position is /// unspecified. /// /// If you need to obtain the length of *many* streams and you don't care /// about the seek position afterwards, you can reduce the number of seek /// operations by simply calling `seek(SeekFrom::End(0))` and using its /// return value (it is also the stream length). /// /// Note that length of a stream can change over time (for example, when /// data is appended to a file). So calling this method multiple times does /// not necessarily return the same length each time. /// /// /// # Example /// /// ```no_run /// #![feature(seek_convenience)] /// use std::{ /// io::{self, Seek}, /// fs::File, /// }; /// /// fn main() -> io::Result<()> { /// let mut f = File::open("foo.txt")?; /// /// let len = f.stream_len()?; /// println!("The file is currently {} bytes long", len); /// Ok(()) /// } /// ``` fn stream_len(&mut self) -> Result { let old_pos = self.stream_position()?; let len = self.seek(SeekFrom::End(0))?; // Avoid seeking a third time when we were already at the end of the // stream. The branch is usually way cheaper than a seek operation. if old_pos != len { self.seek(SeekFrom::Start(old_pos))?; } Ok(len) } /// Returns the current seek position from the start of the stream. /// /// This is equivalent to `self.seek(SeekFrom::Current(0))`. /// /// /// # Example /// /// ```no_run /// #![feature(seek_convenience)] /// use std::{ /// io::{self, BufRead, BufReader, Seek}, /// fs::File, /// }; /// /// fn main() -> io::Result<()> { /// let mut f = BufReader::new(File::open("foo.txt")?); /// /// let before = f.stream_position()?; /// f.read_line(&mut String::new())?; /// let after = f.stream_position()?; /// /// println!("The first line was {} bytes long", after - before); /// Ok(()) /// } /// ``` fn stream_position(&mut self) -> Result { self.seek(SeekFrom::Current(0)) } } /// Enumeration of possible methods to seek within an I/O object. /// /// It is used by the [`Seek`] trait. /// /// [`Seek`]: trait.Seek.html #[derive(Copy, PartialEq, Eq, Clone, Debug)] pub enum SeekFrom { /// Sets the offset to the provided number of bytes. Start(u64), /// Sets the offset to the size of this object plus the specified number of /// bytes. /// /// It is possible to seek beyond the end of an object, but it's an error to /// seek before byte 0. End(i64), /// Sets the offset to the current position plus the specified number of /// bytes. /// /// It is possible to seek beyond the end of an object, but it's an error to /// seek before byte 0. Current(i64), } #[cfg(feature="collections")] fn read_until(r: &mut R, delim: u8, buf: &mut Vec) -> Result { let mut read = 0; loop { let (done, used) = { let available = match r.fill_buf() { Ok(n) => n, Err(ref e) if e.kind() == ErrorKind::Interrupted => continue, Err(e) => return Err(e), }; match memchr::memchr(delim, available) { Some(i) => { buf.extend_from_slice(&available[..=i]); (true, i + 1) } None => { buf.extend_from_slice(available); (false, available.len()) } } }; r.consume(used); read += used; if done || used == 0 { return Ok(read); } } } /// A `BufRead` is a type of `Read`er which has an internal buffer, allowing it /// to perform extra ways of reading. /// /// For example, reading line-by-line is inefficient without using a buffer, so /// if you want to read by line, you'll need `BufRead`, which includes a /// [`read_line`] method as well as a [`lines`] iterator. /// /// # Examples /// /// A locked standard input implements `BufRead`: /// /// ```no_run /// use std::io; /// use std::io::prelude::*; /// /// let stdin = io::stdin(); /// for line in stdin.lock().lines() { /// println!("{}", line.unwrap()); /// } /// ``` /// /// If you have something that implements [`Read`], you can use the [`BufReader` /// type][`BufReader`] to turn it into a `BufRead`. /// /// For example, [`File`] implements [`Read`], but not `BufRead`. /// [`BufReader`] to the rescue! /// /// [`BufReader`]: struct.BufReader.html /// [`File`]: ../fs/struct.File.html /// [`read_line`]: #method.read_line /// [`lines`]: #method.lines /// [`Read`]: trait.Read.html /// /// ```no_run /// use std::io::{self, BufReader}; /// use std::io::prelude::*; /// use std::fs::File; /// /// fn main() -> io::Result<()> { /// let f = File::open("foo.txt")?; /// let f = BufReader::new(f); /// /// for line in f.lines() { /// println!("{}", line.unwrap()); /// } /// /// Ok(()) /// } /// ``` /// #[cfg(feature="collections")] pub trait BufRead: Read { /// Returns the contents of the internal buffer, filling it with more data /// from the inner reader if it is empty. /// /// This function is a lower-level call. It needs to be paired with the /// [`consume`] method to function properly. When calling this /// method, none of the contents will be "read" in the sense that later /// calling `read` may return the same contents. As such, [`consume`] must /// be called with the number of bytes that are consumed from this buffer to /// ensure that the bytes are never returned twice. /// /// [`consume`]: #tymethod.consume /// /// An empty buffer returned indicates that the stream has reached EOF. /// /// # Errors /// /// This function will return an I/O error if the underlying reader was /// read, but returned an error. /// /// # Examples /// /// A locked standard input implements `BufRead`: /// /// ```no_run /// use std::io; /// use std::io::prelude::*; /// /// let stdin = io::stdin(); /// let mut stdin = stdin.lock(); /// /// let buffer = stdin.fill_buf().unwrap(); /// /// // work with buffer /// println!("{:?}", buffer); /// /// // ensure the bytes we worked with aren't returned again later /// let length = buffer.len(); /// stdin.consume(length); /// ``` fn fill_buf(&mut self) -> Result<&[u8]>; /// Tells this buffer that `amt` bytes have been consumed from the buffer, /// so they should no longer be returned in calls to `read`. /// /// This function is a lower-level call. It needs to be paired with the /// [`fill_buf`] method to function properly. This function does /// not perform any I/O, it simply informs this object that some amount of /// its buffer, returned from [`fill_buf`], has been consumed and should /// no longer be returned. As such, this function may do odd things if /// [`fill_buf`] isn't called before calling it. /// /// The `amt` must be `<=` the number of bytes in the buffer returned by /// [`fill_buf`]. /// /// # Examples /// /// Since `consume()` is meant to be used with [`fill_buf`], /// that method's example includes an example of `consume()`. /// /// [`fill_buf`]: #tymethod.fill_buf fn consume(&mut self, amt: usize); /// Read all bytes into `buf` until the delimiter `byte` or EOF is reached. /// /// This function will read bytes from the underlying stream until the /// delimiter or EOF is found. Once found, all bytes up to, and including, /// the delimiter (if found) will be appended to `buf`. /// /// If successful, this function will return the total number of bytes read. /// /// # Errors /// /// This function will ignore all instances of [`ErrorKind::Interrupted`] and /// will otherwise return any errors returned by [`fill_buf`]. /// /// If an I/O error is encountered then all bytes read so far will be /// present in `buf` and its length will have been adjusted appropriately. /// /// [`fill_buf`]: #tymethod.fill_buf /// [`ErrorKind::Interrupted`]: enum.ErrorKind.html#variant.Interrupted /// /// # Examples /// /// [`std::io::Cursor`][`Cursor`] is a type that implements `BufRead`. In /// this example, we use [`Cursor`] to read all the bytes in a byte slice /// in hyphen delimited segments: /// /// [`Cursor`]: struct.Cursor.html /// /// ``` /// use std::io::{self, BufRead}; /// /// let mut cursor = io::Cursor::new(b"lorem-ipsum"); /// let mut buf = vec![]; /// /// // cursor is at 'l' /// let num_bytes = cursor.read_until(b'-', &mut buf) /// .expect("reading from cursor won't fail"); /// assert_eq!(num_bytes, 6); /// assert_eq!(buf, b"lorem-"); /// buf.clear(); /// /// // cursor is at 'i' /// let num_bytes = cursor.read_until(b'-', &mut buf) /// .expect("reading from cursor won't fail"); /// assert_eq!(num_bytes, 5); /// assert_eq!(buf, b"ipsum"); /// buf.clear(); /// /// // cursor is at EOF /// let num_bytes = cursor.read_until(b'-', &mut buf) /// .expect("reading from cursor won't fail"); /// assert_eq!(num_bytes, 0); /// assert_eq!(buf, b""); /// ``` fn read_until(&mut self, byte: u8, buf: &mut Vec) -> Result { read_until(self, byte, buf) } /// Read all bytes until a newline (the 0xA byte) is reached, and append /// them to the provided buffer. /// /// This function will read bytes from the underlying stream until the /// newline delimiter (the 0xA byte) or EOF is found. Once found, all bytes /// up to, and including, the delimiter (if found) will be appended to /// `buf`. /// /// If successful, this function will return the total number of bytes read. /// /// If this function returns `Ok(0)`, the stream has reached EOF. /// /// # Errors /// /// This function has the same error semantics as [`read_until`] and will /// also return an error if the read bytes are not valid UTF-8. If an I/O /// error is encountered then `buf` may contain some bytes already read in /// the event that all data read so far was valid UTF-8. /// /// [`read_until`]: #method.read_until /// /// # Examples /// /// [`std::io::Cursor`][`Cursor`] is a type that implements `BufRead`. In /// this example, we use [`Cursor`] to read all the lines in a byte slice: /// /// [`Cursor`]: struct.Cursor.html /// /// ``` /// use std::io::{self, BufRead}; /// /// let mut cursor = io::Cursor::new(b"foo\nbar"); /// let mut buf = String::new(); /// /// // cursor is at 'f' /// let num_bytes = cursor.read_line(&mut buf) /// .expect("reading from cursor won't fail"); /// assert_eq!(num_bytes, 4); /// assert_eq!(buf, "foo\n"); /// buf.clear(); /// /// // cursor is at 'b' /// let num_bytes = cursor.read_line(&mut buf) /// .expect("reading from cursor won't fail"); /// assert_eq!(num_bytes, 3); /// assert_eq!(buf, "bar"); /// buf.clear(); /// /// // cursor is at EOF /// let num_bytes = cursor.read_line(&mut buf) /// .expect("reading from cursor won't fail"); /// assert_eq!(num_bytes, 0); /// assert_eq!(buf, ""); /// ``` fn read_line(&mut self, buf: &mut String) -> Result { // Note that we are not calling the `.read_until` method here, but // rather our hardcoded implementation. For more details as to why, see // the comments in `read_to_end`. append_to_string(buf, |b| read_until(self, b'\n', b)) } /// Returns an iterator over the contents of this reader split on the byte /// `byte`. /// /// The iterator returned from this function will return instances of /// [`io::Result`]`<`[`Vec`]`>`. Each vector returned will *not* have /// the delimiter byte at the end. /// /// This function will yield errors whenever [`read_until`] would have /// also yielded an error. /// /// [`io::Result`]: type.Result.html /// [`Vec`]: ../vec/struct.Vec.html /// [`read_until`]: #method.read_until /// /// # Examples /// /// [`std::io::Cursor`][`Cursor`] is a type that implements `BufRead`. In /// this example, we use [`Cursor`] to iterate over all hyphen delimited /// segments in a byte slice /// /// [`Cursor`]: struct.Cursor.html /// /// ``` /// use std::io::{self, BufRead}; /// /// let cursor = io::Cursor::new(b"lorem-ipsum-dolor"); /// /// let mut split_iter = cursor.split(b'-').map(|l| l.unwrap()); /// assert_eq!(split_iter.next(), Some(b"lorem".to_vec())); /// assert_eq!(split_iter.next(), Some(b"ipsum".to_vec())); /// assert_eq!(split_iter.next(), Some(b"dolor".to_vec())); /// assert_eq!(split_iter.next(), None); /// ``` fn split(self, byte: u8) -> Split where Self: Sized, { Split { buf: self, delim: byte } } /// Returns an iterator over the lines of this reader. /// /// The iterator returned from this function will yield instances of /// [`io::Result`]`<`[`String`]`>`. Each string returned will *not* have a newline /// byte (the 0xA byte) or CRLF (0xD, 0xA bytes) at the end. /// /// [`io::Result`]: type.Result.html /// [`String`]: ../string/struct.String.html /// /// # Examples /// /// [`std::io::Cursor`][`Cursor`] is a type that implements `BufRead`. In /// this example, we use [`Cursor`] to iterate over all the lines in a byte /// slice. /// /// [`Cursor`]: struct.Cursor.html /// /// ``` /// use std::io::{self, BufRead}; /// /// let cursor = io::Cursor::new(b"lorem\nipsum\r\ndolor"); /// /// let mut lines_iter = cursor.lines().map(|l| l.unwrap()); /// assert_eq!(lines_iter.next(), Some(String::from("lorem"))); /// assert_eq!(lines_iter.next(), Some(String::from("ipsum"))); /// assert_eq!(lines_iter.next(), Some(String::from("dolor"))); /// assert_eq!(lines_iter.next(), None); /// ``` /// /// # Errors /// /// Each line of the iterator has the same error semantics as [`BufRead::read_line`]. /// /// [`BufRead::read_line`]: trait.BufRead.html#method.read_line fn lines(self) -> Lines where Self: Sized, { Lines { buf: self } } } /// Adaptor to chain together two readers. /// /// This struct is generally created by calling [`chain`] on a reader. /// Please see the documentation of [`chain`] for more details. /// /// [`chain`]: trait.Read.html#method.chain pub struct Chain { first: T, second: U, done_first: bool, } impl Chain { /// Consumes the `Chain`, returning the wrapped readers. /// /// # Examples /// /// ```no_run /// use std::io; /// use std::io::prelude::*; /// use std::fs::File; /// /// fn main() -> io::Result<()> { /// let mut foo_file = File::open("foo.txt")?; /// let mut bar_file = File::open("bar.txt")?; /// /// let chain = foo_file.chain(bar_file); /// let (foo_file, bar_file) = chain.into_inner(); /// Ok(()) /// } /// ``` pub fn into_inner(self) -> (T, U) { (self.first, self.second) } /// Gets references to the underlying readers in this `Chain`. /// /// # Examples /// /// ```no_run /// use std::io; /// use std::io::prelude::*; /// use std::fs::File; /// /// fn main() -> io::Result<()> { /// let mut foo_file = File::open("foo.txt")?; /// let mut bar_file = File::open("bar.txt")?; /// /// let chain = foo_file.chain(bar_file); /// let (foo_file, bar_file) = chain.get_ref(); /// Ok(()) /// } /// ``` pub fn get_ref(&self) -> (&T, &U) { (&self.first, &self.second) } /// Gets mutable references to the underlying readers in this `Chain`. /// /// Care should be taken to avoid modifying the internal I/O state of the /// underlying readers as doing so may corrupt the internal state of this /// `Chain`. /// /// # Examples /// /// ```no_run /// use std::io; /// use std::io::prelude::*; /// use std::fs::File; /// /// fn main() -> io::Result<()> { /// let mut foo_file = File::open("foo.txt")?; /// let mut bar_file = File::open("bar.txt")?; /// /// let mut chain = foo_file.chain(bar_file); /// let (foo_file, bar_file) = chain.get_mut(); /// Ok(()) /// } /// ``` pub fn get_mut(&mut self) -> (&mut T, &mut U) { (&mut self.first, &mut self.second) } } impl fmt::Debug for Chain { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_struct("Chain").field("t", &self.first).field("u", &self.second).finish() } } impl Read for Chain { fn read(&mut self, buf: &mut [u8]) -> Result { if !self.done_first { match self.first.read(buf)? { 0 if !buf.is_empty() => self.done_first = true, n => return Ok(n), } } self.second.read(buf) } unsafe fn initializer(&self) -> Initializer { let initializer = self.first.initializer(); if initializer.should_initialize() { initializer } else { self.second.initializer() } } } #[cfg(feature="collections")] impl BufRead for Chain { fn fill_buf(&mut self) -> Result<&[u8]> { if !self.done_first { match self.first.fill_buf()? { buf if buf.is_empty() => { self.done_first = true; } buf => return Ok(buf), } } self.second.fill_buf() } fn consume(&mut self, amt: usize) { if !self.done_first { self.first.consume(amt) } else { self.second.consume(amt) } } } /// Reader adaptor which limits the bytes read from an underlying reader. /// /// This struct is generally created by calling [`take`] on a reader. /// Please see the documentation of [`take`] for more details. /// /// [`take`]: trait.Read.html#method.take #[derive(Debug)] pub struct Take { inner: T, limit: u64, } impl Take { /// Returns the number of bytes that can be read before this instance will /// return EOF. /// /// # Note /// /// This instance may reach `EOF` after reading fewer bytes than indicated by /// this method if the underlying [`Read`] instance reaches EOF. /// /// [`Read`]: ../../std/io/trait.Read.html /// /// # Examples /// /// ```no_run /// use std::io; /// use std::io::prelude::*; /// use std::fs::File; /// /// fn main() -> io::Result<()> { /// let f = File::open("foo.txt")?; /// /// // read at most five bytes /// let handle = f.take(5); /// /// println!("limit: {}", handle.limit()); /// Ok(()) /// } /// ``` pub fn limit(&self) -> u64 { self.limit } /// Sets the number of bytes that can be read before this instance will /// return EOF. This is the same as constructing a new `Take` instance, so /// the amount of bytes read and the previous limit value don't matter when /// calling this method. /// /// # Examples /// /// ```no_run /// use std::io; /// use std::io::prelude::*; /// use std::fs::File; /// /// fn main() -> io::Result<()> { /// let f = File::open("foo.txt")?; /// /// // read at most five bytes /// let mut handle = f.take(5); /// handle.set_limit(10); /// /// assert_eq!(handle.limit(), 10); /// Ok(()) /// } /// ``` pub fn set_limit(&mut self, limit: u64) { self.limit = limit; } /// Consumes the `Take`, returning the wrapped reader. /// /// # Examples /// /// ```no_run /// use std::io; /// use std::io::prelude::*; /// use std::fs::File; /// /// fn main() -> io::Result<()> { /// let mut file = File::open("foo.txt")?; /// /// let mut buffer = [0; 5]; /// let mut handle = file.take(5); /// handle.read(&mut buffer)?; /// /// let file = handle.into_inner(); /// Ok(()) /// } /// ``` pub fn into_inner(self) -> T { self.inner } /// Gets a reference to the underlying reader. /// /// # Examples /// /// ```no_run /// use std::io; /// use std::io::prelude::*; /// use std::fs::File; /// /// fn main() -> io::Result<()> { /// let mut file = File::open("foo.txt")?; /// /// let mut buffer = [0; 5]; /// let mut handle = file.take(5); /// handle.read(&mut buffer)?; /// /// let file = handle.get_ref(); /// Ok(()) /// } /// ``` pub fn get_ref(&self) -> &T { &self.inner } /// Gets a mutable reference to the underlying reader. /// /// Care should be taken to avoid modifying the internal I/O state of the /// underlying reader as doing so may corrupt the internal limit of this /// `Take`. /// /// # Examples /// /// ```no_run /// use std::io; /// use std::io::prelude::*; /// use std::fs::File; /// /// fn main() -> io::Result<()> { /// let mut file = File::open("foo.txt")?; /// /// let mut buffer = [0; 5]; /// let mut handle = file.take(5); /// handle.read(&mut buffer)?; /// /// let file = handle.get_mut(); /// Ok(()) /// } /// ``` pub fn get_mut(&mut self) -> &mut T { &mut self.inner } } impl Read for Take { fn read(&mut self, buf: &mut [u8]) -> Result { // Don't call into inner reader at all at EOF because it may still block if self.limit == 0 { return Ok(0); } let max = cmp::min(buf.len() as u64, self.limit) as usize; let n = self.inner.read(&mut buf[..max])?; self.limit -= n as u64; Ok(n) } unsafe fn initializer(&self) -> Initializer { self.inner.initializer() } #[cfg(feature="collections")] fn read_to_end(&mut self, buf: &mut Vec) -> Result { // Pass in a reservation_size closure that respects the current value // of limit for each read. If we hit the read limit, this prevents the // final zero-byte read from allocating again. read_to_end_with_reservation(self, buf, |self_| cmp::min(self_.limit, 32) as usize) } } #[cfg(feature="collections")] impl BufRead for Take { fn fill_buf(&mut self) -> Result<&[u8]> { // Don't call into inner reader at all at EOF because it may still block if self.limit == 0 { return Ok(&[]); } let buf = self.inner.fill_buf()?; let cap = cmp::min(buf.len() as u64, self.limit) as usize; Ok(&buf[..cap]) } fn consume(&mut self, amt: usize) { // Don't let callers reset the limit by passing an overlarge value let amt = cmp::min(amt as u64, self.limit) as usize; self.limit -= amt as u64; self.inner.consume(amt); } } /// An iterator over `u8` values of a reader. /// /// This struct is generally created by calling [`bytes`] on a reader. /// Please see the documentation of [`bytes`] for more details. /// /// [`bytes`]: trait.Read.html#method.bytes #[derive(Debug)] pub struct Bytes { inner: R, } impl Iterator for Bytes { type Item = Result; fn next(&mut self) -> Option> { let mut byte = 0; loop { return match self.inner.read(slice::from_mut(&mut byte)) { Ok(0) => None, Ok(..) => Some(Ok(byte)), Err(ref e) if e.kind() == ErrorKind::Interrupted => continue, Err(e) => Some(Err(e)), }; } } } /// An iterator over the contents of an instance of `BufRead` split on a /// particular byte. /// /// This struct is generally created by calling [`split`] on a `BufRead`. /// Please see the documentation of [`split`] for more details. /// /// [`split`]: trait.BufRead.html#method.split #[derive(Debug)] #[cfg(feature="collections")] pub struct Split { buf: B, delim: u8, } #[cfg(feature="collections")] impl Iterator for Split { type Item = Result>; fn next(&mut self) -> Option>> { let mut buf = Vec::new(); match self.buf.read_until(self.delim, &mut buf) { Ok(0) => None, Ok(_n) => { if buf[buf.len() - 1] == self.delim { buf.pop(); } Some(Ok(buf)) } Err(e) => Some(Err(e)), } } } /// An iterator over the lines of an instance of `BufRead`. /// /// This struct is generally created by calling [`lines`] on a `BufRead`. /// Please see the documentation of [`lines`] for more details. /// /// [`lines`]: trait.BufRead.html#method.lines #[derive(Debug)] #[cfg(feature="collections")] pub struct Lines { buf: B, } #[cfg(feature="collections")] impl Iterator for Lines { type Item = Result; fn next(&mut self) -> Option> { let mut buf = String::new(); match self.buf.read_line(&mut buf) { Ok(0) => None, Ok(_n) => { if buf.ends_with('\n') { buf.pop(); if buf.ends_with('\r') { buf.pop(); } } Some(Ok(buf)) } Err(e) => Some(Err(e)), } } } #[cfg(test)] mod tests { use super::{repeat, Cursor, SeekFrom}; use crate::cmp::{self, min}; use crate::io::prelude::*; use crate::io::{self, IoSlice, IoSliceMut}; use crate::ops::Deref; #[test] #[cfg_attr(target_os = "emscripten", ignore)] fn read_until() { let mut buf = Cursor::new(&b"12"[..]); let mut v = Vec::new(); assert_eq!(buf.read_until(b'3', &mut v).unwrap(), 2); assert_eq!(v, b"12"); let mut buf = Cursor::new(&b"1233"[..]); let mut v = Vec::new(); assert_eq!(buf.read_until(b'3', &mut v).unwrap(), 3); assert_eq!(v, b"123"); v.truncate(0); assert_eq!(buf.read_until(b'3', &mut v).unwrap(), 1); assert_eq!(v, b"3"); v.truncate(0); assert_eq!(buf.read_until(b'3', &mut v).unwrap(), 0); assert_eq!(v, []); } #[test] fn split() { let buf = Cursor::new(&b"12"[..]); let mut s = buf.split(b'3'); assert_eq!(s.next().unwrap().unwrap(), vec![b'1', b'2']); assert!(s.next().is_none()); let buf = Cursor::new(&b"1233"[..]); let mut s = buf.split(b'3'); assert_eq!(s.next().unwrap().unwrap(), vec![b'1', b'2']); assert_eq!(s.next().unwrap().unwrap(), vec![]); assert!(s.next().is_none()); } #[test] fn read_line() { let mut buf = Cursor::new(&b"12"[..]); let mut v = String::new(); assert_eq!(buf.read_line(&mut v).unwrap(), 2); assert_eq!(v, "12"); let mut buf = Cursor::new(&b"12\n\n"[..]); let mut v = String::new(); assert_eq!(buf.read_line(&mut v).unwrap(), 3); assert_eq!(v, "12\n"); v.truncate(0); assert_eq!(buf.read_line(&mut v).unwrap(), 1); assert_eq!(v, "\n"); v.truncate(0); assert_eq!(buf.read_line(&mut v).unwrap(), 0); assert_eq!(v, ""); } #[test] fn lines() { let buf = Cursor::new(&b"12\r"[..]); let mut s = buf.lines(); assert_eq!(s.next().unwrap().unwrap(), "12\r".to_string()); assert!(s.next().is_none()); let buf = Cursor::new(&b"12\r\n\n"[..]); let mut s = buf.lines(); assert_eq!(s.next().unwrap().unwrap(), "12".to_string()); assert_eq!(s.next().unwrap().unwrap(), "".to_string()); assert!(s.next().is_none()); } #[test] fn read_to_end() { let mut c = Cursor::new(&b""[..]); let mut v = Vec::new(); assert_eq!(c.read_to_end(&mut v).unwrap(), 0); assert_eq!(v, []); let mut c = Cursor::new(&b"1"[..]); let mut v = Vec::new(); assert_eq!(c.read_to_end(&mut v).unwrap(), 1); assert_eq!(v, b"1"); let cap = 1024 * 1024; let data = (0..cap).map(|i| (i / 3) as u8).collect::>(); let mut v = Vec::new(); let (a, b) = data.split_at(data.len() / 2); assert_eq!(Cursor::new(a).read_to_end(&mut v).unwrap(), a.len()); assert_eq!(Cursor::new(b).read_to_end(&mut v).unwrap(), b.len()); assert_eq!(v, data); } #[test] fn read_to_string() { let mut c = Cursor::new(&b""[..]); let mut v = String::new(); assert_eq!(c.read_to_string(&mut v).unwrap(), 0); assert_eq!(v, ""); let mut c = Cursor::new(&b"1"[..]); let mut v = String::new(); assert_eq!(c.read_to_string(&mut v).unwrap(), 1); assert_eq!(v, "1"); let mut c = Cursor::new(&b"\xff"[..]); let mut v = String::new(); assert!(c.read_to_string(&mut v).is_err()); } #[test] fn read_exact() { let mut buf = [0; 4]; let mut c = Cursor::new(&b""[..]); assert_eq!(c.read_exact(&mut buf).unwrap_err().kind(), io::ErrorKind::UnexpectedEof); let mut c = Cursor::new(&b"123"[..]).chain(Cursor::new(&b"456789"[..])); c.read_exact(&mut buf).unwrap(); assert_eq!(&buf, b"1234"); c.read_exact(&mut buf).unwrap(); assert_eq!(&buf, b"5678"); assert_eq!(c.read_exact(&mut buf).unwrap_err().kind(), io::ErrorKind::UnexpectedEof); } #[test] fn read_exact_slice() { let mut buf = [0; 4]; let mut c = &b""[..]; assert_eq!(c.read_exact(&mut buf).unwrap_err().kind(), io::ErrorKind::UnexpectedEof); let mut c = &b"123"[..]; assert_eq!(c.read_exact(&mut buf).unwrap_err().kind(), io::ErrorKind::UnexpectedEof); // make sure the optimized (early returning) method is being used assert_eq!(&buf, &[0; 4]); let mut c = &b"1234"[..]; c.read_exact(&mut buf).unwrap(); assert_eq!(&buf, b"1234"); let mut c = &b"56789"[..]; c.read_exact(&mut buf).unwrap(); assert_eq!(&buf, b"5678"); assert_eq!(c, b"9"); } #[test] fn take_eof() { struct R; impl Read for R { fn read(&mut self, _: &mut [u8]) -> io::Result { Err(io::Error::new(io::ErrorKind::Other, "")) } } impl BufRead for R { fn fill_buf(&mut self) -> io::Result<&[u8]> { Err(io::Error::new(io::ErrorKind::Other, "")) } fn consume(&mut self, _amt: usize) {} } let mut buf = [0; 1]; assert_eq!(0, R.take(0).read(&mut buf).unwrap()); assert_eq!(b"", R.take(0).fill_buf().unwrap()); } fn cmp_bufread(mut br1: Br1, mut br2: Br2, exp: &[u8]) { let mut cat = Vec::new(); loop { let consume = { let buf1 = br1.fill_buf().unwrap(); let buf2 = br2.fill_buf().unwrap(); let minlen = if buf1.len() < buf2.len() { buf1.len() } else { buf2.len() }; assert_eq!(buf1[..minlen], buf2[..minlen]); cat.extend_from_slice(&buf1[..minlen]); minlen }; if consume == 0 { break; } br1.consume(consume); br2.consume(consume); } assert_eq!(br1.fill_buf().unwrap().len(), 0); assert_eq!(br2.fill_buf().unwrap().len(), 0); assert_eq!(&cat[..], &exp[..]) } #[test] fn chain_bufread() { let testdata = b"ABCDEFGHIJKL"; let chain1 = (&testdata[..3]).chain(&testdata[3..6]).chain(&testdata[6..9]).chain(&testdata[9..]); let chain2 = (&testdata[..4]).chain(&testdata[4..8]).chain(&testdata[8..]); cmp_bufread(chain1, chain2, &testdata[..]); } #[test] fn chain_zero_length_read_is_not_eof() { let a = b"A"; let b = b"B"; let mut s = String::new(); let mut chain = (&a[..]).chain(&b[..]); chain.read(&mut []).unwrap(); chain.read_to_string(&mut s).unwrap(); assert_eq!("AB", s); } #[bench] #[cfg_attr(target_os = "emscripten", ignore)] fn bench_read_to_end(b: &mut test::Bencher) { b.iter(|| { let mut lr = repeat(1).take(10000000); let mut vec = Vec::with_capacity(1024); super::read_to_end(&mut lr, &mut vec) }); } #[test] fn seek_len() -> io::Result<()> { let mut c = Cursor::new(vec![0; 15]); assert_eq!(c.stream_len()?, 15); c.seek(SeekFrom::End(0))?; let old_pos = c.stream_position()?; assert_eq!(c.stream_len()?, 15); assert_eq!(c.stream_position()?, old_pos); c.seek(SeekFrom::Start(7))?; c.seek(SeekFrom::Current(2))?; let old_pos = c.stream_position()?; assert_eq!(c.stream_len()?, 15); assert_eq!(c.stream_position()?, old_pos); Ok(()) } #[test] fn seek_position() -> io::Result<()> { // All `asserts` are duplicated here to make sure the method does not // change anything about the seek state. let mut c = Cursor::new(vec![0; 15]); assert_eq!(c.stream_position()?, 0); assert_eq!(c.stream_position()?, 0); c.seek(SeekFrom::End(0))?; assert_eq!(c.stream_position()?, 15); assert_eq!(c.stream_position()?, 15); c.seek(SeekFrom::Start(7))?; c.seek(SeekFrom::Current(2))?; assert_eq!(c.stream_position()?, 9); assert_eq!(c.stream_position()?, 9); c.seek(SeekFrom::End(-3))?; c.seek(SeekFrom::Current(1))?; c.seek(SeekFrom::Current(-5))?; assert_eq!(c.stream_position()?, 8); assert_eq!(c.stream_position()?, 8); Ok(()) } // A simple example reader which uses the default implementation of // read_to_end. struct ExampleSliceReader<'a> { slice: &'a [u8], } impl<'a> Read for ExampleSliceReader<'a> { fn read(&mut self, buf: &mut [u8]) -> io::Result { let len = cmp::min(self.slice.len(), buf.len()); buf[..len].copy_from_slice(&self.slice[..len]); self.slice = &self.slice[len..]; Ok(len) } } #[test] fn test_read_to_end_capacity() -> io::Result<()> { let input = &b"foo"[..]; // read_to_end() generally needs to over-allocate, both for efficiency // and so that it can distinguish EOF. Assert that this is the case // with this simple ExampleSliceReader struct, which uses the default // implementation of read_to_end. Even though vec1 is allocated with // exactly enough capacity for the read, read_to_end will allocate more // space here. let mut vec1 = Vec::with_capacity(input.len()); ExampleSliceReader { slice: input }.read_to_end(&mut vec1)?; assert_eq!(vec1.len(), input.len()); assert!(vec1.capacity() > input.len(), "allocated more"); // However, std::io::Take includes an implementation of read_to_end // that will not allocate when the limit has already been reached. In // this case, vec2 never grows. let mut vec2 = Vec::with_capacity(input.len()); ExampleSliceReader { slice: input }.take(input.len() as u64).read_to_end(&mut vec2)?; assert_eq!(vec2.len(), input.len()); assert_eq!(vec2.capacity(), input.len(), "did not allocate more"); Ok(()) } #[test] fn io_slice_mut_advance() { let mut buf1 = [1; 8]; let mut buf2 = [2; 16]; let mut buf3 = [3; 8]; let mut bufs = &mut [ IoSliceMut::new(&mut buf1), IoSliceMut::new(&mut buf2), IoSliceMut::new(&mut buf3), ][..]; // Only in a single buffer.. bufs = IoSliceMut::advance(bufs, 1); assert_eq!(bufs[0].deref(), [1; 7].as_ref()); assert_eq!(bufs[1].deref(), [2; 16].as_ref()); assert_eq!(bufs[2].deref(), [3; 8].as_ref()); // Removing a buffer, leaving others as is. bufs = IoSliceMut::advance(bufs, 7); assert_eq!(bufs[0].deref(), [2; 16].as_ref()); assert_eq!(bufs[1].deref(), [3; 8].as_ref()); // Removing a buffer and removing from the next buffer. bufs = IoSliceMut::advance(bufs, 18); assert_eq!(bufs[0].deref(), [3; 6].as_ref()); } #[test] fn io_slice_mut_advance_empty_slice() { let empty_bufs = &mut [][..]; // Shouldn't panic. IoSliceMut::advance(empty_bufs, 1); } #[test] fn io_slice_mut_advance_beyond_total_length() { let mut buf1 = [1; 8]; let mut bufs = &mut [IoSliceMut::new(&mut buf1)][..]; // Going beyond the total length should be ok. bufs = IoSliceMut::advance(bufs, 9); assert!(bufs.is_empty()); } #[test] fn io_slice_advance() { let buf1 = [1; 8]; let buf2 = [2; 16]; let buf3 = [3; 8]; let mut bufs = &mut [IoSlice::new(&buf1), IoSlice::new(&buf2), IoSlice::new(&buf3)][..]; // Only in a single buffer.. bufs = IoSlice::advance(bufs, 1); assert_eq!(bufs[0].deref(), [1; 7].as_ref()); assert_eq!(bufs[1].deref(), [2; 16].as_ref()); assert_eq!(bufs[2].deref(), [3; 8].as_ref()); // Removing a buffer, leaving others as is. bufs = IoSlice::advance(bufs, 7); assert_eq!(bufs[0].deref(), [2; 16].as_ref()); assert_eq!(bufs[1].deref(), [3; 8].as_ref()); // Removing a buffer and removing from the next buffer. bufs = IoSlice::advance(bufs, 18); assert_eq!(bufs[0].deref(), [3; 6].as_ref()); } #[test] fn io_slice_advance_empty_slice() { let empty_bufs = &mut [][..]; // Shouldn't panic. IoSlice::advance(empty_bufs, 1); } #[test] fn io_slice_advance_beyond_total_length() { let buf1 = [1; 8]; let mut bufs = &mut [IoSlice::new(&buf1)][..]; // Going beyond the total length should be ok. bufs = IoSlice::advance(bufs, 9); assert!(bufs.is_empty()); } /// Create a new writer that reads from at most `n_bufs` and reads /// `per_call` bytes (in total) per call to write. fn test_writer(n_bufs: usize, per_call: usize) -> TestWriter { TestWriter { n_bufs, per_call, written: Vec::new() } } struct TestWriter { n_bufs: usize, per_call: usize, written: Vec, } impl Write for TestWriter { fn write(&mut self, buf: &[u8]) -> io::Result { self.write_vectored(&[IoSlice::new(buf)]) } fn write_vectored(&mut self, bufs: &[IoSlice<'_>]) -> io::Result { let mut left = self.per_call; let mut written = 0; for buf in bufs.iter().take(self.n_bufs) { let n = min(left, buf.len()); self.written.extend_from_slice(&buf[0..n]); left -= n; written += n; } Ok(written) } fn flush(&mut self) -> io::Result<()> { Ok(()) } } #[test] fn test_writer_read_from_one_buf() { let mut writer = test_writer(1, 2); assert_eq!(writer.write(&[]).unwrap(), 0); assert_eq!(writer.write_vectored(&[]).unwrap(), 0); // Read at most 2 bytes. assert_eq!(writer.write(&[1, 1, 1]).unwrap(), 2); let bufs = &[IoSlice::new(&[2, 2, 2])]; assert_eq!(writer.write_vectored(bufs).unwrap(), 2); // Only read from first buf. let bufs = &[IoSlice::new(&[3]), IoSlice::new(&[4, 4])]; assert_eq!(writer.write_vectored(bufs).unwrap(), 1); assert_eq!(writer.written, &[1, 1, 2, 2, 3]); } #[test] fn test_writer_read_from_multiple_bufs() { let mut writer = test_writer(3, 3); // Read at most 3 bytes from two buffers. let bufs = &[IoSlice::new(&[1]), IoSlice::new(&[2, 2, 2])]; assert_eq!(writer.write_vectored(bufs).unwrap(), 3); // Read at most 3 bytes from three buffers. let bufs = &[IoSlice::new(&[3]), IoSlice::new(&[4]), IoSlice::new(&[5, 5])]; assert_eq!(writer.write_vectored(bufs).unwrap(), 3); assert_eq!(writer.written, &[1, 2, 2, 3, 4, 5]); } #[test] fn test_write_all_vectored() { #[rustfmt::skip] // Becomes unreadable otherwise. let tests: Vec<(_, &'static [u8])> = vec![ (vec![], &[]), (vec![IoSlice::new(&[1])], &[1]), (vec![IoSlice::new(&[1, 2])], &[1, 2]), (vec![IoSlice::new(&[1, 2, 3])], &[1, 2, 3]), (vec![IoSlice::new(&[1, 2, 3, 4])], &[1, 2, 3, 4]), (vec![IoSlice::new(&[1, 2, 3, 4, 5])], &[1, 2, 3, 4, 5]), (vec![IoSlice::new(&[1]), IoSlice::new(&[2])], &[1, 2]), (vec![IoSlice::new(&[1]), IoSlice::new(&[2, 2])], &[1, 2, 2]), (vec![IoSlice::new(&[1, 1]), IoSlice::new(&[2, 2])], &[1, 1, 2, 2]), (vec![IoSlice::new(&[1, 1]), IoSlice::new(&[2, 2, 2])], &[1, 1, 2, 2, 2]), (vec![IoSlice::new(&[1, 1]), IoSlice::new(&[2, 2, 2])], &[1, 1, 2, 2, 2]), (vec![IoSlice::new(&[1, 1, 1]), IoSlice::new(&[2, 2, 2])], &[1, 1, 1, 2, 2, 2]), (vec![IoSlice::new(&[1, 1, 1]), IoSlice::new(&[2, 2, 2, 2])], &[1, 1, 1, 2, 2, 2, 2]), (vec![IoSlice::new(&[1, 1, 1, 1]), IoSlice::new(&[2, 2, 2, 2])], &[1, 1, 1, 1, 2, 2, 2, 2]), (vec![IoSlice::new(&[1]), IoSlice::new(&[2]), IoSlice::new(&[3])], &[1, 2, 3]), (vec![IoSlice::new(&[1, 1]), IoSlice::new(&[2, 2]), IoSlice::new(&[3, 3])], &[1, 1, 2, 2, 3, 3]), (vec![IoSlice::new(&[1]), IoSlice::new(&[2, 2]), IoSlice::new(&[3, 3, 3])], &[1, 2, 2, 3, 3, 3]), (vec![IoSlice::new(&[1, 1, 1]), IoSlice::new(&[2, 2, 2]), IoSlice::new(&[3, 3, 3])], &[1, 1, 1, 2, 2, 2, 3, 3, 3]), ]; let writer_configs = &[(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3)]; for (n_bufs, per_call) in writer_configs.iter().copied() { for (mut input, wanted) in tests.clone().into_iter() { let mut writer = test_writer(n_bufs, per_call); assert!(writer.write_all_vectored(&mut *input).is_ok()); assert_eq!(&*writer.written, &*wanted); } } } }