
TRITA-ICT-EX-2010:90

A performan
e-driven SoC ar
hite
ture for videosynthesisSébastien Bourdeaudu
q

Sto
kholm 2010Master of S
ien
e Thesis in System-on-Chip DesignRoyal Institute of Te
hnologyDepartment of Software and Computer Systems

TRITA-ICT-EX-2010:90
© Sébastien Bourdeaudu
q, June 2010. Milkymist is a trademark of SébastienBourdeaudu
q. This report is distributed under the Creative Commons Attribution-Share Alike 3.0 Unported li
ense.KTH, Sto
kholm 2010

Abstra
tCommer
ial system-on-
hips with advan
ed graphi
s a

eleration
apabilities arebe
oming ubiquitous today. However, in
ontradi
tion with the open sour
e idea,little is known about the details of their ar
hite
ture and implementation, as theyare usually
overed by trade se
rets.Fostered by the falling
osts of high-density FPGAs, our thesis proje
t en
om-passes resear
hing, developing and implementing the key points of the ar
hite
tureof an open sour
e and
omprehensive system-on-
hip with
ompetitive yet reason-able graphi
s
apabilities. The
hosen target appli
ation is the synthesis of visuale�e
ts similar to those produ
ed by the popular MilkDrop visualization plug-in forWinamp.Our system-on-
hip design
onsists prin
ipally of a
ustom bus infrastru
ture,a
ustom DDR SDRAM memory
ontroller, a mi
ropro
essor
ore, and
ustomgraphi
s a

elerators for texture mapping and �oating point pro
essing.Our base mi
ropro
essor system is
apable of running Linux (without MMU)and outperforms a Mi
roblaze-based solution tested in similar
onditions by a 15 to35% in
rease in speed of exe
ution. For our video synthesis appli
ation, our texturemapping a

elerator a
hieves an average �ll rate of 44 megapixels per se
ond andour �oating point pro
essing unit provides in ex
ess of 70 million �oating point op-erations per se
ond. Everything, in
luding I/O peripherals (AC97 audio, Ethernet,RS232 UART, GPIO), is implemented on a Virtex-4 XC4VLX25 FPGA, where itutilizes about 80% of the resour
es.Finally, we have su

essfully developed an embedded video synthesis programthat leverages the possibilities of our hardware ar
hite
ture to permit the live ren-dering of many MilkDrop e�e
ts in 640x480 resolution at 30 frames per se
ond.TRITA-ICT-EX-2010:90

iii

A
knowledgmentsFirst, I would like to express my gratitude to Professor Mats Brorsson, my supervisorand examiner at the Royal Institute of Te
hnology, for having the open-mindednessof letting me write my thesis on this subje
t and for his help and advi
e with it.I would also like to thank Latti
e Semi
ondu
tor for opening the sour
e
ode oftheir Latti
eMi
o32 pro
essor
ore.Spe
ial thanks go to all the people who are indire
tly involved with this Master'sthesis proje
t: Henry de Beau
hesne (Xilinx) for getting me started with high-endFPGA tools, Shawn Tan (Aeste Works (M) Sdn Bhd) for his help with understand-ing the WISHBONE bus, Gregory Taylor (NASA's Jet Propulsion Laboratory) forletting me know that they were using parts of my
ode in the development of a
ommuni
ations system to be put on board the international spa
e station, TakeshiMatsuya (Keio University) for his work on the port of Linux to the system-on-
hipdes
ribed herein, Mi
hael Walle for developing support of the system-on-
hip in theQEMU emulator and Wolfgang Spraul (Sharism at Work Ltd.) for proposing me anagreement for manufa
turing devi
es using the system-on-
hip design.Thanks to the Eid�lon musi
 band (Rheims, Fran
e), for whom I wrote my �rstPC-based video synthesis program in 2005, whi
h has been a sour
e of inspirationfor this proje
t.Finally, I would like to thank all the resear
hers who have retained their
opyrighton their papers (or have put them in the publi
 domain) and distribute them onlinefor everybody to download freely (in
identally in a

ordan
e with the prin
iple offree ex
hange of information from the KTH ethi
s poli
y). This in spite of the defaultagreement of many publishers su
h as the IEEE, whi
h asks authors to assign their
opyrights to the publishers so the latter have the ex
lusive permission to sell thedownload of do
uments that they did not write, without giving ba
k to the authors,at a pri
e supposedly meant to
over publishing expenses but whi
h is not justi�edby today's low
osts of network bandwidth and servers.Thanks to these resear
hers, I have been able to a

ess quality s
ienti�
 literaturebefore I went to a university, from whi
h I have learned a lot. Even throughoutthe writing of this Master's thesis, papers freely available online enabled greaterprodu
tivity as a

ess to them was mu
h faster.

iv

Contents
1 Introdu
tion 12 Ba
kground 52.1 Video synthesis . 52.1.1 Overview . 52.1.2 Prin
iple . 62.2 Open sour
e SoC platforms . 112.3 DRAM te
hnology . 142.3.1 Multiple banks . 162.3.2 Refreshing . 172.4 Texture mapping . 172.5 Organization . 183 Memory subsystem 233.1 Atta
king the memory wall . 233.2 Another approa
h . 243.3 Memory system features . 243.3.1 Single SDRAM and system
lo
k domain 243.3.2 Page mode
ontrol algorithm 253.3.3 Burst a

esses . 253.3.4 Burst reordering . 263.3.5 Pipelining . 263.4 Pra
ti
al implementation . 263.5 Performan
e measurement . 293.5.1 Introdu
tion . 293.5.2 Method . 293.5.3 Results . 314 SoC inter
onne
t 334.1 General SoC inter
onne
t: the Wishbone bus 334.2 Con�guration and Status Registers: the CSR bus 334.3 High-throughput memory a

ess bus: the FML bus 344.3.1 Variable laten
y . 344.3.2 Burst only . 34v

vi Contents4.3.3 Burst reordering . 354.3.4 Pipelining . 354.3.5 Usage . 354.4 Bridging Wishbone to FML . 354.5 Ca
he
oheren
y . 364.5.1 Coheren
y issues around the CPU (L1)
a
he 364.5.2 Coheren
y issues around the Wishbone-FML (L2)
a
he . . . 365 Texture mapping unit 395.1 Algorithm . 395.1.1 Two-dimensional interpolation 395.1.2 One-dimensional interpolation 405.1.3 Bilinear �ltering . 425.2 Performan
e
onsiderations . 445.2.1 Context . 445.2.2 Exe
ution time of the interpolation algorithm 445.2.3 Total exe
ution time . 455.3 Pipelined hardware implementation 465.3.1 Strategy . 465.3.2 Vertex fet
h engine . 465.3.3 Interpolators . 485.3.4 Clamping/wrapping . 495.3.5 Address generator . 505.3.6 Texel
a
he . 505.3.7 Bilinear �lter . 655.3.8 Write bu�er . 655.3.9 Control interfa
e . 675.4 Extra features . 675.5 Implementation results . 676 Floating point
o-pro
essor 716.1 Purpose . 716.2 Forms of parallelism . 716.3 Hardware ar
hite
ture . 726.3.1 Overview . 726.3.2 Instru
tion set . 746.3.3 Instru
tion RAM . 746.3.4 ALU . 746.4 Run-time
ompiler . 756.4.1 Compilation into virtual ma
hine instru
tions 766.4.2 S
heduling . 776.4.3 Constants and user variables 786.5 Results . 79

Contents vii7 Software 817.1 Latti
eMi
o32 . 817.2 Capabilities . 827.3 Ben
hmarking . 827.4 Design of a MilkDrop-like rendering program 867.4.1 Des
ription . 867.4.2 Ca
he
oheren
y . 887.4.3 Event-driven operation . 897.4.4 Results . 898 Con
lusion and future works 91

viii

List of Figures1.1 FPGA boards of the Ikos Pegasus ASIC emulator (
a. 1999). 21.2 Proje
t logo. 22.1 Sample video frame from the MilkDrop visual synthesizer. 52.2 Sample video frame from Visikord, a program mixing live video intoMilkDrop. 62.3 The embedded user interfa
e (based on Genode FX [12℄) of Fli
ker-noise, the Milkymist VJ appli
ation. The pat
h editor is shown, withper-frame and per-vertex equations. 72.4 Basi
 MilkDrop rendering �ow. 82.5 Ex
erpt from the MilkDrop preset �Geiss � Warp of Dali 1� (withsome simpli�
ations). 92.6 Blo
k diagram of a DRAM memory bank. 152.7 Example of distorted pi
ture. 182.8 Prin
iple of bilinear texture �ltering. 182.9 Rendering with bilinear �ltering enabled. 192.10 Rendering with bilinear �ltering disabled (the nearest texel is used). 192.11 SoC blo
k diagram. 213.1 Blo
k diagram of the HPDMC ar
hite
ture. 273.2 FML transa
tions. 303.3 Maximum utilization of a FML bus. 315.1 Typi
al de
omposition into triangular primitives of the MilkDrop ren-dering surfa
e. 405.2 2D linear interpolation on a re
tangle. 405.3 One-dimensional linear interpolation algorithm. 415.4 Bilinear �ltering using the �xed point texture
oordinates. 435.5 Blo
k diagram of the texture mapping unit ar
hite
ture. 475.6 Ve
tor interpolator. 485.7 Pipelined s
alar interpolator. 495.8 Ar
hite
ture of the four-
hannel texel
a
he. 525.9 Disposition of the
hannels within the texture, general
ase. 545.10 Disposition of the
hannels within the texture, verti
al wrapping. . . 545.11 Disposition of the
hannels within the texture, horizontal wrapping. . 55ix

x List of Figures5.12 Disposition of the
hannels within the texture, horizontal and verti
alwrapping. 565.13 TMU output pi
ture for the �
opy� set (original pi
ture). 605.14 TMU output pi
ture for the �zoomin� set. 605.15 TMU output pi
ture for the �zoomout� set. 615.16 TMU output pi
ture for the �rotozoom� set. 615.17 Typi
al TMU simulation tra
e (ex
erpt). 625.18 Hit rates versus texel
a
he size. The X axis (
a
he size) uses alogarithmi
 s
ale. 635.19 Theoreti
al write bu�er throughput versus memory write a

ess time. 665.20 Measured TMU performan
e versus global texel
a
he hit rate. . . . 686.1 Hardware ar
hite
ture of the �oating point
o-pro
essor. 736.2 Fast inverse square root algorithm. 777.1 Latti
eMi
o32 ar
hite
ture (Latti
e Semi
ondu
tor). 817.2 Linux booting on the Milkymist SoC. 827.3 Xilinx ML401 development board. 837.4 Comparative MiBen
h results of Milkymist and Mi
roblaze. 857.5 Rendering software ar
hite
ture. 868.1 Printed
ir
uit board �oor plan of the Milkymist One. 93

List of Tables3.1 Estimate of the memory bandwidth
onsumption. 273.2 Memory performan
e in di�erent
onditions (Milkymist 0.5.1). Band-widths are in Mb/s. 325.1 Estimates of the
ost of
ommon software operations. 445.2 Detailed estimate of the exe
ution time of the interpolation algorithm. 455.3 Optimisti
 estimate of the exe
ution time of software texture mapping. 455.4 Texture
oordinate sets used for ben
hmarking the texel
a
he. . . . 595.5 Hit rates for ea
h set of texture
oordinates and di�erent
a
he sizes. 636.1 PFPU instru
tion format. 746.2 Greedy PFPU s
heduler performan
e with the per-vertex math ofdi�erent MilkDrop pat
hes (Milkymist 0.5.1). 796.3 PFPU laten
ies in
y
les (Milkymist 0.5.1). 806.4 Exa
t
ost in instru
tions of
ommon operations on the PFPU. . . . 807.1 User exe
ution times on Milkymist 0.2. 847.2 User exe
ution times on Mi
roblaze 10.1. 85

xi

xii

Chapter 1Introdu
tionThe open sour
e model supports the idea that any individual, if he or she has therequired level of te
hni
al knowledge,
an realisti
ally use, share and modify thedesign of a te
hni
al system. During the nineties, this development model gainedpopularity in the software world with, most notably, the Linux operating system.But it was not viable for
omplex SoCs until a few years ago, be
ause the
ostof prototyping semi
ondu
tor
hips is prohibitive and �eld programmable gate ar-rays (FPGAs) used to be too slow, too small, and too expensive. System-on-
hipdesign and hands-on
omputer ar
hite
ture therefore remained a �eld reserved towell-funded a
ademia and resear
h and development laboratories of
ompanies of asigni�
ant size and wealth, who had a

ess to large FPGA
lusters or even semi
on-du
tor foundries.But the
ost of FPGAs is falling (this was already the
ase between 1985 and1994 [24℄ and the trend has
ontinued sin
e then) and relatively fast and high-densitydevi
es are today be
oming available to the general publi
. For an example of thisfalling
ost (and in
reasing densities and speed), we will mention the Ikos Pegasusappli
ation spe
i�
 integrated
ir
uit (ASIC) emulator, whose insides are depi
tedin �gure 1.1. The Latti
eMi
o32 CPU
ore used in the system-on-
hip des
ribed inthis thesis o

upies alone 60% of the resour
es of one of the XC4036XL FPGAs ofthis devi
e, and runs at 30MHz. The Ikos Pegasus was a state-of-the-art devi
e ade
ade ago. It
onsumes up to 3 kilowatts of power, weights dozens of kilos andprobably
osted the equivalent of several millions of SEK. The same CPU
ore nowo

upies about 15% of a modern FPGA
osting less than 500 SEK, where it runs inex
ess of 100MHz.This evolution makes it possible to implement
omplex high-performan
e system-on-
hips (SoC) that
an be modi�ed and improved by anyone, thanks to the �exi-bility of the FPGA platform.This Master's thesis introdu
es MilkymistTM [6℄, a fast and resour
e-e�
ientFPGA-based system-on-
hip designed for the appli
ation of rendering live videoe�e
ts during performan
es su
h as
on
erts,
lubs or
ontemporary art installations.Su
h e�e
ts are already popularized by artists known as �video jo
keys�, or �VJs�.VJing is
ommonly done with a PC and
omputer software su
h as GrandVJ [5℄ or1

2 Chapter 1. Introdu
tion

Figure 1.1. FPGA boards of the Ikos Pegasus ASIC emulator (
a. 1999).

Figure 1.2. Proje
t logo.

3Resolume [11℄. However, this approa
h has some drawba
ks and using an embeddeddevi
e instead would be interesting:
• A devi
e of very small size and weight is possible, whi
h is
onvenient in mobileor temporary setups.
• Boot and set-up time (laun
hing the software)
an be greatly redu
ed (to afew se
onds).
• Many interfa
es for intera
tive performan
es (MIDI, DMX, video input, low-level digital I/O for user sensors)
an be integrated. By
omparison, theequivalent PC-based solution would be expensive and bulky.Besides the fa
t that this is an interesting,
reative and popular appli
ation,it is also demanding in terms of
omputational power and memory performan
e.Su
h a proje
t would also be a proof that high performan
e open sour
e system-on-
hip design is possible in pra
ti
e; with a view to help, foster and
atalyze similar�open hardware� initiatives. As the Milkymist system-on-
hip is entirely made ofsynthesizable Verilog and, for the most part, released under the GNU General Publi
Li
ense (GPL), its
ode
an be re-used by other open hardware proje
ts.Meeting the performan
e
onstraints while still using
heap and relatively smallFPGAs is perhaps the most interesting and
hallenging te
hni
al point of thisproje
t, and it
ould not be done without substantial work in the �eld of
omputerar
hite
ture. This is what this Master's thesis
overs.

4

Chapter 2Ba
kground2.1 Video synthesis2.1.1 OverviewMilkDrop [25℄ (�gure 2.1) is a popular open sour
e video synthesis framework thatwas originally made to develop visualization plug-ins for the Winamp audio player.People have sin
e then ported MilkDrop to many di�erent platforms [32℄ and made itrea
t to live events, su
h as
aptured audio and video [20℄ (�gure 2.2) or movementsof a Wiimote remote
ontrol [21℄.The idea behind the Milkymist proje
t is to implement an embedded video syn-thesis platform on a
ustom open sour
e system-on-
hip, that is based on the samerendering prin
iple of MilkDrop but with more
ontrol interfa
es and features. Thedevi
e built around the system-on-
hip should be stand-alone, whi
h means thata graphi
al user interfa
e for
on�guring the visual e�e
ts should be implemented(�gure 2.3).

Figure 2.1. Sample video frame from the MilkDrop visual synthesizer.5

6 Chapter 2. Ba
kground

Figure 2.2. Sample video frame from Visikord, a program mixing live video intoMilkDrop.2.1.2 Prin
ipleGeneral mode of operationThe MilkDrop-like renderer is the most
ompute and memory intensive pro
ess,from whi
h stem most of the te
hni
al
hallenges. We will now get into more detailsabout how the renderer works (�gure 2.4).Rendering is based on a frame bu�er on whi
h the steps below are
ontinuouslyrepeated. This repetition is at the origin of many feedba
k or �fra
tal� e�e
ts.
• The
urrent frame is distorted (zoomed, translated, warped, s
aled, rotated...)by texture mapping. This step is des
ribed with more detail in se
tion 2.4.
• The frame is darkened (the
olors are shifted to bla
k).
• A waveform of the
urrently played musi
 is drawn. The wave
an be drawnlinearly (like an os
illos
ope), in a
ir
le, et
.
• Borders around the s
reen are drawn. If the distortion zooms out, the borderswill be pulled into the pi
ture (some e�e
ts are based on this).
• Motion ve
tors are drawn. Motion ve
tors are simply a grid of dots, whi
h
an be used to generate e�e
ts by playing with the distortion.
• The pro
ess repeats from the beginning.These are the basi
 features of MilkDrop. There are more (
ustom waves,shapes,...) whi
h are listed on the MilkDrop website [25℄. Some other features(su
h as adding live video) will be added to the Milkymist renderer in the future.

2.1. Video synthesis 7

Figure 2.3. The embedded user interfa
e (based on Genode FX [12℄) of Fli
kernoise,the Milkymist VJ appli
ation. The pat
h editor is shown, with per-frame and per-vertex equations.This pro
ess is done on an internal frame bu�er whose horizontal and verti
aldimensions are a power of 2. This frame bu�er is then s
aled to the size of the s
reenin order to be displayed. This brings two features:
• The sizes being a power of 2 allows out-of-bounds texture
oordinates to bewrapped (in order to repeat the texture) by simply performing a bitwise ANDof the
oordinate, instead of the full
omputation of a division remainder whi
his a mu
h more expensive operation (even on the traditional GPUs MilkDropwas designed for).
• It enables the implementation of the video e
ho e�e
t: after the internal framebu�er has been drawn to the s
reen at its nominal dimensions, a zoomed andsemi-transparent
opy of it
an be overprinted.It must be noted that this two-step pro
ess in
reases the
omputation time and the
onsumption of memory bandwidth.All the steps of the rendering are heavily parameterizable by the user, using a
oded format
alled a pat
h or preset whi
h de�nes the aspe
t and the intera
tionforms of a parti
ular visual e�e
t. The listing of a sample pat
h is given by �gure 2.5and the meaning of the language is explained below.

8 Chapter 2. Ba
kground

Figure 2.4. Basi
 MilkDrop rendering �ow.

2.1. Video synthesis 9
fDe
ay=0.980000nWaveMode=2bTexWrap=1bMotionVe
torsOn=0zoom=1.046000rot=0.020000
x=0.500000
y=0.500000warp=0.969000sx=1.000000sy=1.000000wave_r=0.600000wave_g=0.600000wave_b=0.600000wave_x=0.500000wave_y=0.470000per_frame_1=wave_r = wave_r + 0.400*(0.60*sin(0.933*time)+ 0.40*sin(1.045*time));per_frame_2=wave_g = wave_g + 0.400*(0.60*sin(0.900*time)+ 0.40*sin(0.956*time));per_frame_3=wave_b = wave_b + 0.400*(0.60*sin(0.910*time)+ 0.40*sin(0.920*time));per_frame_4=zoom = zoom + 0.010*(0.60*sin(0.339*time)+ 0.40*sin(0.276*time));per_frame_5=rot = rot + 0.050*(0.60*sin(0.381*time)+ 0.40*sin(0.579*time));per_frame_6=
x =
x + 0.030*(0.60*sin(0.374*time)+ 0.40*sin(0.294*time));per_frame_7=
y =
y + 0.030*(0.60*sin(0.393*time)+ 0.40*sin(0.223*time));per_vertex_1=sx=sx-0.04*sin((y*2-1)*6+(x*2-1)*7+time*1.59);per_vertex_2=sy=sy-0.04*sin((x*2-1)*8-(y*2-1)*5+time*1.43);Figure 2.5. Ex
erpt from the MilkDrop preset �Geiss � Warp of Dali 1� (with somesimpli�
ations).

10 Chapter 2. Ba
kgroundInitial
onditionsThe pat
h begins with a series of parameters whi
h are used to initialize the renderer,and many of them are kept
onstant during the exe
ution of the pat
h. For example:
• bMotionVe
torsOn=0 turns o� the drawing of the motion ve
tors.
• nWaveMode=2 sele
ts one of the many ways of drawing the audio waveform.
• sx=1.000000 and sy=1.000000 set the X and Y s
aling fa
tors of the distortionto 1 (i.e. the frame is initially not s
aled).
• wave_r=0.600000, wave_g=0.600000 and wave_b=0.600000 set the initial RGB
olor with whi
h the wave is drawn (it is initially grey).Per-frame equationsUsing initial
onditions only limits the intera
tion and evolution possibilities of thepat
h.It is therefore possible to make the parameters evolve over time, thanks to theper-frame equations. As their name suggests, the per-frame equations are mathe-mati
al expressions that are evaluated at ea
h frame.The example pat
h (�gure 2.5) shows some of them (the lines beginning withper_frame). In this example, they
hange the wave
olor over time by modifyingthe wave_r, wave_g and wave_b values in sinusoidal patterns, as well as the zoom(zoom), rotation (rot) and
enter of rotation (
x and
y).Per-frame equations
an make the pat
h rea
t to sound, for example throughthe bass, mid and treb variables that indi
ate the intensity of the sound in threefrequen
y bands. One of the ideas in Milkymist is to add other variables that
an be
ontrolled by the DMX512 and MIDI proto
ols, enabling the use of a whole rangeof devi
es
ommonly found among musi
ians (ele
troni
 instruments, faders, stagelight
onsoles, joysti
ks,...) to
ontrol the visual e�e
ts.Per-vertex equationsPer-vertex equations are used to �ne-tune the distortion applied to the pi
ture.Indeed, as explained further in se
tion 2.4, the distortion works by using a meshof
ontrol points (verti
es) that
an be moved to transform the image in manydi�erent ways (e�e
ts su
h as zooming, s
aling and rotating are implemented bymoving the verti
es).Per-vertex equations are thus evaluated at ea
h vertex (whose position
an beretrieved through the x and y variables), and alter the position of that vertex. Inthe example pat
h (�gure 2.5), the image is lo
ally s
aled horizontally and verti
allyby fa
tors depending on the position of the vertex and on the time, resulting in atwisted visual e�e
t.As dis
ussed in
hapter 5, the �oating point
omputations for ea
h vertex areintensive and required the use of a dedi
ated
o-pro
essor.

2.2. Open sour
e SoC platforms 112.2 Open sour
e SoC platformsThere is an existing e�ort to build open sour
e system-on-
hips. It is interesting toreview these proje
ts in order to look forward to building upon them � possiblyadding hardware a

elerators or performing other modi�
ations in order to improveperforman
e.There are many SoC designs available on the Internet, whi
h are more or lessmature. The system-on-
hip proje
ts listed here meet the following
riteria:
• they have been shown to work on at least one FPGA board
• they are released under an open sour
e li
ense
• they
omprise a synthesizable RISC CPU
• the CPU is supported by a C and C++
ompiler
• they in
lude a RS232
ompatible UART (for a debug
onsole)
• they support interfa
ing to o�-
hip SDRAM memoryOpenSPARCOpenSPARC [23℄ is the well-known SPARC pro
essor of Sun Mi
rosystems whi
h isnow released under an open sour
e li
ense and in
luded into a SoC FPGA proje
t.Implemented on a FPGA, this pro
essor is extremely resour
e-intensive. A
ut-down version of the CPU
ore only,
alled the �Simply RISC S1�, o

upies at least37000 FPGA look-up tables (LUT) without the
a
hes [28℄. This is about twi
e thelogi

apa
ity of the Virtex-4 XC4VLX25 FPGA.As it turns out, the OpenSPARC ar
hite
ture is a very
omplex design whi
himplements a huge number of te
hniques whi
h in
rease the software exe
ution speed(instru
tions per
lo
k
y
le). While this is a wise
hoi
e for a software-
entri
pro
essor implemented on a fully
ustom semi
ondu
tor
hip, with a FPGA pro
essit is more appealing to keep the software pro
essor simple in order to save resour
esand make room for
ustom hardware a

elerators, taking advantage of the FPGA�exibility.GRLIBGRLIB [13℄ is a very professional and standard-
ompliant library of SoC
ores.The library features a
omprehensive set of
ores: AMBA AHB/APB bus
ontrolelements, the LEON3 SPARC pro
essor, a 32-bit PC133 SDRAM
ontroller, a 32-bit PCI bridge with DMA, a 10/100/1000 Mb/s Ethernet MAC, 16/32/64-bit DDRSDRAM/DDR2 SDRAM
ontrollers and more.However, its drawba
ks are:
• Code
omplexity. GRLIB is written in VHDL and makes intensive use of
ustom types, pa
kages, generate statements, et
.

12 Chapter 2. Ba
kground
• Cores are not self-
ontained. GRLIB de�nes many �building blo
ks� that areused everywhere else in the
ode, making it di�
ult to re-use
ode in anotherproje
t whi
h is not based on GRLIB.
• Signi�
ant FPGA resour
e usage. A system
omprising the LEON3 SPARCpro
essor with a 2-way set-asso
iative 16kB
a
he and no memory manage-ment unit (MMU), the DDR SDRAM
ontroller, a RS232 serial port, and anEthernet 10/100 MAC uses 13264 FPGA look-up tables (LUT). They mapto 79% of the Virtex-4 XC4VLX25 FPGA. We have
arried out the test withthe Xst synthesizer, Xilinx ISE 11.3, and GRLIB 1.0.21-b3957 (GPL release)using the default provided synthesis s
ripts. This undermines the possibilityof adding hardware a

eleration
ores. In [22℄, a signi�
ant resour
e usage wasalso reported for an older version of LEON.
• Relatively low
lo
k frequen
y. With the same parameters as above, the max-imum
lo
k frequen
y is 84MHz.Be
ause of these reasons, GRLIB was not retained.ORPSoC (OpenRISC)ORPSoC is based on the OpenRISC [26℄ pro
essor
ore, whi
h is the �agship produ
tof OpenCores, a
ommunity of developers of open sour
e system-on-
hips. ORPSoCis essentially maintained by ORSoC AB.ORPSoC notably features the OpenRISC OR1200 pro
essor
ore, the Wish-bone [9℄ bus,
omprehensive debugging fa
ilities, a 16550-
ompatible RS232 UART,a 10/100 Mb/s Ethernet MAC and a SDRAM
ontroller.Unfortunately, ORPSoC is resour
e-ine�
ient and buggy. The OpenRISC im-plementation is not well optimized for synthesis. We
arried out tests on the August17, 2009 OpenRISC release. Still using the XC4VLX25 FPGA as target, synthesiswith Xst and Xilinx ISE 11.4 yields an utilization of 5077 LUTs for the CPU
oreonly (using the default FPGA
on�guration: no
a
hes, no MMU, multiplier, andwith the implementation of the RAMs using the RAMB16 elements of the FPGAsele
ted), running at approximately 100MHz. A similar resour
e usage is reportedin [22℄. The synthesis report shows asyn
hronous
ontrol signals where there shouldnot be (su
h as on the output of the program
ounter), whi
h
an be an indi
ation ofpoor quality of the design. Other IP
ores
omprising ORPSoC have similar issues(we tested the 16550 UART and the Ethernet MAC). Finally, the provided SDRAM
ontroller only supports the low-bandwidth 16-bit single data rate option, has a highlaten
y due to the extensive use of
lo
k domain transfer FIFOs, does not supportpipelined transfers and has a poorly written
ode.OpenRISC and ORPSoC therefore do not seem to be a good platform for theperforman
e-demanding and resour
e-
onstrained video synthesis appli
ation.

2.2. Open sour
e SoC platforms 13Latti
eMi
o32 SystemThis produ
t [30℄ from the FPGA vendor Latti
e Semi
ondu
tor is
omparable toMi
roblaze [34℄ and Nios II [4℄ from its
ompetitors, respe
tively Xilinx and Altera.Like its
ompeting produ
ts, Latti
eMi
o32 System features a broad library oflight, fast and FPGA-optimized SoC
ores.One interesting move made by Latti
e Semi
ondu
tor is that parts of the Lat-ti
eMi
o32 System are released under an open sour
e li
ense, and most notablythe
ustom Latti
eMi
o32 mi
ropro
essor
ore. Latti
eMi
o32 System is also basedupon the Wishbone [9℄ bus, whose spe
i�
ation is free of
harge and freely dis-tributable.While it is perhaps te
hni
ally possible to build Milkymist on top of the Lat-ti
eMi
o32 System, there are li
ensing issues
on
erning most notably the DDRSDRAM
ontroller whi
h is proprietary.However, the Latti
eMi
o32 mi
ropro
essor
ore is interesting. Synthesized forthe XC4VLX25 with the 2-way set-asso
iative
a
hes, the barrel shifter, the hard-ware divider and the hardware multiplier enabled, it o

upies only about 2400 4-LUTs and runs at more than 100MHz.This mi
ropro
essor
ore has been retained for use in Milkymist, as des
ribed in
hapter 7.Mi
roblaze and Nios IIEven though we are not interested in proprietary designs, we still give a briefoverview of the resour
e usage of Mi
roblaze and Nios II systems as a
omparison.Mi
roblaze. In [22℄, the Mi
roblaze
ore is reported to use approximately 2400LUTs, like Latti
eMi
o32. The platform builder GUI in Xilinx ISE 12.1 also limitsthe frequen
y of Mi
roblaze systems to 100MHz when targeting the Virtex-4 family.Thus, Mi
roblaze is
lose to Latti
eMi
o32 regarding area and frequen
y.Nios II. A

ording to an Altera report [3℄, Nios II/f uses 1600 Cy
lone II LEs.A LE is mainly
omprised of a 4-LUT and a register, whi
h is
omparable to theVirtex-4 ar
hite
ture on whi
h Latti
eMi
o32 was tested. Thus, it seems that theNios II
ore would be approximately two thirds of the area of Latti
eMi
o32.Some di�eren
es
an be noted between the Latti
eMi
o32
on�guration and theNios II/f
on�guration used in the Altera report:
• Ca
hes are dire
t-mapped and 512 bytes (ea
h).
• There is no multiplier.
• Nios II/f uses a dynami
 bran
h predi
tor, while Latti
eMi
o32 uses a stati
bran
h predi
tor.

14 Chapter 2. Ba
kground
• The report does not say if the optional hardware divider, multiplier and shifter(that were enabled in Latti
eMi
o32) were sele
ted.The Nios II is also reported to run at 140 MHz with this
on�guration and UART,JTAG UART, SDR SDRAM
ontroller and timer peripherals. This is very fast, but
annot be
ompared to the Latti
eMi
o32 results on Virtex-4 for two reasons:
• Routing resour
es and logi
 delays for the two FPGA families are di�erent.
• It is possible that Altera hand-tuned the Nios II pro
essor to their FPGAte
hnology.2.3 DRAM te
hnologyDRAM is by far today's dominant memory te
hnology, often being the only a�ord-able solution when relatively large densities (typi
ally more than a few megabytes)are required. Unfortunately, DRAMs are not straightforward devi
es and we needpreliminary knowledge spe
i�
 to this te
hnology in order to understand the
hoi
esdis
ussed in
hapter 3. Indeed, in order to redu
e system
osts, the intelligen
ehas been moved away from the memory
hips and into the memory
ontroller [2℄,leaving the
ontroller designer with the task of dealing with the low-level details ofthe DRAM te
hnology.We will therefore explain how the SDRAM (syn
hronous DRAM) te
hnologyworks. These prin
iples are the same for the original single data rate (SDR) SDRAM,and for the subsequent double data rate DDR, DDR2 and DDR3 memories. In allthat follows, we suppose that the logi
 level 0 is represented by a voltage of 0 volts,and a logi
 level 1 is represented by a positive voltage H.A DRAM memory bank (�gure 2.6) is organized as a two dimensional array of
ells. Ea
h
ell is
omprised of a transistor
onne
ted to a
apa
itor. A
ell storesone bit of information, indi
ated by the presen
e or not of a
harge in the
apa
itor.The transistor a
ts as a swit
h that
onne
ts the
apa
itor to the bit line (verti
allines) when the word line (horizontal lines) its gate is
onne
ted to
arries a highlogi
 level.A de
oder translates the row address presented to the DRAM devi
e and a
ti-vates one of the word lines, a

ording to the address.Ea
h bit line is
onne
ted to a sense ampli�er, whi
h is a positive feedba
k devi
ethat, when swit
hed on, turns any voltage X on the bit line between 0 and H into 0(if X < H

2) or H (if X > H
2). The set of sense ampli�ers is
alled the page bu�er.A

esses to a SDRAM bank are made as follows:1. We assume the SDRAM is in the pre
harged (idle) state. In this state, noword line is a
tive, the sense ampli�ers are turned o� and all the bit lines areheld at a voltage of H
2 .2. The SDRAM
ontroller presents the row address and issues an ACTIVATE
ommand. In response to this
ommand, the SDRAM devi
e enables the row

2.3. DRAM te
hnology 15

Figure 2.6. Blo
k diagram of a DRAM memory bank.

16 Chapter 2. Ba
kgroundde
oder and one of the word lines is asserted. This has the e�e
t of
onne
tingall the
apa
itors of the DRAM
ells in the row to their respe
tive bit lines. Atransfer of ele
tri

harge o

urs between the �parasiti
�
apa
itors of the wordlines (whi
h were
harged at a voltage of H
2) and the DRAM
ell
apa
itors,whi
h were either dis
harged (at 0 volts) or
harged at a voltage of H. This
auses a small
hange ǫ in the potential of the bit line, whi
h be
omes H

2 −ǫ or
H
2 + ǫ (depending on the
harge initially stored in the DRAM
ell
apa
itor).Then, the SDRAM devi
e turns on all the sense ampli�ers of the bank. On ea
hbit line, the positive feedba
k takes over and ampli�es the voltage di�eren
e
ǫ until the level of the bit line rea
hes 0 or H. The ACTIVATE
ommand isnow
ompleted and the row is said to be opened. The DDR SDRAM
hipsused in the proje
t (on the Xilinx ML401 board) take 20ns to
omplete theseoperations.3. On
e a row has been opened, the
ontroller
an present the
olumn addressand issue READ and WRITE
ommands to transfer data. Reading is done bysimply measuring the voltages on the bit lines, and writing
an be a
hievedby for
ing the bit lines to a parti
ular level. There is a delay,
alled the CAS1laten
y, between a READ
ommand being sent and the data being returned bythe devi
e. This delay is of 20ns with the
hips used in the proje
t. However,read operations are pipelined, whi
h means that a new READ
ommand
an besent while the previous one is still transferring data. With proper s
heduling,a full utilization of the available I/O bandwidth
an be a
hieved.4. Before a

essing another row, the memory
ontroller must dis
onne
t theopened row from the bit lines and go ba
k into the pre
harged state. It doesso by issuing a PRECHARGE
ommand to the devi
e. The devi
e takes sometime to pro
ess the
ommand (during whi
h the bank
annot be a

essed),whi
h is 20ns with the
hips used in the proje
t.From this prin
iple of operation, it be
omes apparent that a performan
e-oriented
ontroller should try to make several transfers in the same row before opening an-other one, in order to redu
e the time wasted to swit
hing rows.2.3.1 Multiple banksSDRAM memory
hips
ontain multiple DRAM banks internally, whi
h share theI/O,
ommand and address pins. Additional bank address pins sele
t the bank tosend
ommands to.Having multiple banks brings two advantages:

• Being able to exe
ute several
ommands simultaneously (assuming there is noresour
e
on�i
t for the pins). For example, one bank
an be a
tivating onerow while another bank is transferring data.1CAS stands for Column Address Strobe, whi
h is the name of the DRAM
hip pin that the
ontroller asserts at this stage.

2.4. Texture mapping 17
• Having several rows open (one per bank), whi
h
an redu
e the number ofrequired row swit
hes and thus improve performan
e.The
ontroller is responsible for managing the banks, and mapping absolutememory addresses to parti
ular banks. Appropriate bank mapping
an improveperforman
e [29℄.Standard DDR SDRAM
hips
ome with four internal banks.2.3.2 RefreshingBe
ause the DRAM
apa
itors are not perfe
t, they gradually lose their
harge overtime, whi
h results in data
orruption.The solution is to periodi
ally re
harge the
apa
itors, whi
h is done by openingthe rows one by one. SDRAM
hips provide an AUTO REFRESH
ommand whi
hopens and
loses one row in all banks (and in
rements an internal
ounter so thatthe next AUTO REFRESH
ommand will target another row), but it is the respon-sibility of the
ontroller to issue it. Furthermore, the
ontroller must pre
harge allbanks before a refresh.With the memory
hips used in the proje
t, a refresh must be made every 7.8µsand takes in the worst
ase 20+80+4 · 20 = 180ns (pre
harge time2 + refresh time+ a
tivation time for ea
h bank), so it has a small impa
t on the memory bandwidth(about 2%).2.4 Texture mappingTexture mapping is a
ommon
omputer graphi
s operation found in a

elerated 3DAPIs like OpenGL and Dire
tX. It is typi
ally used to draw textured 3D polygonson the s
reen. It
an also distort an image (see �gure 2.7 for an example), andMilkDrop uses it for this purpose.With
ommon GPUs, texture mapping is performed on triangles (and more
omplex polygons are broke down into a series of triangles). The inputs to thealgorithm are the 2D (possibly proje
ted from the original 3D
oordinates) positionsof the three verti
es of the triangle to be �lled, and the 2D texture
oordinates forthese three verti
es.The algorithm then draws a textured triangle pixel by pixel, by interpolatinglinearly the texture
oordinates of the verti
es for ea
h pixel and then
opying thetexture pixel (texel) at these
oordinates.Image pro
essing operations like zooming, rotating or s
aling
an be implementedwith texture mapping, by simply
hanging the verti
es' positions or the textures
oordinates at ea
h vertex.More often than not, the results of the linear interpolation are not integer, whi
hmeans that the texture should be sampled between four adja
ent pixels (�gure 2.8).In this
ase, for a better rendering, the four pixels should be read and their
olors2All banks
an be pre
harged at the same time with a single
ommand.

18 Chapter 2. Ba
kground

Figure 2.7. Example of distorted pi
ture.
Figure 2.8. Prin
iple of bilinear texture �ltering.should be averaged (with di�erent weights depending on the fra
tional parts). Thispro
ess is
alled bilinear �ltering and is required to obtain a good rendering ofMilkDrop presets (see �gures 2.9 and 2.10).In MilkDrop (and Milkymist), a spe
ial
ase of the texture mapping is used, asthe only purpose is to distort a 2D image. The target surfa
e is always a re
tanglethat
overs the destination pi
ture, on whi
h the verti
es are distributed evenly asa mesh whi
h is always kept the same regardless of the applied distortion. Thedistortion is de�ned by altering the texture
oordinates at ea
h vertex.Texture mapping, espe
ially when bilinear �ltering is desired, is a very
omputeintensive pro
ess, as explained in
hapter 5. A
ustom hardware a

elerator hasbeen developed, whose details are also
overed in this
hapter.2.5 OrganizationA

ording to this ba
kground, we
an derive the following proje
t guidelines:

• develop a fast, resour
e-e�
ient and FPGA-optimized system-on-
hip

2.5. Organization 19

Figure 2.9. Rendering with bilinear �ltering enabled.

Figure 2.10. Rendering with bilinear �ltering disabled (the nearest texel is used).

20 Chapter 2. Ba
kground
• develop an e�
ient memory subsystem
• reuse a light-weight soft-
ore CPU
• partition
arefully the tasks between hardware and software
• develop
ustom hardware a

eleratorsThe proposed solution is outlined in �gure 2.11. Not all the blo
ks are ready atthe time of this writing, nor all of them are within the s
ope of this Master's thesis,whi
h fo
uses on
omputer ar
hite
ture.More spe
i�
ally, the following
omponents are not developed yet:
• mi
roSD
ontroller (the
urrent prototype use a CF
ard through Xilinx Sys-temACE)
• USB
ontroller
• Video input
• IR re
eiver
• MIDI
ontroller
• DMX512
ontrollerHardware a

elerators have been developed for the
omputation of verti
es po-sitions (PFPU) and for texture mapping (TMU), whi
h have been found to be themost
ompute-intensive parts of the pro
ess. They are dis
ussed in detail in
hapters6 and 5, respe
tively.Graphi
s pro
essing also requires a signi�
ant amount of memory bandwidth,whi
h is dis
ussed in
hapter 3.Chapter 4 des
ribes the on-
hip inter
onne
t used to make the various blo
ks
ommuni
ate with one another.Finally,
hapter 7 deals with the software exe
ution environment and how thesoftware is ar
hite
ted to obtain a good performan
es from the hardware.

2.5. Organization 21

Figure 2.11. SoC blo
k diagram.

22

Chapter 3Memory subsystem
3.1 Atta
king the memory wallA re
urrent point in many modern
omputer systems is the memory performan
eproblem. The term memory wall was
oined [33℄ to refer to the growing disparity ofperforman
e between logi
 su
h as CPUs and o�-
hip memories. While mi
ropro-
essor performan
e has been improving at a rate of 60 per
ent per year, the a

esstime to DRAM has been improving at less than 10 per
ent per year [27℄.Memory performan
e is measured with two metri
s:
• bandwidth, whi
h is the amount of data that the memory system
an transferduring a given period of time.
• laten
y, whi
h is the amount of time that the memory system spends betweenthe issue of a memory read or write request and its
ompletion.A memory system
an have both high bandwidth and laten
y. If the logi
 makingthe memory a

esses is able to issue requests in a pipelined fashion, sending a newrequest without waiting for the previous one to
omplete, high laten
y will not havean impa
t on bandwidth.Laten
y and bandwidth are however linked in pra
ti
e. De
reasing the laten
yalso in
reases the bandwidth in many
ases, be
ause laten
y blo
ks sequential pro-
esses and prevents them from utilizing the full available bandwidth.High-end pro
essors for servers and workstations have a good ability to
ope withrelatively high memory laten
y, be
ause te
hniques su
h as out-of-order exe
utionand hardware multi-threading enable the pro
essor to issue new instru
tions eventhough one is blo
king on a memory a

ess.Some SDRAM
ontrollers do a lot to optimize bandwidth but have little fo
uson laten
y. Bandwidth-optimizing te
hniques in
lude:
• reordering memory transa
tions to maximize the page mode hit rate.23

24 Chapter 3. Memory subsystem
• grouping reads and writes together to redu
e write re
overy times. Along withthe above te
hnique, this has a detrimental impa
t on laten
y be
ause of thedelays in
urred by the additional logi
 in the address data path.
• running the system and the SDRAM in asyn
hronous
lo
k domains in orderto be able to run the SDRAM at its maximum allowable
lo
k frequen
y. Thisrequires the use of syn
hronizers or FIFOs, whi
h have a high laten
y.
•
on�guring the SDRAM at high CAS laten
ies in order to in
rease its maxi-mum allowable
lo
k frequen
y. This trend is best illustrated by the adventof DDR2 and DDR3 memories whose key innovation is to run their internalDRAM
ore at a sub-multiple of the I/O frequen
y with a wide data bus whi
his then serialized on the I/O pins. Sin
e the internal DRAM
ore has a laten
y
omparable to that of the earlier SDR and DDR te
hnologies, the number ofCAS laten
y
y
les relative to the I/O
lo
k is also multiplied.An extreme example of these memory
ontroller bandwidth optimizations is theMemMax R© DRAM s
heduler [17℄. This unit sits on top of an already existing mem-ory
ontroller (whi
h already has its own laten
y), adding seven stages of
omplexand high-laten
y pipelining that produ
es a good - but
ompute-intensive - DRAMs
hedule. The a
tual e�
ien
y of this system has been questioned [15℄ be
ause ofthat signi�
ant in
rease in laten
y.3.2 Another approa
hThe out-of-order exe
ution and hardware multi-threading pro
essor optimizationsdis
ussed above that
ope with high memory laten
y are
omplex and impra
ti
al inthe
ontext of small and
heap embedded systems, espe
ially those targeted at FPGAimplementations. For example, FPGA implementations of the OpenSPARC [23℄pro
essor, whi
h employs su
h optimizations, typi
ally require an expensive high-end Xilinx XUPV5 board whose Virtex-5 FPGA alone
osts roughly 13000 SEK.Milkymist therefore uses simple in-order exe
ution s
hemes in its CPU and inits a

elerators, and strives to improve performan
e by fo
using on redu
ing thememory laten
y.The memory system features that improve laten
y (but also bandwidth) aredis
ussed below.3.3 Memory system features3.3.1 Single SDRAM and system
lo
k domainThe typi
al operating frequen
y of early SDR and DDR SDRAM (te
hnologies thatare prior to DDR2 and do not have a
lo
k divider for the internal DRAM
ore)is
lose to the 100MHz frequen
y at whi
h the FPGA is able to meet timing for

3.3. Memory system features 25the
omplete SoC. Thus, it was de
ided to run the DRAM and the system syn-
hronously in order to remove the need for any
lo
k domain transfer logi
 andredu
e laten
y. The SDRAM I/O registers are
lo
ked by the system
lo
k, andtiming of the SDRAM interfa
e is met through the use of
alibrated on-
hip delayelements and delay-lo
ked-loops (DLLs) to generate the o�-
hip SDRAM
lo
k andthe data strobes.3.3.2 Page mode
ontrol algorithmThe Milkymist memory
ontroller takes the so-
alled page mode gamble: after ana

ess, the DRAM row is left open in the hope that the next transa
tion to thememory bank will o

ur within the same row. If the memory
ontroller is right, theread or write
ommand
an be immediately registered into the SDRAM, and onlythe CAS or write laten
y is in
urred. If the memory
ontroller is wrong, it must�rst pre
harge the DRAM bank and open the
orre
t row,
ausing extra delays.Thus, if the memory
ontroller is often wrong, taking the page mode gamble willa
tually impa
t performan
e negatively. However, a study has shown [29℄ that, withtypi
al memory timings, the point at whi
h the gamble pays o� is for a page hitprobability of 0.375 only, attainable with many pra
ti
al memory a

ess patterns.Page hit probability is improved by the ability of the Milkymist memory
on-troller to tra
k open rows independently in ea
h of the four memory banks that
ommer
ial SDRAM
hips are equipped with.This optimization positively a�e
ts both laten
y and bandwidth.3.3.3 Burst a

essesAll memory a

esses are made using bursts, i.e. when an a

ess for a word is made,the following words are also read or written. Burst mode is a feature of the SDRAM
hips: only one read of write
ommand is sent to them, and several words aretransferred on subsequent
lo
k
y
les.Using bursts frees the bus and DRAM
ontrol signals while other words aretransferred, allowing the issue of new
ommands overlapping the data phase of theprevious transa
tion.Burst a

ess is a form of prefet
hing that improves laten
y. It is only e�
ientwhen the prefet
hed data
an be used by the requesting bus master. In the Milkymistsystem-on-
hip, this is often the
ase:
• The CPU
ore has
a
hes whi
h a

ess memory by
omplete
a
he lines. Thus,if the
a
he line length is a multiple of the burst length, the bursts
an be easilyfully memorized.
• The video frame bu�er repeatedly reads the same blo
k of data in a sequentialmanner, and
an easily make full use of the prefet
hed data assuming that ishas su�
ient on-
hip bu�er spa
e.

26 Chapter 3. Memory subsystem
• The texture mapping unit also has a
a
he and a write bu�er whi
h work wellwith burst a

esses. This is dis
ussed in Chapter 5.3.3.4 Burst reorderingThis feature enables the use of the
riti
al-word-�rst s
heme in
a
hes, redu
ing theoverall memory laten
y.When a request is issued at an address whi
h is not a multiple of the burstlength, the order of the words in the burst is
hanged so that the �rst word that
omes out is the very word that is at the requested memory address. The prefet
haddress is then in
remented and wraps to stay within the same burst.For example, assuming a burst length of 4:
• a request at address 0 fet
hes words 0, 1, 2 and 3 (in this order)
• a request at address 2 fet
hes words 2, 3, 0 and 1 (in this order)3.3.5 PipeliningThe memory bus of Milkymist [8℄ is pipelined. During the transfer of the prefet
hed(burst) data, a new request
an be issued. This is illustrated for a read request bythe table below:Address A1 A1 A1 A2 A2 A2 A2Data � � M(A1) M(A1+1) M(A1+2) M(A1+3) M(A2)Address (
ont.) � � �Data (
ont.) M(A2+1) M(A2+2) M(A2+3)Together with burst a

ess, this helps a
hieving high performan
e: the memory
ontroller
an hide DRAM laten
ies and row swit
h delays by issuing the requeststo the DRAM in advan
e, while the previous transa
tion is still transferring data.3.4 Pra
ti
al implementationThe Milkymist SoC uses 32-bit DDR SDRAM,
on�gured to its maximum burstlength of 8. Sin
e the DDR SDRAM transfers two words per
lo
k
y
les (oneon ea
h edge), this is turned by the I/O registers into bursts of four 64-bit wordssyn
hronous to the system
lo
k.The memory is run at 100MHz, yielding a peak theoreti
al bandwidth of 6.4Gb/s,whi
h is more than enough for the intended video synthesis appli
ation (table 3.1).This bandwidth is however never attained: events su
h as swit
hing DRAM rowswhi
h takes signi�
ant time and, to a lesser extent, DRAM refreshes introdu
e deadtimes on the data bus. We will see in se
tion 3.5 that su
h an oversizing of theo�-
hip memory is needed if we want to keep the memory system simple.

3.4. Pra
ti
al implementation 27Task Required bandwidthVGA frame bu�er, 1024x768, 75Hz, 16bpp 950Mb/sDistortion: texture mapping, 512x512 to512x512, 30fps, 16bpp 250Mb/sLive video: texture mapping, 720x576 to 512x512with transparen
y, 30fps, 16bpp 300Mb/sS
aling: texture mapping, 512x512 to 1024x768,30fps, 16bpp 500Mb/sVideo e
ho: texture mapping, 512x512 to1024x768 with transparen
y, 30fps, 16bpp 900Mb/sNTSC input, 720x576, 30fps, 16bpp 200Mb/sSoftware and mis
. 200Mb/sTotal 3.3Gb/sTable 3.1. Estimate of the memory bandwidth
onsumption.

Figure 3.1. Blo
k diagram of the HPDMC ar
hite
ture.The ar
hite
ture of the memory
ontroller,
alled HPDMC (for �High Perfor-man
e Dynami
 Memory Controller�), is outlined in �gure 3.1.The
ontrol interfa
e is used by the system to
on�gure the
ontroller, and alsoto issue the start-up sequen
e to the SDRAM. Indeed, SDRAM
hips require asophisti
ated sequen
e of
ommands upon power-up. In many memory
ontrollerdesigns, a hardware �nite state ma
hine is used to issue this
ommand sequen
e.In order to save hardware resour
es, the system used here leaves this task to the

28 Chapter 3. Memory subsystemsoftware, and, for this purpose, in
ludes a �bypass MUX� that routes dire
tly a
on�guration and status register of HPDMC to the SDRAM
ommand and addresspins. On
e the SoC has run a software routine that sends the
orre
t initializationsequen
e to the SDRAM, it swit
hes permanently the bypass MUX to the �SDRAMmanagement unit� and
an use o�-
hip memory normally.The SDRAM management unit is a �nite state ma
hine that translates thetwo high-level memory
ommands �read burst at address� and �write burst at ad-dress� into a series of lower-level
ommands understandable by the SDRAM
hips(pre
harge bank, sele
t row, read from row, et
.). The management unit is respon-sible for keeping tra
k of the open rows, dete
ting page hits, swit
hing rows, andissuing periodi
 DRAM refresh
y
les.The management unit is
onne
ted to the �data path
ontroller�, that followsthe a
tivities performed by the management unit in order to de
ide the dire
tionof the bidire
tional I/O pins (they should be set as outputs for writes and as inputfor reads). The data path
ontroller is also responsible for sending signals to themanagement unit that indi
ate if it is safe to perform
ertain low-level operations.For example, the read_safe signal goes low immediately after a read
ommand isissued, be
ause if another one were sent immediately after, the two resulting burstswould overlap in time and this
ould not work be
ause there is only one set of datapins. Eventually, the data path
ontroller takes into a

ount the SDRAM write andread laten
ies to generate an a
knowledgement signal when the data is a
tually there(or needs to be sent to the SDRAM) after a �read row� or �write row�
ommand hasbeen sent to the SDRAM.Finally, the bus interfa
e is a pie
e of glue logi
 that
onne
ts the SoC pipelinedmemory bus (FML) to the data path
ontroller and the management unit.HPDMC has been implemented in Verilog HDL, tested and debugged in RTLsimulation using a DDR SDRAM Verilog model from Mi
ron, integrated into theSoC, synthesized into FPGA te
hnology, and eventually
alibrated and tested bysoftware routines running on the a
tual hardware.This design of memory
ontroller, spe
i�
ally
rafted for the Milkymist proje
tand released under the GNU GPL li
ense on the internet, has been pi
ked up bythe NASA for a software de�ned radio proje
t and may be put up on board theinternational spa
e station in 2011. Gregory Taylor, Ele
troni
s Engineer at theNASA Jet Propulsion Laboratory, wrote:While sear
hing for a suitable SDRAM
ontroller for the Jet Propulsion Labo-ratory's Software-De�ned Radio on board NASA's CoNNeCT experiment, I foundSébastien's HPDMC SDRAM
ontroller on OpenCores.org. We needed a
ontrollerthat was both high performan
e and well do
umented. Though the original HPDMC
ontroller was designed for DDR SDRAM with a 32-bit bus, Sébastien
learly ex-plained the modi�
ations ne
essary to adapt the
ontroller to our Single Data Rate,40-bit wide SDRAM
hip. I found the
ode to be well do
umented and easy to follow.The performan
e has met our requirements and the FPGA size requirement is small.The Communi
ation Navigation and Networking Re
on�gurable Testbed (CoN-NeCT) experiment to be installed on board the ISS is designed for the next generation

3.5. Performan
e measurement 29of SDRs
onforming to the Spa
e Tele
ommuni
ations Radio Systems (STRS) openar
hite
ture standard. The HPDMC
ontroller will likely �nd its way into one ormore loadable waveform payloads in the JPL SDR, and perhaps be used in otherNASA proje
ts as well. It may eventually �nd its way into deep spa
e.3.5 Performan
e measurement3.5.1 Introdu
tionWe wanted to validate and
hara
terize the memory system performan
e (a
tuallaten
y and bandwidth) and get an upper bound of of its ability to sustain loads, byextrapolating the maximum bandwidth one
ould get assuming the memory a

esstime remains
onstant.Sin
e the memory performan
e depends on the parti
ular a

ess pattern that thesystem makes (be
ause of the
ontroller taking the page mode gamble, we wantedto take the measurements on the real system while it is rendering video e�e
ts inorder to get an a

urate result.3.5.2 MethodA logi

ore has been added to the SoC that snoops on the memory bus a
tivity inorder to report the average laten
y and bandwidth.That logi

ore exploits properties of the FastMemoryLink signaling in order toredu
e its
omplexity to two
ounters that measure, for a given time period, thenumber of
y
les during whi
h the strobe and a
knowledgement signals are a
tive.Several parameters
an then be
omputed:
• the net bandwidth
arried by the link (based on the amount of data thatthe link has a
tually transferred)
• the average memory a

ess time, whi
h is the time, in
y
les, between therequest being made to the memory
ontroller and the �rst word of data beingtransferred.
• the bus o

upan
y whi
h is the per
entage of time during whi
h the linkwas busy and therefore unavailable for a new request.Every FastMemoryLink transa
tion begins with the assertion of the strobe signal.Then, after one or more wait
y
les, the memory
ontroller asserts the a
knowledge-ment signal together with the �rst word of data being transferred. The next
y
le,the strobe signal is de-asserted (unless a new transa
tion begins) while the next wordin the burst is being transferred. A new transa
tion
an start with the assertion ofthe strobe signal even if a burst is already going on (pipelining). See �gure 3.2 foran example.In the equations that follow, these symbols are used:

30 Chapter 3. Memory subsystem

Figure 3.2. FML transa
tions.
• f is the system
lo
k frequen
y in Hz.
• T is the time during whi
h the
ounters have been enabled.
• w is the width of a FML word in bits.
• n is the FML burst length.
• S is the number of
y
les during whi
h the strobe signal was a
tive.
• A is the number of
y
les during whi
h the a
knowledgement signal was a
tive.Net bandwidth. By
ounting the number of
y
les for whi
h the a
knowledge-ment signal was a
tive, one gets the number of transa
tions. Sin
e ea
h transa
tion
arries exa
tly a burst of data, whi
h is w · n bits in size, the volume of data trans-ferred is given by w · n ·A. Thus, one
an derive the net bandwidth as:

β =
w · n · A

T
(3.1)Average memory a

ess time. On the bus, a master is waiting when the strobesignal is asserted but the a
knowledgement signal is not. Therefore, the total numberof wait
y
les is given by S − A. The average memory a

ess time
an thus be
omputed as:

∆ =
S −A

A
(3.2)The average memory a

ess time
an be used to derive an upper bound onthe maximum bandwidth that the memory system
an handle. Indeed, FML is apipelined bus whi
h supports only one outstanding (waiting) transa
tion, so the
asethat uses the most bandwidth for a given memory a

ess time is when the strobesignal is always asserted (�gure 3.3) so that a new transa
tion begins as soon as the�rst word of the previous transa
tion is transferred.

3.5. Performan
e measurement 31

Figure 3.3. Maximum utilization of a FML bus.Therefore, only a fra
tion α of the peak bandwidth f · w
an be used at most,and we have:
α = max(1, n

∆+ 1
) (3.3)The maximum bandwidth is:

βmax = α · f · w (3.4)Bus o

upan
y. The bus is busy when the strobe signal is asserted. The buso

upan
y is therefore given by:
ǫ =

S

T · f (3.5)By using this method, a very simple pie
e of hardware added to the system
an yield to the retrieval of interesting information about the performan
e of thememory system.3.5.3 ResultsResults are summarized in table 3.2. The �rst line
orresponds to a system runningthe demonstration �rmware with the video output enabled at the standard VGAmode of 640x480 at 60Hz (therefore
ontinuously s
anning the s
reen with datafrom system memory), but not rendering a preset. The other lines represent theresults while the demonstration �rmware is rendering di�erent MilkDrop presets,still at the same video resolution.It is di�
ult to
ompare these results to those of other memory
ontrollers asthey are usually not published (or not measured at all).However, two
on
lusions
an be drawn:
• there are enough o

upan
y and bandwidth margins for the system to operateat higher resolutions and/or
olor depths than 640x480 and 16 bits per pixel.The 3.3 Gb/s bandwidth requirement that was estimated in se
tion 3.4 seemsattainable, although
hallenging.

32 Chapter 3. Memory subsystemPat
h β ǫ ∆ α βmaxIdle 292 7 % 5.51 61 % 3932Geiss - Bright Fiber Matrix 1 990 28 % 6.37 54 % 3474Geiss - Swirlie 3 1080 32 % 6.71 52 % 3320Geiss - Spa
edust 1021 29 % 6.47 54 % 3427Illusion & Rovastar - Snow�ake Delight 1399 39 % 6.28 55 % 3516Rovastar & Idiot24-7 - Balk A
id 1427 41 % 6.38 54 % 3469Table 3.2. Memory performan
e in di�erent
onditions (Milkymist 0.5.1). Band-widths are in Mb/s.
• to go further, an �out-of-order� memory
ontroller
an be envisioned. Su
h a
ontroller would have a split transa
tion bus (allowing a larger number of out-standing transa
tions, thus minimizing the impa
t that laten
y has on band-width) and would be able to reorder pending memory transa
tions to maximizethe page hit rate.

Chapter 4SoC inter
onne
tThis
hapter explains how the di�erent inter
onne
t busses work, what their featuresare, why they are there, and how they are
ommuni
ate with ea
h other.The general SoC blo
k diagram and its inter
onne
t is outlined in �gure 2.11.4.1 General SoC inter
onne
t: the Wishbone busWishbone [9℄ is a general purpose royalty-free SoC bus with open spe
i�
ations,advo
ated by the maintainers of the OpenCores.org website.Wishbone is a syn
hronous sequential bus with support for variable laten
y (waitstates) through the use of an a
knowledgement signal that marks the end of thetransa
tion. Burst modes (automati
 transfer of
onse
utive words) are supportedand are
on�gurable on a per-transa
tion basis (i.e. bursts of arbitrary lengths andsingle-word transa
tions
an be freely mixed on the same bus). However, there isno pipelining.Wishbone is used around the SoC's Latti
eMi
o32 CPU
ore and for simple DMAmasters whi
h have modest requirements of bandwidth and of volume of transferreddata. As explained in Se
tion 4.4,
onne
ting DMA masters that transfer smallamounts of data (whi
h
an �t in the L2
a
he) to the same bus as the CPU simpli�esdealing with
a
he
oheren
y issues.The data width used for the Wishbone bus is 32, yielding a peak bandwidth of3.2Gb/s when the system is running at 100MHz.4.2 Con�guration and Status Registers: the CSR busMilkymist uses memory-mapped I/O through
on�guration and status registers.If these registers were dire
tly a

essed by the Wishbone CPU bus, two problemswould arise:
• Conne
ting all peripherals on the same Wishbone bus involves large multiplex-ers and high fanout signals, posing routing and timing problems.33

34 Chapter 4. SoC inter
onne
t
• Wishbone requires the generation of an a
knowledgement signal by ea
h slave
ore. This signal is useful in many
ases, as it supports peripherals with avariable laten
y. However,
on�guration and status register �les are usuallyimplemented with a
tual registers (�ip �ops) or SRAM, whi
h
an always bea

essed in one
lo
k
y
le. Thus, there is no need for variable laten
y and thea
knowledgement signal. Keeping this signal for the
on�guration and statusregisters wastes hardware resour
es and development time.To alleviate these problems, the CSR bus has been developed [7℄ and used in thesystem through a bus bridge.The CSR bus is a simpler bus than Wishbone, where all transfers are done inone
y
le. It has an interfa
e similar to that of syn
hronous SRAM,
onsisting onlyof address, data in, data out and write enable pins and
lo
ked by the system
lo
k.A bridge
onne
ts the CSR bus to the CPU Wishbone bus, to allow transparentmemory-mapped a

ess to the
on�guration and status registers by the software.This bridge in
ludes registers for all the signals
rossing the two busses, relaxing thetiming
onstraints.4.3 High-throughput memory a

ess bus: the FML busFastMemoryLink (FML) [8℄ was
o-designed with HPDMC (the memory
ontroller)as a on-
hip bus tailored to a

ess SDRAM memories at high speed while keepingthe memory
ontroller simple. Its key features are listed below.4.3.1 Variable laten
ySDRAM laten
y varies a lot depending on the state of the SDRAM at the timethe request is issued on the bus. It depends on whether the SDRAM was in themiddle of a refresh
y
le, whether the bank needs to be pre
harged, and whethera new row needs to be a
tivated. Therefore, FML provides support for a variablenumber of wait states, de�ned by the memory
ontroller, through the use of ana
knowledgement signal similar to that of Wishbone.4.3.2 Burst onlySDRAM is best a

essed in burst mode (see subse
tion 3.3.3).However, enabling or
on�guring burst mode is a relatively lengthy and
omplexoperation, requiring a reload of the SDRAMmode register whi
h takes several
y
les.Furthermore, supporting multiple burst lengths makes the s
heduling of the transfersmore
omplex to avoid �overlapping� transfers that would
reate
on�i
ts at the datapins.Therefore, in order to greatly simplify the memory
ontroller, all transfers onFML are made using a �xed and pre-de�ned burst length.

4.4. Bridging Wishbone to FML 354.3.3 Burst reorderingThis was dis
ussed in subse
tion 3.3.4.4.3.4 PipeliningThe bene�ts of this feature have already been dis
ussed in subse
tion 3.3.5.Pipelined requests may
ome from the same
ore that issued the initial transfer,or from another
ore. The FML arbiter would then pipeline the request
oming fromthe other
ore.4.3.5 UsageThe data width used for the FML bus is 64, yielding a peak bandwidth of 6.4Gb/swhen the system is running at 100MHz. This is twi
e the peak bandwidth of theWishbone bus. Furthermore, this bus provides a short path to the memory
on-troller, redu
ing laten
y and therefore potentially further in
reasing e�e
tive band-width, as dis
ussed in Se
tion 3.1.Peripherals dire
tly
onne
ted to FML are typi
ally those whi
h transfer largeamounts of data (that would ex
eed the
apa
ity of the L2
a
he presented in se
-tion 4.4) and whi
h have high bandwidth requirements (and therefore
an take ad-vantage of the bandwidth and laten
y improvement
ompared to Wishbone).In the Milkymist SoC, they are
omprised of:
• the VGA output
ontroller, whi
h needs to
ontinuously s
an a frame bu�erup to several megabytes in size to generate the video signal.
• the (planned) video input, whi
h writes, every se
ond, dozens of digitized videoframes weighting hundreds of kilobytes ea
h.
• the texture mapping unit (
hapter 5), whi
h needs to deal with large texturesat high speed.4.4 Bridging Wishbone to FMLFor Wishbone masters (like the CPU) to a

ess SDRAM transparently, it is ne
essaryto bridge the FML bus to the Wishbone bus.FML is a burst-only bus with a �xed burst length, while with Wishbone, burstsare optional and
on�gured on a per-transa
tion basis. To be e�
ient, the bridgemust therefore be able to store data and sli
e it to meet the transfer size requirementsof the Wishbone and FML transa
tions.A traditional write-ba
k
a
he with a line length equal to the FML burst lengthprovides an elegant solution to this problem. This
a
he is referred to as the �L2
a
he�, be
ause, from the CPU point of view, it provides a se
ond level of
a
herelative to its integrated instru
tion and data
a
hes.

36 Chapter 4. SoC inter
onne
t4.5 Ca
he
oheren
y4.5.1 Coheren
y issues around the CPU (L1)
a
heThe Latti
eMi
o32 CPU (se
tion 7.1) uses a write-through
a
he without hardware
oheren
y. Thus, the following operations must be done by the software to ensure
a
he
oheren
y:
• Before reading DMA data from a peripheral using shared memory, the L1
a
he should be
leared as it may hold an outdated
opy of the data.
• When writing DMA data to a peripheral using shared memory on the Wish-bone bus, no pre
aution should be taken. The CPU writes go dire
tly to thebus, and end up in the L2
a
he or the SDRAM where the peripheral will
orre
tly retrieve them.It is noteworthy that the CSR address spa
e is non-
a
he-able, therefore no
a
he-related pre
aution should be taken when reading or writing CSRs.4.5.2 Coheren
y issues around the Wishbone-FML (L2)
a
heThe Wishbone-FML bridge provides very limited support for
a
he
oheren
y. Ca
he
oheren
y issues arise be
ause of the masters dire
tly
onne
ted to the FML bus:
• The CPU may read a
a
hed
opy of a data that has been modi�ed by a FMLmaster.
• A FML master may read a value that has been modi�ed by the CPU in the
a
he (dirty line) but not �ushed to the SDRAM.
• A FML master may update a value in SDRAM but not in the
a
he. The linemay then go dirty, and, when �ushed, will erase the value written by the FMLmaster.Be
ause
a
he
oheren
y is expensive to implement in hardware, the task ofmanaging the
oheren
y of
a
hes has been moved almost entirely to the software.The bridge exposes an interfa
e for the software to invalidate
a
he lines, �ushingthem to the SDRAM if they are dirty. On the software side, devi
e drivers shoulduse this interfa
e appropriately when transferring data with hardware units that useshared memory.The only form of hardware
a
he
oheren
y the system has is related to the videoframe bu�er. The VGA signal generator is
onne
ted dire
tly to the SDRAM bus,be
ause the frame bu�er is
ontinuously s
anned and is too large to �t entirely inthe
a
he.However, it is very
ommon that software modi�es only a few pixels on the s
reen.If there was no hardware
a
he
oheren
y at all, it would be tri
ky to implement asoftware me
hanism that �ushes the bridge
a
he at appropriate times. A solution
an be to �ush the
a
he every time a pixel or a group of pixels are written (whi
h

4.5. Ca
he
oheren
y 37
an be extremely slow if only small regions of the s
reen are modi�ed at a time).Another solution would be to periodi
ally
he
k if the frame bu�er had been modi�edand �ush the
a
he if it was.Sin
e those solutions are di�
ult to implement as they require a signi�
antsupport from both the operating system and appli
ations, it was
hosen to makeframe bu�er read transa
tions by the VGA signal generator
oherent with respe
tto the bridge
a
he. Every time the VGA signal generator fet
hes a burst of pixels,it �rst sear
hes the bridge
a
he. If the data is in the
a
he, it is used. If not, theVGA signal generator fet
hes it from SDRAM (but does not repla
e any
a
he line).This also makes it easier to write Milkymist frame bu�er drivers within theframeworks of
ommon operating systems, su
h as Linux (�gure 7.2).

38

Chapter 5Texture mapping unitHigh performan
e texture mapping was perhaps the most
hallenging and interestingpart of the SoC design proje
t. This
hapter begins with the design of an e�
ientalgorithm and
ontinues with the hardware implementation of it, and in parti
ularhow it was pipelined and how its memory referen
es are handled.5.1 Algorithm5.1.1 Two-dimensional interpolationAs underlined in se
tion 2.4, we need to interpolate linearly on a 2D polygon the Xand Y texture
oordinates a

ording to known values on the verti
es of the polygon.Traditional GPUs use the triangle as the primitive polygon, be
ause it allowsthem to draw any other polygon by splitting it into a series of triangles. We donot need su
h �exibility. For rendering MilkDrop presets, the surfa
e to be drawnis always a mesh of re
tangles whose edges are parallel to the borders of the s
reen(traditional GPUs draw the surfa
e using a triangle de
omposition similar to theone shown in �gure 5.1). We
an therefore
hoose, as the primitive polygon, there
tangle with edges parallel to the borders of the s
reen, whi
h is mu
h simpler todraw than arbitrary triangles.We then split the 2D interpolation problem into 1D interpolation problems asfollows:
• The X and Y texture
oordinates are interpolated independently.
• First, ea
h
oordinate is interpolated on the verti
al edges of the re
tangles(verti
al interpolation) for ea
h integer value of the ordinate.
• For ea
h integer value of the ordinate, the results from the verti
al interpo-lation are interpolated again for ea
h integer value of the abs
issa (horizontalinterpolation). This s
ans all the pixels within the re
tangle.The pro
ess is illustrated in �gure 5.2. 39

40 Chapter 5. Texture mapping unit

Figure 5.1. Typi
al de
omposition into triangular primitives of the MilkDrop ren-dering surfa
e.One
ould obtain the same result by starting with an horizontal interpolationfollowed by several verti
al interpolations. However, when using a linear s
an framebu�er (as Milkymist does), doing it in the proposed way yields output pixels whosememory addresses are
onse
utive in most
ases (ex
ept when going to the nextordinate), whi
h works well with the bursty nature of SDRAM a

esses (subse
-tion 3.3.3) and the traditional organization of a
a
he.

Figure 5.2. 2D linear interpolation on a re
tangle.5.1.2 One-dimensional interpolationThe problem now boils down to performing one-dimensional linear interpolations.Given two points A(x0, y0) and B(x1, y1) with integer
oordinates, we need to
om-pute the ordinate y of M(x, y) ∈ (AB) for all the integer values of x between x0 and

5.1. Algorithm 41
Dy ← y1 − y0
Dx← x1 − x0
Q← Dy/Dxa
R← Dy%Dxb
x← x0
[y]← y0
e← 0result(x)← [y]while x < x1

x← x+ 1
[y]← [y] +Q
e← e+Rif 2 · e > Dx

[y]← [y] + 1
e← e−Dxendresult(x)← [y]enda/ is the integer division operatorb% is the integer modulo operatorFigure 5.3. One-dimensional linear interpolation algorithm.

x1. For now, we are not interested in bilinear �ltering, so what we a
tually want isthe best integer approximation [y] of y so that the texture is sampled to the nearestpixel.In �gure 5.3 we propose a fast and integer-only1 algorithm, whi
h was inspiredby Bresenham's line drawing algorithm [1℄. Without loss of generality, we supposethat x0 ≤ x1 (the points
an be reordered if this was not the
ase). We also supposethat y0 ≤ y1 (it is easy to modify the algorithm to handle the y0 > y1
ase as well2).The
orre
tness of the algorithm lies in the fa
t that every time the result isbeing written, those
onditions are veri�ed (from whi
h it
an be derived that [y] isthe best integer approximation of y):1. |e| ≤ Dx
2 (whi
h implies | e

Dx
| ≤ 1

2)2. The perfe
t (rational) interpolated value y is equal to y = [y] + e
Dx

.These
onditions
an be proven true by re
ursion:1. For x = x0, e = 0 therefore |e| ≤ Dx
2 . Let us now suppose that the hypothesisis true for a
ertain value of x ≥ x0, and prove that it is true for x+ 1.1And thus more suited to a resour
e-
onstrained hardware implementation.2See the Verilog implementation in Milkymist (
ores/tmu2/rtl/tmu2_geninterp18.v).

42 Chapter 5. Texture mapping unitThe instru
tions that a�e
t e between two
onse
utive values of x are e← e+Rand, if 2 · e > Dx, e← e−Dx.After the �rst instru
tion:
• if e was negative or zero, we have −Dx

2 ≤ e < Dx < 3·Dx
2 (be
ause

0 ≤ R < Dx and the re
ursion hypothesis).
• if e was positive, it was inferior or equal to Dx

2 (be
ause of the re
ursionhypothesis), therefore we have 0 < e < 3·Dx
2 .After the se
ond instru
tion, if we had e > Dx
2 , we'll have e < 3·Dx

2 − Dx.Therefore, e ≤ Dx
2 . 22. We need to prove that every time the result is being written, the followingequation is veri�ed:

[y] +
e

Dx
= y0 +

y1 − y0
x1 − x0

· (x− x0) (5.1)For x = x0, [y]+ e
Dx

= y0, so the equation is veri�ed. Let us now suppose thatit is veri�ed for a
ertain value of x ≥ x0, and prove that it is true for x+ 1.It
an be noted that the instru
tions within the �if� do not
hange the value of
[y]+ e

Dx
. The only instru
tions that
hange the result between two
onse
utivevalues of x are [y]← [y]+Q and e← e+R. Therefore, after the loop iteration,we have:

[y] +
e

Dx
= y0 +

y1 − y0
x1 − x0

· (x− x0) +Q+
R

Dx
(5.2)

[y] +
e

Dx
= y0 +

y1 − y0
x1 − x0

· (x− x0) +
y1 − y0
x1 − x0

(5.3)
[y] +

e

Dx
= y0 +

y1 − y0
x1 − x0

· ((x+ 1)− x0) (5.4)
25.1.3 Bilinear �lteringAs outlined in se
tion 2.4, bilinear �ltering is needed to obtain good rendering results.We will therefore try to improve the previous algorithm so that we get a morepre
ise, non-integer interpolation result. Preferably, the result should be in �xedpoint format so that it
an be easily handled for the a
tual �ltering stage (weightedaverage of adja
ent pixels
olors).The �rst thing that
omes to mind is to try to use the error value e

Dx
. However,this would require an integer to �xed point division to be performed at ea
h inter-polated result (the horizontal interpolation alone would require two su
h operationsper pixel), whi
h is expensive.A more elegant solution
onsists in multiplying all the texture
oordinates by apower of 2, noted S (this is an inexpensive operation, as it
an be implemented with

5.1. Algorithm 43a bit shift). Sin
e the interpolation pro
ess is linear, the outputs are also multipliedby S � but the pre
ision is in
reased. In other words, the output of the interpolationstages
omes dire
tly in �xed point format, with log2(S) digits after the radix point.Figure 5.4 illustrates how the bilinear �ltering is done using the �xed pointtexture
oordinates. The texture
oordinates are noted X.i, X.f, Y.i and Y.f, with�i� denoting the integer part of the �xed point number (bits before the radix point)and �f� denoting the fra
tional part (bits after the radix point).

Figure 5.4. Bilinear �ltering using the �xed point texture
oordinates.The weights in the average should be proportional to the surfa
e that the texelto be sampled with non-integer
oordinates (the grey box on the �gure)
overs inea
h of the real texture pixels (numbered 1 to 4 on the �gure). Thus, if c1, c2, c3and c4 are respe
tively the
olor ve
tors of the texture pixels 1 to 4 and c is the
olor ve
tor of the result, we have:
c =

(S −X.f)(S − Y.f) · c1 +X.f(S − Y.f) · c2 + (S −X.f)Y.f · c3 +X.fY.f · c4
S2 (5.5)Sin
e we are working with the RGB565
olor format, having more than 6 extrabits of pre
ision would not make a di�eren
e for the �ltering. Therefore, we
hoose

S = 26 = 64.

44 Chapter 5. Texture mapping unitOperation CostAddition or subtra
tion 1
y
leMultipli
ation 2
y
lesDivision or modulo 32
y
lesBit shift 1
y
leTest (<, >, =, et
.) 1
y
leConditional jump 3
y
lesAssignment free (whi
h is optimisti
)Reading or writing to the frame bu�er 2
y
lesTable 5.1. Estimates of the
ost of
ommon software operations.5.2 Performan
e
onsiderations5.2.1 ContextTo motivate the implementation
hoi
e of the texture mapping, we will study itsexe
ution time in the following situation:
• The size of the sour
e (texture) and destination pi
tures is 512x512.
• The size of the primitive re
tangles is 16x16.
• We need at least 120 runs per se
ond. Indeed, the renderer needs to distort theimage, in
lude live video, s
ale it, and apply the video e
ho e�e
t 30 times perse
ond (subse
tion 2.1.2). We therefore have approximately 8 ms of pro
essingtime at most (whi
h
orresponds to 31 megapixels per se
ond). This is a veryoptimisti
 estimate: sin
e s
aling, in
lusion of live video and the video e
hoe�e
t work with resolutions greater than 512x512, these pro
esses are expe
tedto take more time than the 512x512 → 512x512 distortion.
• The system
lo
k is 100MHz.
• The 2 · e > Dx test is always false (whi
h is optimisti
).
• We optimisti
ally do not take into a

ount the extra instru
tions needed tohandle interpolations with a negative slope (y0 > y1).For a software implementation, we use the
ost estimates of table 5.1.5.2.2 Exe
ution time of the interpolation algorithmFor ea
h 1D interpolation with n steps, we need the amount of time detailed intable 5.2. The steps are in the same order as in �gure 5.3.

5.2. Performan
e
onsiderations 45Operation Cy
les2 subtra
tions 2Division 32Modulo 32Test nConditional jump 3 · n3 additions 3 · nBit shift (multiply by 2) nTest nConditional jump 3 · nTotal 66 + 12 · nTable 5.2. Detailed estimate of the exe
ution time of the interpolation algorithm.Operation Cy
les TimeVerti
al interpolation 503808 5 msHorizontal interpolation 8060928 81 msFrame bu�er reads 2097152 21 msBilinear �ltering 19660800 197 msFrame bu�er writes 524288 5 msTotal 30846976 308 msTable 5.3. Optimisti
 estimate of the exe
ution time of software texture mapping.5.2.3 Total exe
ution timeUsing the above formula with n = 15, we
an
ompute an estimate of the exe
utiontime of a software implementation (table 5.3).1D interpolations need to be done twi
e, on
e for ea
h texture
oordinate.The number of frame bu�er reads is
omputed by
onsidering that for ea
h pixelwritten to the 512x512 destination pi
ture, 4 pixels must be read from the sour
epi
ture.The
ost of bilinear �ltering is
omputed, for ea
h destination pixel, with 4subtra
tions, 8 multipli
ations, 4 additions and 1 bit shift times 3
olor
hannels,whi
h yields 75
y
les. This is optimisti
 as it does not take into a

ount the timeneeded to de
ode the �xed point format.A

ording to this (yet optimisti
) estimate, it be
omes
lear that a softwareimplementation
ould not su�
e, as the required performan
e is 8 ms. Even theverti
al interpolation
an hardly be implemented in software, as it would use alonemore than 60% of the CPU power (whi
h is needed for other tasks). We need anoverall speedup by a fa
tor of more than 40, using hardware a

eleration.

46 Chapter 5. Texture mapping unit5.3 Pipelined hardware implementation5.3.1 StrategyGiven the performan
e
onstraints and the slowness of software implementations,we de
ided to implement the
omplete texture mapping pro
ess in hardware.It is expe
ted that the memory laten
y for reading the frame bu�er would be aperforman
e-limiting fa
tor. Instead of trying to alleviate its e�e
ts by using
om-plex and potentially resour
e-intensive te
hniques su
h as advan
ed prefet
hing ornon-blo
king
a
hes, we simply use a dire
t-mapped blo
king texel
a
he providingsimpli
ity and fast hit times, and design the rest of the texture mapping unit so thatthe memory read laten
y be
omes the only limiting fa
tor.With a dire
t-mapped texel
a
he having a hit rate of 90%, a hit time of 1
y
leand a miss penalty of 9
y
les, the average memory a

ess times is 1.8
y
les. Witha 100MHz system
lo
k, su
h a
a
he has a throughput of 55 megapixels per se
ond,well above the optimisti
 estimate made in subse
tion 5.2.1.3To make sure that the memory a

ess time is the only limiting fa
tor, it was
hosen that the rest of the system should be designed to support a throughputof approximately one output pixel per
lo
k
y
le. This heuristi
 was in�uen
edby the fa
t that it
orresponds to a spatial implementation of the algorithm (i.e.with little or no time-based resour
e sharing of the hardware
omponents) but doesnot require resour
e-intensive dupli
ation of large hardware units either. A spatialimplementation requires more area than a time-shared one, but it is simpler tounderstand, and needs fewer multiplexers and is less prone to routing
ongestion,making it easier to a
hieve timing
losure in FPGAs.A deeply pipelined implementation of the texture mapping algorithm was thus
hosen, whose blo
k diagram is depi
ted in �gure 5.5. Many of the stages haveinternal pipeline sub-stages, and they are detailed below.5.3.2 Vertex fet
h engineThere is not mu
h to say about this stage, whi
h is a straightforward �nite statema
hine-based Wishbone bus master that fet
hes the texture
oordinates of ea
hvertex from the system memory, and sends them down the pipeline to the verti
alinterpolator.The vertex fet
h engine is
onne
ted to the lower-bandwidth Wishbone bus be-
ause this saves resour
es
ompared to FML (whi
h has a wider data path) andmakes it easier to handle
a
he
oheren
y issues (se
tion 4.5).3This is a qui
k estimate assuming a normal
a
he that does not support bilinear �ltering. Toimplement bilinear �ltering, the situation is more
omplex as the
a
he needs to look up 4 pixelsat on
e. This is dis
ussed in subse
tion 5.3.6.

5.3. Pipelined hardware implementation 47

Figure 5.5. Blo
k diagram of the texture mapping unit ar
hite
ture.

48 Chapter 5. Texture mapping unit5.3.3 InterpolatorsThe horizontal and verti
al interpolators are both implemented in the same way.They are ve
tor interpolators, whi
h
ontain two s
alar interpolators (�gure 5.6, onefor ea
h texture
oordinate). Ea
h s
alar interpolator
ontains additional internalpipeline sub-stages, as des
ribed in �gure 5.7.The verti
al interpolator
ontains two ve
tor interpolators, one for ea
h verti
aledge of the re
tangle.

Figure 5.6. Ve
tor interpolator.Stages of the s
alar interpolatorStage A: Dx and Dy
omputation. This stage
omputes the two di�eren
es
y1 − y0 and x1 − x0. It is based on simple registered arithmeti

ombinatorialfun
tions, whi
h
ompute the two di�eren
es in one
lo
k
y
le.Stage B: Q and R
omputation. The next operation is to perform the Eu-
lidean division of Dy by Dx. The hardware does so by using the restoring divisionmethod [19℄, whi
h takes as many
y
les as there are quotient digits (our implemen-tation has 18).In order to keep the resour
e usage low, the divider is not pipelined. Afteroperands are sent to it, it stalls transmissions from the upstream stage for several
y
les until the division is
omplete.Stage C: Interpolation loop. Finally, the
ore of the algorithm (the �while� loopfrom �gure 5.3) is implemented in the last stage. This unit re
eives the Q and Rvalues from the dividers, as well as the start y0 value and the range x0 to x1 (whi
h

5.3. Pipelined hardware implementation 49

Figure 5.7. Pipelined s
alar interpolator.are forwarded through the previous stages). It then sends the series of interpolatedvalues [y] for x0 ≤ x < x1.The throughput of the stage is one interpolation point per
lo
k
y
le. Whilethe interpolation is taking pla
e, transmission of new parameters from the upstreamstage is stalled. This justi�es the
hoi
e of a slow but low-area restoring divider instage B: with a typi
al re
tangle size of 16, the pro
essing times of the interpolationloop and of the divider are roughly the same, making the pipeline balan
ed.5.3.4 Clamping/wrappingThis unit pro
esses interpolated texture points whose
oordinates are beyond theboundaries of the texture (i.e. they are negative or ex
eed the texture's horizontalor verti
al resolution).There are two, sele
table, ways of dealing with them:
•
lamping, whi
h
onsists in repla
ing an out-of-range
oordinate with 0 (if itwas negative) or with the horizontal or verti
al resolution of the texture minusone (if it was too large).
• wrapping, whi
h repeats the texture and
onsists in
omputing the positivemodulo of ea
h
oordinate with respe
t to the horizontal or verti
al textureresolution. In order to avoid using an expensive fast divider, only textureswhose sizes are a power of 2 are supported for wrapping. This enables therepla
ement of the divider with a bitwise AND operation, whi
h is way less

50 Chapter 5. Texture mapping unitexpensive. The problem of negative texture
oordinates is solved by simplymasking out the sign bit, whi
h yields the
orre
t result as the
oordinates arerepresented in two's
omplement format.This stage is implemented by simple arithmeti

ombinatorial fun
tions, whi
hare registered and pipelined on two sub-stages to meet timing requirements.5.3.5 Address generatorThe address generator is a simple arithmeti

ir
uit that turns the �oating pointtexture
oordinates into the four memory addresses of the pixels they
over, and thedestination
oordinate into the
orresponding memory address in the destinationframe bu�er. It is pipelined on three sub-stages to meet timing goals.The formula used to
onvert a
oordinate (x, y) into a pixel address A withina 16bpp frame bu�er starting at Abase and with an horizontal resolution H is thefollowing:
A = Abase + (H · y + x) · 2 (5.6)5.3.6 Texel
a
hePresentationOn
e the addresses of the four texture pixels have been
omputed, the next step is toretrieve data from the memory. This should be done fast: to meet the performan
egoal of 31 megapixels per se
ond at the output of the texture mapping unit, thetexel
a
he must be able to fet
h at least 124 megapixels per se
ond. This is, onaverage, at least 1.24 pixel per
lo
k
y
le with a 100MHz system
lo
k.In
onsisten
e with the heuristi
 made at subse
tion 5.3.1 that
onsists in design-ing the system for a performan
e of one output pixel per
lo
k
y
le in the absen
eof memory read delays, the texel
a
he should be able to servi
e the four requestports (
alled
hannels) in one
lo
k
y
le if all the
hannels hit the
a
he.Channel are numbered as follows (see �gure 2.8):

• Channel 1 fet
hes the base pixel, that is to say, the pixel at the
oordinatesobtained by �ooring the non-integer texture
oordinates. It is always a
tive.
• Channel 2 fet
hes the pixel at the right of the base pixel. It is a
tive when theX texture
oordinate has a non-zero fra
tional part.
• Channel 3 fet
hes the pixel at the bottom of the base pixel. It is a
tive whenthe Y texture
oordinate has a non-zero fra
tional part.
• Channel 4 fet
hes the pixel at the bottom-right of the base pixel. It is a
tivewhen both the X and Y texture
oordinate have a non-zero fra
tional part.

5.3. Pipelined hardware implementation 51Separate vs. shared
a
hesThe obvious solution seems have one separate
a
he per
hannel. However, thissolution is not optimal in terms of speed and memory e�
ien
y. For example, let ustake the
ase when the texture mapping
onsists in zooming the texture by a fa
torof 2 (the texture
oordinates at ea
h vertex are the vertex
oordinates divided by2). Assuming an empty
a
he at the beginning, the sequen
e of events is as follows:1. The interpolated �xed-point texture
oordinates are (0, 0). Channel 1 missesits
a
he for a fet
h of the pixel at (0, 0). Sin
e the
oordinates are integer,
hannels 2, 3 and 4 are idle and do not need to fet
h data.2. The texture
oordinates be
ome (0.5, 0). Channel 1 hits its
a
he for the pixelat (0, 0). However,
hannel 2 misses its
a
he for the pixel at (1, 0) and a newmemory request needs to be performed, even though the pixel at (1, 0) is inthe
a
he of
hannel 1 (it was part of the burst that fet
hed the (0, 0) pixel).Channels 3 and 4 are idle, sin
e the Y
oordinate is integer.The problem repeats every time the X texture
oordinate
rosses a memory burstboundary, and is also present in the Y dire
tion with
hannels 3 and 4. In total, thetexel
a
he uses four times as mu
h memory bandwidth as it would use if it wereable to share data between the
hannels' respe
tive
a
hes.4 Zooming (lo
ally orglobally) is a very
ommon operation, so the issue needs to be addressed.A more e�
ient solution, whi
h has been retained,
onsists therefore in havinga single multi-ported data store.ImplementationOur implementation is based on the traditional dire
t-mapped
a
he, but usingquad-port SRAM for the data and tag stores. Quad-port SRAM
an be mapped toFPGA te
hnologies at a moderate
ost by using two primitive dual-port SRAMs inwhi
h the data is repli
ated. During normal operation (hits), ea
h port serves one
hannel, and, when re�lling the
a
he on a miss, reading is disabled and two of theports (one per primitive dual-port SRAM) are used to feed the data into the RAMs.A simpli�ed blo
k diagram of the texel
a
he is given in �gure 5.8. This blo
kdiagram does not in
lude all of the logi
 needed to handle pipeline stalls and la
ksthe �valid� bits of the tags.At ea
h
lo
k
y
le, the texel
a
he pro
esses, in a pipelined manner,5 fourmemory addresses from ea
h
hannel if they hit the
a
hes. The �hit� signal is kepthigh and the pipeline is always running.In
ase of a miss, the �hit� signal goes low (stalling the pipeline), and the priorityen
oder and the multiplexer (MUX) sele
t one of the missed addresses (there
an4Assuming at least two
omplete horizontal lines of pixels from a primitive re
tangle �t in the
a
he, whi
h is generally the
ase.5The SRAMs are registered, in order to improve timing and to map to the blo
k RAMs of
ommon modern FPGAs whi
h always
ontain an internal register.

52 Chapter 5. Texture mapping unit

Figure 5.8. Ar
hite
ture of the four-
hannel texel
a
he.

5.3. Pipelined hardware implementation 53be one or many). The FastMemoryLink master issues a memory transa
tion toretrieve the data from the system memory, repla
es the
ontents of the
a
he lineand rewrites the tag. The address now be
omes a
a
he hit. If no other addressmisses the
a
he, the texel
a
he has su

essfully handled the 4-
hannel transa
tionand the �hit� signal goes high again to pro
eed to the next. Otherwise, the pro
essrepeats until all addresses hit the
a
he. Our design does not take advantage of thepipelining feature of the FastMemoryLink bus and issues requests sequentially.Inter-
hannel
a
he
on�i
tsAn inter-
hannel
a
he
on�i
t (ICCC) o

urs when two or more
hannels requestdi�erent addresses that have di�erent tags but map to the same
a
he line.This
ondition is not desirable. With our implementation, the texel
a
he wouldgo into an in�nite loop fet
hing data from the memory in an attempt to make all
hannels hit the
a
he � whi
h it
an never a
hieve � until it is manually reset.6This
hoi
e has been made for two reasons: �rst, adding hardware to deal withICCCs would yield poor performan
e anyway as some memory bursts would be thereonly for retrieving one pixel and solving the
on�i
t,7 se
ond, ICCCs are easy toavoid for our purposes, and we will see how.For simpli
ity, we use the pixel (2 bytes) as unit. In the equations that follow:
• H is the horizontal texture resolution in pixels.
• V is the verti
al texture resolution in pixels.
• Nl is the number of pixels a
a
he line
an hold. It is equal to the line size inbytes divided by 2.
• Nc is the total number of pixels the texel
a
he
an hold. It is equal to the
a
he size in bytes (not
ounting the tag memory) divided by 2.Chara
terization of
a
he
on�i
ts. A pixel at address ap (measured in pixels,i.e. 2-byte words) is mapped to the
a
he line indexed by:

lp =

⌊

ap
Nl

⌋

(mod
Nc

Nl

) (5.7)6As a safety measure, it is therefore re
ommended that software drivers for the texture mappingunit
he
k for the possibility of ICCC
onditions before running the TMU and report an error ifan ICCC is possible.7This is true only if we keep a dire
t-mapped
a
he. With a multiple-way set-asso
iative
a
heand a smart repla
ement poli
y that allo
ates one spe
i�
 way to ea
h
on�i
ting
hannel whenan ICCC o

urs, the hardware
an both deal with ICCCs and yield high performan
e. However,it is more
omplex and expensive. Furthermore, when keeping a dire
t-mapped
a
he, it makessense to add hardware that would deal with infrequent
ases of ICCCs su
h as those arising whenwrapping at texture boundaries.

54 Chapter 5. Texture mapping unitThus, two pixels at addresses a1 and a2
on�i
t in the
a
he if and only if:
{

|a1 − a2| ≥ Nl
⌊

a1
Nl

⌋

≡
⌊

a2
Nl

⌋

(mod Nc

Nl
)

(5.8)Texture
lamping only
auses one or more
hannel addresses to be equal, andtherefore does not introdu
e additional
ases of ICCCs. However, texture wrappingdoes introdu
e new dispositions of the
hannels within the texture, and new ICCC
onditions.

Figure 5.9. Disposition of the
hannels within the texture, general
ase.

Figure 5.10. Disposition of the
hannels within the texture, verti
al wrapping.Con�i
ts between
hannels 1 and 2 (or 3 and 4). The addresses aA and aBof these two
hannels
an be separated by either:
• 1 pixel in the most
ommon
ase (sampling in the middle of the texture, see�gure 5.9). This
annot
ause inter-
hannel
a
he
on�i
ts.

5.3. Pipelined hardware implementation 55
• H − 1 pixels if texture wrapping is enabled and the texture is sampled at oneof its verti
al edges (�gure 5.10). In this
ase, the
ondition |aA − aB| ≥ Nl isoften veri�ed (ex
ept for small textures where H−1 < Nl). To make sure thatthere will be no ICCC, we must thus make sure that the following
onditionis also veri�ed:

⌊

aA
Nl

⌋

6≡
⌊

aA +H − 1

Nl

⌋

(mod
Nc

Nl

) (5.9)To make sure that this
ondition is veri�ed for all possible pixel addresses, itis su�
ient to
he
k that:
∀a ∈ {0, 1, ...Nl − 1},

⌊

a+H − 1

Nl

⌋

6≡ 0 (mod
Nc

Nl

) (5.10)Indeed, by division by Nl we have aA = k ·Nl + a with 0 ≤ a ≤ Nl − 1, whi
htransforms equation 5.9 into:
k +

⌊

a

Nl

⌋

6≡ k +

⌊

a+H − 1

Nl

⌋

(mod
Nc

Nl

) (5.11)whi
h leads easily to the result,
onsidering that ⌊ a
Nl

⌋

= 0.This
an be further simpli�ed:






⌊

H−1
Nl

⌋

6≡ 0 (mod Nc

Nl
)

1 +
⌊

H−1
Nl

⌋

6≡ 0 (mod Nc

Nl
)

(5.12)

Figure 5.11. Disposition of the
hannels within the texture, horizontal wrapping.Con�i
ts between
hannels 1 and 3 (or 2 and 4). The separation betweenthe
hannels' addresses
an be:

56 Chapter 5. Texture mapping unit
• H pixels (a

ording to the equation 5.6) in the general
ase (�gure 5.9). Usingthe same reasoning from above, we
an dedu
e that it is su�
ient to
he
kthat H < Nl or:







⌊

H
Nl

⌋

6≡ 0 (mod Nc

Nl
)

1 +
⌊

H
Nl

⌋

6≡ 0 (mod Nc

Nl
)

(5.13)
• H · (V − 1) pixels if texture wrapping is enabled and the texture is sampledat one of its horizontal edges (�gure 5.11). Again, it is su�
ient to
he
k that

H · (V − 1) < Nl or:






⌊

H·(V−1)
Nl

⌋

6≡ 0 (mod Nc

Nl
)

1 +
⌊

H·(V−1)
Nl

⌋

6≡ 0 (mod Nc

Nl
)

(5.14)

Figure 5.12. Disposition of the
hannels within the texture, horizontal and verti
alwrapping.Con�i
ts between
hannels 1 and 4. The
hannels' addresses
an be separatedby:
• H + 1 pixels (a

ording to the equation 5.6) in the general
ase (�gure 5.9).It is therefore su�
ient to
he
k that H + 1 < Nl or:







⌊

H+1
Nl

⌋

6≡ 0 (mod Nc

Nl
)

1 +
⌊

H+1
Nl

⌋

6≡ 0 (mod Nc

Nl
)

(5.15)
• 1 pixel in
ase of verti
al wrapping (�gure 5.10). This
annot
ause ICCCs.
• H · (V − 1) − 1 pixels in
ase of horizontal wrapping (�gure 5.11). Similarly,we
an
he
k that H · (V − 1)− 1 < Nl or:







⌊

H·(V−1)−1
Nl

⌋

6≡ 0 (mod Nc

Nl
)

1 +
⌊

H·(V−1)−1
Nl

⌋

6≡ 0 (mod Nc

Nl
)

(5.16)

5.3. Pipelined hardware implementation 57
• H · V − 1 in
ase of wrapping in both dire
tions (�gure 5.12). We
an
he
kthat H · V − 1 < Nl or:







⌊

H·V−1
Nl

⌋

6≡ 0 (mod Nc

Nl
)

1 +
⌊

H·V−1
Nl

⌋

6≡ 0 (mod Nc

Nl
)

(5.17)
Con�i
ts between
hannels 2 and 3. Like above, we
an
he
k that H−1 < Nlor:







⌊

H−1
Nl

⌋

6≡ 0 (mod Nc

Nl
)

1 +
⌊

H−1
Nl

⌋

6≡ 0 (mod Nc

Nl
)

(5.18)Furthermore, if texture wrapping is enabled, the di�eren
es between pixel ad-dresses
an be
ome (resulting in similar
onditions to
he
k for):
• 2 ·H − 1 (verti
al wrapping, �gure 5.10).
• H · (V − 1) + 1 (horizontal wrapping, �gure 5.11).
• H · (V − 2) + 1 (wrapping in both dire
tions, �gure 5.12).Summary. To avoid inter-
hannel
a
he
on�i
ts, when texture
lamping is used,it is su�
ient to
he
k that (all equivalen
es are modulo Nc

Nl
):























































H − 1 < Nl or 





⌊

H−1
Nl

⌋

6≡ 0

1 +
⌊

H−1
Nl

⌋

6≡ 0

H < Nl or 





⌊

H
Nl

⌋

6≡ 0

1 +
⌊

H
Nl

⌋

6≡ 0

H + 1 < Nl or 





⌊

H+1
Nl

⌋

6≡ 0

1 +
⌊

H+1
Nl

⌋

6≡ 0

(5.19)

58 Chapter 5. Texture mapping unitIf texture wrapping is used, additional
onditions appear:






























































































































H · (V − 1)− 1 < Nl or 





⌊

H·(V−1)−1
Nl

⌋

6≡ 0

1 +
⌊

H·(V−1)−1
Nl

⌋

6≡ 0

H · (V − 1) < Nl or 





⌊

H·(V−1)
Nl

⌋

6≡ 0

1 +
⌊

H·(V−1)
Nl

⌋

6≡ 0

H · (V − 1) + 1 < Nl or 





⌊

H·(V−1)+1
Nl

⌋

6≡ 0

1 +
⌊

H·(V−1)+1
Nl

⌋

6≡ 0

H · (V − 2) + 1 < Nl or 





⌊

H·(V−2)+1
Nl

⌋

6≡ 0

1 +
⌊

H·(V−2)+1
Nl

⌋

6≡ 0

2 ·H − 1 < Nl or 





⌊

2·H−1
Nl

⌋

6≡ 0

1 +
⌊

2·H−1
Nl

⌋

6≡ 0

H · V − 1 < Nl or 





⌊

H·V−1
Nl

⌋

6≡ 0

1 +
⌊

H·V−1
Nl

⌋

6≡ 0

(5.20)
Ca
he sizeWe must now determine an optimal size for the texel
a
he. The size must representa
ompromise between hit rate (and, thus, performan
e) and
ostly utilization ofon-
hip RAM. Furthermore, it must be
hosen so that inter-
hannel
a
he
on�i
tsdo not o

ur for our use
ases.To study the impa
t of the
a
he size on the hit rate, we simulated the
ompleteVerilog
ode of texture mapping unit with di�erent
a
he sizes. The CSR interfa
eof the texture mapping unit (subse
tion 5.3.9) supports eight registers that measure,for ea
h
hannel, the number of requests8 and how many of those requests hit the
a
he. Those registers are still present after logi
 synthesis, and
an be used tovalidate the performan
e of the texel
a
he in the real system.9The sour
e and destination images have a resolution of 512x512 pixels, andare tessellated with 16x16 re
tangles forming a 32x32 mesh � whi
h mat
hes the
on�guration used for distortions by the renderer program. Di�erent sets of texture
oordinates were used at ea
h vertex, a

ording to table 5.4. Texture
oordinatesare multiplied by 64 to perform the
onversion of integers into the �xed point format8As outlined above,
hannels are only a
tive (i.e. issue a
a
he request) when needed (i.e. whenthe interpolated texture
oordinates are not integer). Channel 1 is always a
tive and thereforemakes as many a

esses as there are pixels in the output pi
ture. Its a

esses are however still
ounted as a means to
he
k that the texture mapping unit is operating
orre
tly.9The reason why we performed the tests using Verilog simulations instead of the real FPGA-based system is be
ause logi
 synthesis � needed for ea
h tested
a
he size � takes a long time, andsome
a
he
on�gurations may
ause resour
e shortages, timing problems or even Xst synthesizerbugs that would need to be manually addressed.

5.3. Pipelined hardware implementation 59Set name Output pi
ture X Y
opy Figure 5.13 x · 16 · 64 y · 16 · 64zoomin Figure 5.14 x · 10 · 64 y · 10 · 64zoomout Figure 5.15 x · 40 · 64 y · 40 · 64rotozoom Figure 5.16 (x·16−256)·67−(y·
16−256)·28+256·64

(x·16−256)·28+(y·
16−256)·67+256·64Table 5.4. Texture
oordinate sets used for ben
hmarking the texel
a
he.used throughout the linear interpolation pro
ess (see subse
tion 5.1.3). x and y referto the indi
es of the vertex in the mesh. Texture wrapping was enabled, as it putsmore load on the
a
he than texture
lamping.The sets were
hosen for the following reasons:

•
opy does not introdu
e any distortion and is meant to test the performan
eof the TMU as a blitter, that
ould be used e.g. for GUI a

eleration. It isalso a very simple
ase that veri�es the
onsisten
y of the results.
• zoomin s
ales up the pi
ture. This tests the TMU in a favorable
ase: as theamount of zoom is important, the texels are swept a
ross slower than outputpixels are drawn. This is expe
ted to generate a lot of
a
he hits.
• zoomout s
ales down and repeats the pi
ture. This is a detrimental
ase:the texels are swept a
ross faster than the output pixel are drawn, and somevalues from the
a
he lines read from memory will have to be dis
arded. Thisis expe
ted to generate a lot of
a
he misses.
• rotozoom slightly s
ales down and rotates the pi
ture. This is an intermediate
ase that re�e
ts what MilkDrop typi
ally does: rotation and slight s
ale-downare
ommon preset e�e
ts.The length of the
a
he line is set to the length of a FML burst in the SoC (4words of 64 bits ea
h) for simpli
ity of the design.Simulations were
arried out using the free GPL Cver Verilog simulator [31℄.To visually inspe
t the results of the distortions stemming from ea
h set of texture
oordinates, the simulation reads and writes input and output pi
ture �les thanks toa Verilog VPI [10℄ plug-in.10 A typi
al simulation tra
e is reprodu
ed in �gure 5.17.Even though GPL Cver is relatively slow11 to
arry out su
h a
omplex simulation,it produ
ed
onsistent results, whi
h supports the idea that it is, in many
ases,a viable alternative to proprietary and expensive simulators
ommonly taught inuniversity
ourses.Results are reported in table 5.5 and �gure 5.18. Only the global hit rate isreported, whi
h is
omputed as the global number of hits over the global number of10This was also part of the usual test ben
h used to debug the Verilog implementation of thetexture mapping unit.11Its runtime is between one and three minutes on a Intel Core 2 Duo 2.5GHz ma
hine.

60 Chapter 5. Texture mapping unit

Figure 5.13. TMU output pi
ture for the �
opy� set (original pi
ture).

Figure 5.14. TMU output pi
ture for the �zoomin� set.

5.3. Pipelined hardware implementation 61

Figure 5.15. TMU output pi
ture for the �zoomout� set.

Figure 5.16. TMU output pi
ture for the �rotozoom� set.

62 Chapter 5. Texture mapping unit$ make TB=tb_tmu2.v
ver +loadvpi=./vpi_images.so:vpi_register tb_tmu2.v(...)GPLCVER_2.12a of 05/16/07 (Linux-elf).Copyright (
) 1991-2007 Pragmati
 C Software Corp.All Rights reserved. Li
ensed under the GNU General Publi
Li
ense (GPL).See the 'COPYING' file for details. NO WARRANTY provided.Today is Tue May 4 14:46:22 2010.PLI Image I/O fun
tions registeredCompiling sour
e file "tb_tmu2.v"Compiling sour
e file "../rtl/tmu2_adrgen.v"(...)Opening input pi
ture...Configuring TMU...CSR write: 0000002
=01000000CSR write: 00000004=00000020(...)CSR write: 00000044=00000010CSR write: 00000048=0000003fStarting TMU...CSR write: 00000000=00000001Re
eived DONE IRQ from TMU!Gathering texel
a
he statisti
s...CSR read : 00000050=00040000CSR read : 00000054=0003
000(...)CSR read : 00000068=00000000CSR read : 0000006
=00000000Channel A: 245760 / 262144 hits (93.750000 %)Channel B: 0 / 0 hits (nan %)Channel C: 0 / 0 hits (nan %)Channel D: 0 / 0 hits (nan %)GLOBAL : 245760 / 262144 hits (93.750000 %)Writing output pi
ture...All done!Halted at lo
ation **tb_tmu2.v(367) time 4585546 from
allto $finish.There were 0 error(s), 32 warning(s), and 402 inform(s).Figure 5.17. Typi
al TMU simulation tra
e (ex
erpt).

5.3. Pipelined hardware implementation 63Ca
he size
opy zoomin zoomout rotozoom2kB 93.75 % 98.08 % 83.33 % 73.06 %4kB 93.75 % 98.08 % 83.33 % 82.94 %8kB 93.75 % 98.62 % 83.33 % 93.73 %16kB 93.75 % 99.27 % 86.94 % 95.74 %32kB 93.75 % 99.27 % 91.44 % 96.02 %64kB 93.75 % 99.27 % 94.14 % 96.02 %128kB 93.75 % 99.27 % 94.14 % 96.15 %Table 5.5. Hit rates for ea
h set of texture
oordinates and di�erent
a
he sizes.a

esses. The global number of hits (respe
tively a

esses) is the sum of the numberof hits (respe
tively a

esses) for all
hannels. The reported
a
he size is the size ofthe data store only (not
ounting the tag memory).

Figure 5.18. Hit rates versus texel
a
he size. The X axis (
a
he size) uses alogarithmi
 s
ale.Before we go on
hoosing a texel
a
he size, a few
omments on these results
anbe made.First, for the �
opy� set, the hit rate remains at a
onstant 93.75 %. This isexpe
ted and supports the validity of the results. Indeed, the texture mappingunit is
opying re
tangles whose horizontal size is the length in pixels of a
a
heline (4 words of 64-bit ea
h yields 16 pixels of 16 bits ea
h). In our tests, the

64 Chapter 5. Texture mapping unittexture frame bu�er was aligned to the beginning of a
a
he line and 512 (thehorizontal texture size) is a multiple of the
a
he line length in pixels, therefore ea
hhorizontal line in a re
tangle
orresponds to a
a
he line. Ea
h texture pixel is readexa
tly on
e (
hannels 2, 3 and 4 are idle as the interpolated texture
oordinates arealways integer). What happens is that, for ea
h horizontal line in ea
h re
tangle,the �rst texel is read and misses the
a
he. Then, the next 15 texels in the lineare immediately read and hit the
a
he. This indeed yields a
a
he hit rate of
15
16 = 0.9375.A result more surprising at �rst sight is that for the �zoomout� set, whi
h issupposed to be the worst
ase, the
a
he hit rate is low � as expe
ted � andin
reases, until it slightly ex
eeds the hit rate for the �
opy� set for
a
he sizes of64kB and above.This has to do with the fa
t that the texture mapping unit draws the re
tanglesin the same order as frame bu�ers are s
anned (from left to right and top to bottom).When the
a
he rea
hes 64kB, it is able to memorize a full band of texels that ismore than 48 pixels high (512 · 48 · 2 = 49152 < 65536) whi
h
ontains more thanall the texels needed to draw a full line of re
tangles (16 pixels high) in the outputpi
ture. Sin
e the output pi
ture repeats the texture, the repetition generates
a
hehits that are not present with the �
opy� set.As for
hoosing a texel
a
he size, we went for a 32kB
a
he. There is no signif-i
ant performan
e improvement with using a larger
a
he ex
ept for the �zoomout�set for whi
h there is a slight in
rease in the hit rate between 32kB and 64kB. Sin
ethe �zoomout� set is a worst-
ase s
enario seldom found in pra
ti
e (MilkDrop usu-ally zooms out by fa
tors mu
h less than the one we used, resulting in fewer
a
hemisses), we felt it was not worth doubling the
a
he size to improve its performan
e.We also need to
he
k that this
a
he size
annot
ause inter-
hannel
a
he
on�i
ts (ICCCs). The
a
he line size is 32 bytes, thus, the
a
he line length in16bpp pixels is Nl = 16 and the
a
he holds Nc

Nl
= 1024 lines. The texture mappingunit is operated with 512x512 textures and texture wrapping is enabled.With these parameters, all the
onditions of equations 5.19 and 5.20 are veri�ed,ex
ept one: we have 1+ ⌊

H·V−1
Nl

⌋

≡ 0, whi
h means that there
an be inter-
hannel
a
he
on�i
ts between
hannels 1 and 4 due to wrapping. Without additionalhypotheses, this
an only be solved by in
reasing the
a
he size to at least 1MB,whi
h would be very expensive.Fortunately, there is a
heaper solution. What we a
tually need to verify is this
ondition, obtained in the same way as equation 5.9:
⌊

aA
Nl

⌋

6≡
⌊

aA +H · V − 1

Nl

⌋

(mod
Nc

Nl

) (5.21)We add the hypothesis that the frame bu�er address is a multiple of the
a
heline length, whi
h we
an easily a
hieve by imposing alignment requirements to thesoftware tool
hain. Without loss of generality, we suppose that aA is the address of
hannel 4, whi
h is equal to the address of the frame bu�er in the
ase
reating the

5.3. Pipelined hardware implementation 65problem (�gure 5.12). aA
Nl

is therefore integer, and the only
ondition that impliesthe absen
e of
on�i
t between
hannels 1 and 4 be
omes:
⌊

H · V − 1

Nl

⌋

6≡ 0 (mod
Nc

Nl

) (5.22)This
ondition is veri�ed. So, ICCCs will always be avoided with a 32kB texel
a
heif we make sure that the 512x512 texture is aligned to a 32-byte boundary.5.3.7 Bilinear �lterThe bilinear �lter is a straightforward arithmeti

ir
uit that implements the equa-tion 5.5 with �ve pipeline sub-stages.5.3.8 Write bu�erThe write bu�er is in
harge of gathering the �nal pixels produ
ed by the algorithm,assemble them into FML bursts and write them to the memory.The write bu�er has enough memory
apa
ity to store two bursts on-
hip. Thisstorage spa
e is used for a �double bu�ering� te
hnique: while the �rst burst bu�erre
eives pixels from the pipeline, the other bu�er
an transmit data to the memory
ontroller. Bursts
an be
omplete, whi
h means that all data in them is valid, orin
omplete, whi
h means that the write bu�er has not re
eived a value for all thepixels within the burst but still needs to move the partial burst data it has o�-
hipbe
ause it does not have spa
e to store it. In
omplete bursts are performed usingthe data mask (DM) signals of FML that prevent some bytes from being written tothe memory during the burst. In
omplete bursts should be avoided as they wastememory bandwidth and redu
e performan
e.This small amount of on-
hip memory is enough to perform well. Indeed, the al-gorithm s
ans the re
tangles one by one horizontally and then verti
ally (�gure 5.2)and
onse
utive pixels on the same horizontal line are
ontiguous in memory (equa-tion 5.6). Thus, if the destination frame bu�er is aligned to the start of a FML burstand if the horizontal size of the re
tangles is a multiple of the number of pixels ina FML burst, the burst bu�ers will be used very e�
iently, with
omplete burstsonly. This is the re
ommended mode of operation for the texture mapping unit.Under this assumption, what limits the throughput of the write bu�er is thetime it takes to empty the se
ond burst bu�er into the memory. This time is equalto the memory write a

ess time plus the length of the FML burst.In the equations that follow, these symbols are used:
• f is the system
lo
k frequen
y in Hz.
• w is the width of a FML word in bits.
• n is the FML burst length.
• ∆w is the memory write a

ess time.

66 Chapter 5. Texture mapping unit
• d is the number of bits per pixel.
• T is the throughput of the write bu�er, in pixels per se
ond.We therefore have:

T =
f · n · w

d · (∆w + n)
(5.23)Thus, the write bu�er
an a
hieve a throughput of one pixel per
lo
k
y
le(T = f) if the memory write a

ess time veri�es:

∆w ≤
n · w
d
− n (5.24)In Milkymist, the
olor format uses 16 bits per pixel and the FML bus is basedon bursts of four 64-bit words, whi
h leads to the throughput plot of �gure 5.19.12The write bu�er
an tolerate write laten
ies of up to 12
y
les while maintainingan ex
ellent performan
e of one pixel per
lo
k
y
le, whi
h seems a
hievable evenwhen taking into a

ount the delays due to bus arbitration. Beyond this point,performan
e drops.

 40

 50

 60

 70

 80

 90

 100

 110

 120

 10 15 20 25 30

P
er

fo
rm

an
ce

 (
M

pi
xe

ls
/s

)

Memory write access time (cycles)Figure 5.19. Theoreti
al write bu�er throughput versus memory write a

ess time.12In our implementation, the throughput is also limited to a maximum of 100 megapixels perse
ond be
ause of the width of the write bu�er input port.

5.5. Implementation results 675.3.9 Control interfa
eThe texture mapping unit is
ompletely under software
ontrol thanks to a CSRinterfa
e through whi
h the CPU
an
on�gure and
ontrol it using a set of
on-�guration and status registers. The texture mapping unit has one interrupt line tosignal
ompletion of the pro
ess to the CPU.5.4 Extra featuresBeyond this basi
 prin
iple of operation, the texture mapping unit supports sev-eral features whi
h are implemented as additional pipeline stages (not shown in�gure 5.5):
• Fade to bla
k. To implement the �de
ay� e�e
t of MilkDrop, the output pi
ture
an be darkened by multiplying all its
olor
omponents by a 6-bit �xed pointnumber between 0 and 1.
• Chroma key. Texels of a given
olor
an be ignored (not drawn in the outputframe bu�er). This is not used in normal rendering, but makes it possible todraw qui
kly text or symbols with transparent areas on the s
reen.
• Semi-transparen
y (alpha blending). The output
an be made semi-transparentwith 64 transparen
y levels. This is a

omplished by reading the destinationpi
ture, mixing ea
h pixel with the output of the texture mapping (by
omput-ing a weighted average) and writing the result ba
k to memory. If transparen
yis not desired, the texture mapping unit skips reading the destination pi
ture inorder to use less memory bandwidth and avoid blo
king on unneeded memoryreferen
es.5.5 Implementation resultsWe were unable to implement the planned 32kB texel
a
he in the XC4VLX25 FPGAof our ML401 development board, be
ause the
omplete SoC with su
h a
a
heex
eeds the on-
hip SRAM
apa
ity of the FPGA. Therefore, for these experiments,we had to use a 16kB
a
he instead. This issue should be resolved easily in thefuture, as our �nal board (
hapter 8) will have an FPGA with mu
h more on-
hipmemory.We wanted to validate the performan
e of our texture mapping unit (TMU)design, measured in megapixels per se
ond at the output (also
alled �ll rate).Sin
e it is a memory-bound pro
ess (subse
tion 5.3.1), it is relevant to examine itsperforman
e for di�erent values of the texel
a
he hit rate.To do so, we varied the texel
a
he hit rate by making the TMU zoom a pi
ture atdi�erent levels. We pro
eeded with a texture size of 512x512 and an output pi
tureof 640x480. The vertex mesh had a resolution of 32x32, and, to implement thedi�erent zoom levels, the vertex
oordinates were (z ·x, z ·y) with z varying between

68 Chapter 5. Texture mapping unit0 and 2047. Ea
h measurement was done twi
e to redu
e the risk of errors andtransients (CPU interrupts, DRAM refreshes, et
.), yielding 4096 points whi
h areplotted in �gure 5.20. The measurements were done programmati
ally by a softwareroutine running on the system-on-
hip itself. The video output was enabled duringthe pro
ess (and showing the result of the texture mapping), running in the standardVGA mode of 640x480 at 60Hz and putting a ba
kground load of approximately 300Mb/s on the memory system for s
anning the frame bu�er.

Figure 5.20. Measured TMU performan
e versus global texel
a
he hit rate.The plot underlines the importan
e of the memory subsystem in a performan
e-driven texture mapping unit design. Indeed, performan
e drops sharply as soon asmany o�-
hip memory referen
es begin to be made (espe
ially between hit rates of100% and 98.5%). Our texture mapping unit is unable to meet its initial performan
egoal of 31 megapixels per se
ond for hit rates below approximately 96%. Prefet
hingwould be a good way to improve this result [16℄, but it
omes at the
ost of anin
reased hardware
omplexity.However, our design still appears suitable for the appli
ation of rendering MilkDrop-like pat
hes with all the options enabled (i.e. in the worst
ase) at VGA resolution(640x480). Indeed, this would involve:1. Distortion of a 512x512 texture to a 512x512 texture. This is representedby the �rotozoom� set of vertex
oordinates (table 5.4) whose resulting
a
hehit rate is 95.74 % (table 5.5). The �ll rate is therefore approximately 30megapixels per se
ond (�gure 5.20). The time taken by this pro
ess is thus
512·512
30·106 = 8.7ms.

5.5. Implementation results 692. In
lusion of a live video frame into the texture.13 We assume the input videoframe to be 720x288 (we are using bob de-interla
ing, i.e. line doubling of theinterla
ed video frames) and the target re
tangle in the texture to be 360x288.This is represented by the �zoomout� set with a
a
he hit rate of 86.94 %yielding a �ll rate of very approximately 15 megapixels per se
ond. The timetaken by this pro
ess is 360·288
15·106 = 6.9ms.3. Zooming of the 512x512 texture to 640x480 resolution, done twi
e (on
e forthe normal pi
ture and on
e for video e
ho14). This is represented by the�zoomin� set of vertex
oordinates. The texel hit rate is estimated at 99.27%,and the �ll rate at 55 megapixels per se
ond. The time taken is estimated tobe 2 · 640·480

55·106 = 11.2ms.The total time is 26.8ms, whi
h
orresponds to 37 frames per se
ond. This ismore than enough to a
hieve a smooth video animation.

13We are � very optimisti
ally � negle
ting the time it takes to read the output pi
ture whenalpha blending is enabled.14Again negle
ting the extra delay due to alpha blending.

70

Chapter 6Floating point
o-pro
essor
6.1 PurposePat
hes de�ne �oating-point equations that are evaluated at ea
h vertex (subse
-tion 2.1.2). Furthermore, per-frame variables su
h as zoom, rot or
x alter thetexture
oordinates at ea
h vertex, and
orrespond to built-in per-vertex equations.We would like to be able to generate a mesh of up to 64x64 verti
es at 30 framesper se
ond, that is to say,
ompute the X and Y texture
oordinates for 122880verti
es ea
h se
ond. With a 100MHz system
lo
k, we have, on average, 813
y
lesto fully pro
ess ea
h vertex. We want to be able to do 470 basi
 �oating pointoperations (addition, subtra
tion, multipli
ation) per vertex.1 This means we have,on average, 1.73
y
les to perform ea
h basi
 �oating point operation.This rules out any software-based implementation. Even assuming a favorable
ase where pat
hes are
ompiled (not interpreted) and the Latti
eMi
o32 ISA (se
-tion 7.1) equipped with a traditional �oating point unit, ea
h basi
 �oating pointoperation would take approximately 5
y
les at least.2 Even at 100% CPU utiliza-tion, a software implementation would be 3 times too slow!We have therefore designed and implemented a
o-pro
essor for those
omputa-tions,
alled PFPU (Programmable Floating Point Unit).6.2 Forms of parallelismWe need a parallel implementation to solve the problem of performan
e. Two ap-proa
hes
an be thought of: vertex-level parallelism and instru
tion-level parallelism.1The MilkDrop pat
hes
ontain many other fun
tions. We
ount divisions and square roots as15 basi
 �oating point operations and trigonometri
 fun
tions as 10. We want a pat
h to be ableto do, per vertex, 150 base operations, 8 divisions/square root extra
tions, and 20 trigonometri
operations. This yields the estimate of 150 + 8 · 15 + 20 · 10 = 470 basi
 operations.2FPGAs are unlikely to
ompute the totality of a �oating point operation in less than 50ns,whi
h is 5
y
les at 100MHz. Sin
e Latti
eMi
o32 uses a �xed-length in-order pipeline, the CPUwould need to be stalled during those
y
les. 71

72 Chapter 6. Floating point
o-pro
essorVertex-level parallelism is a very simple
on
ept. Sin
e the verti
es are inde-pendent, the idea is to pro
ess several at on
e. The problem with this approa
h isthat a signi�
ant amount of (typi
ally on-
hip) memory is needed to store all theintermediate results generated by this te
hnique.Instru
tion-level parallelism
onsists in
arrying out in parallel two or more in-dependent
omputations for the same vertex. With this approa
h, the verti
es
anbe
omputed one by one, whi
h redu
es the required amount of on-
hip storage forintermediate results and simpli�es the memory a

ess subsystem (as it does not haveto handle a

esses to di�erent verti
es stemming from the same PFPU program).The two approa
hes are not mutually ex
lusive. A hybrid solution
an
onsistin starting with instru
tion-level parallelism, and then try to s
hedule more verti
esinto the same program until the on-
hip memory
apa
ity is ex
eeded.We do not want su
h a
omplex solution to begin with, so we are going withinstru
tion-level parallelism only. If more performan
e is needed, the addition ofvertex-level parallelism
an be tried at the expense of relatively small modi�
ationsto the hardware.6.3 Hardware ar
hite
ture6.3.1 OverviewA fully software-based extra
tion of instru
tion-level parallelism was
hosen for sev-eral reasons:
• Hardware-based extra
tion is more
ostly in terms of resour
es and more dif-�
ult to develop.
• In terms of performan
e,
hoosing an hardware-based extra
tion only pays o�
ompared to a software-based solution when some delays
an only be deter-mined at run-time (for example, the memory referen
es). In our
ase,
om-putations last for approximately 800
y
les and end up with a memory writephase that takes approximately 10
y
les, so the memory delays are negligi-ble and all the other pro
esses (arithmeti
 pipelines and register writes) haveknown laten
ies. Furthermore, we only write to the memory, whi
h means thatwe
an even use a write queue to
ompletely hide the memory write laten
y.
• A software-based instru
tion s
heduler
an have a large instru
tion window,and thus extra
t more parallelism than an hardware solution
ould.This stati
 s
heduling te
hnique makes the �oating point
o-pro
essor
lose to aVLIW (Very Long Instru
tion Word) pro
essor � even though its instru
tion wordsare, in fa
t, not parti
ularly long, as the design is very simple (only one operation isissued per instru
tion, and jumps are not supported). The ar
hite
ture we designedis outlined in �gure 6.1.

6.3. Hardware ar
hite
ture 73

Figure 6.1. Hardware ar
hite
ture of the �oating point
o-pro
essor.

74 Chapter 6. Floating point
o-pro
essorParameter Operand A Operand B Op
ode DestinationLength 7 7 4 7Bits 24..18 17..11 10..7 7..0Table 6.1. PFPU instru
tion format.6.3.2 Instru
tion setThe 25-bit PFPU instru
tion format is given in table 6.1. The PFPU exe
utes onesu
h instru
tion per
lo
k
y
le.An instru
tion
an be split into two parts: the issue part, made of the twooperand �elds and the op
ode �eld, and the
ommit part, made of the destina-tion �eld. At ea
h
y
le, the issue part
an fet
h two operands from the register�le and pushes them into one of the several arithmeti
 pipelines forming the ALU(Arithmeti
 and Logi
 Unit), sele
ted by the �op
ode� �eld. At the same time, the
ommit part
an fet
h one result from the ALU (stemming from a previously issuedoperation that has just �nished) and write it ba
k to the register �le.The PFPU program must be written so that all data dependen
ies are satis�edand only up to one instru
tion �nishes at any given
lo
k
y
le (having more thanone would
reate a
on�i
t as there is only a single write port on the register �le).A spe
ial instru
tion is used to write the �nal result to the memory. It writesthe two operands in a format that
an be dire
tly read as a texture
oordinate bythe texture mapping unit (
hapter 5). Upon the exe
ution of this instru
tion, theprogram for the
urrent vertex is terminated and run again for the next, until allverti
es have been pro
essed.6.3.3 Instru
tion RAMThe instru
tion RAM belongs on-
hip for two simple reasons:
• it is small: it must only
ontain hundreds of instru
tions (the program for onevertex), so its
apa
ity is only a few kilobytes.
• it transfers a large amount of data: one 25-bit instru
tion on ea
h
lo
k
y
leat 100MHz yields a bandwidth of 2.5Gb/s.There are no jumps or loop stru
tures (for ea
h vertex, the program is always exe-
uted linearly), so it does not make sense to repla
e it with a DRAM-ba
ked
a
he.6.3.4 ALUOverviewThe Arithmeti
 and Logi
 Unit (ALU) uses 32-bit �oats using the same representa-tion as spe
i�ed by the IEEE 754 standard. This gives enough pre
ision for graphi
soperations.The major pipelines of the ALU are listed below.

6.4. Run-time
ompiler 75Basi
 operationsThe unit has pipelines that perform
ommon operations: addition, subtra
tion,multipli
ation, absolute value and
onversion between �oats and two's
omplementintegers.Inverse square root approximationThe ALU
an
ompute an approximate of the inverse square root of a �oatingpoint number using the Quake III method [18℄. The ALU only performs the integeroperation 0x5f3759df - (i >> 1), the subsequent �oating point Newton-Raphsoniterations needing to be done with additional instru
tions. This is des
ribed insubse
tion 6.4.1.Sine and
osineSine and
osine are implemented with a look-up table and some logi
 that exploitsthe evenness and periodi
ity of those fun
tions to redu
e the size of the look-up table.To
ompute the sine or
osine of a �oating point number, additional instru
tionsneed to be generated to
onvert this number into an integer suitable for indexingthe look-up table.ComparisonsThe ALU
an test the equality of two �oating point numbers and test if one isgreater than the other, using two separate op
odes. The result of these operationsis 0.0 or 1.0, whi
h
an be used as a �oating point number in other
omputationsor written to register R2 to implement a
onditional statement.Conditional statementsConditional statements (if... then... else...) are relatively un
ommon in MilkDroppat
hes, so a low area and straightforward � but slow� implementation was
hosen.A spe
ial op
ode enables a multiplexer that swit
hes between operand A and B andreturns the result. The multiplexer is
ontrolled by the register R2, the value of thisregister being null or non-null sele
ts one or the other input.Thus, to implement a
onditional statement, the PFPU would need to
omputeboth of its bran
hes and store their values in registers (in
luding the bran
h that isnot taken), evaluate the
ondition and store its value in R2 and �nally exe
ute anIF operation.6.4 Run-time
ompilerEquations from the pat
hes need to be
ompiled and s
heduled before they
an beevaluated by the programmable �oating point unit (PFPU). These operations takepla
e on the CPU
ore of the SoC (se
tion 7.1).

76 Chapter 6. Floating point
o-pro
essor6.4.1 Compilation into virtual ma
hine instru
tionsThe �rst step in this pro
ess is the
ompilation proper, i.e. parsing the equationsand generating instru
tions for the so-
alled �oating point virtual ma
hine (FPVM).This virtual ma
hine has the following properties:
• It has the same operations and op
odes as the PFPU.
• Instru
tions
omplete and write their result to the register �le in one
y
le.
• The number of registers is unlimited.3The
ompiler employs the fa
t that the number of registers is unlimited to gener-ate a
ode that is free from false and output dependen
ies4 (by allo
ating a new reg-ister for ea
h result) in order to simplify the task of the s
heduler (subse
tion 6.4.2),whi
h does not have to perform register renaming to
reate more opportunities forout-of-order exe
ution.Be
ause of the limited fun
tionality of the operations supported by the FPVM(and the PFPU), some �
ompound� fun
tions need to be implemented with severalinstru
tions. They are detailed below.Sine and
osineThe sine and
osine instru
tions expe
t an integer angle expressed in 1

8192 turns.Angles outside of the range [0, 8191] are
orre
tly pro
essed (i.e. multiples of 8192are added or subtra
ted, by simply ignoring the most signi�
ant bits of the input).Therefore, to return the sine or
osine of a �oating point angle expressed in radians,the
ompiler needs to generate three instru
tions:1. Multiply by 8192
2·π .2. Convert to integer.3. Look-up the sine or
osine value.Inverse square rootThe inverse square root (1√

x
) is implemented using the Quake III algorithm [18℄,reprodu
ed in �gure 6.2 with the two Newton-Raphson iterations for improved pre-
ision. The input of the algorithm is x and the output y. The
ast_to_�oat fun
tion3A
tually, it is limited to 2

32 in our implementation, whi
h
an be
onsidered unlimited for ourpurposes.4Almost. In order to interfa
e in a simple way the
ode with the �outside world� (subse
-tion 6.4.3), the
ompiler
an be
onstrained to allo
ate a given variable to a given register. De-pending on how the variable is used, false and output dependen
ies might a
tually appear. Thes
heduler therefore has to
he
k for write-after-read (WAR) and write-after-write (WAW) hazards.Furthermore,
onditional statements
an
ause WAR and WAW hazards around the R2 register,sin
e the IF operation
an only use R2 to get the
ondition value from. However, sin
e all thesehazards are extremely rare, they
an be resolved by waiting (instead of register renaming) withouta signi�
ant impa
t on performan
e.

6.4. Run-time
ompiler 77
y ←
ast_to_�oat(0x5f3759df− (
ast_to_integer(x) >> 1))
y ← y · (1.5 − 0.5 · x · y · y) // �rst Newton-Raphson iteration
y ← y · (1.5 − 0.5 · x · y · y) // se
ond iterationFigure 6.2. Fast inverse square root algorithm.returns the �oat whose binary representation as spe
i�ed by IEEE 754 is the sameas that of the integer parameter. The
ast_to_integer fun
tion performs the oppo-site operation. They allow the bit twiddling of the numbers in order to produ
e aninitial approximation of the result, whi
h is then re�ned using the Newton-Raphsonmethod. This is the
ore idea of the algorithm.The algorithm produ
es an approximate value of the inverse square root, witha worst
ase relative pre
ision of 4.66 · 10−6 over all �oating point values when thetwo Newton-Raphson iterations are used (a

ording to [18℄).Only a spe
ial instru
tion for performing the �rst approximation step is pro-vided. The
ompiler must therefore generate extra multipli
ation and subtra
tioninstru
tions for the two iteration steps.Square rootThe square root is implemented using inverse square root with an additional mul-tipli
ation, a

ording to √x = x · 1√

x
. The relative pre
ision stays approximately5the same.Inverse and divisionThe inverse of positive numbers is implemented by squaring the inverse square root:

1
x
= 1√

x
· 1√

x
. The relative pre
ision obtained is approximately 9.32 · 10−6.Divisions of arbitrary numbers are performed by �rst transferring the sign of thedenominator to the numerator, and then multiplying it by the inverse (obtained asabove) of the denominator: a

b
= sign(b) · a · 1√

|b|
· 1√

|b|
. The relative pre
ision is stillapproximately 9.32 · 10−6.The
ompiler needs to generate many instru
tions to implement a division, whi
hmakes it a rather slow pro
ess. However, with this method, very little hardwareneeds to be added to the PFPU: only support for transferring the sign to the nu-merator needs to be implemented.6.4.2 S
hedulingOn
e the
omplete
ode is available as FPVM instru
tions, the next step is to mapthese instru
tions to the PFPU and s
hedule them.5Not
ounting the loss of pre
ision in
urred by trun
ating the mantissa of the �oating pointmultipli
ation result.

78 Chapter 6. Floating point
o-pro
essorOur s
heduling algorithm pro
eeds
y
le by
y
le. At ea
h PFPU
y
le (whi
h
orresponds to a PFPU instru
tion), it sear
hes the
omplete set of FPVM instru
-tions waiting to be s
heduled for one that meets the following four
onditions:1. No read-after-write (RAW) hazard. The operands for the instru
tion to bes
heduled must have been stored into the register �le of the PFPU, otherwise,the instru
tion is not s
heduled.2. No write-after-write (WAW) hazard. If there is a previous un
ompleted in-stru
tion that writes to the same register as the instru
tion to be s
heduled,the instru
tion is not s
heduled.3. No write-after-read (WAR) hazard. If there is a previous uns
heduled FPVMinstru
tion that reads the register that the instru
tion to be s
heduled modi�es,the instru
tion is not s
heduled.4. No output
on�i
t. The instru
tion to be s
heduled must not
omplete at thesame
y
le as another previously s
heduled instru
tion.If an instru
tion is found, the FPVM registers of its operands are translated toPFPU registers, a PFPU register is allo
ated for its output register so that furtherinstru
tions needing the result
an read it, and the instru
tion is written to thePFPU program. If no further instru
tion needs to read the operands of the instru
-tion just s
heduled, the registers are deallo
ated in order to save the limited PFPUregister spa
e (unless they are bound to a
onstant or user variable, see subse
tion6.4.3). The algorithm then pro
eeds to the next
y
le.It
an be noted that the handling of WAW and WAR hazards is zealous, assome hazards dete
ted by the algorithm may a
tually not be present be
ause of thepipeline delays. Sin
e those hazards are infrequent, this approa
h does not have alarge impa
t on the performan
e but simpli�es the algorithm.Several instru
tions
an sometimes meet the
onditions to be potentially s
hed-uled at the same
y
le. In this
ase, the algorithm
hooses the �rst one to appearin the FPVM instru
tion �ow. This greedy approa
h
an
ertainly be optimized,though no e�ort has been made in this dire
tion.6.4.3 Constants and user variablesConstant values are assigned a spe
i�
 register by the
ompiler, that needs to beinitialized before the
ode is run. User variables
an also be bound to a given register,and thereby
an be read and written from and to the PFPU. Those registers willthen be used ex
lusively for the
onstant or user variable.To di�erentiate registers used by
onstants and user variables from registersused to store internal results, the former are given positive numbers by the FPVM
ompiler while the latter are given negative numbers.

6.5. Results 79Pat
h Instru
tions Cy
les CPIDefault 192 259 1.35Fvese - The Tunnel (Final Stage Mix)(simpli�ed) 208 286 1.38Geiss - Warp of Dali 1 220 292 1.33Krash - Digital Flame (simpli�ed) 216 293 1.36Un
hained & Rovastar - Wormhole Pillars(Hall of Shadows mix) 231 326 1.41Table 6.2. Greedy PFPU s
heduler performan
e with the per-vertex math of di�er-ent MilkDrop pat
hes (Milkymist 0.5.1).The s
heduler then maps all positive FPVM registers to the PFPU registerwith the same number, so that they
an be easily a

essed by the user. Nega-tive FPVM registers are dynami
ally allo
ated during the s
heduling among theremaining PFPU registers.6.5 ResultsThe performan
e of the PFPU depends dire
tly on the performan
e of the s
heduler,that is to say, its ability to take advantage of out-of-order exe
ution opportunitiesto hide the laten
ies of the hardware.We
ompiled and s
heduled a few MilkDrop pat
hes, and
ounted the resultingnumber of instru
tions and the number of
y
les after s
heduling. The ratio betweenthe two �gures is the CPI (Cy
les Per Instru
tion), whi
h represents the averagetime it takes to exe
ute one instru
tion. The results are given in table 6.2. The�Default� pat
h is a pat
h that
ontains no user-de�ned per-vertex equations, andthe instru
tions
orrespond to the impli
it equations needed to implement the built-in e�e
ts (zoom, s
aling, ...).From this table, it is apparent that our approa
h, albeit simple, is very e�
ientat extra
ting instru
tion-level parallelism. Indeed, the CPI stays between 1.38 and1.41 while the laten
ies of the hardware pipelines exe
uting the instru
tions aremu
h higher, between 2 and 5 (table 6.3).To put this in
ontrast with our initial goals (se
tion 6.1), let us
onsider atypi
al pat
h that performs, per vertex, 150 base operations (addition, subtra
tion,multipli
ation), 4 divisions, 4 square root extra
tions and 20 sine or
osine
ompu-tations (whi
h is
lose to the pat
h used in our initial estimate). A

ording to thetable 6.4, this would mean 318 PFPU instru
tions. The maximum CPI that letsus a
hieve our performan
e goal is therefore 2.56. Our performan
e goal is easilymet, assuming that other pat
hes expose the same opportunities for out-of-orderexe
ution.

80 Chapter 6. Floating point
o-pro
essor
Instru
tion Laten
yFloating point addition 4Floating point subtra
tion 4Floating point multipli
ation 5Floating point absolute value 2Conversion from �oat to integer 2Conversion from integer to �oat 3Sine/
osine table look-up 4Comparisons 2Copy 2Conditional 2Inversion of the sign of operand 1 if operand 2 is negative 2Inverse square root approximation 2Table 6.3. PFPU laten
ies in
y
les (Milkymist 0.5.1).

Operation Instru
tionsAddition, subtra
tion, multipli
ation 1Sine and
osine 3Inverse square root 11Square root 12Division 15Table 6.4. Exa
t
ost in instru
tions of
ommon operations on the PFPU.

Chapter 7Software
7.1 Latti
eMi
o32The heart of the software exe
ution
apabilities of the SoC is the Latti
eMi
o32mi
ropro
essor
ore [30℄. It is a
lassi
 6-stage in-order pipelined RISC pro
essor(�gure 7.1) with a
ustom instru
tion set supported by the GNU (GCC-based)
ompiler tool
hain. It supports separate instru
tion and data
a
hes with up totwo ways. There are an optional barrel shifter, pipelined multiplier and multi-
y
ledivider.

Figure 7.1. Latti
eMi
o32 ar
hite
ture (Latti
e Semi
ondu
tor).81

82 Chapter 7. SoftwareThe Milkymist system-on-
hip uses Latti
eMi
o32 with 2-way
a
hes of 16kBea
h, and all the optional features enabled.At the time this thesis is written, Latti
eMi
o32 is the only hardware
omponentthat we have not developed spe
i�
ally for the Milkymist proje
t.7.2 CapabilitiesThe �nommu� version of Linux has been ported to the Milkymist SoC (�gure 7.2).Sin
e this is a
ommunity e�ort with a signi�
ant
ontribution by Takeshi Matsuyafrom Keio University, the details are not
overed in this Master's thesis. Still, thisdemonstrates the ability of the platform to run
omplex software.

Figure 7.2. Linux booting on the Milkymist SoC.
7.3 Ben
hmarkingThe performan
e of the Milkymist SoC was
ompared to Mi
roblaze [34℄, the pro-prietary Xilinx soft-
ore SoC platform.

7.3. Ben
hmarking 83The ben
hmark used was the �
onsumer� MiBen
h [14℄ suite. By
ontrastto traditional ben
hmarks su
h as SPEC, MiBen
h is tailored to typi
al work-loads of embedded systems. Only two ben
hmarks are missing from the �
on-sumer� set: tiff2rgba (it tried to use too mu
h
ontiguous memory for the nommuMilkymist/Linux allo
ator to handle) and lame (it
rashed on Mi
roblaze).

Figure 7.3. Xilinx ML401 development board.All tests were run on a Xilinx ML401 (XC4VLX25 FPGA, see �gure 7.3) devel-opment board, with a system frequen
y of 100MHz.For Milkymist, the
on�guration used was the default one of the port to theML401 board:
• Pro
essor with hardware multiplier, divider and barrel shifter
• 16kB L1 instru
tion and data (write-through)
a
he (2-way set-asso
iative)
• No memory management unit (Latti
eMi
o32 does not have one)
• 16kB FML bridge write-ba
k L2
a
he (dire
t mapped)
• HPDMC DDR SDRAM
ontroller, 32-bit SDRAM bus width
• 100MHz DDR SDRAM
lo
k

84 Chapter 7. SoftwareBen
hmark Run 1 Run 2 Average Deviationjpeg 2.57 s 2.54 s 2.56 s 1.18 %mad 5.84 s 5.87 s 5.86 s 0.51 %ti�2bw 9.51 s 9.69 s 9.6 s 1.89 %ti�dither 19.28 s 19.3 s 19.29 s 0.10 %ti�median 26.48 s 26.26 s 26.37 s 0.84 %typeset 21.44 s 21.79 s 21.62 s 1.63 %Table 7.1. User exe
ution times on Milkymist 0.2.
• Video output running at standard VGA resolution,
onsuming approximately300MBps of memory bandwidth
• Software: GCC 4.2.1 and Linux 2.6.23.For Mi
roblaze, the
on�guration is as follows:
• Pro
essor with hardware multiplier, divider and barrel shifter
• 16kB L1 instru
tion and data (write-through)
a
he (dire
t mapped, multi-way
a
hes are not supported)
• Full memory management unit
• No L2
a
he (not supported)
• MPMC DDR SDRAM
ontroller, 32-bit SDRAM bus width
• 100MHz DDR SDRAM
lo
k
• No video output
• Software: GCC 4.1.2 and Linux 2.6.32.4.The
omparison seems
learly in favor of Milkymist, with a rough 15%-35%(depending on the ben
hmark) redu
tion in exe
ution time. Details are shown in�gure 7.4 and in tables 7.1 and 7.2. Deviation is
omputed as:

|t1 − t2|min(t1, t2) (7.1)It is meant to
he
k that the results are deterministi
 and reprodu
ible.The root
auses of this performan
e improvement were not investigated; butsin
e Latti
eMi
o32 and Mi
roblaze share a very
lose ar
hite
ture, it is suspe
tedthat these di�eren
es are vastly explained by the
ombination of the low-laten
yHPDMC memory
ontroller and the improved
a
hes.The main point of this
omparison is to
on�rm the viability of Milkymist as apowerful SoC platform, that
an withstand the
ompetition with proprietary solu-tions.

7.3. Ben
hmarking 85

Figure 7.4. Comparative MiBen
h results of Milkymist and Mi
roblaze.
Ben
hmark Run 1 Run 2 Average Deviationjpeg 3.42 s 3.58 s 3.5 s 4.68 %mad 6.72 s 7.11 s 6.92 s 5.80 %ti�2bw 15.19 s 14.12 s 14.66 s 7.58 %ti�dither 24.72 s 24.68 s 24.7 s 0.16 %ti�median 35.02 s 33.05 s 34.04 s 5.96 %typeset 28.91 s 28.83 s 28.87 s 0.28 %Table 7.2. User exe
ution times on Mi
roblaze 10.1.

86 Chapter 7. Software7.4 Design of a MilkDrop-like rendering program7.4.1 Des
riptionWith all those elements at hand, the last task is to design a
omplete rendererprogram
ompatible with MilkDrop. The blo
k diagram of our renderer is given bythe �gure 7.5.

Figure 7.5. Rendering software ar
hite
ture.Before the rendering proper
an take pla
e, the
ode of the pat
h needs to beparsed and mi
ro
ode for the PFPU generated (se
tion 6.4). This pro
ess, imple-mented entirely in software, is slow (several hundreds of millise
onds) but it is notperforman
e-
riti
al, as it only needs to be done on
e before the rendering. Further-

7.4. Design of a MilkDrop-like rendering program 87more, its results
ould be
a
hed to allow a smooth transition between pre-de�nedpat
hes.The �rst step of the rendering pro
ess is to digitize the audio signal. This isa
hieved using the system-on-
hip's AC97
ontroller and its devi
e driver. They areprogrammed to pa
k the audio samples into bu�ers, ea
h of them holding exa
tlythe number of samples that
orresponds to the desired video frame rate of 30 framesper se
ond. The bu�ers are written to the memory using DMA through the L2
a
he.The next operation is to analyze ea
h audio bu�er to extra
t its energy
ontentin three frequen
y bands, in order to generate the bass, mid and treb parametersthat
an be used in MilkDrop pat
hes to
onne
t the visual e�e
ts to sound. This isdone using three de
imating �nite impulse response (FIR) �lters, ea
h followed byan a

umulator that adds the energies of ea
h sample at its �lter's output. This isseveral times faster than the original MilkDrop implementation, whi
h
onsisted inperforming a Fourier transform followed by a spe
tral summation of the energies inthe three bands, and allows a software implementation. Indeed, this pro
ess has beenobserved to take approximately 8ms when run on the system-on-
hip, whi
h is morethan 3 times less than the video frame period. The �lters operate dire
tly on theaudio data sent into the memory by the AC97
ontroller, avoiding any time-wastingmemory
opy.The next step is to evaluate the per-frame equations. Even though hardwarea

eleration is not really needed there, this step is still performed on the PFPU inorder to re-use the existing
ompilation and evaluation infrastru
ture.On
e per-frame parameters are known, the renderer pro
eeds to evaluating per-vertex equations on the PFPU. This generates the full mesh of vertex
oordinatesto be used later by the texture mapping unit for distorting the frame.All the pro
esses we have seen so far are part of the analysis loop. Its outputis a stream of pa
kets, ea
h pa
ket des
ribing the operations to be done for oneframe. One pa
ket
ontains the audio samples, the results of the audio analysis, theoutputs of the per-vertex equations (as well as the �xed pat
h parameters) and thedistortion mesh data. The pa
ket is sent to the rendering loop.Upon re
eption of the pa
ket, the rendering loop takes its
urrent frame, andruns the TMU (
hapter 5) to distort it.Then, it superimposes waves, borders and motion ve
tors on the result. This isimplemented in software, as the pro
essor is fast enough for these tasks.Finally, the TMU is run twi
e to s
ale the internal frame bu�er to the s
reensize and to apply the video e
ho.The output is now ready to be displayed. This is done by simply instru
ting theVGA
ontroller to swit
h to the newly generated frame bu�er. The VGA
ontrollerthen performs the requested bu�er swit
h during the next verti
al blanking interval,in order to produ
e a transition without any tearing artifa
t. A triple-bu�eringte
hnique is used so that the software never has to wait for the VGA
ontroller to

88 Chapter 7. Softwarerelease a bu�er,1 at the expense of an in
reased memory
onsumption.7.4.2 Ca
he
oheren
yThe system-on-
hip provides limited support for
a
he
oheren
y (se
tion 4.5). There-fore, several operations to ensure
oheren
y must be done by the software throughoutthe rendering pro
ess.Ca
he
oheren
y within the analysis loopThe only pre
aution that should be taken is to invalidate the L1
a
he after ea
hre
eived bu�er from the AC97 audio
ontroller.There is no need to invalidate the any
a
he after evaluation of the per-frameequations, as the outputs are read dire
tly from the PFPU register �le whi
h ismapped in the non-
a
he-able CSR address spa
e.The output the per-vertex equations is sent dire
tly to the rendering loop.Ca
he
oheren
y between the analysis and rendering loopsAmong the data sent from the analysis loop, there is one element whi
h is not
oherent with respe
t to the L1
a
he: the vertex data generated from the per-vertex equations. However, this data is not read by the CPU but only by the TMU.The latter fet
hes it from the L2
a
he, whi
h is also where the PFPU writes data.Therefore, no operation is needed to ensure
a
he
oheren
y.Ca
he
oheren
y within the rendering loopMost operations are done by the texture mapping unit, whi
h deals dire
tly withthe SDRAM. There are two
ases where
a
he
oheren
y issues
an arise:1. Between the CPU and the TMU during the wave (and other elements) drawingpro
ess.2. Between the CPU and the VGA
ontroller. Indeed, the VGA
ontroller makes
oherent transa
tions with respe
t to the L2
a
he. If the
a
he holds anoutdated
opy of the data, it will be used instead of the more re
ent versionin SDRAM.To solve these issues with a minimal number of
a
he invalidations, we makesure that the L1 and L2
a
he never hold any data from any frame bu�er ex
eptduring the wave drawing pro
ess. This is ensured by:1Assuming that the frame rate is less than the s
reen refresh frequen
y, whi
h is always the
asein pra
ti
e as the frame rate is limited to 30 fps and all display devi
es refresh at mu
h more than30 Hz.

7.4. Design of a MilkDrop-like rendering program 891. Aligning all frame bu�ers to a multiple of both the line lengths of the L1 andL2
a
hes (i.e. of the least
ommon multiple of the line lengths). In our
ase,this does not add any additional
onstraint as those bu�ers already had tighteralignment requirements stemming from the VGA
ontroller and the avoidan
eof inter-
hannel
a
he
on�i
ts within the texture mapping unit.2. Invalidating the L1 and L2
a
he just after the wave drawing pro
ess.7.4.3 Event-driven operationOur implementation is event-driven. Instead of being fully sequential, the softwarewaits for and a
ts upon events (for example, the texture mapping unit �nishingpro
essing, or a new audio bu�er being ready). After an event is re
eived, theCPU
an either pro
ess the data itself (for example, run the FIR �lters after a newaudio bu�er is ready) or run another hardware unit (for example, run the TMUafter the PFPU has evaluated the per-vertex equations). This approa
h improvesperforman
e by letting the three main pro
essing units of the system (the CPU, thePFPU and the TMU) operate in parallel.7.4.4 ResultsOur system is able to render su

essfully many original MilkDrop presets at 30frames per se
onds in 640x480 resolution. However, it is often operating near itslimit, and sometimes above it, as some presets exhibit a lower frame rate. This isoften due to the fa
t that drawing the waves and the borders take a long time onthe CPU, espe
ially when many semi-transparent pixels need to be drawn. Thispre
ludes the possibility of supporting presets that employ
omplex
ustom wavesand shapes (that would be drawn by the CPU), unless further a

eleration te
hniquesare developed.

90

Chapter 8Con
lusion and future works
Through this thesis proje
t, we have
overed many di�erent aspe
ts of
omputer ar-
hite
ture, whi
h were ne
essary to a
hieve our goal of designing a high-performan
esystem-on-
hip for video synthesis.We �rst exposed the di�
ulties involved with the amount of memory required forthe video synthesis appli
ation, and the laten
y and bandwidth
hallenges stemmingfrom the DRAM te
hnology. Our solution
onsisted of a
ombination of a pagemode
ontrol algorithm, using of burst transfers with
riti
al-word-�rst support,and pipelining. It keeps the hardware small and simple, and our results have shownthat it allows using the memory bandwidth at roughly half the peak
apa
ity of the
hips, whi
h was enough for our appli
ation taking into a

ount an oversizing of thememory system.Then, we explained how we split the system inter
onne
t on three di�erentbusses, solving high fanout and large multiplexer problems, enabling devi
es on dif-ferent bus segments to
ommuni
ate in parallel, and having spe
i�
 bus standardson ea
h segment, depending on the feature and bandwidth needs of the devi
es usingit. We went on with the problems stemming from the
ompute-intensive parts ofthe video rendering pro
ess: texture mapping and fast evaluation of the equationsthat de�ne the texture
oordinates. We solved those by developing
ustom hard-ware a

elerators, the texture mapping unit (TMU) and the programmable �oatingpoint unit (PFPU). The PFPU easily ex
eeded its design goals, but our TMU was
hallenged by its important
onsumption of memory bandwidth and the asso
iatedmemory laten
ies issues. It was nonetheless able to meet our expe
tation of enablingthe rendering of the video e�e
ts in VGA (640x480) resolution.Finally, we
hose and integrated a good CPU
ore to
ontrol the system andperform less
ompute-intensive and software-friendly tasks. Our
hoi
e was the Lat-ti
eMi
o32
ore, whi
h, when integrated into our system, ex
eeded the performan
eof the
ompeting proprietary Mi
roblaze solution. We wrote video rendering soft-ware for it, leveraging the possibilities of our SoC ar
hite
ture.91

92 Chapter 8. Con
lusion and future worksOverall, our goal has been met as we have been su

essful at rendering manyMilkDrop presets in VGA resolution on our system at a good frame rate. However,several tra
ks for
omputer ar
hite
ture related improvements
an be thought of:1. In order to be able to use more memory bandwidth from the SDRAM
hips,an out-of-order memory
ontroller
ould be designed.2. The texture mapping unit
ould use a prefet
hing te
hnique to be less a�e
tedby the memory laten
y. Su
h a te
hnique
ould also enable several outstandingmemory requests from the texture mapping unit at the same time, allowingthe memory
ontroller to reorder them in order to leverage more bandwidthfrom the SDRAM
hips.3. During the development of the texture mapping unit (whi
h was done in plainVerilog HDL), we felt that it was not very produ
tive to repeatedly designmanually the pipeline interlo
king logi
 for ea
h stage. This made us thinkof an ambitious resear
h proje
t that
ould
onsist in designing a program-ming language that would des
ribe similar pipelines from a higher level ofabstra
tion, whi
h would bring many advantages. First, produ
tivity wouldbe improved as the designer would not have to design and
ode manually (witha risk of errors) many elements. Se
ond, the language
ould be simulated tovalidate the high level fun
tionality of the design. Third, this simulation
ouldalso be used to explore the design spa
e of fun
tionally-equivalent implemen-tations with di�erent area, power and speed performan
es (for example, byobserving the impa
t on speed that the
a
he size of a memory a

ess pointhas in order to strike a good
ompromise between the two). A
omputer pro-gram
ould even be used to perform part or all of this exploration in orderto meet pre-de�ned power, area and speed goals, and ba
k-annotate all thedesign
hoi
es it made into the design.With su
h a powerful tool, we
ould, for example, quite easily upgrade thetexture mapping unit's graphi
s pipeline so it
ould support the full OpenGLES spe
i�
ation. It
ould also
ertainly be used in many other �elds unrelatedto
omputer graphi
s.The Milkymist proje
t is not entirely about
omputer ar
hite
ture and system-on-
hip design. We are also working, in
ollaboration with Sharism at Work Ltd. andother
ontributors, on building
omplete �open sour
e hardware� produ
ts aroundthe SoC des
ribed herein. Our �rst devi
e will be the Milkymist One intera
tive VJstation. Te
hni
al aspe
ts of this wider proje
t also in
lude printed
ir
uit boardlayout (�gure 8.1) and software engineering. All of the work is
overed by opensour
e li
enses.We hope that this open hardware platform will be su

essful � used not only forits intended live video synthesis purpose, but also as a learning tool, as a developmentplatform and as a base or even a design library for other open sour
e proje
ts.

93

Figure 8.1. Printed
ir
uit board �oor plan of the Milkymist One.

94

Bibliography[1℄ M. Abrash. Mi
hael Abrash's Graphi
s Programming Bla
k Book (Spe
ial Edi-tion). Coriolis Group Books, 1997.[2℄ G. Allan. DDR SDRAM: A low
ost, yet in
reasingly
omplex o�-
hip memory solution for SoCs. https://www.synopsys.
om/dw/do
.php/wp/ddr_sdram_wp.pdf (Retrieved on 22/04/2010), 2007.[3℄ Altera. Nios II performan
e ben
hmarks.http://www.altera.
om/literature/ds/ds_nios2_perf.pdf (version5.0, retrieved on 30/04/2010).[4℄ Altera. Nios II pro
essor: The world's most versatile embedded pro
essor.http://www.altera.
om/produ
ts/ip/pro
essors/nios2/ni2-index.html(Retrieved on 21/04/2010).[5℄ Arkaos. GrandVJ. http://www.arkaos.net (Retrieved on 21/04/2010).[6℄ S. Bourdeaudu
q. Milkymist intera
tive VJ station.http://www.milkymist.org (Retrieved on 21/04/2010).[7℄ S. Bourdeaudu
q. Con�guration and status register (CSR) bus spe
i�
ations.http://www.milkymist.org/do
/
sr.pdf (Retrieved on 21/04/2010), 2009.[8℄ S. Bourdeaudu
q. FastMemoryLink (FML) bus spe
i�
ations.http://www.milkymist.org/do
/fml.pdf (Retrieved on 21/04/2010),2009.[9℄ Sili
ore Corporation and OpenCores.org. WISHBONE System-on-Chip (SoC) inter
onne
tion ar
hite
ture for portable IP
ores.http://open
ores.org/downloads/wbspe
_b3.pdf (Retrieved on21/04/2010), 2002.[10℄ C. Dawson, S.K. Pattanam, and D. Roberts. The Verilog pro
edural interfa
efor the Verilog hardware des
ription language. In Verilog HDL Conferen
e,1996. Pro
eedings., pages 17�23, Santa Clara, CA, USA, 1996. IEEE Interna-tional. 95

96 Bibliography[11℄ E. de Koning and B. van der Ploeg. Resolume. http://www.resolume.
om(Retrieved on 21/04/2010).[12℄ N. Feske and M. Alles. Genode FX: an FPGA-based GUIwith bounded output laten
y and guaranteed responsivenessto user input. http://www.genode-labs.
om/ publi
ations/genode-fpga-graphi
s-2009.pdf (Retrieved on 22/04/2010).[13℄ Aero�ex Gaisler. SoC library. http://www.gaisler.
om (Retrieved on21/04/2010).[14℄ M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B.Brown. MiBen
h: A free,
ommer
ially representative embedded ben
hmarksuite. InWWC '01: Pro
eedings of the Workload Chara
terization, 2001. WWC-4. 2001 IEEE International Workshop, pages 3�14, Washington, DC, USA,2001. IEEE Computer So
iety.[15℄ S. Heithe
ker and R. Ernst. Tra�
 shaping for an FPGA based SDRAM
on-troller with
omplex QoS requirements. In DAC '05: Pro
eedings of the 42ndannual Design Automation Conferen
e, pages 575�578, New York, NY, USA,2005. ACM.[16℄ H. Igehy, M. Eldridge, and K. Proudfoot. Prefet
hing in a texture
a
he ar
hite
ture. In HWWS '98: Pro
eedings of the ACM SIG-GRAPH/EUROGRAPHICS workshop on Graphi
s hardware, pages 133��.,New York, NY, USA, 1998. ACM.[17℄ Soni
s In
. MemMax s
heduler. http://www.soni
sin
.
om/uploads/pdfs/MMS
heduler_ds_final02_032109.pdf (Retrieved on 21/04/2010).[18℄ Chris Lomont. Fast inverse square root.http://www.lomont.org/Math/Papers/2003/InvSqrt.pdf (Retrieved on07/05/2010).[19℄ M. Lu. Arithmeti
 and logi
 in
omputer systems. John Wiley and Sons, 2004.[20℄ D. Magdi
. Visikord. http://visikord.
om/ (Retrieved on 22/04/2010).[21℄ D. Magdi
. Wiimote-rea
tive MilkDrop visuals.http://forums.winamp.
om/showthread.php?threadid=289007 (Retrievedon 22/04/2010).[22℄ D. Mattson and M. Christensson. Evaluation of synthesizable CPU
ores. Mas-ter's thesis, Göteborg, Sweden, 2004.[23℄ Sun Mi
rosystems. OpenSPARC. http://www.openspar
.net (Retrieved on21/04/2010).

Bibliography 97[24℄ W. Miller. Real word appli
ations for �eld programmable gate array devi
es� an overview. In WESCON/94. 'Idea/Mi
roele
troni
s'. Conferen
e Re
ord,pages 548�551, Anaheim, CA, USA, 1994. IEEE.[25℄ Nullsoft. Milkdrop plug-in for Winamp. http://www.nullsoft.
om/free/milkdrop/ (Retrieved on 21/04/2010).[26℄ Open
ores. OpenRISC. http://www.open
ores.org/proje
t,or1k (Re-trieved on 21/04/2010).[27℄ D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton, C. Kozyrakis,R. Thomas, and K. Yeli
k. A
ase for intelligent RAM. IEEE Mi
ro, 17:34�44,1997.[28℄ Simply RISC. Simply RISC S1
ore. http://www.sris
.
om/?s1 (Retrievedon 21/04/2010).[29℄ T. Roki
ki. Indexing memory banks to maximize page mode hit per
entage andminimize memory laten
y. Te
hni
al report, HP Laboratories Palo Alto, 2003.http://www.hpl.hp.
om/te
hreports/96/HPL-96-95R1.html (Retrieved on21/04/2010).[30℄ Latti
e Semi
ondu
tor. Latti
eMi
o32. http://www.latti
esemi.
om/produ
ts/intelle
tualproperty/ip
ores/mi
o32/index.
fm (Retrieved on21/04/2010).[31℄ Pragmati
 C Software. GPL Cver. http://sour
eforge.net/proje
ts/gpl
ver/(Retrieved on 04/05/2010).[32℄ Wikipedia. MilkDrop. http://en.wikipedia.org/wiki/MilkDrop (Retrievedon 21/04/2010).[33℄ Wm. A. Wulf and Sally A. M
Kee. Hitting the memory wall: impli
ations ofthe obvious. SIGARCH Comput. Ar
hit. News, 23(1):20�24, 1995.[34℄ Xilinx. Mi
roblaze soft pro
essor
ore. http://www.xilinx.
om/tools/mi
roblaze.htm(Retrieved on 21/04/2010).

