
ARTIQ Documentation
Release 5.6865.bc2cfd77.beta

M-Labs and contributors

May 19, 2019

CONTENTS

1 Introduction 3

2 Installing ARTIQ 5
2.1 Installing via Nix (Linux) . 5
2.2 Installing via Conda (Windows, Linux) . 7
2.3 Upgrading ARTIQ (with Nix) . 8
2.4 Upgrading ARTIQ (with Conda) . 8
2.5 Flashing gateware and firmware into the core device . 8
2.6 Setting up the core device IP networking . 9
2.7 Miscellaneous configuration of the core device . 10

3 Developing ARTIQ 13

4 Release notes 15
4.1 ARTIQ-5 . 15
4.2 ARTIQ-4 . 15
4.3 ARTIQ-3 . 16
4.4 ARTIQ-2 . 18
4.5 ARTIQ-1 . 19

5 ARTIQ Real-Time I/O Concepts 21
5.1 The timeline . 21
5.2 Underflow exceptions . 22
5.3 Sequence errors . 23
5.4 Collisions . 23
5.5 Busy errors . 24
5.6 Input channels and events . 24
5.7 Overflow exceptions . 24
5.8 Seamless handover . 25
5.9 Synchronization . 25
5.10 RTIO reset . 26

6 Getting started with the core language 27
6.1 Connecting to the core device . 27
6.2 Host/core device interaction (RPC) . 28
6.3 Real-time Input/Output (RTIO) . 28
6.4 Parallel and sequential blocks . 30
6.5 RTIO analyzer . 30
6.6 Direct Memory Access (DMA) . 31

7 Compiler 33

i

7.1 Supported Python features . 33
7.2 Remote procedure calls . 33
7.3 Pitfalls . 34
7.4 Asynchronous RPCs . 34
7.5 Additional optimizations . 34

8 Getting started with the management system 37
8.1 Starting your first experiment with the master . 37
8.2 Adding an argument . 38
8.3 Setting up Git integration . 38
8.4 Datasets . 40

9 Core device 43
9.1 Flash storage . 43
9.2 FPGA board ports . 43

10 Management system 47
10.1 Components . 47
10.2 Experiment scheduling . 48
10.3 Git integration . 49
10.4 Scheduler API reference . 50
10.5 Client control broadcasts (CCBs) . 50
10.6 Front-end tool reference . 51

11 The environment 59
11.1 The device database . 59
11.2 Arguments . 60
11.3 Datasets . 60

12 Distributed Real Time Input/Output (DRTIO) 61
12.1 Using DRTIO . 61
12.2 Internal details . 63

13 Core language reference 65
13.1 artiq.language.core module . 65
13.2 artiq.language.environment module . 66
13.3 artiq.language.scan module . 69
13.4 artiq.language.units module . 70

14 Core drivers reference 71
14.1 System drivers . 71
14.2 Digital I/O drivers . 74
14.3 RF generation drivers . 85
14.4 DAC/ADC drivers . 104
14.5 Miscellaneous . 110

15 Protocols reference 117
15.1 artiq.protocols.asyncio_server module . 117
15.2 artiq.protocols.pyon module . 117
15.3 artiq.protocols.pc_rpc module . 118
15.4 artiq.protocols.fire_and_forget module . 120
15.5 artiq.protocols.sync_struct module . 120
15.6 artiq.protocols.remote_exec module . 122

16 List of available NDSPs 125

ii

17 Developing a Network Device Support Package (NDSP) 127
17.1 The driver and controller . 127
17.2 The client . 129
17.3 Command-line arguments . 129
17.4 Logging . 130
17.5 Remote execution support . 131
17.6 General guidelines . 131

18 Utilities 133
18.1 Local running tool . 133
18.2 Remote Procedure Call tool . 133
18.3 Static compiler . 136
18.4 Flash storage image generator . 136
18.5 Flashing/Loading tool . 137
18.6 Core device management tool . 138
18.7 Core device logging controller . 143
18.8 Core device RTIO analyzer tool . 144
18.9 DRTIO routing table manipulation tool . 144
18.10 Data to InfluxDB bridge . 145

19 Default network ports 147

20 FAQ 149
20.1 How do I . 149

Python Module Index 153

Index 155

iii

iv

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

Contents:

CONTENTS 1

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

2 CONTENTS

CHAPTER

ONE

INTRODUCTION

ARTIQ (Advanced Real-Time Infrastructure for Quantum physics) is the next-generation control system for quantum
information experiments. It is maintained and developed by M-Labs and the initial development was for and in
partnership with the Ion Storage Group at NIST. ARTIQ is free software and offered to the entire research community
as a solution equally applicable to other challenging control tasks, including outside the field of ion trapping. Several
other laboratories (e.g. at the University of Oxford, the Army Research Lab, and the University of Maryland) have
later adopted ARTIQ as their control system and have contributed to it.

The system features a high-level programming language that helps describing complex experiments, which is compiled
and executed on dedicated hardware with nanosecond timing resolution and sub-microsecond latency. It includes
graphical user interfaces to parametrize and schedule experiments and to visualize and explore the results.

ARTIQ uses FPGA hardware to perform its time-critical tasks. The Sinara hardware, and in particular the Kasli FPGA
carrier, is designed to work with ARTIQ. ARTIQ is designed to be portable to hardware platforms from different
vendors and FPGA manufacturers. Several different configurations of a high-end FPGA evaluation kit are also used
and supported. FPGA platforms can be combined with any number of additional peripherals, either already accessible
from ARTIQ or made accessible with little effort.

ARTIQ and its dependencies are available in the form of Nix packages (for Linux) and Conda packages (for Windows
and Linux). Packages containing pre-compiled binary images to be loaded onto the hardware platforms are supplied
for each configuration. Like any open source software ARTIQ can equally be built and installed directly from source.

ARTIQ is supported by M-Labs and developed openly. Components, features, fixes, improvements, and extensions
are funded by and developed for the partnering research groups.

Technologies employed include Python, Migen, MiSoC/mor1kx, LLVM/llvmlite, and Qt5.

Website: https://m-labs.hk/artiq

Cite ARTIQ as Bourdeauducq, Sébastien et al. (2016). ARTIQ 1.0. Zenodo. 10.5281/
zenodo.51303.

Copyright (C) 2014-2019 M-Labs Limited. Licensed under GNU LGPL version 3+.

3

https://m-labs.hk
https://www.nist.gov/pml/time-and-frequency-division/ion-storage
https://github.com/sinara-hw
http://www.xilinx.com/products/boards-and-kits/ek-k7-kc705-g.html
https://github.com/m-labs/artiq
https://www.python.org/
https://github.com/m-labs/migen
https://github.com/m-labs/misoc
https://github.com/openrisc/mor1kx
http://llvm.org/
https://github.com/numba/llvmlite
http://www.qt.io/
https://m-labs.hk/artiq
http://dx.doi.org/10.5281/zenodo.51303

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

4 Chapter 1. Introduction

CHAPTER

TWO

INSTALLING ARTIQ

ARTIQ can be installed using the Nix (on Linux) or Conda (on Windows or Linux) package managers.

Nix is an innovative, robust, fast, and high-quality solution that comes with a larger collection of packages and features
than Conda. However, Windows support is poor (using it with Windows Subsystem for Linux still has many problems)
and Nix can be harder to learn.

Conda has a more traditional approach to package management, is much more limited, slow, and lower-quality than
Nix, but it supports Windows and it is simpler to use when it functions correctly.

In the current state of affairs, we recommend that Linux users install ARTIQ via Nix and Windows users install it via
Conda.

2.1 Installing via Nix (Linux)

Note: Make sure you are using a 64-bit x86 Linux system. If you are using other systems, such as 32-bit x86, Nix
will attempt to compile a number of dependencies from source on your machine. This may work, but the installation
process will use a lot of CPU time, memory, and disk space.

First, install the Nix package manager. Some distributions provide a package for the Nix package manager, otherwise,
it can be installed via the script on the Nix website.

Once Nix is installed, add the M-Labs package channels with:

$ nix-channel --add https://nixbld.m-labs.hk/channel/custom/artiq/main/channel m-labs
$ nix-channel --add https://nixbld.m-labs.hk/channel/custom/artiq/sinara-systems/
↪→channel sinara

Those channels track nixpkgs 19.03. You can check the latest status through the Hydra interface. As the Nix package
manager default installation uses the development version of nixpkgs, we need to tell it to switch to the release:

$ nix-channel --remove nixpkgs
$ nix-channel --add https://nixos.org/channels/nixos-19.03 nixpkgs

Finally, make all the channel changes effective:

$ nix-channel --update

Nix won’t install packages without verifying their cryptographic signature. Add the M-Labs public key by creating
the file ~/.config/nix/nix.conf with the following contents:

substituters = https://cache.nixos.org https://nixbld.m-labs.hk
trusted-public-keys = cache.nixos.org-1:6NCHdD59X431o0gWypbMrAURkbJ16ZPMQFGspcDShjY=
↪→nixbld.m-labs.hk-1:5aSRVA5b320xbNvu30tqxVPXpld73bhtOeH6uAjRyHc= (continues on next page)

5

http://nixos.org/nix/
https://github.com/NixOS/nixpkgs/tree/release-19.03
https://nixbld.m-labs.hk

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

(continued from previous page)

The easiest way to obtain ARTIQ is then to install it into the user environment with $ nix-env -iA m-labs.
artiq-env. This provides a minimal installation of ARTIQ where the usual commands (artiq_master,
artiq_dashboard, artiq_run, etc.) are available.

Note: If you are getting the error message file 'm-labs' was not found in the Nix search
path, you are probably encountering this Nix bug. As a workaround, enter the command $ export
NIX_PATH=~/.nix-defexpr/channels:$NIX_PATH and try again.

This installation is however quite limited, as Nix creates a dedicated Python environment for the ARTIQ commands
alone. This means that other useful Python packages that you may want (pandas, matplotlib, . . .) are not avail-
able to them, and this restriction also applies to the M-Labs packages containing board binaries, which means that
artiq_flash will not automatically find them.

Installing multiple packages and making them visible to the ARTIQ commands requires using the Nix language.
Create a file my-artiq-env.nix with the following contents:

let
Contains the NixOS package collection. ARTIQ depends on some of them, and
you may also want certain packages from there.
pkgs = import <nixpkgs> {};
Contains the main ARTIQ packages, their dependencies, and board packages
for systems used in CI.
List: https://nixbld.m-labs.hk/channel/custom/artiq/main/channel
m-labs = import <m-labs> { inherit pkgs; };
Contains the board packages for the majority of systems.
List: https://nixbld.m-labs.hk/channel/custom/artiq/sinara-systems/channel
sinara = import <sinara> { inherit pkgs; };

in
pkgs.mkShell {
buildInputs = [

(pkgs.python3.withPackages(ps: [
List desired Python packages here.
m-labs.artiq
The board packages are also "Python" packages. You only need a board
package if you intend to reflash that board (those packages contain
only board firmware).
m-labs.artiq-board-kc705-nist_clock
sinara.artiq-board-kasli-wipm
from the NixOS package collection:
ps.paramiko # needed for flashing boards remotely (artiq_flash -H)
ps.pandas
ps.numpy
ps.scipy
ps.numba
(ps.matplotlib.override { enableQt = true; })
ps.bokeh

]))
List desired non-Python packages here
m-labs.openocd # needed for flashing boards, also provides proxy bitstreams
pkgs.spyder

];
}

Then spawn a shell containing the packages with $ nix-shell my-artiq-env.nix. The ARTIQ commands

6 Chapter 2. Installing ARTIQ

https://github.com/NixOS/nix/issues/2709

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

with all the additional packages should now be available.

You can exit the shell by typing Control-D. The next time $ nix-shell my-artiq-env.nix is invoked, Nix
uses the cached packages so the shell startup is fast.

You can edit this file according to your needs, and also create multiple .nix files that correspond to different sets of
packages. If you are familiar with Conda, using Nix in this way is similar to having multiple Conda environments.

If your favorite package is not available with Nix, contact us.

2.2 Installing via Conda (Windows, Linux)

Warning: For Linux users, the Nix package manager is preferred, as it is more reliable and faster than Conda.

First, install Anaconda or the more minimalistic Miniconda.

After installing either Anaconda or Miniconda, open a new terminal (also known as command line, console, or shell
and denoted here as lines starting with $) and verify the following command works:

$ conda

Executing just conda should print the help of the conda command. If your shell does not find the conda com-
mand, make sure that the Conda binaries are in your $PATH. If $ echo $PATH does not show the Conda di-
rectories, add them: execute $ export PATH=$HOME/miniconda3/bin:$PATH if you installed Conda into
~/miniconda3.

Download the ARTIQ installer script and edit its beginning to define the Conda environment name (you can leave
the default environment name if you are just getting started) and select the desired ARTIQ packages. Non-ARTIQ
packages should be installed manually later.

Note: If you do not need to flash boards, the artiq package from the main Hydra build is sufficient. The packages
named artiq-board-* contain only firmware for the FPGA board and are never necessary for using an ARTIQ
system without reflashing it.

Controllers for third-party devices (e.g. Thorlabs TCube, Lab Brick Digital Attenuator, etc.) that are not shipped with
ARTIQ can also be installed with this script. Browse Hydra or see the list of NDSPs in this manual to find the names
of the corresponding packages, and list them at the beginning of the script.

Make sure the base Conda environment is activated and then run the installer script:

$ conda activate base
$ python install-with-conda.py

After the installation, activate the newly created environment by name.

$ conda activate artiq

This activation has to be performed in every new shell you open to make the ARTIQ tools from that environment
available.

Note: Some ARTIQ examples also require matplotlib and numba, and they must be installed manually for running
those examples. They are available in Conda.

2.2. Installing via Conda (Windows, Linux) 7

https://www.anaconda.com/distribution/
https://conda.io/en/latest/miniconda.html
https://raw.githubusercontent.com/m-labs/artiq/master/install-with-conda.py
https://nixbld.m-labs.hk/project/artiq

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

2.3 Upgrading ARTIQ (with Nix)

Run $ nix-channel --update to retrieve information about the latest versions, and then either reinstall ARTIQ
into the user environment ($ nix-env -i python3.6-artiq) or re-run the nix-shell command.

To rollback to the previous version, use $ nix-channel --rollback and then re-do the second step. You can
switch between versions by passing a parameter to --rollback (see the nix-channel documentation).

You may need to reflash the gateware and firmware of the core device to keep it synchronized with the software.

2.4 Upgrading ARTIQ (with Conda)

When upgrading ARTIQ or when testing different versions it is recommended that new Conda environments are
created instead of upgrading the packages in existing environments. Keep previous environments around until you are
certain that they are not needed anymore and a new environment is known to work correctly.

To install the latest version, just select a different environment name and run the installer script again.

Switching between Conda environments using commands such as $ conda deactivate artiq-6 and $
conda activate artiq-5 is the recommended way to roll back to previous versions of ARTIQ.

You may need to reflash the gateware and firmware of the core device to keep it synchronized with the software.

You can list the environments you have created using:

$ conda env list

2.5 Flashing gateware and firmware into the core device

Note: If you have purchased a pre-assembled system from M-Labs or QUARTIQ, the gateware and firmware are
already flashed and you can skip those steps, unless you want to replace them with a different version of ARTIQ.

You now need to write three binary images onto the FPGA board:

1. The FPGA gateware bitstream

2. The bootloader

3. The ARTIQ runtime or satellite manager

They are all shipped in the Nix and Conda packages, along with the required flash proxy gateware bitstreams.

2.5.1 Installing OpenOCD
OpenOCD can be used to write the binary images into the core device FPGA board’s flash memory.

With Nix, add m-labs.openocd to the shell packages. Be careful not to add pkgs.openocd instead - this would
install OpenOCD from the NixOS package collection, which does not support ARTIQ boards.

With Conda, the artiq package installs openocd automatically but it can also be installed explicitly on both Linux
and Windows:

$ conda install openocd

8 Chapter 2. Installing ARTIQ

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

2.5.2 Configuring OpenOCD
Some additional steps are necessary to ensure that OpenOCD can communicate with the FPGA board.

On Linux, first ensure that the current user belongs to the plugdev group (i.e. plugdev shown when you run $
groups). If it does not, run $ sudo adduser $USER plugdev and re-login.

If you installed OpenOCD on Linux using Nix, use the which command to determine the path to OpenOCD, and
then copy the udev rules:

$ which openocd
/nix/store/2bmsssvk3d0y5hra06pv54s2324m4srs-openocd-mlabs-0.10.0/bin/openocd
$ sudo cp /nix/store/2bmsssvk3d0y5hra06pv54s2324m4srs-openocd-mlabs-0.10.0/share/
↪→openocd/contrib/60-openocd.rules /etc/udev/rules.d
$ sudo udevadm trigger

NixOS users should of course configure OpenOCD through /etc/nixos/configuration.nix instead.

If you installed OpenOCD on Linux using Conda and are using the Conda environment artiq, then execute the
statements below. If you are using a different environment, you will have to replace artiq with the name of your
environment:

$ sudo cp ~/.conda/envs/artiq/share/openocd/contrib/60-openocd.rules /etc/udev/rules.d
$ sudo udevadm trigger

On Windows, a third-party tool, Zadig, is necessary. Use it as follows:

1. Make sure the FPGA board’s JTAG USB port is connected to your computer.

2. Activate Options→ List All Devices.

3. Select the “Digilent Adept USB Device (Interface 0)” or “FTDI Quad-RS232 HS” (or similar) device from the
drop-down list.

4. Select WinUSB from the spinner list.

5. Click “Install Driver” or “Replace Driver”.

You may need to repeat these steps every time you plug the FPGA board into a port where it has not been plugged into
previously on the same system.

2.5.3 Writing the flash
Then, you can write the flash:

• For Kasli:

$ artiq_flash -V [your system variant]

• For the KC705 board:

$ artiq_flash -t kc705 -V [nist_clock/nist_qc2]

The SW13 switches need to be set to 00001.

2.6 Setting up the core device IP networking

For Kasli, insert a SFP/RJ45 transceiver (normally included with purchases from M-Labs and QUARTIQ) into the
SFP0 port and connect it to a gigabit Ethernet port in your network. It is necessary that the port be gigabit - 10/100
ports cannot be used. If you need to interface Kasli with 10/100 network equipment, connect them through a gigabit
switch.

2.6. Setting up the core device IP networking 9

http://zadig.akeo.ie/

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

You can also insert other types of SFP transceivers into Kasli if you wish to use it directly in e.g. an optical fiber
Ethernet network.

If you purchased a device from M-Labs, it already comes with a valid MAC address and an IP address, usually 192.
168.1.75. Once you can reach this IP, it can be changed with:

$ artiq_coremgmt -D 192.168.1.75 config write -s ip [new IP]

and then reboot the device (with artiq_flash start or a power cycle).

In other cases, install OpenOCD as before, and flash the IP and MAC addresses directly:

$ artiq_mkfs flash_storage.img -s mac xx:xx:xx:xx:xx:xx -s ip xx.xx.xx.xx
$ artiq_flash -t [board] -V [variant] -f flash_storage.img storage start

Check that you can ping the device. If ping fails, check that the Ethernet link LED is ON - on Kasli, it is the LED next
to the SFP0 connector. As a next step, look at the messages emitted on the UART during boot. Use a program such
as flterm or PuTTY to connect to the device’s serial port at 115200bps 8-N-1 and reboot the device. On Kasli, the
serial port is on FTDI channel 2 with v1.1 hardware (with channel 0 being JTAG) and on FTDI channel 1 with v1.0
hardware.

2.7 Miscellaneous configuration of the core device

Those steps are optional. The core device usually needs to be restarted for changes to take effect.

• Load the idle kernel

The idle kernel is the kernel (some piece of code running on the core device) which the core device runs whenever it
is not connected to a PC via Ethernet. This kernel is therefore stored in the core device configuration flash storage.

To flash the idle kernel, first compile the idle experiment. The idle experiment’s run() method must be a kernel: it
must be decorated with the @kernel decorator (see next topic for more information about kernels). Since the core
device is not connected to the PC, RPCs (calling Python code running on the PC from the kernel) are forbidden in the
idle experiment. Then write it into the core device configuration flash storage:

$ artiq_compile idle.py
$ artiq_coremgmt config write -f idle_kernel idle.elf

Note: You can find more information about how to use the artiq_coremgmt utility on the Utilities page.

• Load the startup kernel

The startup kernel is executed once when the core device powers up. It should initialize DDSes, set up TTL directions,
etc. Proceed as with the idle kernel, but using the startup_kernel key in the artiq_coremgmt command.

For DRTIO systems, the startup kernel should wait until the desired destinations (including local RTIO) are up, using
artiq.coredevice.Core.get_rtio_destination_status().

• Load the DRTIO routing table

If you are using DRTIO and the default routing table (for a star topology) is not suitable to your needs, prepare and
load a different routing table. See Using DRTIO.

• Select the RTIO clock source (KC705 only)

The KC705 may use either an external clock signal or its internal clock. The clock is selected at power-up. Use one
of these commands:

10 Chapter 2. Installing ARTIQ

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

$ artiq_coremgmt config write -s rtio_clock i # internal clock (default)
$ artiq_coremgmt config write -s rtio_clock e # external clock

2.7. Miscellaneous configuration of the core device 11

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

12 Chapter 2. Installing ARTIQ

CHAPTER

THREE

DEVELOPING ARTIQ

Warning: This section is only for software or FPGA developers who want to modify ARTIQ. The steps described
here are not required if you simply want to run experiments with ARTIQ. If you purchased a system from M-Labs
or QUARTIQ, we normally provide board binaries for you.

The easiest way to obtain an ARTIQ development environment is via the Nix package manager on Linux. The Nix
system is used on the M-Labs Hydra server to build ARTIQ and its dependencies continuously; it ensures that all build
instructions are up-to-date and allows binary packages to be used on developers’ machines, in particular for large
tools such as the Rust compiler. ARTIQ itself does not depend on Nix, and it is also possible to compile everything
from source (look into the .nix files from the nix-scripts repository and run the commands manually) - but Nix
makes the process a lot easier.

• Install the Nix package manager and Git (e.g. $ nix-shell -p git).

• Set up the M-Labs Hydra channels (same procedure as the user section) to allow binaries to be downloaded.
Otherwise, tools such as LLVM and the Rust compiler will be compiled on your machine, which uses a lot of
CPU time, memory, and disk space. Simply setting up the channels is sufficient, Nix will automatically detect
when a binary can be downloaded instead of being compiled locally.

• Clone the repositories https://github.com/m-labs/artiq and https://git.m-labs.hk/m-labs/nix-scripts.

• Run $ nix-shell -I artiqSrc=path_to_artiq_sources shell-dev.nix to obtain an envi-
ronment containing all the required development tools (e.g. Migen, MiSoC, Clang, Rust, OpenOCD. . .) in
addition to the ARTIQ user environment. artiqSrc should point to the root of the cloned artiq repository,
and shell-dev.nix can be found in the artiq folder of the nix-scripts repository.

• This enters a FHS chroot environment that simplifies the installation and patching of Xilinx Vivado.

• Download Vivado from Xilinx and install it (by running the official installer in the FHS chroot environment).
If you do not want to write to /opt, you can install it in a folder of your home directory. The “appropriate”
Vivado version to use for building the bitstream can vary. Some versions contain bugs that lead to hidden or
visible failures, others work fine. Refer to the M-Labs Hydra logs to determine which version is currently used
when building the binary packages.

• During the Vivado installation, uncheck Install cable drivers (they are not required as we use better
and open source alternatives).

• You can then build the firmware and gateware with a command such as $ python -m artiq.gateware.
targets.kasli.

• If you did not install Vivado in /opt, add a command line option such as --gateware-toolchain-path
~/Xilinx/Vivado.

13

https://nixbld.m-labs.hk/
http://nixos.org/nix/
https://github.com/m-labs/artiq
https://git.m-labs.hk/m-labs/nix-scripts
https://nixbld.m-labs.hk/

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

• Flash the binaries into the FPGA board with a command such as $ artiq_flash --srcbuild
artiq_kasli -V <your_variant>. You need to configure OpenOCD as explained in the user section.
OpenOCD is already part of the shell started by shell-dev.nix.

• Check that the board boots and examine the UART messages by running a serial terminal program, e.g. $
flterm /dev/ttyUSB1 (flterm is part of MiSoC and installed by shell-dev.nix). Leave the termi-
nal running while you are flashing the board, so that you see the startup messages when the board boots imme-
diately after flashing. You can also restart the board (without reflashing it) with $ artiq_flash start.

• The communication parameters are 115200 8-N-1. Ensure that your user has access to the serial device ($
sudo adduser $USER dialout assuming standard setup).

• If you are modifying a dependency of ARTIQ, in addition to updating the relevant part of nix-scripts,
rebuild and upload the corresponding Conda packages manually, and update their version numbers in
conda-artiq.nix. For Conda, only the main ARTIQ package and the board packages are handled au-
tomatically on Hydra.

Warning: Nix will make a read-only copy of the ARTIQ source to use in the shell environment. Therefore,
any modifications that you make to the source after the shell is started will not be taken into account. A solution
applicable to ARTIQ (and several other Python packages such as Migen and MiSoC) is to set the PYTHONPATH
environment variable in the shell to the root of the ARTIQ source. If you want this to be done by default, edit
profile in artiq-dev.nix.

14 Chapter 3. Developing ARTIQ

CHAPTER

FOUR

RELEASE NOTES

4.1 ARTIQ-5

4.1.1 5.0
• The AD9910 and AD9914 phase reference timestamp parameters have been renamed to ref_time_mu for

consistency, as they are in machine units.

• verbosity_args() has been renamed to add_common_args(), and now adds a --version flag.

• A gateware-level input edge counter has been added, which offers higher throughput and increased flexibil-
ity over the usual TTL input PHYs where edge timestamps are not required. See artiq.coredevice.
edge_counter for the core device driver and artiq.gateware.rtio.phy.edge_counter/
artiq.gateware.eem.DIO.add_std() for the gateware components.

• List datasets can now be efficiently appended to from experiments using artiq.language.
environment.HasEnvironment.append_to_dataset().

• The controller manager now ignores device database entries without the "command" key set to facilitate shar-
ing of devices between multiple masters.

• The meaning of the -d/--dir and --srcbuild options of artiq_flash has changed.

• Experiments can now programatically set their default pipeline, priority, and flush flag.

• Controllers for third-party devices are now out-of-tree.

4.2 ARTIQ-4

4.2.1 4.0
• The artiq.coredevice.ttl drivers no longer track the timestamps of submitted events in software, re-

quiring the user to explicitly specify the timeout for count()/timestamp_mu(). Support for sync() has
been dropped.

Now that RTIO has gained DMA support, there is no longer a reliable way for the kernel CPU to track the indi-
vidual events submitted on any one channel. Requiring the timeouts to be specified explicitly ensures consistent
API behavior. To make this more convenient, the TTLInOut.gate_*() functions now return the cursor
position at the end of the gate, e.g.:

ttl_input.count(ttl_input.gate_rising(100 * us))

In most situations – that is, unless the timeline cursor is rewound after the respective gate_*() call – simply
passing now_mu() is also a valid upgrade path:

15

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

ttl_input.count(now_mu())

The latter might use up more timeline slack than necessary, though.

In place of TTL(In)Out.sync, the new Core.wait_until_mu() method can be used, which blocks
execution until the hardware RTIO cursor reaches the given timestamp:

ttl_output.pulse(10 * us)
self.core.wait_until_mu(now_mu())

• RTIO outputs use a new architecture called Scalable Event Dispatcher (SED), which allows building systems
with large number of RTIO channels more efficiently. From the user perspective, collision errors become asyn-
chronous, and non- monotonic timestamps on any combination of channels are generally allowed (instead of
producing sequence errors). RTIO inputs are not affected.

• The DDS channel number for the NIST CLOCK target has changed.

• The dashboard configuration files are now stored one-per-master, keyed by the server address argument and the
notify port.

• The master now has a --name argument. If given, the dashboard is labelled with this name rather than the
server address.

• artiq_flash targets Kasli by default. Use -t kc705 to flash a KC705 instead.

• artiq_flash -m/--adapter has been changed to artiq_flash -V/--variant.

• The proxy action of artiq_flash is determined automatically and should not be specified manually any-
more.

• kc705_dds has been renamed kc705.

• The -H/--hw-adapter option of kc705 has been renamed -V/--variant.

• SPI masters have been switched from misoc-spi to misoc-spi2. This affects all out-of-tree RTIO core device
drivers using those buses. See the various commits on e.g. the ad53xx driver for an example how to port from
the old to the new bus.

• The ad5360 coredevice driver has been renamed to ad53xx and the API has changed to better support Zotino.

• artiq.coredevice.dds has been renamed to artiq.coredevice.ad9914 and simplified. DDS
batch mode is no longer supported. The core_dds device is no longer necessary.

• The configuration entry startup_clock is renamed rtio_clock. Switching clocks dynamically (i.e.
without device restart) is no longer supported.

• set_dataset(..., save=True) has been renamed set_dataset(..., archive=True).

• On the AD9914 DDS, when switching to PHASE_MODE_CONTINUOUS from another mode, use the returned
value of the last set_mu call as the phase offset for PHASE_MODE_CONTINUOUS to avoid a phase disconti-
nuity. This is no longer done automatically. If one phase glitch when entering PHASE_MODE_CONTINUOUS
is not an issue, this recommendation can be ignored.

4.3 ARTIQ-3

4.3.1 3.7
No further notes.

16 Chapter 4. Release notes

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

4.3.2 3.6
No further notes.

4.3.3 3.5
No further notes.

4.3.4 3.4
No further notes.

4.3.5 3.3
No further notes.

4.3.6 3.2
• To accommodate larger runtimes, the flash layout as changed. As a result, the contents of the flash storage will

be lost when upgrading. Set the values back (IP, MAC address, startup kernel, etc.) after the upgrade.

4.3.7 3.1
No further notes.

4.3.8 3.0
• The --embed option of applets is replaced with the environment variable ARTIQ_APPLET_EMBED. The GUI

sets this enviroment variable itself and the user simply needs to remove the --embed argument.

• EnvExperiment’s prepare calls prepare for all its children.

• Dynamic __getattr__’s returning RPC target methods are not supported anymore. Controller driver classes
must define all their methods intended for RPC as members.

• Datasets requested by experiments are by default archived into their HDF5 output. If this behavior is undesirable,
turn it off by passing archive=False to get_dataset.

• seconds_to_mu and mu_to_seconds have become methods of the core device driver (use e.g. self.
core.seconds_to_mu()).

• AD9858 DDSes and NIST QC1 hardware are no longer supported.

• The DDS class names and setup options have changed, this requires an update of the device database.

• int(a, width=b) has been removed. Use int32(a) and int64(a).

• The KC705 gateware target has been renamed kc705_dds.

• artiq.coredevice.comm_tcp has been renamed artiq.coredevice.comm_kernel, and Comm
has been renamed CommKernel.

• The “collision” and “busy” RTIO errors are reported through the log instead of raising exceptions.

• Results are still saved when analyze raises an exception.

• LinearScan and RandomScan have been consolidated into RangeScan.

• The Pipistrello is no longer supported. For a low-cost ARTIQ setup, use either ARTIQ 2.x with Pipistrello, or
the future ARTIQ 4.x with Kasli. Note that the Pipistrello board has also been discontinued by the manufacturer
but its design files are freely available.

4.3. ARTIQ-3 17

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

• The device database is now generated by an executable Python script. To migrate an existing database, add
device_db = `` at the beginning, and replace any PYON identifiers (``true,
null, . . .) with their Python equivalents (True, None . . .).

• Controllers are now named aqctl_XXX instead of XXX_controller.

• In the device database, the comm device has been folded into the core device. Move the “host” argument into
the core device, and remove the comm device.

• The core device log now contains important information about events such as RTIO collisions. A new controller
aqctl_corelog must be running to forward those logs to the master. See the example device databases to
see how to instantiate this controller. Using artiq_session ensures that a controller manager is running
simultaneously with the master.

• Experiments scheduled with the “flush pipeline” option now proceed when there are lower-priority experiments
in the pipeline. Only experiments at the current (or higher) priority level are flushed.

• The PDQ(2/3) driver has been removed and is now being maintained out-of tree at https://github.com/m-labs/
pdq. All SPI/USB driver layers, Mediator, CompoundPDQ and examples/documentation has been moved.

• The master now rotates log files at midnight, rather than based on log size.

• The results keys start_time and run_time are now stored as doubles of UNIX time, rather than ints. The
file names are still based on local time.

• Packages are no longer available for 32-bit Windows.

4.4 ARTIQ-2

4.4.1 2.5
No further notes.

4.4.2 2.4
No further notes.

4.4.3 2.3
• When using conda, add the conda-forge channel before installing ARTIQ.

4.4.4 2.2
No further notes.

4.4.5 2.1
No further notes.

4.4.6 2.0
No further notes.

4.4.7 2.0rc2
No further notes.

18 Chapter 4. Release notes

https://github.com/m-labs/pdq
https://github.com/m-labs/pdq

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

4.4.8 2.0rc1
• The format of the influxdb pattern file is simplified. The procedure to edit patterns is also changed to modifying

the pattern file and calling: artiq_rpctool.py ::1 3248 call scan_patterns (or restarting the
bridge) The patterns can be converted to the new format using this code snippet:

from artiq.protocols import pyon
patterns = pyon.load_file("influxdb_patterns.pyon")
for p in patterns:

print(p)

• The “GUI” has been renamed the “dashboard”.

• When flashing NIST boards, use “-m nist_qcX” or “-m nist_clock” instead of just “-m qcX” or “-m clock”
(#290).

• Applet command lines now use templates (e.g. $python) instead of formats (e.g. {python}).

• On Windows, GUI applications no longer open a console. For debugging purposes, the console messages can
still be displayed by running the GUI applications this way:

python3.5 -m artiq.frontend.artiq_browser
python3.5 -m artiq.frontend.artiq_dashboard

(you may need to replace python3.5 with python) Please always include the console output when reporting a
GUI crash.

• The result folders are formatted “%Y-%m-%d/%H instead of “%Y-%m-%d/%H-%M”. (i.e. grouping by day
and then by hour, instead of by day and then by minute)

• The parent keyword argument of HasEnvironment (and EnvExperiment) has been replaced. Pass the
parent as first argument instead.

• During experiment examination (and a fortiori repository scan), the values of all arguments are set to None
regardless of any default values supplied.

• In the dashboard’s experiment windows, partial or full argument recomputation takes into account the repository
revision field.

• By default, NumberValue and Scannable infer the scale from the unit for common units.

• By default, artiq_client keeps the current persist flag on the master.

• GUI state files for the browser and the dashboard are stores in “standard” locations for
each operating system. Those are ~/.config/artiq/2/artiq_*.pyon on Linux and
C:\Users\<username>\AppData\Local\m-labs\artiq\2\artiq_*.pyon on Windows
7.

• The position of the time cursor is kept across experiments and RTIO resets are manual and explicit (inter-
experiment seamless handover).

• All integers manipulated by kernels are numpy integers (numpy.int32, numpy.int64). If you pass an integer as a
RPC argument, the target function receives a numpy type.

4.5 ARTIQ-1

4.5.1 1.3
No further notes.

4.5. ARTIQ-1 19

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

4.5.2 1.2
No further notes.

4.5.3 1.1
• TCA6424A.set converts the “outputs” value to little-endian before programming it into the registers.

4.5.4 1.0
No further notes.

4.5.5 1.0rc4
• setattr_argument and setattr_device add their key to kernel_invariants.

4.5.6 1.0rc3
• The HDF5 format has changed.

– The datasets are located in the HDF5 subgroup datasets.

– Datasets are now stored without additional type conversions and annotations from ARTIQ, trusting that
h5py maps and converts types between HDF5 and python/numpy “as expected”.

• NumberValue now returns an integer if ndecimals = 0, scale = 1 and step is integer.

4.5.7 1.0rc2
• The CPU speed in the pipistrello gateware has been reduced from 83 1/3 MHz to 75 MHz. This will reduce the

achievable sustained pulse rate and latency accordingly. ISE was intermittently failing to meet timing (#341).

• set_dataset in broadcast mode no longer returns a Notifier. Mutating datasets should be done with mutate_dataset
instead (#345).

4.5.8 1.0rc1
• Experiments (your code) should use from artiq.experiment import * (and not from artiq
import * as previously)

• Core device flash storage has moved due to increased runtime size. This requires reflashing the runtime and the
flash storage filesystem image or erase and rewrite its entries.

• RTIOCollisionError has been renamed to RTIOCollision

• the new API for DDS batches is:

with self.core_dds.batch:
...

with core_dds a device of type artiq.coredevice.dds.CoreDDS. The dds_bus device should not be
used anymore.

• LinearScan now supports scanning from high to low. Accordingly, its arguments min/max have been renamed
to start/stop respectively. Same for RandomScan (even though there direction matters little).

20 Chapter 4. Release notes

CHAPTER

FIVE

ARTIQ REAL-TIME I/O CONCEPTS

The ARTIQ Real-Time I/O design employs several concepts to achieve its goals of high timing resolution on the
nanosecond scale and low latency on the microsecond scale while still not sacrificing a readable and extensible lan-
guage.

In a typical environment two very different classes of hardware need to be controlled. One class is the vast arsenal of
diverse laboratory hardware that interfaces with and is controlled from a typical PC. The other is specialized real-time
hardware that requires tight coupling and a low-latency interface to a CPU. The ARTIQ code that describes a given
experiment is composed of two types of “programs”: regular Python code that is executed on the host and ARTIQ
kernels that are executed on a core device. The CPU that executes the ARTIQ kernels has direct access to specialized
programmable I/O timing logic (part of the gateware). The two types of code can invoke each other and transitions
between them are seamless.

The ARTIQ kernels do not interface with the real-time gateware directly. That would lead to imprecise, indeterminate,
and generally unpredictable timing. Instead the CPU operates at one end of a bank of FIFO (first-in-first-out) buffers
while the real-time gateware at the other end guarantees the all or nothing level of excellent timing precision. A FIFO
for an output channel hold timestamps and event data describing when and what is to be executed. The CPU feeds
events into this FIFO. A FIFO for an input channel contains timestamps and event data for events that have been
recorded by the real-time gateware and are waiting to be read out by the CPU on the other end.

5.1 The timeline

The set of all input and output events on all channels constitutes the timeline. A high resolution wall clock
(rtio_counter) counts clock cycles and causes output events to be executed when their timestamp matches the
clock and input events to be recorded and stamped with the current clock value accordingly.

The kernel runtime environment maintains a timeline cursor (called now) used as the timestamp when output events
are submitted to the FIFOs. This timeline cursor can be moved forward or backward on the timeline relative to
its current value using artiq.language.core.delay() and artiq.language.core.delay_mu(), the
later being a delay given in machine units as opposed to SI units. The absolute value of now on the timeline can
be retrieved using artiq.language.core.now_mu() and it can be set using artiq.language.core.
at_mu(). RTIO timestamps, the timeline cursor, and the rtio_counter wall clock are all relative to the core
device startup/boot time. The wall clock keeps running across experiments.

Absolute timestamps can be large numbers. They are represented internally as 64-bit integers with a resolution of typ-
ically a nanosecond and a range of hundreds of years. Conversions between such a large integer number and a floating
point representation can cause loss of precision through cancellation. When computing the difference of absolute
timestamps, use self.core.mu_to_seconds(t2-t1), not self.core.mu_to_seconds(t2)-self.
core.mu_to_seconds(t1) (see artiq.coredevice.Core.mu_to_seconds()). When accumulating
time, do it in machine units and not in SI units, so that rounding errors do not accumulate.

The following basic example shows how to place output events on the timeline. It emits a precisely timed 2 µs pulse:

21

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

ttl.on()
delay(2*us)
ttl.off()

The device ttl represents a single digital output channel (artiq.coredevice.ttl.TTLOut). The artiq.
coredevice.ttl.TTLOut.on() method places an rising edge on the timeline at the current cursor position
(now). Then the cursor is moved forward 2 µs and a falling edge event is placed at the new cursor position. Then later,
when the wall clock reaches the respective timestamps the RTIO gateware executes the two events.

The following diagram shows what is going on at the different levels of the software and gateware stack (assuming
one machine unit of time is 1 ns):

kernel on() delay(2*us)off()

now 7000 9000

slack 4400 5800

rtio_counter 2600 3200 7000 9000

ttl

2µs

The sequence is exactly equivalent to:

ttl.pulse(2*us)

The artiq.coredevice.ttl.TTLOut.pulse() method advances the timeline cursor (using delay())
while other methods such as artiq.coredevice.ttl.TTLOut.on(), artiq.coredevice.ttl.
TTLOut.off(), artiq.coredevice.ad9914.set(). The latter are called zero-duration methods.

5.2 Underflow exceptions

An RTIO event must always be programmed with a timestamp in the future. In other words, the timeline cursor
now must be after the current wall clock rtio_counter: the past can not be altered. The following example
tries to place an rising edge event on the timeline. If the current cursor is in the past, an artiq.coredevice.
exceptions.RTIOUnderflow exception is thrown. The experiment attempts to handle the exception by moving
the cursor forward and repeating the programming of the rising edge:

try:
ttl.on()

except RTIOUnderflow:
try again at the next mains cycle
delay(16.6667*ms)
ttl.on()

22 Chapter 5. ARTIQ Real-Time I/O Concepts

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

kernel on() RTIOUnderflow delay() on()

now_mu t0 t1

slack < 0 > 0

rtio_counter t0 > t0 < t1 t1

tll

forbidden

exception

allowed

To track down RTIOUnderflows in an experiment there are a few approaches:

• Exception backtraces show where underflow has occurred while executing the code.

• The integrated logic analyzer shows the timeline context that lead to the exception. The analyzer is always
active and supports plotting of RTIO slack. RTIO slack is the difference between timeline cursor and wall clock
time (now - rtio_counter).

5.3 Sequence errors

A sequence error happens when the sequence of coarse timestamps cannot be supported by the gateware. For example,
there may have been too many timeline rewinds.

Internally, the gateware stores output events in an array of FIFO buffers (the “lanes”) and the timestamps in each lane
much be strictly increasing. The gateware selects a different lane when an event with a decreasing or equal timestamp
is submitted. A sequence error occurs when no appropriate lane can be found.

Notes:

• Strictly increasing timestamps never cause sequence errors.

• Configuring the gateware with more lanes for the RTIO core reduces the frequency of sequence errors.

• The number of lanes is a hard limit on the number of simultaneous RTIO output events.

• Whether a particular sequence of timestamps causes a sequence error or not is fully deterministic (starting from
a known RTIO state, e.g. after a reset). Adding a constant offset to the whole sequence does not affect the result.

The offending event is discarded and the RTIO core keeps operating.

This error is reported asynchronously via the core device log: for performance reasons with DRTIO, the CPU does
not wait for an error report from the satellite after writing an event. Therefore, it is not possible to raise an exception
precisely.

5.4 Collisions

A collision happens when more than one event is submitted on a given channel with the same coarse timestamp, and
that channel does not implement replacement behavior or the fine timestamps are different.

Coarse timestamps correspond to the RTIO system clock (typically around 125MHz) whereas fine timestamps corre-
spond to the RTIO SERDES clock (typically around 1GHz). Different channels may have different ratios between the
coarse and fine timestamp clock frequencies.

The offending event is discarded and the RTIO core keeps operating.

5.3. Sequence errors 23

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

This error is reported asynchronously via the core device log: for performance reasons with DRTIO, the CPU does
not wait for an error report from the satellite after writing an event. Therefore, it is not possible to raise an exception
precisely.

5.5 Busy errors

A busy error happens when at least one output event could not be executed because the channel was already busy
executing a previous event.

The offending event was discarded.

This error is reported asynchronously via the core device log.

5.6 Input channels and events

Input channels detect events, timestamp them, and place them in a buffer for the experiment to read out. The following
example counts the rising edges occurring during a precisely timed 500 ns interval. If more than 20 rising edges are
received, it outputs a pulse:

if input.count(input.gate_rising(500*ns)) > 20:
delay(2*us)
output.pulse(500*ns)

The artiq.coredevice.ttl.TTLInOut.count() method of an input channel will often lead to a situa-
tion of negative slack (timeline cursor now smaller than the current wall clock rtio_counter): The artiq.
coredevice.ttl.TTLInOut.gate_rising() method leaves the timeline cursor at the closing time of the
gate. count() must necessarily wait until the gate closing event has actually been executed, at which point
rtio_counter > now: count() synchronizes timeline cursor (now) and wall clock (rtio_counter). In
these situations, a delay() is necessary to re-establish positive slack so that further output events can be placed.

Similar situations arise with methods such as artiq.coredevice.ttl.TTLInOut.sample_get() and
artiq.coredevice.ttl.TTLInOut.watch_done().

kernel gate_rising() count() delay() pulse()

now_mu

input gate

output

5.7 Overflow exceptions

The RTIO input channels buffer input events received while an input gate is open, or at certain points
in time when using the sampling API (artiq.coredevice.ttl.TTLInOut.sample_input()). The
events are kept in a FIFO until the CPU reads them out via e.g. artiq.coredevice.ttl.TTLInOut.
count(), artiq.coredevice.ttl.TTLInOut.timestamp_mu() or artiq.coredevice.ttl.
TTLInOut.sample_get(). If the FIFO is full and another event is coming in, this causes an overflow condition.
The condition is converted into an artiq.coredevice.exceptions.RTIOOverflow exception that is raised
on a subsequent invocation of one of the readout methods (e.g. count(), timestamp_mu(), sample_get()).

24 Chapter 5. ARTIQ Real-Time I/O Concepts

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

5.8 Seamless handover

The timeline cursor persists across kernel invocations. This is demonstrated in the following example where a pulse is
split across two kernels:

def run():
k1()
k2()

@kernel
def k1():
ttl.on()
delay(1*s)

@kernel
def k2():
ttl.off()

Here, run() calls k1() which exits leaving the cursor one second after the rising edge and k2() then submits a
falling edge at that position.

kernel k1: on() k1: delay(dt) k1->k2 swap k2: off()

now t t+dt

rtio_counter t t+dt

ttl

dt

5.9 Synchronization

The seamless handover of the timeline (cursor and events) across kernels and experiments implies that a kernel can
exit long before the events it has submitted have been executed. If a previous kernel sets timeline cursor far in the
future this effectively locks the system.

When a kernel should wait until all the events have been executed, use the artiq.coredevice.core.Core.
wait_until_mu() with a timestamp after (or at) the last event:

kernel on() wait_until_mu(7000)

now 7000

rtio_counter 2000 7000

ttl

5.8. Seamless handover 25

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

In many cases, now_mu() will return an appropriate timestamp:

self.core.wait_until_mu(now_mu())

5.10 RTIO reset

The seamless handover also means that a kernel is not guaranteed to always be executed with positive slack. An
experiment can face any of these circumstances (large positive slack, full FIFOs, or negative slack). Therefore, when
switching experiments it can be adequate to clear the RTIO FIFOs and initialize the timeline cursor to “sometime in
the near future” using artiq.coredevice.core.Core.reset(). The example idle kernel implements this
mechanism. Since it never waits for any input, it will rapidly fill the output FIFOs and would produce a large positive
slack. To avoid large positive slack and to accommodate for seamless handover the idle kernel will only run when
no other experiment is pending and the example will wait before submitting events until there is significant negative
slack.

26 Chapter 5. ARTIQ Real-Time I/O Concepts

CHAPTER

SIX

GETTING STARTED WITH THE CORE LANGUAGE

6.1 Connecting to the core device

As a very first step, we will turn on a LED on the core device. Create a file led.py containing the following:

from artiq.experiment import *

class LED(EnvExperiment):
def build(self):

self.setattr_device("core")
self.setattr_device("led")

@kernel
def run(self):

self.core.reset()
self.led.on()

The central part of our code is our LED class, which derives from artiq.language.environment.
EnvExperiment. Among other features, EnvExperiment calls our build() method and provides the
setattr_device() method that interfaces to the device database to create the appropriate device drivers and
make those drivers accessible as self.core and self.led. The kernel() decorator (@kernel) tells the sys-
tem that the run() method must be compiled for and executed on the core device (instead of being interpreted and
executed as regular Python code on the host). The decorator uses self.core internally, which is why we request
the core device using setattr_device() like any other.

Copy the file device_db.py (containing the device database) from the examples/master folder of ARTIQ
into the same directory as led.py (alternatively, you can use the --device-db option of artiq_run). You will
probably want to set the IP address of the core device in device_db.py so that the computer can connect to it
(it is the host parameter of the comm entry). See The device database for more information. The example device
database is designed for the nist_clock hardware adapter on the KC705; see FPGA board ports for RTIO channel
assignments if you need to adapt the device database to a different hardware platform.

Note: To obtain the examples, you can find where the ARTIQ package is installed on your machine with:

python3 -c "import artiq; print(artiq.__path__[0])"

Run your code using artiq_run, which is part of the ARTIQ front-end tools:

$ artiq_run led.py

27

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

The process should terminate quietly and the LED of the device should turn on. Congratulations! You have a basic
ARTIQ system up and running.

6.2 Host/core device interaction (RPC)

A method or function running on the core device (which we call a “kernel”) may communicate with the host by
calling non-kernel functions that may accept parameters and may return a value. The “remote procedure call” (RPC)
mechanisms handle automatically the communication between the host and the device of which function to call, with
which parameters, and what the returned value is.

Modify the code as follows:

def input_led_state() -> TBool:
return input("Enter desired LED state: ") == "1"

class LED(EnvExperiment):
def build(self):

self.setattr_device("core")
self.setattr_device("led")

@kernel
def run(self):

self.core.reset()
s = input_led_state()
self.core.break_realtime()
if s:

self.led.on()
else:

self.led.off()

You can then turn the LED off and on by entering 0 or 1 at the prompt that appears:

$ artiq_run led.py
Enter desired LED state: 1
$ artiq_run led.py
Enter desired LED state: 0

What happens is the ARTIQ compiler notices that the input_led_state() function does not have a @kernel
decorator (kernel()) and thus must be executed on the host. When the core device calls it, it sends a request to the
host to execute it. The host displays the prompt, collects user input, and sends the result back to the core device, which
sets the LED state accordingly.

RPC functions must always return a value of the same type. When they return a value that is not None, the compiler
should be informed in advance of the type of the value, which is what the -> TBool annotation is for.

Without the break_realtime() call, the RTIO events emitted by self.led.on() or self.led.off()
would be scheduled at a fixed and very short delay after entering run(). These events would fail because the
RPC to input_led_state() can take an arbitrary amount of time and therefore the deadline for submis-
sion of RTIO events would have long passed when self.led.on() or self.led.off() are called. The
break_realtime() call is necessary to waive the real-time requirements of the LED state change. It advances the
timeline far enough to ensure that events can meet the submission deadline.

6.3 Real-time Input/Output (RTIO)

The point of running code on the core device is the ability to meet demanding real-time constraints. In particular, the
core device can respond to an incoming stimulus or the result of a measurement with a low and predictable latency.

28 Chapter 6. Getting started with the core language

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

We will see how to use inputs later; first, we must familiarize ourselves with how time is managed in kernels.

Create a new file rtio.py containing the following:

from artiq.experiment import *

class Tutorial(EnvExperiment):
def build(self):

self.setattr_device("core")
self.setattr_device("ttl0")

@kernel
def run(self):

self.core.reset()
self.ttl0.output()
for i in range(1000000):

delay(2*us)
self.ttl0.pulse(2*us)

In its build() method, the experiment obtains the core device and a TTL device called ttl0 as defined in the
device database. In ARTIQ, TTL is used roughly synonymous with “a single generic digital signal” and does not refer
to a specific signaling standard or voltage/current levels.

When run(), the experiment first ensures that ttl0 is in output mode and actively driving the device it is connected
to. Bidirectional TTL channels (i.e. TTLInOut) are in input (high impedance) mode by default, output-only TTL
channels (TTLOut) are always in output mode. There are no input-only TTL channels.

The experiment then drives one million 2 µs long pulses separated by 2 µs each. Connect an oscilloscope or logic
analyzer to TTL0 and run artiq_run.py rtio.py. Notice that the generated signal’s period is precisely 4 µs,
and that it has a duty cycle of precisely 50%. This is not what you would expect if the delay and the pulse were
implemented with register-based general purpose input output (GPIO) that is CPU-controlled. The signal’s period
would depend on CPU speed, and overhead from the loop, memory management, function calls, etc, all of which are
hard to predict and variable. Any asymmetry in the overhead would manifest itself in a distorted and variable duty
cycle.

Instead, inside the core device, output timing is generated by the gateware and the CPU only programs switching
commands with certain timestamps that the CPU computes.

This guarantees precise timing as long as the CPU can keep generating timestamps that are increasing fast enough.
In case it fails to do that (and attempts to program an event with a timestamp smaller than the current RTIO clock
timestamp), a RTIOUnderflow exception is raised. The kernel causing it may catch it (using a regular try...
except... construct), or it will be propagated to the host.

Try reducing the period of the generated waveform until the CPU cannot keep up with the generation of switching
events and the underflow exception is raised. Then try catching it:

from artiq.experiment import *

def print_underflow():
print("RTIO underflow occured")

class Tutorial(EnvExperiment):
def build(self):

self.setattr_device("core")
self.setattr_device("ttl0")

@kernel
(continues on next page)

6.3. Real-time Input/Output (RTIO) 29

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

(continued from previous page)

def run(self):
self.core.reset()
try:

for i in range(1000000):
self.ttl0.pulse(...)
delay(...)

except RTIOUnderflow:
print_underflow()

6.4 Parallel and sequential blocks

It is often necessary that several pulses overlap one another. This can be expressed through the use of with
parallel constructs, in which the events generated by the individual statements are executed at the same time.
The duration of the parallel block is the duration of its longest statement.

Try the following code and observe the generated pulses on a 2-channel oscilloscope or logic analyzer:

for i in range(1000000):
with parallel:

self.ttl0.pulse(2*us)
self.ttl1.pulse(4*us)

delay(4*us)

ARTIQ can implement with parallel blocks without having to resort to any of the typical parallel processing
approaches. It simply remembers the position on the timeline when entering the parallel block and then seeks
back to that position after submitting the events generated by each statement. In other words, the statements in
the parallel block are actually executed sequentially, only the RTIO events generated by them are scheduled to
be executed in parallel. Note that if a statement takes a lot of CPU time to execute (this different from the events
scheduled by a statement taking a long time), it may cause a subsequent statement to miss the deadline for timely
submission of its events. This then causes a RTIOUnderflow exception to be raised.

Within a parallel block, some statements can be made sequential again using a with sequential construct. Ob-
serve the pulses generated by this code:

for i in range(1000000):
with parallel:

with sequential:
self.ttl0.pulse(2*us)
delay(1*us)
self.ttl0.pulse(1*us)

self.ttl1.pulse(4*us)
delay(4*us)

6.5 RTIO analyzer

The core device records the real-time I/O waveforms into a circular buffer. It is possible to dump any Python object
so that it appears alongside the waveforms using the rtio_log function, which accepts a channel name (i.e. a log
target) as the first argument:

from artiq.experiment import *

class Tutorial(EnvExperiment):
(continues on next page)

30 Chapter 6. Getting started with the core language

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

(continued from previous page)

def build(self):
self.setattr_device("core")
self.setattr_device("ttl0")

@kernel
def run(self):

self.core.reset()
for i in range(100):

self.ttl0.pulse(...)
rtio_log("ttl0", "i", i)
delay(...)

Afterwards, the recorded data can be extracted and written to a VCD file using artiq_coreanalyzer -w
rtio.vcd (see: Core device RTIO analyzer tool). VCD files can be viewed using third-party tools such as Gtk-
Wave.

6.6 Direct Memory Access (DMA)

DMA allows you to store fixed sequences of pulses in system memory, and have the DMA core in the FPGA play
them back at high speed. Pulse sequences that are too fast for the CPU (i.e. would cause RTIO underflows) can still
be generated using DMA. The only modification of the sequence that the DMA core supports is shifting it in time (so
it can be played back at any position of the timeline), everything else is fixed at the time of recording the sequence.

Try this:

from artiq.experiment import *

class DMAPulses(EnvExperiment):
def build(self):

self.setattr_device("core")
self.setattr_device("core_dma")
self.setattr_device("ttl0")

@kernel
def record(self):

with self.core_dma.record("pulses"):
all RTIO operations now go to the "pulses"
DMA buffer, instead of being executed immediately.
for i in range(50):

self.ttl0.pulse(100*ns)
delay(100*ns)

@kernel
def run(self):

self.core.reset()
self.record()
prefetch the address of the DMA buffer
for faster playback trigger
pulses_handle = self.core_dma.get_handle("pulses")
self.core.break_realtime()
while True:

execute RTIO operations in the DMA buffer
each playback advances the timeline by 50*(100+100) ns
self.core_dma.playback_handle(pulses_handle)

6.6. Direct Memory Access (DMA) 31

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

32 Chapter 6. Getting started with the core language

CHAPTER

SEVEN

COMPILER

The ARTIQ compiler transforms the Python code of the kernels into machine code executable on the core device. It is
invoked automatically when calling a function that uses the @kernel decorator.

7.1 Supported Python features

A number of Python features can be used inside a kernel for compilation and execution on the core device. They
include for and while loops, conditionals (if, else, elif), functions, exceptions, and statically typed variables
of the following types:

• Booleans

• 32-bit signed integers (default size)

• 64-bit signed integers (use numpy.int64 to convert)

• Double-precision floating point numbers

• Lists of any supported types

• String constants

• User-defined classes, with attributes of any supported types (attributes that are not used anywhere in the kernel
are ignored)

For a demonstration of some of these features, see the mandelbrot.py example.

When several instances of a user-defined class are referenced from the same kernel, every attribute must have the same
type in every instance of the class.

7.2 Remote procedure calls

Kernel code can call host functions without any additional ceremony. However, such functions are assumed to return
None, and if a value other than None is returned, an exception is raised. To call a host function returning a value other
than None its return type must be annotated using the standard Python syntax, e.g.:

def return_four() -> TInt32:
return 4

The Python types correspond to ARTIQ type annotations as follows:

33

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

Python ARTIQ
NoneType TNone
bool TBool
int TInt32 or TInt64
float TFloat
str TStr
list of T TList(T)
range TRange32, TRange64
numpy.int32 TInt32
numpy.int64 TInt64
numpy.float64 TFloat

7.3 Pitfalls

The ARTIQ compiler accepts nearly a strict subset of Python 3. However, by necessity there is a number of differences
that can lead to bugs.

Arbitrary-length integers are not supported at all on the core device; all integers are either 32-bit or 64-bit. This
especially affects calculations that result in a 32-bit signed overflow; if the compiler detects a constant that doesn’t
fit into 32 bits, the entire expression will be upgraded to 64-bit arithmetics, however if all constants are small, 32-bit
arithmetics will be used even if the result will overflow. Overflows are not detected.

The result of calling the builtin round function is different when used with the builtin float type and the
numpy.float64 type on the host interpreter; round(1.0) returns an integer value 1, whereas round(numpy.
float64(1.0)) returns a floating point value numpy.float64(1.0). Since both float and numpy.
float64 are mapped to the builtin float type on the core device, this can lead to problems in functions marked
@portable; the workaround is to explicitly cast the argument of round to float: round(float(numpy.
float64(1.0))) returns an integer on the core device as well as on the host interpreter.

7.4 Asynchronous RPCs

If an RPC returns no value, it can be invoked in a way that does not block until the RPC finishes execution, but
only until it is queued. (Submitting asynchronous RPCs too rapidly, as well as submitting asynchronous RPCs with
arguments that are too large, can still block until completion.)

To define an asynchronous RPC, use the @rpc annotation with a flag:

@rpc(flags={"async"})
def record_result(x):

self.results.append(x)

7.5 Additional optimizations

The ARTIQ compiler runs many optimizations, most of which perform well on code that has pristine Python semantics.
It also contains more powerful, and more invasive, optimizations that require opt-in to activate.

7.5.1 Fast-math flags
The compiler does not normally perform algebraically equivalent transformations on floating-point expressions, be-
cause this can dramatically change the result. However, it can be instructed to do so if all of the following is true:

• Arguments and results will not be not-a-number or infinity values;

34 Chapter 7. Compiler

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

• The sign of a zero value is insignificant;

• Any algebraically equivalent transformations, such as reassociation or replacing division with multiplication by
reciprocal, are legal to perform.

If this is the case for a given kernel, a fast-math flag can be specified to enable more aggressive optimization for
this specific kernel:

@kernel(flags={"fast-math"})
def calculate(x, y, z):

return x * z + y * z

This flag particularly benefits loops with I/O delays performed in fractional seconds rather than machine units, as well
as updates to DDS phase and frequency.

7.5.2 Kernel invariants
The compiler attempts to remove or hoist out of loops any redundant memory load operations, as well as propagate
known constants into function bodies, which can enable further optimization. However, it must make conservative
assumptions about code that it is unable to observe, because such code can change the value of the attribute, making
the optimization invalid.

When an attribute is known to never change while the kernel is running, it can be marked as a kernel invariant to
enable more aggressive optimization for this specific attribute.

class Converter:
kernel_invariants = {"ratio"}

def __init__(self, ratio=1.0):
self.ratio = ratio

@kernel
def convert(self, value):

return value * self.ratio ** 2

In the synthetic example above, the compiler will be able to detect that the result of evaluating self.ratio ** 2
never changes and replace it with a constant, removing an expensive floating-point operation.

class Worker:
kernel_invariants = {"interval"}

def __init__(self, interval=1.0*us):
self.interval = interval

def work(self):
something useful

class Looper:
def __init__(self, worker):

self.worker = worker

@kernel
def loop(self):

for _ in range(100):
delay(self.worker.interval / 5.0)
self.worker.work()

In the synthetic example above, the compiler will be able to detect that the result of evaluating self.interval /
5.0 never changes, even though it neither knows the value of self.worker.interval beforehand nor can it see

7.5. Additional optimizations 35

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

through the self.worker.work() function call, and hoist the expensive floating-point division out of the loop,
transforming the code for loop into an equivalent of the following:

@kernel
def loop(self):

precomputed_delay_mu = self.core.seconds_to_mu(self.worker.interval / 5.0)
for _ in range(100):

delay_mu(precomputed_delay_mu)
self.worker.work()

36 Chapter 7. Compiler

CHAPTER

EIGHT

GETTING STARTED WITH THE MANAGEMENT SYSTEM

The management system is the high-level part of ARTIQ that schedules the experiments, distributes and stores the
results, and manages devices and parameters.

The manipulations described in this tutorial can be carried out using a single computer, without any special hardware.

8.1 Starting your first experiment with the master

In the previous tutorial, we used the artiq_run utility to execute our experiments, which is a simple stand-alone
tool that bypasses the ARTIQ management system. We will now see how to run an experiment using the master (the
central program in the management system that schedules and executes experiments) and the dashboard (that connects
to the master and controls it).

First, create a folder ~/artiq-master and copy the file device_db.py (containing the device database) found
in the examples/master directory from the ARTIQ sources. The master uses those files in the same way as
artiq_run.

Then create a ~/artiq-master/repository sub-folder to contain experiments. The master scans this
repository folder to determine what experiments are available (the name of the folder can be changed using
-r).

Create a very simple experiment in ~/artiq-master/repository and save it as mgmt_tutorial.py:

from artiq.experiment import *

class MgmtTutorial(EnvExperiment):
"""Management tutorial"""
def build(self):

pass # no devices used

def run(self):
print("Hello World")

Start the master with:

$ cd ~/artiq-master
$ artiq_master

This last command should not return, as the master keeps running.

Now, start the dashboard with the following commands in another terminal:

$ cd ~
$ artiq_dashboard

37

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

Note: The artiq_dashboard program uses a file called artiq_dashboard.pyon in the current directory to
save and restore the GUI state (window/dock positions, last values entered by the user, etc.).

The dashboard should display the list of experiments from the repository folder in a dock called “Explorer”. There
should be only the experiment we created. Select it and click “Submit”, then look at the “Log” dock for the output
from this simple experiment.

Note: Multiple clients may be connected at the same time, possibly on different machines, and will be synchronized.
See the -s option of artiq_dashboard and the --bind option of artiq_master to use the network. Both
IPv4 and IPv6 are supported.

8.2 Adding an argument

Experiments may have arguments whose values can be set in the dashboard and used in the experiment’s code. Modify
the experiment as follows:

def build(self):
self.setattr_argument("count", NumberValue(ndecimals=0, step=1))

def run(self):
for i in range(self.count):

print("Hello World", i)

NumberValue represents a floating point numeric argument. There are many other types, see artiq.language.
environment and artiq.language.scan.

Use the command-line client to trigger a repository rescan:

artiq_client scan-repository

The dashboard should now display a spin box that allows you to set the value of the count argument. Try submitting
the experiment as before.

8.3 Setting up Git integration

So far, we have used the bare filesystem for the experiment repository, without any version control. Using Git to host
the experiment repository helps with the tracking of modifications to experiments and with the traceability of a result
to a particular version of an experiment.

Note: The workflow we will describe in this tutorial corresponds to a situation where the ARTIQ master machine is
also used as a Git server where multiple users may push and pull code. The Git setup can be customized according
to your needs; the main point to remember is that when scanning or submitting, the ARTIQ master uses the internal
Git data (not any working directory that may be present) to fetch the latest fully completed commit at the repository’s
head.

We will use the current repository folder as working directory for making local modifications to the experiments,
move it away from the master data directory, and create a new repository folder that holds the Git data used by
the master. Stop the master with Ctrl-C and enter the following commands:

38 Chapter 8. Getting started with the management system

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

$ cd ~/artiq-master
$ mv repository ~/artiq-work
$ mkdir repository
$ cd repository
$ git init --bare

Now, push data to into the bare repository. Initialize a regular (non-bare) Git repository into our working directory:

$ cd ~/artiq-work
$ git init

Then commit our experiment:

$ git add mgmt_tutorial.py
$ git commit -m "First version of the tutorial experiment"

and finally, push the commit into the master’s bare repository:

$ git remote add origin ~/artiq-master/repository
$ git push -u origin master

Start the master again with the -g flag, telling it to treat the contents of the repository folder (not artiq-work)
as a bare Git repository:

$ cd ~/artiq-master
$ artiq_master -g

Note: You need at least one commit in the repository before you can start the master.

There should be no errors displayed, and if you start the GUI again, you will find the experiment there.

To complete the master configuration, we must tell Git to make the master rescan the repository when new data is added
to it. Create a file ~/artiq-master/repository/hooks/post-receive with the following contents:

#!/bin/sh
artiq_client scan-repository --async

Then set the execution permission on it:

$ chmod 755 ~/artiq-master/repository/hooks/post-receive

Note: Remote machines may also push and pull into the master’s bare repository using e.g. Git over SSH.

Let’s now make a modification to the experiment. In the source present in the working directory, add an exclamation
mark at the end of “Hello World”. Before committing it, check that the experiment can still be executed correctly by
running it directly from the filesystem using:

$ artiq_client submit ~/artiq-work/mgmt_tutorial.py

Note: You may also use the “Open file outside repository” feature of the GUI, by right-clicking on the explorer.

8.3. Setting up Git integration 39

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

Note: Submitting an experiment from the repository using the artiq_client command-line tool is done using
the -R flag.

Verify the log in the GUI. If you are happy with the result, commit the new version and push it into the master’s
repository:

$ cd ~/artiq-work
$ git commit -a -m "More enthusiasm"
$ git push

Note: Notice that commands other than git push are not needed anymore.

The master should now run the new version from its repository.

As an exercise, add another experiment to the repository, commit and push the result, and verify that it appears in the
GUI.

8.4 Datasets

Modify the run() method of the experiment as follows:

def run(self):
self.set_dataset("parabola", np.full(self.count, np.nan), broadcast=True)
for i in range(self.count):

self.mutate_dataset("parabola", i, i*i)
time.sleep(0.5)

Note: You need to import the time module, and the numpy module as np.

Commit, push and submit the experiment as before. Go to the “Datasets” dock of the GUI and observe that a new
dataset has been created. We will now create a new XY plot showing this new result.

Plotting in the ARTIQ dashboard is achieved by programs called “applets”. Applets are independent programs that add
simple GUI features and are run as separate processes (to achieve goals of modularity and resilience against poorly
written applets). Users may write their own applets, or use those supplied with ARTIQ (in the artiq.applets
module) that cover basic plotting.

Applets are configured through their command line to select parameters such as the names of the datasets to plot. The
list of command-line options can be retrieved using the -h option; for example you can run python3 -m artiq.
applets.plot_xy -h in a terminal.

In our case, create a new applet from the XY template by right-clicking on the applet list, and edit the applet command
line so that it retrieves the parabola dataset. Run the experiment again, and observe how the points are added one
by one to the plot.

After the experiment has finished executing, the results are written to a HDF5 file that resides in ~/
artiq-master/results/<date>/<hour>. Open that file with HDFView or h5dump, and observe
the data we just generated as well as the Git commit ID of the experiment (a hexadecimal hash such as
947acb1f90ae1b8862efb489a9cc29f7d4e0c645 that represents the data at a particular time in the Git
repository). The list of Git commit IDs can be found using the git log command in ~/artiq-work.

40 Chapter 8. Getting started with the management system

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

Note: HDFView and h5dump are third-party tools not supplied with ARTIQ.

8.4. Datasets 41

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

42 Chapter 8. Getting started with the management system

CHAPTER

NINE

CORE DEVICE

The core device is a FPGA-based hardware component that contains a softcore CPU tightly coupled with the so-called
RTIO core that provides precision timing. The CPU executes Python code that is statically compiled by the ARTIQ
compiler, and communicates with the core device peripherals (TTL, DDS, etc.) over the RTIO core. This architecture
provides high timing resolution, low latency, low jitter, high level programming capabilities, and good integration with
the rest of the Python experiment code.

While it is possible to use all the other parts of ARTIQ (controllers, master, GUI, dataset management, etc.) without a
core device, many experiments require it.

9.1 Flash storage

The core device contains some flash space that can be used to store configuration data.

This storage area is used to store the core device MAC address, IP address and even the idle kernel.

The flash storage area is one sector (typically 64 kB) large and is organized as a list of key-value records.

This flash storage space can be accessed by using artiq_coremgmt (see: Core device management tool).

9.2 FPGA board ports

All boards have a serial interface running at 115200bps 8-N-1 that can be used for debugging.

9.2.1 Kasli
Kasli is a versatile core device designed for ARTIQ as part of the Sinara family of boards. All variants support
interfacing to various EEM daughterboards (TTL, DDS, ADC, DAC. . .) connected directly to it.

Standalone variants

Kasli is connected to the network using a 1000Base-X SFP module. No-name BiDi (1000Base-BX) modules have
been used successfully. The SFP module for the network should be installed into the SFP0 cage. The other SFP cages
are not used.

The RTIO clock frequency is 125MHz or 150MHz, which is generated by the Si5324.

DRTIO master variants

Kasli can be used as a DRTIO master that provides local RTIO channels and can additionally control one DRTIO
satellite.

The RTIO clock frequency is 125MHz or 150MHz, which is generated by the Si5324. The DRTIO line rate is 2.5Gbps
or 3Gbps.

43

https://github.com/m-labs/sinara/wiki/Kasli
https://github.com/m-labs/sinara/wiki
https://www.fs.com

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

As with the standalone configuration, the SFP module for the Ethernet network should be installed into the SFP0 cage.
The DRTIO connections are on SFP1 and SFP2, and optionally on the SATA connector.

DRTIO satellite/repeater variants

Kasli can be used as a DRTIO satellite with a 125MHz or 150MHz RTIO clock and a 2.5Gbps or 3Gbps DRTIO line
rate.

The DRTIO upstream connection is on SFP0 or optionally on the SATA connector, and the remaining SFPs are down-
stream ports.

9.2.2 KC705
An alternative target board for the ARTIQ core device is the KC705 development board from Xilinx. It supports the
NIST CLOCK and QC2 hardware (FMC).

Common problems

• The SW13 switches on the board need to be set to 00001.

• When connected, the CLOCK adapter breaks the JTAG chain due to TDI not being connected to TDO on the
FMC mezzanine.

• On some boards, the JTAG USB connector is not correctly soldered.

VADJ

With the NIST CLOCK and QC2 adapters, for safe operation of the DDS buses (to prevent damage to the IO banks of
the FPGA), the FMC VADJ rail of the KC705 should be changed to 3.3V. Plug the Texas Instruments USB-TO-GPIO
PMBus adapter into the PMBus connector in the corner of the KC705 and use the Fusion Digital Power Designer
software to configure (requires Windows). Write to chip number U55 (address 52), channel 4, which is the VADJ rail,
to make it 3.3V instead of 2.5V. Power cycle the KC705 board to check that the startup voltage on the VADJ rail is
now 3.3V.

NIST CLOCK

With the CLOCK hardware, the TTL lines are mapped as follows:

RTIO channel TTL line Capability
3,7,11,15 TTL3,7,11,15 Input+Output
0-2,4-6,8-10,12-14 TTL0-2,4-6,8-10,12-14 Output
16 PMT0 Input
17 PMT1 Input
18 SMA_GPIO_N Input+Output
19 LED Output
20 AMS101_LDAC_B Output
21 LA32_P Clock

The board has RTIO SPI buses mapped as follows:

RTIO channel CS_N MOSI MISO CLK
22 AMS101_CS_N AMS101_MOSI AMS101_CLK
23 SPI0_CS_N SPI0_MOSI SPI0_MISO SPI0_CLK
24 SPI1_CS_N SPI1_MOSI SPI1_MISO SPI1_CLK
25 SPI2_CS_N SPI2_MOSI SPI2_MISO SPI2_CLK
26 MMC_SPI_CS_N MMC_SPI_MOSI MMC_SPI_MISO MMC_SPI_CLK

44 Chapter 9. Core device

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

The DDS bus is on channel 27.

NIST QC2

With the QC2 hardware, the TTL lines are mapped as follows:

RTIO channel TTL line Capability
0-39 TTL0-39 Input+Output
40 SMA_GPIO_N Input+Output
41 LED Output
42 AMS101_LDAC_B Output
43, 44 CLK0, CLK1 Clock

The board has RTIO SPI buses mapped as follows:

RTIO channel CS_N MOSI MISO CLK
45 AMS101_CS_N AMS101_MOSI AMS101_CLK
46 SPI0_CS_N SPI0_MOSI SPI0_MISO SPI0_CLK
47 SPI1_CS_N SPI1_MOSI SPI1_MISO SPI1_CLK
48 SPI2_CS_N SPI2_MOSI SPI2_MISO SPI2_CLK
49 SPI3_CS_N SPI3_MOSI SPI3_MISO SPI3_CLK

There are two DDS buses on channels 50 (LPC, DDS0-DDS11) and 51 (HPC, DDS12-DDS23).

The QC2 hardware uses TCA6424A I2C I/O expanders to define the directions of its TTL buffers. There is one such
expander per FMC card, and they are selected using the PCA9548 on the KC705.

To avoid I/O contention, the startup kernel should first program the TCA6424A expanders and then call output()
on all TTLInOut channels that should be configured as outputs.

See artiq.coredevice.i2c for more details.

Clocking

The KC705 supports an internal 125MHz RTIO clock (based on its crystal oscillator) and an external clock, that can
be selected using the rtio_clock configuration entry.

9.2. FPGA board ports 45

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

46 Chapter 9. Core device

CHAPTER

TEN

MANAGEMENT SYSTEM

The management system described below is optional: experiments can be run one by one using artiq_run, and the
controllers can run stand-alone (without a controller manager). For their very first steps with ARTIQ or in simple or
particular cases, users do not need to deploy the management system.

10.1 Components

10.1.1 Master
The master is responsible for managing the parameter and device databases, the experiment repository, scheduling and
running experiments, archiving results, and distributing real-time results.

The master is a headless component, and one or several clients (command-line or GUI) use the network to interact
with it.

10.1.2 Controller manager
Controller managers are responsible for running and stopping controllers on a machine. There is one controller
manager per network node that runs controllers.

A controller manager connects to the master and uses the device database to determine what controllers need to be
run. Changes in the device database are tracked by the manager and controllers are started and stopped accordingly.

Controller managers use the local network address of the connection to the master to filter the device database and run
only those controllers that are allocated to the current node. Hostname resolution is supported.

Warning: With some network setups, the current machine’s hostname without the domain name resolves to a
localhost address (127.0.0.1 or even 127.0.1.1). If you wish to use controllers across a network, make sure that
the hostname you provide resolves to an IP address visible on the network (e.g. try providing the full hostname
including the domain name).

10.1.3 Command-line client
The command-line client connects to the master and permits modification and monitoring of the databases, monitoring
the experiment schedule and log, and submitting experiments.

10.1.4 Dashboard
The dashboard connects to the master and is the main way of interacting with it. The main features of the dashboard
are scheduling of experiments, setting of their arguments, examining the schedule, displaying real-time results, and
debugging TTL and DDS channels in real time.

47

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

10.2 Experiment scheduling

10.2.1 Basics
To use hardware resources more efficiently, potentially compute-intensive pre-computation and analysis phases of
other experiments are executed in parallel with the body of the current experiment that accesses the hardware.

See also:

These steps are implemented in Experiment. However, user-written experiments should usually derive from (sub-
class) artiq.language.environment.EnvExperiment.

Experiments are divided into three phases that are programmed by the user:

1. The preparation stage, that pre-fetches and pre-computes any data that necessary to run the experiment. Users
may implement this stage by overloading the prepare() method. It is not permitted to access hardware in
this stage, as doing so may conflict with other experiments using the same devices.

2. The running stage, that corresponds to the body of the experiment, and typically accesses hardware. Users must
implement this stage and overload the run() method.

3. The analysis stage, where raw results collected in the running stage are post-processed and may lead to updates
of the parameter database. This stage may be implemented by overloading the analyze() method.

Note: Only the run() method implementation is mandatory; if the experiment does not fit into the pipelined
scheduling model, it can leave one or both of the other methods empty (which is the default).

The three phases of several experiments are then executed in a pipelined manner by the scheduler in the ARTIQ
master: experiment A executes its preparation stage, then experiment A executes its running stage while experiment
B executes its preparation stage, and so on.

Note: The next experiment (B) may start run()ing before all events placed into (core device) RTIO buffers by the
previous experiment (A) have been executed. These events can then execute while experiment B is run()ing. Using
reset() clears the RTIO buffers, discarding pending events, including those left over from A.

Interactions between events of different experiments can be avoided by preventing the run() method of experiment
A from returning until all events have been executed. This is discussed in the section on RTIO Synchronization.

10.2.2 Priorities and timed runs
When determining what experiment to begin executing next (i.e. entering the preparation stage), the scheduling looks
at the following factors, by decreasing order of precedence:

1. Experiments may be scheduled with a due date. If there is one and it is not reached yet, the experiment is not
eligible for preparation.

2. The integer priority value specified by the user.

3. The due date itself. The earlier the due date, the earlier the experiment is scheduled.

4. The run identifier (RID), an integer that is incremented at each experiment submission. This ensures that, all
other things being equal, experiments are scheduled in the same order as they are submitted.

10.2.3 Pauses
In the run stage, an experiment may yield to the scheduler by calling the pause() method of the scheduler.
If there are other experiments with higher priority (e.g. a high-priority timed experiment has reached its due

48 Chapter 10. Management system

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

date), they are preemptively executed, and then pause() returns. Otherwise, pause() returns immediately. To
check whether pause() would in fact not return immediately, use artiq.master.scheduler.Scheduler.
check_pause().

The experiment must place the hardware in a safe state and disconnect from the core device (typically, by call-
ing self.core.comm.close() from the kernel, which is equivalent to artiq.coredevice.core.Core.
close()) before calling pause().

Accessing the pause() and check_pause() methods is done through a virtual device called scheduler that
is accessible to all experiments. The scheduler virtual device is requested like regular devices using get_device()
(self.get_device()) or setattr_device() (self.setattr_device()).

check_pause() can be called (via RPC) from a kernel, but pause() must not.

10.2.4 Multiple pipelines
Multiple pipelines can operate in parallel inside the same master. It is the responsibility of the user to ensure that
experiments scheduled in one pipeline will never conflict with those of another pipeline over resources (e.g. same
devices).

Pipelines are identified by their name, and are automatically created (when an experiment is scheduled with a pipeline
name that does not exist) and destroyed (when they run empty).

10.3 Git integration

The master may use a Git repository for the storage of experiment source code. Using Git has many advantages. For
example, each result file (HDF5) contains the commit ID corresponding to the exact source code that produced it,
which helps reproducibility.

Even though the master also supports non-bare repositories, it is recommended to use a bare repository so that it can
easily support push transactions from clients. Create it with e.g.:

$ mkdir experiments
$ cd experiments
$ git init --bare

You want Git to notify the master every time the repository is pushed to (updated), so that it is rescanned for experi-
ments and e.g. the GUI controls and the experiment list are updated.

Create a file named post-receive in the hooks folder (this folder has been created by the git command),
containing the following:

#!/bin/sh
artiq_client scan-repository

Then set the execution permission on it:

$ chmod 755 hooks/post-receive

You may now run the master with the Git support enabled:

$ artiq_master -g -r /path_to/experiments

Push commits containing experiments to the bare repository using e.g. Git over SSH, and the new experiments should
automatically appear in the dashboard.

Note: If you plan to run the ARTIQ system entirely on a single machine, you may also consider using a non-bare
repository and the post-commit hook to trigger repository scans every time you commit changes (locally). The

10.3. Git integration 49

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

ARTIQ master never uses the repository’s working directory, but only what is committed. More precisely, when
scanning the repository, it fetches the last (atomically) completed commit at that time of repository scan and checks
it out in a temporary folder. This commit ID is used by default when subsequently submitting experiments. There
is one temporary folder by commit ID currently referenced in the system, so concurrently running experiments from
different repository revisions is fully supported by the master.

The dashboard always runs experiments from the repository. The command-line client, by default, runs experiment
from the raw filesystem (which is useful for iterating rapidly without creating many disorganized commits). If you
want to use the repository instead, simply pass the -R option.

10.4 Scheduler API reference

The scheduler is exposed to the experiments via a virtual device called scheduler. It can be requested like any
regular device, and then the methods below can be called on the returned object.

The scheduler virtual device also contains the attributes rid, pipeline_name, priority and expid that contain
the corresponding information about the current run.

class artiq.master.scheduler.Scheduler(ridc, worker_handlers, experiment_db)

check_pause(rid)
Returns True if there is a condition that could make pause not return immediately (termination requested
or higher priority run).

The typical purpose of this function is to check from a kernel whether returning control to the host and
pausing would have an effect, in order to avoid the cost of switching kernels in the common case where
pause does nothing.

This function does not have side effects, and does not have to be followed by a call to pause.

delete(rid)
Kills the run with the specified RID.

get_status()
Returns a dictionary containing information about the runs currently tracked by the scheduler.

Must not be modified.

request_termination(rid)
Requests graceful termination of the run with the specified RID.

submit(pipeline_name, expid, priority=0, due_date=None, flush=False)
Submits a new run.

When called through an experiment, the default values of pipeline_name, expid and priority
correspond to those of the current run.

10.5 Client control broadcasts (CCBs)

Client control broadcasts are requests made by experiments for clients to perform some action. Experiments do so by
requesting the ccb virtual device and calling its issue method. The first argument of the issue method is the name
of the broadcast, and any further positional and keyword arguments are passed to the broadcast.

CCBs are used by experiments to configure applets in the dashboard, for example for plotting purposes.

class artiq.dashboard.applets_ccb.AppletsCCBDock(*args, **kwargs)

50 Chapter 10. Management system

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

ccb_create_applet(name, command, group=None, code=None)
Requests the creation of a new applet.

An applet is identified by its name and an optional list of groups that represent a path (nested groups). If
group is a string, it corresponds to a single group. If group is None or an empty list, it corresponds to
the root.

command gives the command line used to run the applet, as if it was started from a shell. The dashboard
substitutes variables such as $python that gives the complete file name of the Python interpreter running
the dashboard.

If the name already exists (after following any specified groups), the command or code of the existing
applet with that name is replaced, and the applet is shown at its previous position. If not, a new applet
entry is created and the applet is shown at any position on the screen.

If the group(s) do not exist, they are created.

If code is not None, it should be a string that contains the full source code of the applet. In this case,
command is used to specify (optional) command-line arguments to the applet.

This function is called when a CCB create_applet is issued.

ccb_disable_applet(name, group=None)
Disables an applet.

The applet is identified by its name, after following any specified groups.

This function is called when a CCB disable_applet is issued.

ccb_disable_applet_group(group)
Disables all the applets in a group.

If the group is nested, group should be a list, with the names of the parents preceding the name of the
group to disable.

This function is called when a CCB disable_applet_group is issued.

10.6 Front-end tool reference

10.6.1 artiq_master
ARTIQ master

usage: artiq_master [-h] [--bind BIND] [--no-localhost-bind]
[--port-notify PORT_NOTIFY] [--port-control PORT_CONTROL]
[--port-logging PORT_LOGGING]
[--port-broadcast PORT_BROADCAST] [--device-db DEVICE_DB]
[--dataset-db DATASET_DB] [-g] [-r REPOSITORY] [-v] [-q]
[--log-file LOG_FILE]
[--log-backup-count LOG_BACKUP_COUNT] [--name NAME]

Named Arguments

--name friendly name, displayed in dashboards to identify master instead of server ad-
dress

network server

--bind additional hostname or IP address to bind to; use ‘*’ to bind to all interfaces
(default: [])

10.6. Front-end tool reference 51

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

Default: []

--no-localhost-bind do not implicitly also bind to localhost addresses

Default: False

--port-notify TCP port for notifications connections (default: 3250)

Default: 3250

--port-control TCP port for control connections (default: 3251)

Default: 3251

--port-logging TCP port for remote logging connections (default: 1066)

Default: 1066

--port-broadcast TCP port for broadcasts connections (default: 1067)

Default: 1067

databases

--device-db device database file (default: ‘“device_db.py”’)

Default: “device_db.py”

--dataset-db dataset file (default: ‘“dataset_db.pyon”’)

Default: “dataset_db.pyon”

repository

-g, --git use the Git repository backend

Default: False

-r, --repository path to the repository (default: ‘“repository”’)

Default: “repository”

logging

-v, --verbose increase logging level of the master process

Default: 0

-q, --quiet decrease logging level of the master process

Default: 0

--log-file store logs in rotated files; set the base filename

Default: “”

--log-backup-count number of old log files to keep, or 0 to keep all log files. ‘.<yyyy>-<mm>-<dd>’
is added to the base filename (default: 0)

Default: 0

10.6.2 artiq_ctlmgr
ARTIQ controller manager

52 Chapter 10. Management system

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

usage: artiq_ctlmgr [-h] [-v] [-q] [--version] [-s SERVER]
[--port-notify PORT_NOTIFY] [--port-logging PORT_LOGGING]
[--retry-master RETRY_MASTER] [--bind BIND]
[--no-localhost-bind] [--port-control PORT_CONTROL]

Named Arguments

-s, --server hostname or IP of the master to connect to

Default: “::1”

--port-notify TCP port to connect to for notifications

Default: 3250

--port-logging TCP port to connect to for logging

Default: 1066

--retry-master retry timer for reconnecting to master

Default: 5.0

common

-v, --verbose increase logging level

Default: 0

-q, --quiet decrease logging level

Default: 0

--version print the ARTIQ version number

network server

--bind additional hostname or IP address to bind to; use ‘*’ to bind to all interfaces
(default: [])

Default: []

--no-localhost-bind do not implicitly also bind to localhost addresses

Default: False

--port-control TCP port for control connections (default: 3249)

Default: 3249

10.6.3 artiq_client
ARTIQ CLI client

usage: artiq_client [-h] [-s SERVER] [--port PORT] [-v] [-q] [--version]
{submit,delete,set-dataset,del-dataset,show,scan-devices,scan-

↪→repository,ls}
...

Positional Arguments

action Possible choices: submit, delete, set-dataset, del-dataset, show, scan-devices,
scan-repository, ls

10.6. Front-end tool reference 53

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

Named Arguments

-s, --server hostname or IP of the master to connect to

Default: “::1”

--port TCP port to use to connect to the master

common

-v, --verbose increase logging level

Default: 0

-q, --quiet decrease logging level

Default: 0

--version print the ARTIQ version number

Sub-commands:

submit

submit an experiment

artiq_client submit [-h] [-p PIPELINE] [-P PRIORITY] [-t TIMED] [-f] [-R]
[-r REVISION] [-c CLASS_NAME]
FILE [ARGUMENTS [ARGUMENTS ...]]

Positional Arguments

FILE file containing the experiment to run

ARGUMENTS run arguments

Named Arguments

-p, --pipeline pipeline to run the experiment in (default: “main”)

Default: “main”

-P, --priority priority (higher value means sooner scheduling, default: 0)

Default: 0

-t, --timed set a due date for the experiment

-f, --flush flush the pipeline before preparing the experiment

Default: False

-R, --repository use the experiment repository

Default: False

-r, --revision use a specific repository revision (defaults to head, ignored without -R)

-c, --class-name name of the class to run

54 Chapter 10. Management system

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

delete

delete an experiment from the schedule

artiq_client delete [-h] [-g] RID

Positional Arguments

RID run identifier (RID)

Named Arguments

-g request graceful termination

Default: False

set-dataset

add or modify a dataset

artiq_client set-dataset [-h] [-p | -n] NAME VALUE

Positional Arguments

NAME name of the dataset

VALUE value in PYON format

Named Arguments

-p, --persist make the dataset persistent

Default: False

-n, --no-persist make the dataset non-persistent

Default: False

del-dataset

delete a dataset

artiq_client del-dataset [-h] name

Positional Arguments

name name of the dataset

show

show schedule, log, devices or datasets

artiq_client show [-h] WHAT

10.6. Front-end tool reference 55

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

Positional Arguments

WHAT Possible choices: schedule, log, ccb, devices, datasets

select object to show: [‘schedule’, ‘log’, ‘ccb’, ‘devices’, ‘datasets’]

scan-devices

trigger a device database (re)scan

artiq_client scan-devices [-h]

scan-repository

trigger a repository (re)scan

artiq_client scan-repository [-h] [--async] [REVISION]

Positional Arguments

REVISION use a specific repository revision (defaults to head)

Named Arguments

--async trigger scan and return immediately

Default: False

ls

list a directory on the master

artiq_client ls [-h] [directory]

Positional Arguments

directory Default: “”

10.6.4 artiq_dashboard
ARTIQ Dashboard

usage: artiq_dashboard [-h] [-s SERVER] [--port-notify PORT_NOTIFY]
[--port-control PORT_CONTROL]
[--port-broadcast PORT_BROADCAST] [--db-file DB_FILE]
[-v] [-q] [--version]

Named Arguments

-s, --server hostname or IP of the master to connect to

Default: “::1”

--port-notify TCP port to connect to for notifications

Default: 3250

56 Chapter 10. Management system

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

--port-control TCP port to connect to for control

Default: 3251

--port-broadcast TCP port to connect to for broadcasts

Default: 1067

--db-file database file for local GUI settings

common

-v, --verbose increase logging level

Default: 0

-q, --quiet decrease logging level

Default: 0

--version print the ARTIQ version number

10.6.5 artiq_session
ARTIQ session manager. Automatically runs the master, dashboard and local controller manager on the current ma-
chine.

usage: artiq_session [-h] [-m M] [-d D] [-c C]

Named Arguments

-m add argument to the master command line

Default: []

-d add argument to the dashboard command line

Default: []

-c add argument to the controller manager command line

Default: []

10.6. Front-end tool reference 57

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

58 Chapter 10. Management system

CHAPTER

ELEVEN

THE ENVIRONMENT

Experiments interact with an environment that consists of devices, arguments and datasets. Access to the environment
is handled by the class artiq.language.environment.EnvExperiment that experiments should derive
from.

11.1 The device database

The device database contains information about the devices available in a ARTIQ installation, what drivers to use,
what controllers to use and on what machine, and where the devices are connected.

The master (or artiq_run) instantiates the device drivers (and the RPC clients in the case of controllers) for the
experiments based on the contents of the device database.

The device database is stored in the memory of the master and is generated by a Python script typically called
device_db.py. That script must define a global variable device_db with the contents of the database. The
device database is a Python dictionary whose keys are the device names, and values can have several types.

11.1.1 Local devices
Local device entries are dictionaries that contain a type field set to local. They correspond to device drivers
that are created locally on the master (as opposed to going through the controller mechanism). The fields module
and class determine the location of the Python class that the driver consists of. The arguments field is another
(possibly empty) dictionary that contains arguments to pass to the device driver constructor.

11.1.2 Controllers
Controller entries are dictionaries whose type field is set to controller. When an experiment requests such a
device, a RPC client (see artiq.protocols.pc_rpc) is created and connected to the appropriate controller.
Controller entries are also used by controller managers to determine what controllers to run.

The best_effort field is a boolean that determines whether to use artiq.protocols.pc_rpc.Client or
artiq.protocols.pc_rpc.BestEffortClient. The host and port fields configure the TCP connection.
The target field contains the name of the RPC target to use (you may use artiq_rpctool on a controller to list
its targets). Controller managers run the command field in a shell to launch the controller, after replacing {port}
and {bind} by respectively the TCP port the controller should listen to (matches the port field) and an appropriate
bind address for the controller’s listening socket.

11.1.3 Aliases
If an entry is a string, that string is used as a key for another lookup in the device database.

59

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

11.2 Arguments

Arguments are values that parameterize the behavior of an experiment and are set before the experiment is executed.

Requesting the values of arguments can only be done in the build phase of an experiment. The value requests are also
used to define the GUI widgets shown in the explorer when the experiment is selected.

11.3 Datasets

Datasets are values (possibly arrays) that are read and written by experiments and live in a key-value store.

A dataset may be broadcasted, that is, distributed to all clients connected to the master. For example, the ARTIQ GUI
may plot it while the experiment is in progress to give rapid feedback to the user. Broadcasted datasets live in a global
key-value store; experiments should use distinctive real-time result names in order to avoid conflicts. Broadcasted
datasets may be used to communicate values across experiments; for example, a periodic calibration experiment may
update a dataset read by payload experiments. Broadcasted datasets are replaced when a new dataset with the same
key (name) is produced.

Broadcasted datasets may be persistent: the master stores them in a file typically called dataset_db.pyon so they
are saved across master restarts.

Datasets produced by an experiment run may be archived in the HDF5 output for that run.

60 Chapter 11. The environment

CHAPTER

TWELVE

DISTRIBUTED REAL TIME INPUT/OUTPUT (DRTIO)

DRTIO is a time and data transfer system that allows ARTIQ RTIO channels to be distributed among several satellite
devices synchronized and controlled by a central core device.

The link is a high speed duplex serial line operating at 1Gbps or more, over copper or optical fiber.

The main source of DRTIO traffic is the remote control of RTIO output and input channels. The protocol is optimized
to maximize throughput and minimize latency, and handles flow control and error conditions (underflows, overflows,
etc.)

The DRTIO protocol also supports auxiliary, low-priority and non-realtime traffic. The auxiliary channel supports
overriding and monitoring TTL I/Os. Auxiliary traffic never interrupts or delays the main traffic, so that it cannot
cause unexpected poor performance (e.g. RTIO underflows).

Time transfer and clock syntonization is typically done over the serial link alone. The DRTIO code is organized as
much as possible to support porting to different types of transceivers (Xilinx MGTs, Altera MGTs, soft transceivers
running off regular FPGA IOs, etc.) and different synchronization mechanisms.

The lower layers of DRTIO are similar to White Rabbit, with the following main differences:

• lower latency

• deterministic latency

• real-time/auxiliary channels

• higher bandwidth

• no Ethernet compatibility

• only star or tree topologies are supported

From ARTIQ kernels, DRTIO channels are used in the same way as local RTIO channels.

12.1 Using DRTIO

12.1.1 Terminology
In a system of interconnected DRTIO devices, each RTIO core (driving RTIO PHYs; for example a RTIO core would
connect to a large bank of TTL signals) is assigned a number and is called a destination. One DRTIO device normally
contains one RTIO core.

On one DRTIO device, the immediate path that a RTIO request must take is called a hop: the request can be sent to
the local RTIO core, or to another device downstream. Each possible hop is assigned a number. Hop 0 is normally the
local RTIO core, and hops 1 and above correspond to the respective downstream ports of the device.

DRTIO devices are arranged in a tree topology, with the core device at the root. For each device, its distance from the
root (in number of devices that are crossed) is called its rank. The root has rank 0, the devices immediately connected
to it have rank 1, and so on.

61

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

12.1.2 The routing table
The routing table defines, for each destination, the list of hops (“route”) that must be taken from the root in order to
reach it.

It is stored in a binary format that can be manipulated with the artiq_route utility. The binary file is then programmed
into the flash storage of the core device under the routing_table key. It is automatically distributed to downstream
devices when the connections are established. Modifying the routing table requires rebooting the core device for the
new table to be taken into account.

All routes must end with the local RTIO core of the last device (0).

The local RTIO core of the core device is a destination like any other, and it needs to be explicitly part of the routing
table for kernels to be able to access it.

If no routing table is programmed, the core device takes a default routing table for a star topology (i.e. with no
devices of rank 2 or above), with destination 0 being the core device’s local RTIO core and destinations 1 and above
corresponding to devices on the respective downstream ports.

Here is an example of creating and programming a routing table for a chain of 3 devices:

create an empty routing table
$ artiq_route rt.bin init

set destination 0 to the local RTIO core
$ artiq_route rt.bin set 0 0

for destination 1, first use hop 1 (the first downstream port)
then use the local RTIO core of that second device.
$ artiq_route rt.bin set 1 1 0

for destination 2, use hop 1 and reach the second device as
before, then use hop 1 on that device to reach the third
device, and finally use the local RTIO core (hop 0) of the
third device.
$ artiq_route rt.bin set 2 1 1 0

$ artiq_route rt.bin show
0: 0
1: 1 0
2: 1 1 0

$ artiq_coremgmt config write -f routing_table rt.bin

12.1.3 Addressing distributed RTIO cores from kernels
Remote RTIO channels are accessed in the same way as local ones. Bits 16-24 of the RTIO channel number define the
destination. Bits 0-15 of the RTIO channel number select the channel within the destination.

12.1.4 Link establishment
After devices have booted, it takes several seconds for all links in a DRTIO system to become es-
tablished (especially with the long locking times of low-bandwidth PLLs that are used for jitter reduc-
tion purposes). Kernels should not attempt to access destinations until all required links are up (when
this happens, the RTIODestinationUnreachable exception is raised). ARTIQ provides the method
get_rtio_destination_status() that determines whether a destination can be reached. We recommend
calling it in a loop in your startup kernel for each important destination, to delay startup until they all can be reached.

62 Chapter 12. Distributed Real Time Input/Output (DRTIO)

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

12.1.5 Latency
Each hop increases the RTIO latency of a destination by a significant amount; that latency is however constant and can
be compensated for in kernels. To limit latency in a system, fully utilize the downstream ports of devices to reduce the
depth of the tree, instead of creating chains.

12.2 Internal details

12.2.1 Real-time and auxiliary packets
DRTIO is a packet-based protocol that uses two types of packets:

• real-time packets, which are transmitted at high priority at a high bandwidth and are used for the bulk of RTIO
commands and data. In the ARTIQ DRTIO implementation, real-time packets are processed entirely in gateware.

• auxiliary packets, which are lower-bandwidth and are used for ancillary tasks such as housekeeping and mon-
itoring/injection. Auxiliary packets are low-priority and their transmission has no impact on the timing of
real-time packets (however, transmission of real-time packets slows down the transmission of auxiliary pack-
ets). In the ARTIQ DRTIO implementation, the contents of the auxiliary packets are read and written directly
by the firmware, with the gateware simply handling the transmission of the raw data.

12.2.2 Link layer
The lower layer of the DRTIO protocol stack is the link layer, which is responsible for delimiting real-time and
auxiliary packets, and assisting with the establishment of a fixed-latency high speed serial transceiver link.

DRTIO uses the IBM (Widmer and Franaszek) 8b/10b encoding. D characters (the encoded 8b symbols) always
transmit real-time packet data, whereas K characters are used for idling and transmitting auxiliary packet data.

At every logic clock cycle, the high-speed transceiver hardware transmits some amount N of 8b/10b characters (typi-
cally, N is 2 or 4) and receives the same amount. With DRTIO, those characters must be all of the D type or all of the
K type; mixing D and K characters in the same logic clock cycle is not allowed.

A real-time packet is defined by a series of D characters containing the packet’s payload, delimited by at least one K
character. Real-time packets must be padded to satisfy the requirement that only D or only K characters are transmitted
during a logic clock cycle, by making their length a multiple of N.

K characters, which are transmitted whenever there is no real-time data to transmit and to delimit real-time packets,
are chosen using a 3-bit K selection word. If this K character is the first character in the set of N characters processed
by the transceiver in the logic clock cycle, the mapping between the K selection word and the 8b/10b K space contains
commas. If the K character is any of the subsequent characters processed by the transceiver, a different mapping
is used that does not contain any commas. This scheme allows the receiver to align its logic clock with that of the
transmitter, simply by shifting its logic clock so that commas are received into the first character position.

Note: Due to the shoddy design of transceiver hardware, this simple process of clock and comma alignment is difficult
to perform in practice. The paper “High-speed, fixed-latency serial links with Xilinx FPGAs” (by Xue LIU, Qing-xu
DENG, Bo-ning HOU and Ze-ke WANG) discusses techniques that can be used. The ARTIQ implementation simply
keeps resetting the receiver until the comma is aligned, since relatively long lock times are acceptable.

The series of K selection words is then used to form auxiliary packets and the idle pattern. When there is no auxiliary
packet to transfer or to delimitate auxiliary packets, the K selection word 100 is used. To transfer data from an
auxiliary packet, the K selection word 0ab is used, with ab containing two bits of data from the packet. An auxiliary
packet is delimited by at least one 100 K selection word.

Both real-time traffic and K selection words are scrambled in order to make the generated electromagnetic interference
practically independent from the DRTIO traffic. A multiplicative scrambler is used and its state is shared between the
real-time traffic and K selection words, so that real-time data can be descrambled immediately after the scrambler has

12.2. Internal details 63

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

been synchronized from the K characters. Another positive effect of the scrambling is that commas always appear reg-
ularly in the absence of any traffic (and in practice also appear regularly on a busy link). This makes a receiver always
able to synchronize itself to an idling transmitter, which removes the need for relatively complex link initialization
states.

Due to the use of K characters both as delimiters for real-time packets and as information carrier for auxiliary packets,
auxiliary traffic is guaranteed a minimum bandwidth simply by having a maximum size limit on real-time packets.

12.2.3 Clocking
At the DRTIO satellite device, the recovered and aligned transceiver clock is used for clocking RTIO channels, after
appropriate jitter filtering using devices such as the Si5324. The same clock is also used for clocking the DRTIO trans-
mitter (loop timing), which simplifies clock domain transfers and allows for precise round-trip-time measurements to
be done.

12.2.4 RTIO clock synchronization
As part of the DRTIO link initialization, a real-time packet is sent by the core device to each satellite device to make
them load their respective timestamp counters with the timestamp values from their respective packets.

12.2.5 RTIO outputs
Controlling a remote RTIO output involves placing the RTIO event into the buffer of the destination. The core device
maintains a cache of the buffer space available in each destination. If, according to the cache, there is space available,
then a packet containing the event information (timestamp, address, channel, data) is sent immediately and the cached
value is decremented by one. If, according to the cache, no space is available, then the core device sends a request for
the space available in the destination and updates the cache. The process repeats until at least one remote buffer entry
is available for the event, at which point a packet containing the event information is sent as before.

Detecting underflow conditions is the responsibility of the core device; should an underflow occur then no DRTIO
packet is transmitted. Sequence errors are handled similarly.

12.2.6 RTIO inputs
The core device sends a request to the satellite for reading data from one of its channels. The request contains a
timeout, which is the RTIO timestamp to wait for until an input event appears. The satellite then replies with either an
input event (containing timestamp and data), a timeout, or an overflow error.

64 Chapter 12. Distributed Real Time Input/Output (DRTIO)

CHAPTER

THIRTEEN

CORE LANGUAGE REFERENCE

The most commonly used features from the ARTIQ language modules and from the core device modules are bundled
together in artiq.experiment and can be imported with from artiq.experiment import *.

13.1 artiq.language.core module

Core ARTIQ extensions to the Python language.

artiq.language.core.kernel(arg=None, flags={})
This decorator marks an object’s method for execution on the core device.

When a decorated method is called from the Python interpreter, the core attribute of the object is retrieved and
used as core device driver. The core device driver will typically compile, transfer and run the method (kernel)
on the device.

When kernels call another method:

• if the method is a kernel for the same core device, it is compiled and sent in the same binary. Calls between
kernels happen entirely on the device.

• if the method is a regular Python method (not a kernel), it generates a remote procedure call (RPC) for
execution on the host.

The decorator takes an optional parameter that defaults to :attr‘core‘ and specifies the name of the attribute to
use as core device driver.

This decorator must be present in the global namespace of all modules using it for the import cache to work
properly.

artiq.language.core.portable(arg=None, flags={})
This decorator marks a function for execution on the same device as its caller.

In other words, a decorated function called from the interpreter on the host will be executed on the host (no
compilation and execution on the core device). A decorated function called from a kernel will be executed on
the core device (no RPC).

This decorator must be present in the global namespace of all modules using it for the import cache to work
properly.

artiq.language.core.rpc(arg=None, flags={})
This decorator marks a function for execution on the host interpreter. This is also the default behavior of ARTIQ;
however, this decorator allows specifying additional flags.

artiq.language.core.syscall(arg=None, flags={})
This decorator marks a function as a system call. When executed on a core device, a C function with the
provided name (or the same name as the Python function, if not provided) will be called. When executed on
host, the Python function will be called as usual.

65

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

Every argument and the return value must be annotated with ARTIQ types.

Only drivers should normally define syscalls.

artiq.language.core.host_only(function)
This decorator marks a function so that it can only be executed in the host Python interpreter.

artiq.language.core.set_time_manager(time_manager)
Set the time manager used for simulating kernels by running them directly inside the Python interpreter. The
time manager responds to the entering and leaving of interleave/parallel/sequential blocks, delays, etc. and
provides a time-stamped logging facility for events.

exception artiq.language.core.TerminationRequested
Raised by pause when the user has requested termination.

artiq.language.core.delay_mu(duration)
Increases the RTIO time by the given amount (in machine units).

artiq.language.core.now_mu()
Retrieve the current RTIO timeline cursor, in machine units.

Note the conceptual difference between this and the current value of the hardware RTIO counter; see e.g.
artiq.coredevice.core.Core.get_rtio_counter_mu() for the latter.

artiq.language.core.at_mu(time)
Sets the RTIO time to the specified absolute value, in machine units.

artiq.language.core.delay(duration)
Increases the RTIO time by the given amount (in seconds).

13.2 artiq.language.environment module
class artiq.language.environment.NoDefault

Represents the absence of a default value.

class artiq.language.environment.PYONValue(default=<class ’ar-
tiq.language.environment.NoDefault’>)

An argument that can be any PYON-serializable value.

class artiq.language.environment.BooleanValue(default=<class ’ar-
tiq.language.environment.NoDefault’>)

A boolean argument.

class artiq.language.environment.EnumerationValue(choices, default=<class ’ar-
tiq.language.environment.NoDefault’>)

An argument that can take a string value among a predefined set of values.

Parameters choices – A list of string representing the possible values of the argument.

class artiq.language.environment.NumberValue(default=<class ’ar-
tiq.language.environment.NoDefault’>,
unit=”, scale=None, step=None,
min=None, max=None, ndecimals=2)

An argument that can take a numerical value.

If ndecimals = 0, scale = 1 and step is integer, then it returns an integer value. Otherwise, it returns
a floating point value. The simplest way to represent an integer argument is NumberValue(step=1,
ndecimals=0).

When scale is not specified, and the unit is a common one (i.e. defined in artiq.language.units),
then the scale is obtained from the unit using a simple string match. For example, milliseconds ("ms") units set
the scale to 0.001. No unit (default) corresponds to a scale of 1.0.

66 Chapter 13. Core language reference

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

For arguments with uncommon or complex units, use both the unit parameter (a string for display) and the
scale parameter (a numerical scale for experiments). For example, NumberValue(1, unit="xyz",
scale=0.001) will display as 1 xyz in the GUI window because of the unit setting, and appear as the
numerical value 0.001 in the code because of the scale setting.

Parameters

• unit – A string representing the unit of the value.

• scale – A numerical scaling factor by which the displayed value is multiplied when refer-
enced in the experiment.

• step – The step with which the value should be modified by up/down buttons in a UI. The
default is the scale divided by 10.

• min – The minimum value of the argument.

• max – The maximum value of the argument.

• ndecimals – The number of decimals a UI should use.

class artiq.language.environment.StringValue(default=<class ’ar-
tiq.language.environment.NoDefault’>)

A string argument.

class artiq.language.environment.HasEnvironment(managers_or_parent, *args,
**kwargs)

Provides methods to manage the environment of an experiment (arguments, devices, datasets).

append_to_dataset(key, value)
Append a value to a dataset.

The target dataset must be a list (i.e. support append()), and must have previously been set from this
experiment.

The broadcast/persist/archive mode of the given key remains unchanged from when the dataset was last
set. Appended values are transmitted efficiently as incremental modifications in broadcast mode.

build()
Should be implemented by the user to request arguments.

Other initialization steps such as requesting devices may also be performed here.

There are two situations where the requested devices are replaced by DummyDevice() and arguments
are set to their defaults (or None) instead: when the repository is scanned to build the list of available
experiments and when the dataset browser artiq_browser is used to open or run the analysis stage of
an experiment. Do not rely on being able to operate on devices or arguments in build().

Datasets are read-only in this method.

Leftover positional and keyword arguments from the constructor are forwarded to this method. This is
intended for experiments that are only meant to be executed programmatically (not from the GUI).

get_argument(key, processor, group=None, tooltip=None)
Retrieves and returns the value of an argument.

This function should only be called from build.

Parameters

• key – Name of the argument.

• processor – A description of how to process the argument, such as instances of
BooleanValue and NumberValue.

13.2. artiq.language.environment module 67

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

• group – An optional string that defines what group the argument belongs to, for user
interface purposes.

• tooltip – An optional string to describe the argument in more detail, applied as a tooltip
to the argument name in the user interface.

get_dataset(key, default=<class ’artiq.language.environment.NoDefault’>, archive=True)
Returns the contents of a dataset.

The local storage is searched first, followed by the master storage (which contains the broadcasted datasets
from all experiments) if the key was not found initially.

If the dataset does not exist, returns the default value. If no default is provided, raises KeyError.

By default, datasets obtained by this method are archived into the output HDF5 file of the experiment. If
an archived dataset is requested more than one time (and therefore its value has potentially changed) or is
modified, a warning is emitted.

Parameters archive – Set to False to prevent archival together with the run’s results. De-
fault is True

get_device(key)
Creates and returns a device driver.

get_device_db()
Returns the full contents of the device database.

mutate_dataset(key, index, value)
Mutate an existing dataset at the given index (e.g. set a value at a given position in a NumPy array)

If the dataset was created in broadcast mode, the modification is immediately transmitted.

If the index is a tuple of integers, it is interpreted as slice(*index). If the index is a tuple of tuples,
each sub-tuple is interpreted as slice(*sub_tuple) (multi-dimensional slicing).

set_dataset(key, value, broadcast=False, persist=False, archive=True, save=None)
Sets the contents and handling modes of a dataset.

Datasets must be scalars (bool, int, float or NumPy scalar) or NumPy arrays.

Parameters

• broadcast – the data is sent in real-time to the master, which dispatches it.

• persist – the master should store the data on-disk. Implies broadcast.

• archive – the data is saved into the local storage of the current run (archived as a HDF5
file).

• save – deprecated.

set_default_scheduling(priority=None, pipeline_name=None, flush=None)
Sets the default scheduling options.

This function should only be called from build.

setattr_argument(key, processor=None, group=None, tooltip=None)
Sets an argument as attribute. The names of the argument and of the attribute are the same.

The key is added to the instance’s kernel invariants.

setattr_dataset(key, default=<class ’artiq.language.environment.NoDefault’>, archive=True)
Sets the contents of a dataset as attribute. The names of the dataset and of the attribute are the same.

68 Chapter 13. Core language reference

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

setattr_device(key)
Sets a device driver as attribute. The names of the device driver and of the attribute are the same.

The key is added to the instance’s kernel invariants.

class artiq.language.environment.Experiment
Base class for top-level experiments.

Deriving from this class enables automatic experiment discovery in Python modules.

analyze()
Entry point for analyzing the results of the experiment.

This method may be overloaded by the user to implement the analysis phase of the experiment, for example
fitting curves.

Splitting this phase from run() enables tweaking the analysis algorithm on pre-existing data, and CPU-
bound analyses to be run overlapped with the next experiment in a pipelined manner.

This method must not interact with the hardware.

prepare()
Entry point for pre-computing data necessary for running the experiment.

Doing such computations outside of run() enables more efficient scheduling of multiple experiments
that need to access the shared hardware during part of their execution.

This method must not interact with the hardware.

run()
The main entry point of the experiment.

This method must be overloaded by the user to implement the main control flow of the experiment.

This method may interact with the hardware.

The experiment may call the scheduler’s pause() method while in run().

class artiq.language.environment.EnvExperiment(managers_or_parent, *args, **kwargs)
Base class for top-level experiments that use the HasEnvironment environment manager.

Most experiments should derive from this class.

prepare()
This default prepare method calls prepare() for all children, in the order of instantiation, if the child
has a prepare() method.

13.3 artiq.language.scan module

Implementation and management of scan objects.

A scan object (e.g. artiq.language.scan.RangeScan) represents a one-dimensional sweep of a numeri-
cal range. Multi-dimensional scans are constructed by combining several scan objects, for example using artiq.
language.scan.MultiScanManager.

Iterate on a scan object to scan it, e.g.

for variable in self.scan:
do_something(variable)

Iterating multiple times on the same scan object is possible, with the scan yielding the same values each time. Iterating
concurrently on the same scan object (e.g. via nested loops) is also supported, and the iterators are independent from
each other.

13.3. artiq.language.scan module 69

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

class artiq.language.scan.NoScan(value, repetitions=1)
A scan object that yields a single value for a specified number of repetitions.

class artiq.language.scan.RangeScan(start, stop, npoints, randomize=False, seed=None)
A scan object that yields a fixed number of evenly spaced values in a range. If randomize is True the points
are randomly ordered.

class artiq.language.scan.CenterScan(center, span, step, randomize=False, seed=None)
A scan object that yields evenly spaced values within a span around a center. If step is finite, then center is
always included. Values outside span around center are never included. If randomize is True the points are
randomly ordered.

class artiq.language.scan.ExplicitScan(sequence)
A scan object that yields values from an explicitly defined sequence.

class artiq.language.scan.Scannable(default=<class ’artiq.language.environment.NoDefault’>,
unit=”, scale=None, global_step=None,
global_min=None, global_max=None, ndecimals=2)

An argument (as defined in artiq.language.environment) that takes a scan object.

When scale is not specified, and the unit is a common one (i.e. defined in artiq.language.units),
then the scale is obtained from the unit using a simple string match. For example, milliseconds ("ms") units set
the scale to 0.001. No unit (default) corresponds to a scale of 1.0.

For arguments with uncommon or complex units, use both the unit parameter (a string for display) and the scale
parameter (a numerical scale for experiments). For example, a scan shown between 1 xyz and 10 xyz in the GUI
with scale=0.001 and unit="xyz" results in values between 0.001 and 0.01 being scanned.

Parameters

• default – The default scan object. This parameter can be a list of scan objects, in which
case the first one is used as default and the others are used to configure the default values of
scan types that are not initially selected in the GUI.

• global_min – The minimum value taken by the scanned variable, common to all scan
modes. The user interface takes this value to set the range of its input widgets.

• global_max – Same as global_min, but for the maximum value.

• global_step – The step with which the value should be modified by up/down buttons in
a user interface. The default is the scale divided by 10.

• unit – A string representing the unit of the scanned variable.

• scale – A numerical scaling factor by which the displayed values are multiplied when
referenced in the experiment.

• ndecimals – The number of decimals a UI should use.

class artiq.language.scan.MultiScanManager(*args)
Makes an iterator that returns elements from the first scan object until it is exhausted, then proceeds to the next
iterable, until all of the scan objects are exhausted. Used for treating consecutive scans as a single scan.

Scan objects must be passed as a list of tuples (name, scan_object). Íteration produces scan points that have
attributes that correspond to the names of the scan objects, and have the last value yielded by that scan object.

13.4 artiq.language.units module

This module contains floating point constants that correspond to common physical units (ns, MHz, . . .). They are
provided for convenience (e.g write MHz instead of 1000000.0) and code clarity purposes.

70 Chapter 13. Core language reference

CHAPTER

FOURTEEN

CORE DRIVERS REFERENCE

These drivers are for the core device and the peripherals closely integrated into it, which do not use the controller
mechanism.

14.1 System drivers

14.1.1 artiq.coredevice.core module
exception artiq.coredevice.core.CompileError(diagnostic)

class artiq.coredevice.core.Core(dmgr, host, ref_period, ref_multiplier=8)
Core device driver.

Parameters

• host – hostname or IP address of the core device.

• ref_period – period of the reference clock for the RTIO subsystem. On platforms that
use clock multiplication and SERDES-based PHYs, this is the period after multiplication.
For example, with a RTIO core clocked at 125MHz and a SERDES multiplication factor of
8, the reference period is 1ns. The time machine unit is equal to this period.

• ref_multiplier – ratio between the RTIO fine timestamp frequency and the RTIO
coarse timestamp frequency (e.g. SERDES multiplication factor).

break_realtime()
Set the time cursor after the current value of the hardware RTIO counter plus a margin of 125000 machine
units.

If the time cursor is already after that position, this function does nothing.

get_rtio_counter_mu()
Retrieve the current value of the hardware RTIO timeline counter.

As the timing of kernel code executed on the CPU is inherently non-deterministic, the return value is by
necessity only a lower bound for the actual value of the hardware register at the instant when execution
resumes in the caller.

For a more detailed description of these concepts, see ARTIQ Real-Time I/O Concepts.

get_rtio_destination_status(destination)
Returns whether the specified RTIO destination is up. This is particularly useful in startup kernels to delay
startup until certain DRTIO destinations are up.

mu_to_seconds(mu)
Convert machine units (RTIO cycles) to seconds.

Parameters mu – cycle count to convert.

71

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

reset()
Clear RTIO FIFOs, release RTIO PHY reset, and set the time cursor at the current value of the hardware
RTIO counter plus a margin of 125000 machine units.

seconds_to_mu(seconds)
Convert seconds to the corresponding number of machine units (RTIO cycles).

Parameters seconds – time (in seconds) to convert.

wait_until_mu(cursor_mu)
Block execution until the hardware RTIO counter reaches the given value (see
get_rtio_counter_mu()).

If the hardware counter has already passed the given time, the function returns immediately.

14.1.2 artiq.coredevice.exceptions module
exception artiq.coredevice.exceptions.CacheError

Raised when putting a value into a cache row would violate memory safety.

exception artiq.coredevice.exceptions.ClockFailure
Raised when RTIO PLL has lost lock.

class artiq.coredevice.exceptions.CoreException(name, message, params, traceback)
Information about an exception raised or passed through the core device.

exception artiq.coredevice.exceptions.DMAError
Raised when performing an invalid DMA operation.

exception artiq.coredevice.exceptions.I2CError
Raised when a I2C transaction fails.

exception artiq.coredevice.exceptions.InternalError
Raised when the runtime encounters an internal error condition.

exception artiq.coredevice.exceptions.RTIODestinationUnreachable
Raised with a RTIO operation could not be completed due to a DRTIO link being down.

exception artiq.coredevice.exceptions.RTIOOverflow
Raised when at least one event could not be registered into the RTIO input FIFO because it was full (CPU not
reading fast enough).

This does not interrupt operations further than cancelling the current read attempt and discarding some events.
Reading can be reattempted after the exception is caught, and events will be partially retrieved.

exception artiq.coredevice.exceptions.RTIOUnderflow
Raised when the CPU or DMA core fails to submit a RTIO event early enough (with respect to the event’s
timestamp).

The offending event is discarded and the RTIO core keeps operating.

exception artiq.coredevice.exceptions.SPIError
Raised when a SPI transaction fails.

exception artiq.coredevice.exceptions.WatchdogExpired
Raised when a watchdog expires.

14.1.3 artiq.coredevice.dma module
Direct Memory Access (DMA) extension.

This feature allows storing pre-defined sequences of output RTIO events into the core device’s SDRAM, and playing
them back at higher speeds than the CPU alone could achieve.

72 Chapter 14. Core drivers reference

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

class artiq.coredevice.dma.CoreDMA(dmgr, core_device=’core’)
Core device Direct Memory Access (DMA) driver.

Gives access to the DMA functionality of the core device.

erase(name)
Removes the DMA trace with the given name from storage.

get_handle(name)
Returns a handle to a previously recorded DMA trace. The returned handle is only valid until the next call
to record() or erase().

playback(name)
Replays a previously recorded DMA trace. This function blocks until the entire trace is submitted to the
RTIO FIFOs.

playback_handle(handle)
Replays a handle obtained with get_handle(). Using this function is much faster than playback()
for replaying a set of traces repeatedly, but incurs the overhead of managing the handles onto the program-
mer.

record(name)
Returns a context manager that will record a DMA trace called name. Any previously recorded trace with
the same name is overwritten. The trace will persist across kernel switches.

class artiq.coredevice.dma.DMARecordContextManager
Context manager returned by CoreDMA.record().

Upon entering, starts recording a DMA trace. All RTIO operations are redirected to a newly created DMA buffer
after this call, and now is reset to zero.

Upon leaving, stops recording a DMA trace. All recorded RTIO operations are stored in a newly created trace,
and now is restored to the value it had before the context manager was entered.

14.1.4 artiq.coredevice.cache module
class artiq.coredevice.cache.CoreCache(dmgr, core_device=’core’)

Core device cache access

get(key)
Extract a value from the core device cache. After a value is extracted, it cannot be replaced with another
value using put() until all kernel functions finish executing; attempting to replace it will result in a
artiq.coredevice.exceptions.CacheError.

If the cache does not contain any value associated with key, an empty list is returned.

The value is not copied, so mutating it will change what’s stored in the cache.

Parameters key (str) – cache key

Returns a list of 32-bit integers

put(key, value)
Put a value into the core device cache. The value will persist until reboot.

To remove a value from the cache, call put() with an empty list.

Parameters

• key (str) – cache key

• value (list) – a list of 32-bit integers

14.1. System drivers 73

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

14.2 Digital I/O drivers

14.2.1 artiq.coredevice.ttl module
Drivers for TTL signals on RTIO.

TTL channels (including the clock generator) all support output event replacement. For example, pulses of “zero”
length (e.g. TTLInOut.on() immediately followed by TTLInOut.off(), without a delay) are suppressed.

class artiq.coredevice.ttl.TTLClockGen(dmgr, channel, acc_width=24, core_device=’core’)
RTIO TTL clock generator driver.

This should be used with TTL channels that have a clock generator built into the gateware (not compatible with
regular TTL channels).

The time cursor is not modified by any function in this class.

Parameters

• channel – channel number

• acc_width – accumulator width in bits

frequency_to_ftw(frequency)
Returns the frequency tuning word corresponding to the given frequency.

ftw_to_frequency(ftw)
Returns the frequency corresponding to the given frequency tuning word.

set(frequency)
Like set_mu(), but using Hz.

set_mu(frequency)
Set the frequency of the clock, in machine units, at the current position of the time cursor.

This also sets the phase, as the time of the first generated rising edge corresponds to the time of the call.

The clock generator contains a 24-bit phase accumulator operating on the RTIO clock. At each RTIO clock
tick, the frequency tuning word is added to the phase accumulator. The most significant bit of the phase
accumulator is connected to the TTL line. Setting the frequency tuning word has the additional effect of
setting the phase accumulator to 0x800000.

Due to the way the clock generator operates, frequency tuning words that are not powers of two cause jitter
of one RTIO clock cycle at the output.

stop()
Stop the toggling of the clock and set the output level to 0.

class artiq.coredevice.ttl.TTLInOut(dmgr, channel, gate_latency_mu=None,
core_device=’core’)

RTIO TTL input/output driver.

In output mode, provides functions to set the logic level on the signal.

In input mode, provides functions to analyze the incoming signal, with real-time gating to prevent overflows.

RTIO TTLs supports zero-length transition suppression. For example, if two pulses are emitted back-to-back
with no delay between them, they will be merged into a single pulse with a duration equal to the sum of the
durations of the original pulses.

This should be used with bidirectional channels.

Note that the channel is in input mode by default. If you need to drive a signal, you must call output(). If
the channel is in output mode most of the time in your setup, it is a good idea to call output() in the startup
kernel.

74 Chapter 14. Core drivers reference

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

There are three input APIs: gating, sampling and watching. When one API is active (e.g. the gate is open, or
the input events have not been fully read out), another API must not be used simultaneously.

Parameters channel – channel number

count(up_to_timestamp_mu)
Consume RTIO input events until the hardware timestamp counter has reached the specified timestamp
and return the number of observed events.

This function does not interact with the timeline cursor.

See the gate_*() family of methods to select the input transitions that generate events, and
timestamp_mu() to obtain the timestamp of the first event rather than an accumulated count.

Parameters up_to_timestamp_mu – The timestamp up to which execution is blocked, that
is, up to which input events are guaranteed to be taken into account. (Events with later
timestamps might still be registered if they are already available.)

Returns The number of events before the timeout elapsed (0 if none observed).

Examples

To count events on channel ttl_input, up to the current timeline position:

ttl_input.count(now_mu())

If other events are scheduled between the end of the input gate period and when the number of events is
counted, using now_mu() as timeout consumes an unnecessary amount of timeline slack. In such cases,
it can be beneficial to pass a more precise timestamp, for example:

gate_end_mu = ttl_input.gate_rising(100 * us)

Schedule a long pulse sequence, represented here by a delay.
delay(10 * ms)

Get number of rising edges. This will block until the end of
the gate window, but does not wait for the long pulse sequence
afterwards, thus (likely) completing with a large amount of
slack left.
num_rising_edges = ttl_input.count(gate_end_mu)

The gate_*() family of methods return the cursor at the end of the window, allowing this to be expressed
in a compact fashion:

ttl_input.count(ttl_input.gate_rising(100 * us))

gate_both(duration)
Register both rising and falling edge events for the specified duration (in seconds).

The time cursor is advanced by the specified duration.

Returns The timeline cursor at the end of the gate window, for convenience when used with
count()/timestamp_mu().

gate_both_mu(duration)
Register both rising and falling edge events for the specified duration (in machine units).

The time cursor is advanced by the specified duration.

Returns The timeline cursor at the end of the gate window, for convenience when used with
count()/timestamp_mu().

14.2. Digital I/O drivers 75

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

gate_falling(duration)
Register falling edge events for the specified duration (in seconds).

The time cursor is advanced by the specified duration.

Returns The timeline cursor at the end of the gate window, for convenience when used with
count()/timestamp_mu().

gate_falling_mu(duration)
Register falling edge events for the specified duration (in machine units).

The time cursor is advanced by the specified duration.

Returns The timeline cursor at the end of the gate window, for convenience when used with
count()/timestamp_mu().

gate_rising(duration)
Register rising edge events for the specified duration (in seconds).

The time cursor is advanced by the specified duration.

Returns The timeline cursor at the end of the gate window, for convenience when used with
count()/timestamp_mu().

gate_rising_mu(duration)
Register rising edge events for the specified duration (in machine units).

The time cursor is advanced by the specified duration.

Returns The timeline cursor at the end of the gate window, for convenience when used with
count()/timestamp_mu().

input()
Set the direction to input at the current position of the time cursor.

There must be a delay of at least one RTIO clock cycle before any other command can be issued.

off()
Set the output to a logic low state at the current position of the time cursor.

The channel must be in output mode.

The time cursor is not modified by this function.

on()
Set the output to a logic high state at the current position of the time cursor.

The channel must be in output mode.

The time cursor is not modified by this function.

output()
Set the direction to output at the current position of the time cursor.

There must be a delay of at least one RTIO clock cycle before any other command can be issued.

pulse(duration)
Pulse the output high for the specified duration (in seconds).

The time cursor is advanced by the specified duration.

pulse_mu(duration)
Pulse the output high for the specified duration (in machine units).

The time cursor is advanced by the specified duration.

76 Chapter 14. Core drivers reference

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

sample_get()
Returns the value of a sample previously obtained with sample_input().

Multiple samples may be queued (using multiple calls to sample_input()) into the RTIO FIFOs and
subsequently read out using multiple calls to this function.

This function does not interact with the time cursor.

sample_get_nonrt()
Convenience function that obtains the value of a sample at the position of the time cursor, breaks realtime,
and returns the sample value.

sample_input()
Instructs the RTIO core to read the value of the TTL input at the position of the time cursor.

The time cursor is not modified by this function.

timestamp_mu(up_to_timestamp_mu)
Return the timestamp of the next RTIO input event, or -1 if the hardware timestamp counter reaches the
given value before an event is received.

This function does not interact with the timeline cursor.

See the gate_*() family of methods to select the input transitions that generate events, and count()
for usage examples.

Parameters up_to_timestamp_mu – The timestamp up to which execution is blocked, that
is, up to which input events are guaranteed to be taken into account. (Events with later
timestamps might still be registered if they are already available.)

Returns The timestamp (in machine units) of the first event received; -1 on timeout.

watch_done()
Stop watching the input at the position of the time cursor.

Returns True if the input has not changed state while it was being watched.

The time cursor is not modified by this function. This function always makes the slack negative.

watch_stay_off()
Like watch_stay_on(), but for low levels.

watch_stay_on()
Checks that the input is at a high level at the position of the time cursor and keep checking until
watch_done() is called.

Returns True if the input is high. A call to this function must always be followed by an eventual call to
watch_done() (use e.g. a try/finally construct to ensure this).

The time cursor is not modified by this function.

class artiq.coredevice.ttl.TTLOut(dmgr, channel, core_device=’core’)
RTIO TTL output driver.

This should be used with output-only channels.

Parameters channel – channel number

off()
Set the output to a logic low state at the current position of the time cursor.

The time cursor is not modified by this function.

on()
Set the output to a logic high state at the current position of the time cursor.

14.2. Digital I/O drivers 77

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

The time cursor is not modified by this function.

pulse(duration)
Pulse the output high for the specified duration (in seconds).

The time cursor is advanced by the specified duration.

pulse_mu(duration)
Pulse the output high for the specified duration (in machine units).

The time cursor is advanced by the specified duration.

14.2.2 artiq.coredevice.edge_counter module
Driver for RTIO-enabled TTL edge counter.

Like for the TTL input PHYs, sensitivity can be configured over RTIO (gate_rising(), etc.). In contrast to the
former, however, the count is accumulated in gateware, and only a single input event is generated at the end of each
gate period:

with parallel:
doppler_cool()
self.pmt_counter.gate_rising(1 * ms)

with parallel:
readout()
self.pmt_counter.gate_rising(100 * us)

print("Doppler cooling counts:", self.pmt_counter.fetch_count())
print("Readout counts:", self.pmt_counter.fetch_count())

For applications where the timestamps of the individual input events are not required, this has two advantages over
TTLInOut.count() beyond raw throughput. First, it is easy to count events during multiple separate periods
without blocking to read back counts in between, as illustrated in the above example. Secondly, as each count total
only takes up a single input event, it is much easier to acquire counts on several channels in parallel without risking
input FIFO overflows:

Using the TTLInOut driver, pmt_1 input events are only processed
after pmt_0 is done counting. To avoid RTIOOverflows, a round-robin
scheme would have to be implemented manually.

with parallel:
self.pmt_0.gate_rising(10 * ms)
self.pmt_1.gate_rising(10 * ms)

counts_0 = self.pmt_0.count(now_mu()) # blocks
counts_1 = self.pmt_1.count(now_mu())

#

Using gateware counters, only a single input event each is
generated, greatly reducing the load on the input FIFOs:

with parallel:
self.pmt_0_counter.gate_rising(10 * ms)
self.pmt_1_counter.gate_rising(10 * ms)

counts_0 = self.pmt_0_counter.fetch_count() # blocks
counts_1 = self.pmt_1_counter.fetch_count()

78 Chapter 14. Core drivers reference

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

See artiq.gateware.rtio.phy.edge_counter and artiq.gateware.eem.DIO.add_std() for
the gateware components.

exception artiq.coredevice.edge_counter.CounterOverflow
Raised when an edge counter value is read which indicates that the counter might have overflowed.

class artiq.coredevice.edge_counter.EdgeCounter(dmgr, channel, gateware_width=31,
core_device=’core’)

RTIO TTL edge counter driver driver.

Like for regular TTL inputs, timeline periods where the counter is sensitive to a chosen set of input transitions
can be specified. Unlike the former, however, the specified edges do not create individual input events; rather,
the total count can be requested as a single input event from the core (typically at the end of the gate window).

Parameters

• channel – The RTIO channel of the gateware phy.

• gateware_width – The width of the gateware counter register, in bits. This is only used
for overflow handling; to change the size, the gateware needs to be rebuilt.

fetch_count() -> artiq.compiler.types.TMono(’int’, OrderedDict([(’width’, ar-
tiq.compiler.types.TValue(32))]))

Wait for and return count total from previously requested input event.

It is valid to trigger multiple gate periods without immediately reading back the count total; the results will
be returned in order on subsequent fetch calls.

This function blocks until a result becomes available.

fetch_timestamped_count(timeout_mu=<Mock name=’mock.int64()’ id=’140737293388488’>)
-> artiq.compiler.types.TTuple([artiq.compiler.types.TMono(’int’,
OrderedDict([(’width’, artiq.compiler.types.TValue(64))])), ar-
tiq.compiler.types.TMono(’int’, OrderedDict([(’width’, ar-
tiq.compiler.types.TValue(32))]))])

Wait for and return the timestamp and count total of a previously requested input event.

It is valid to trigger multiple gate periods without immediately reading back the count total; the results will
be returned in order on subsequent fetch calls.

This function blocks until a result becomes available or the given timeout elapses.

Returns A tuple of timestamp (-1 if timeout elapsed) and counter value. (The timestamp is that
of the requested input event – typically the gate closing time – and not that of any input
edges.)

gate_both(duration)
Count both rising and falling edges for the given duration, and request the total at the end.

The counter is reset at the beginning of the gate period. Use set_config() directly for more detailed
control.

Parameters duration – The duration for which the gate is to stay open.

Returns The timestamp at the end of the gate period, in machine units.

gate_both_mu(duration_mu)
See gate_both_mu().

gate_falling(duration)
Count falling edges for the given duration and request the total at the end.

The counter is reset at the beginning of the gate period. Use set_config() directly for more detailed
control.

14.2. Digital I/O drivers 79

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

Parameters duration – The duration for which the gate is to stay open.

Returns The timestamp at the end of the gate period, in machine units.

gate_falling_mu(duration_mu)
See gate_falling().

gate_rising(duration)
Count rising edges for the given duration and request the total at the end.

The counter is reset at the beginning of the gate period. Use set_config() directly for more detailed
control.

Parameters duration – The duration for which the gate is to stay open.

Returns The timestamp at the end of the gate period, in machine units.

gate_rising_mu(duration_mu)
See gate_rising().

set_config(count_rising: artiq.compiler.types.TMono(’bool’, OrderedDict()), count_falling:
artiq.compiler.types.TMono(’bool’, OrderedDict()), send_count_event: ar-
tiq.compiler.types.TMono(’bool’, OrderedDict()), reset_to_zero: ar-
tiq.compiler.types.TMono(’bool’, OrderedDict()))

Emit an RTIO event at the current timeline position to set the gateware configuration.

For most use cases, the gate_* wrappers will be more convenient.

Parameters

• count_rising – Whether to count rising signal edges.

• count_falling – Whether to count falling signal edges.

• send_count_event – If True, an input event with the current counter value is gener-
ated on the next clock cycle (once).

• reset_to_zero – If True, the counter value is reset to zero on the next clock cycle
(once).

14.2.3 artiq.coredevice.shiftreg module
class artiq.coredevice.shiftreg.ShiftReg(dmgr, clk, ser, latch, n=32,

dt=9.999999999999999e-06)
Driver for shift registers/latch combos connected to TTLs

set(data)
Sets the values of the latch outputs. This does not advance the timeline and the waveform is generated
before now.

14.2.4 artiq.coredevice.spi2 module
Driver for generic SPI on RTIO.

This ARTIQ coredevice driver corresponds to the “new” MiSoC SPI core (v2).

Output event replacement is not supported and issuing commands at the same time is an error.

class artiq.coredevice.spi2.SPIMaster(dmgr, channel, div=0, length=0, core_device=’core’)
Core device Serial Peripheral Interface (SPI) bus master.

Owns one SPI bus.

This ARTIQ coredevice driver corresponds to the “new” MiSoC SPI core (v2).

80 Chapter 14. Core drivers reference

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

Transfer Sequence:

• If necessary, set the config register (set_config() and set_config_mu()) to activate and con-
figure the core and to set various transfer parameters like transfer length, clock divider, and chip selects.

• write() to the data register. Writing starts the transfer.

• If the transfer included submitting the SPI input data as an RTIO input event (SPI_INPUT set), then
read() the data.

• If SPI_END was not set, repeat the transfer sequence.

A transaction consists of one or more transfers. The chip select pattern is asserted for the entire length of the
transaction. All but the last transfer are submitted with SPI_END cleared in the configuration register.

Parameters

• channel – RTIO channel number of the SPI bus to control.

• div – Initial CLK divider, see also: update_xfer_duration_mu()

• length – Initial transfer length, see also: update_xfer_duration_mu()

• core_device – Core device name

frequency_to_div(f)
Convert a SPI clock frequency to the closest SPI clock divider.

read()
Read SPI data submitted by the SPI core.

For bit alignment and bit ordering see set_config().

This method does not alter the timeline.

Returns SPI input data.

set_config(flags, length, freq, cs)
Set the configuration register.

• If SPI_CS_POLARITY is cleared (cs active low, the default), “cs all deasserted” means “all cs_n
bits high”.

• cs_n is not mandatory in the pads supplied to the gateware core. Framing and chip selection can also
be handled independently through other means, e.g. TTLOut.

• If there is a miso wire in the pads supplied in the gateware, input and output may be two sig-
nals (“4-wire SPI”), otherwise mosi must be used for both output and input (“3-wire SPI”) and
SPI_HALF_DUPLEX must to be set when reading data or when the slave drives the mosi signal at
any point.

• The first bit output on mosi is always the MSB/LSB (depending on SPI_LSB_FIRST) of the data
written, independent of the length of the transfer. The last bit input from miso always ends up in
the LSB/MSB (respectively) of the data read, independent of the length of the transfer.

• cs is asserted at the beginning and deasserted at the end of the transaction.

• cs handling is agnostic to whether it is one-hot or decoded somewhere downstream. If it is decoded,
“cs all deasserted” should be handled accordingly (no slave selected). If it is one-hot, asserting
multiple slaves should only be attempted if miso is either not connected between slaves, or open
collector, or correctly multiplexed externally.

• Changes to the configuration register take effect on the start of the next transfer with the exception of
SPI_OFFLINE which takes effect immediately.

14.2. Digital I/O drivers 81

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

• The SPI core can only be written to when it is idle or waiting for the next transfer data. Writing
(set_config(), set_config_mu() or write()) when the core is busy will result in an RTIO
busy error being logged.

This method advances the timeline by one coarse RTIO clock cycle.

Configuration flags:

• SPI_OFFLINE: all pins high-z (reset=1)

• SPI_END: transfer in progress (reset=1)

• SPI_INPUT: submit SPI read data as RTIO input event when transfer is complete (reset=0)

• SPI_CS_POLARITY: active level of cs_n (reset=0)

• SPI_CLK_POLARITY: idle level of clk (reset=0)

• SPI_CLK_PHASE: first edge after cs assertion to sample data on (reset=0). In Motorola/Freescale
SPI language (SPI_CLK_POLARITY, SPI_CLK_PHASE) == (CPOL, CPHA):

– (0, 0): idle low, output on falling, input on rising

– (0, 1): idle low, output on rising, input on falling

– (1, 0): idle high, output on rising, input on falling

– (1, 1): idle high, output on falling, input on rising

• SPI_LSB_FIRST: LSB is the first bit on the wire (reset=0)

• SPI_HALF_DUPLEX: 3-wire SPI, in/out on mosi (reset=0)

Parameters

• flags – A bit map of SPI_* flags.

• length – Number of bits to write during the next transfer. (reset=1)

• freq – Desired SPI clock frequency. (reset=f_rtio/2)

• cs – Bit pattern of chip selects to assert. Or number of the chip select to assert if cs is
decoded downstream. (reset=0)

set_config_mu(flags, length, div, cs)
Set the config register (in SPI bus machine units).

See also:

set_config()

Parameters

• flags – A bit map of SPI_* flags.

• length – Number of bits to write during the next transfer. (reset=1)

• div – Counter load value to divide the RTIO clock by to generate the SPI clock. (mini-
mum=2, reset=2) f_rtio_clk/f_spi == div. If div is odd, the setup phase of the
SPI clock is one coarse RTIO clock cycle longer than the hold phase.

• cs – Bit pattern of chip selects to assert. Or number of the chip select to assert if cs is
decoded downstream. (reset=0)

82 Chapter 14. Core drivers reference

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

update_xfer_duration_mu(div, length)
Calculate and set the transfer duration.

This method updates the SPI transfer duration which is used in write() to advance the timeline.

Use this method (and avoid having to call set_config_mu()) when the divider and transfer length
have been configured (using set_config() or set_config_mu()) by previous experiments and are
known.

This method is portable and can also be called from e.g. __init__().

Warning: If this method is called while recording a DMA sequence, the playback of the sequence will
not update the driver state. When required, update the driver state manually (by calling this method)
after playing back a DMA sequence.

Parameters

• div – SPI clock divider (see: set_config_mu())

• length – SPI transfer length (see: set_config_mu())

write(data)
Write SPI data to shift register register and start transfer.

• The data register and the shift register are 32 bits wide.

• Data writes take one ref_period cycle.

• A transaction consisting of a single transfer (SPI_END) takes xfer_duration_mu =(n +
1)*div cycles RTIO time where n is the number of bits and div is the SPI clock divider.

• Transfers in a multi-transfer transaction take up to one SPI clock cycle less time depending on multiple
parameters. Advanced users may rewind the timeline appropriately to achieve faster multi-transfer
transactions.

• The SPI core will be busy for the duration of the SPI transfer.

• For bit alignment and bit ordering see set_config().

• The SPI core can only be written to when it is idle or waiting for the next transfer data. Writing
(set_config(), set_config_mu() or write()) when the core is busy will result in an RTIO
busy error being logged.

This method advances the timeline by the duration of one single-transfer SPI transaction
(xfer_duration_mu).

Parameters data – SPI output data to be written.

class artiq.coredevice.spi2.NRTSPIMaster(dmgr, busno=0, core_device=’core’)
Core device non-realtime Serial Peripheral Interface (SPI) bus master. Owns one non-realtime SPI bus.

With this driver, SPI transactions and are performed by the CPU without involving RTIO.

Realtime and non-realtime buses are separate and defined at bitstream compilation time.

See SPIMaster for a description of the methods.

set_config_mu(flags=0, length=8, div=6, cs=1)
Set the config register.

Note that the non-realtime SPI cores are usually clocked by the system clock and not the RTIO clock. In
many cases, the SPI configuration is already set by the firmware and you do not need to call this method.

14.2. Digital I/O drivers 83

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

14.2.5 artiq.coredevice.i2c module
Non-realtime drivers for I2C chips on the core device.

class artiq.coredevice.i2c.PCA9548(dmgr, busno=0, address=232, core_device=’core’)
Driver for the PCA9548 I2C bus switch.

I2C transactions not real-time, and are performed by the CPU without involving RTIO.

On the KC705, this chip is used for selecting the I2C buses on the two FMC connectors. HPC=1, LPC=2.

select(mask)
Enable/disable channels.

Parameters mask – Bit mask of enabled channels

set(channel)
Enable one channel.

Parameters channel – channel number (0-7)

class artiq.coredevice.i2c.TCA6424A(dmgr, busno=0, address=68, core_device=’core’)
Driver for the TCA6424A I2C I/O expander.

I2C transactions not real-time, and are performed by the CPU without involving RTIO.

On the NIST QC2 hardware, this chip is used for switching the directions of TTL buffers.

set(outputs)
Drive all pins of the chip to the levels given by the specified 24-bit word.

On the QC2 hardware, the LSB of the word determines the direction of TTL0 (on a given FMC card) and
the MSB that of TTL23.

A bit set to 1 means the TTL is an output.

artiq.coredevice.i2c.i2c_poll(busno, busaddr)
Poll I2C device at address.

Parameters

• busno – I2C bus number

• busaddr – 8 bit I2C device address (LSB=0)

Returns True if the poll was ACKed

artiq.coredevice.i2c.i2c_read_byte(busno, busaddr)
Read one byte from a device.

Parameters

• busno – I2C bus number

• busaddr – 8 bit I2C device address (LSB=0)

Returns Byte read

artiq.coredevice.i2c.i2c_read_many(busno, busaddr, addr, data)
Transfer multiple bytes from a device.

Parameters

• busno – I2c bus number

• busaddr – 8 bit I2C device address (LSB=0)

• addr – 8 bit data address

84 Chapter 14. Core drivers reference

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

• data – List of integers to be filled with the data read. One entry ber byte.

artiq.coredevice.i2c.i2c_write_byte(busno, busaddr, data, ack=True)
Write one byte to a device.

Parameters

• busno – I2C bus number

• busaddr – 8 bit I2C device address (LSB=0)

• data – Data byte to be written

• nack – Allow NACK

artiq.coredevice.i2c.i2c_write_many(busno, busaddr, addr, data, ack_last=True)
Transfer multiple bytes to a device.

Parameters

• busno – I2c bus number

• busaddr – 8 bit I2C device address (LSB=0)

• addr – 8 bit data address

• data – Data bytes to be written

• ack_last – Expect I2C ACK of the last byte written. If False, the last byte may be
NACKed (e.g. EEPROM full page writes).

14.2.6 artiq.coredevice.pcf8574a module
class artiq.coredevice.pcf8574a.PCF8574A(dmgr, busno=0, address=124,

core_device=’core’)
Driver for the PCF8574 I2C remote 8-bit I/O expander.

I2C transactions not real-time, and are performed by the CPU without involving RTIO.

get()
Retrieve quasi-bidirectional pin input data.

Returns Pin data

set(data)
Drive data on the quasi-bidirectional pins.

Parameters data – Pin data. High bits are weakly driven high (and thus inputs), low bits are
strongly driven low.

14.3 RF generation drivers

14.3.1 artiq.coredevice.urukul module
class artiq.coredevice.urukul.CPLD(dmgr, spi_device, io_update_device=None,

dds_reset_device=None, sync_device=None, sync_sel=0,
clk_sel=0, clk_div=0, rf_sw=0, refclk=125000000.0,
att=0, sync_div=None, core_device=’core’)

Urukul CPLD SPI router and configuration interface.

Parameters

• spi_device – SPI bus device name

• io_update_device – IO update RTIO TTLOut channel name

14.3. RF generation drivers 85

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

• dds_reset_device – DDS reset RTIO TTLOut channel name

• sync_device – AD9910 SYNC_IN RTIO TTLClockGen channel name

• refclk – Reference clock (SMA, MMCX or on-board 100 MHz oscillator) frequency in
Hz

• clk_sel – Reference clock selection. For hardware revision >= 1.3 valid options are: 0
- internal 100MHz XO; 1 - front-panel SMA; 2 internal MMCX. For hardware revision <=
v1.2 valid options are: 0 - either XO or MMCX dependent on component population; 1
SMA. Unsupported clocking options are silently ignored.

• clk_div – Reference clock divider. Valid options are 0: variant dependent default (divide-
by-4 for AD9910 and divide-by-1 for AD9912); 1: divide-by-1; 2: divide-by-2; 3: divide-
by-4. On Urukul boards with CPLD gateware before v1.3.1 only the default (0, i.e. variant
dependent divider) is valid.

• sync_sel – SYNC (multi-chip synchronisation) signal source selection. 0 corresponds
to SYNC_IN being supplied by the FPGA via the EEM connector. 1 corresponds to
SYNC_OUT from DDS0 being distributed to the other chips.

• rf_sw – Initial CPLD RF switch register setting (default: 0x0). Knowledge of this state is
not transferred between experiments.

• att – Initial attenuator setting shift register (default: 0x00000000). See also
get_att_mu() which retrieves the hardware state without side effects. Knowledge of
this state is not transferred between experiments.

• sync_div – SYNC_IN generator divider. The ratio between the coarse RTIO frequency
and the SYNC_IN generator frequency (default: 2 if sync_device was specified).

• core_device – Core device name

cfg_sw(channel, on)
Configure the RF switches through the configuration register.

These values are logically OR-ed with the LVDS lines on EEM1.

Parameters

• channel – Channel index (0-3)

• on – Switch value

cfg_switches(state)
Configure all four RF switches through the configuration register.

Parameters state – RF switch state as a 4 bit integer.

cfg_write(cfg)
Write to the configuration register.

See urukul_cfg() for possible flags.

Parameters data – 24 bit data to be written. Will be stored at cfg_reg.

get_att_mu()
Return the digital step attenuator settings in machine units.

Returns 32 bit attenuator settings

init(blind=False)
Initialize and detect Urukul.

86 Chapter 14. Core drivers reference

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

Resets the DDS I/O interface and verifies correct CPLD gateware version. Does not pulse the DDS MAS-
TER_RESET as that confuses the AD9910.

Parameters blind – Do not attempt to verify presence and compatibility.

io_rst()
Pulse IO_RST

set_all_att_mu(att_reg)
Set all four digital step attenuators (in machine units).

See also:

set_att_mu()

Parameters att_reg – Attenuator setting string (32 bit)

set_att(channel, att)
Set digital step attenuator in SI units.

Parameters

• channel – Attenuator channel (0-3).

• att – Attenuation setting in dB. Higher value is more attenuation. Minimum attenuation
is 0*dB, maximum attenuation is 31.5*dB.

set_att_mu(channel, att)
Set digital step attenuator in machine units.

This method will write the attenuator settings of all four channels.

Parameters

• channel – Attenuator channel (0-3).

• att – Digital attenuation setting: 255 minimum attenuation, 0 maximum attenuation (31.5
dB)

set_profile(profile)
Set the PROFILE pins.

The PROFILE pins are common to all four DDS channels.

Parameters profile – PROFILE pins in numeric representation (0-7).

set_sync_div(div)
Set the SYNC_IN AD9910 pulse generator frequency and align it to the current RTIO timestamp.

The SYNC_IN signal is derived from the coarse RTIO clock and the divider must be a power of two.
Configure sync_sel == 0.

Parameters div – SYNC_IN frequency divider. Must be a power of two. Minimum division
ratio is 2. Maximum division ratio is 16.

sta_read()
Read the status register.

Use any of the following functions to extract values:

• urukul_sta_rf_sw()

• urukul_sta_smp_err()

• urukul_sta_pll_lock()

14.3. RF generation drivers 87

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

• urukul_sta_ifc_mode()

• urukul_sta_proto_rev()

Returns The status register value.

artiq.coredevice.urukul.urukul_cfg(rf_sw, led, profile, io_update, mask_nu, clk_sel, sync_sel,
rst, io_rst, clk_div)

Build Urukul CPLD configuration register

artiq.coredevice.urukul.urukul_sta_ifc_mode(sta)
Return the IFC_MODE status from Urukul status register value.

artiq.coredevice.urukul.urukul_sta_pll_lock(sta)
Return the PLL_LOCK status from Urukul status register value.

artiq.coredevice.urukul.urukul_sta_proto_rev(sta)
Return the PROTO_REV value from Urukul status register value.

artiq.coredevice.urukul.urukul_sta_rf_sw(sta)
Return the RF switch status from Urukul status register value.

artiq.coredevice.urukul.urukul_sta_smp_err(sta)
Return the SMP_ERR status from Urukul status register value.

14.3.2 artiq.coredevice.ad9910 module
class artiq.coredevice.ad9910.AD9910(dmgr, chip_select, cpld_device, sw_device=None,

pll_n=40, pll_cp=7, pll_vco=5, sync_delay_seed=-1,
io_update_delay=0, pll_en=1)

AD9910 DDS channel on Urukul.

This class supports a single DDS channel and exposes the DDS, the digital step attenuator, and the RF switch.

Parameters

• chip_select – Chip select configuration. On Urukul this is an encoded chip select and
not “one-hot”: 3 to address multiple chips (as configured through CFG_MASK_NU), 4-7
for individual channels.

• cpld_device – Name of the Urukul CPLD this device is on.

• sw_device – Name of the RF switch device. The RF switch is a TTLOut channel available
as the sw attribute of this instance.

• pll_n – DDS PLL multiplier. The DDS sample clock is f_ref/clk_div*pll_n where f_ref
is the reference frequency and clk_div is the reference clock divider (both set in the parent
Urukul CPLD instance).

• pll_en – PLL enable bit, set to 0 to bypass PLL (default: 1). Note that when bypassing
the PLL the red front panel LED may remain on.

• pll_cp – DDS PLL charge pump setting.

• pll_vco – DDS PLL VCO range selection.

• sync_delay_seed – SYNC_IN delay tuning starting value. To stabilize the SYNC_IN
delay tuning, run tune_sync_delay() once and set this to the delay tap number re-
turned (default: -1 to signal no synchronization and no tuning during init()). Can be a
string of the form “eeprom_device:byte_offset” to read the value from a I2C EEPROM.

88 Chapter 14. Core drivers reference

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

• io_update_delay – IO_UPDATE pulse alignment delay. To align IO_UPDATE to
SYNC_CLK, run tune_io_update_delay() and set this to the delay tap number re-
turned. Can be a string of the form “eeprom_device:byte_offset” to read the value from a
I2C EEPROM.

amplitude_to_asf(amplitude)
Return amplitude scale factor corresponding to given fractional amplitude.

amplitude_to_ram(amplitude, ram)
Convert amplitude values to RAM profile data.

To be used with RAM_DEST_ASF.

Parameters

• amplitude – List of amplitude values in units of full scale.

• ram – List to write RAM data into. Suitable for write_ram().

asf_to_amplitude(asf)
Return amplitude as a fraction of full scale corresponding to given amplitude scale factor.

cfg_sw(state)
Set CPLD CFG RF switch state. The RF switch is controlled by the logical or of the CPLD configuration
shift register RF switch bit and the SW TTL line (if used).

Parameters state – CPLD CFG RF switch bit

clear_smp_err()
Clear the SMP_ERR flag and enables SMP_ERR validity monitoring.

Violations of the SYNC_IN sample and hold margins will result in SMP_ERR being asserted. This then
also activates the red LED on the respective Urukul channel.

Also modifies CFR2.

frequency_to_ftw(frequency)
Return the frequency tuning word corresponding to the given frequency.

frequency_to_ram(frequency, ram)
Convert frequency values to RAM profile data.

To be used with RAM_DEST_FTW.

Parameters

• frequency – List of frequency values in Hz.

• ram – List to write RAM data into. Suitable for write_ram().

ftw_to_frequency(ftw)
Return the frequency corresponding to the given frequency tuning word.

init(blind=False)
Initialize and configure the DDS.

Sets up SPI mode, confirms chip presence, powers down unused blocks, configures the PLL, waits for PLL
lock. Uses the IO_UPDATE signal multiple times.

Parameters blind – Do not read back DDS identity and do not wait for lock.

measure_io_update_alignment(delay_start, delay_stop)
Use the digital ramp generator to locate the alignment between IO_UPDATE and SYNC_CLK.

The ramp generator is set up to a linear frequency ramp (dFTW/t_SYNC_CLK=1) and started at a coarse
RTIO time stamp plus delay_start and stopped at a coarse RTIO time stamp plus delay_stop.

14.3. RF generation drivers 89

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

Parameters

• delay_start – Start IO_UPDATE delay in machine units.

• delay_stop – Stop IO_UPDATE delay in machine units.

Returns Odd/even SYNC_CLK cycle indicator.

pow_to_turns(pow_)
Return the phase in turns corresponding to a given phase offset word.

power_down(bits=15)
Power down DDS.

Parameters bits – Power down bits, see datasheet

read32(addr)
Read from 32 bit register.

Parameters addr – Register address

read64(addr)
Read from 64 bit register.

Parameters addr – Register address

Returns 64 bit integer register value

read_ram(data)
Read data from RAM.

The profile to read from and the step, start, and end address need to be configured before and separately
using set_profile_ram() and the parent CPLD set_profile.

Parameters List(int32) (data) – List to be filled with data read from RAM.

set(frequency, phase=0.0, amplitude=1.0, phase_mode=-1, ref_time_mu=<Mock name=’mock.int64()’
id=’140737293388488’>, profile=0)
Set profile 0 data in SI units.

See also:

set_mu()

Parameters

• frequency – Frequency in Hz

• phase – Phase tuning word in turns

• amplitude – Amplitude in units of full scale

• phase_mode – Phase mode constant

• ref_time_mu – Fiducial time stamp in machine units

• profile – Profile to affect

Returns Resulting phase offset in turns

set_att(att)
Set digital step attenuator in SI units.

See also:

artiq.coredevice.urukul.CPLD.set_att()

90 Chapter 14. Core drivers reference

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

Parameters att – Attenuation in dB.

set_att_mu(att)
Set digital step attenuator in machine units.

See also:

artiq.coredevice.urukul.CPLD.set_att_mu()

Parameters att – Attenuation setting, 8 bit digital.

set_cfr1(power_down=0, phase_autoclear=0, drg_load_lrr=0, drg_autoclear=0, internal_profile=0,
ram_destination=0, ram_enable=0)

Set CFR1. See the AD9910 datasheet for parameter meanings.

This method does not pulse IO_UPDATE.

Parameters

• power_down – Power down bits.

• phase_autoclear – Autoclear phase accumulator.

• drg_load_lrr – Load digital ramp generator LRR.

• drg_autoclear – Autoclear digital ramp generator.

• internal_profile – Internal profile control.

• ram_destination – RAM destination (RAM_DEST_FTW, RAM_DEST_POW,
RAM_DEST_ASF, RAM_DEST_POWASF).

• ram_enable – RAM mode enable.

set_mu(ftw, pow_=0, asf=16383, phase_mode=-1, ref_time_mu=<Mock name=’mock.int64()’
id=’140737293388488’>, profile=0)

Set profile 0 data in machine units.

This uses machine units (FTW, POW, ASF). The frequency tuning word width is 32, the phase offset word
width is 16, and the amplitude scale factor width is 12.

After the SPI transfer, the shared IO update pin is pulsed to activate the data.

Parameters

• ftw – Frequency tuning word: 32 bit.

• pow – Phase tuning word: 16 bit unsigned.

• asf – Amplitude scale factor: 14 bit unsigned.

• phase_mode – If specified, overrides the default phase mode set by
set_phase_mode() for this call.

• ref_time_mu – Fiducial time used to compute absolute or tracking phase updates. In
machine units as obtained by now_mu().

• profile – Profile number to set (0-7, default: 0).

Returns Resulting phase offset word after application of phase tracking offset. When using
PHASE_MODE_CONTINUOUS in subsequent calls, use this value as the “current” phase.

set_phase_mode(phase_mode)
Set the default phase mode.

for future calls to set() and set_mu(). Supported phase modes are:

14.3. RF generation drivers 91

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

• PHASE_MODE_CONTINUOUS: the phase accumulator is unchanged when changing frequency or
phase. The DDS phase is the sum of the phase accumulator and the phase offset. The only discon-
tinuous changes in the DDS output phase come from changes to the phase offset. This mode is also
knows as “relative phase mode”. φ(t) = q(t′) + p+ (t− t′)f

• PHASE_MODE_ABSOLUTE: the phase accumulator is reset when changing frequency or phase. Thus,
the phase of the DDS at the time of the change is equal to the specified phase offset. φ(t) = p+(t−t′)f

• PHASE_MODE_TRACKING: when changing frequency or phase, the phase accumulator is cleared
and the phase offset is offset by the value the phase accumulator would have if the DDS had been
running at the specified frequency since a given fiducial time stamp. This is functionally equivalent to
PHASE_MODE_ABSOLUTE. The only difference is the fiducial time stamp. This mode is also known
as “coherent phase mode”. The default fiducial time stamp is 0. φ(t) = p+ (t− T)f

Where:

• φ(t): the DDS output phase

• q(t) = φ(t)− p: DDS internal phase accumulator

• p: phase offset

• f : frequency

• t′: time stamp of setting p, f

• T : fiducial time stamp

• t: running time

Warning: This setting may become inconsistent when used as part of a DMA recording. When using
DMA, it is recommended to specify the phase mode explicitly when calling set() or set_mu().

set_profile_ram(start, end, step=1, profile=0, nodwell_high=0, zero_crossing=0, mode=1)
Set the RAM profile settings.

Parameters

• start – Profile start address in RAM.

• end – Profile end address in RAM (last address).

• step – Profile time step in units of t_DDS, typically 4 ns (default: 1).

• profile – Profile index (0 to 7) (default: 0).

• nodwell_high – No-dwell high bit (default: 0, see AD9910 documentation).

• zero_crossing – Zero crossing bit (default: 0, see AD9910 documentation).

• mode – Profile RAM mode (RAM_MODE_DIRECTSWITCH, RAM_MODE_RAMPUP,
RAM_MODE_BIDIR_RAMP, RAM_MODE_CONT_BIDIR_RAMP, or
RAM_MODE_CONT_RAMPUP, default: RAM_MODE_RAMPUP)

set_sync(in_delay, window)
Set the relevant parameters in the multi device synchronization register. See the AD9910 datasheet for
details. The SYNC clock generator preset value is set to zero, and the SYNC_OUT generator is disabled.

Parameters

• in_delay – SYNC_IN delay tap (0-31) in steps of ~75ps

• window – Symmetric SYNC_IN validation window (0-15) in steps of ~75ps for both hold
and setup margin.

92 Chapter 14. Core drivers reference

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

tune_io_update_delay()
Find a stable IO_UPDATE delay alignment.

Scan through increasing IO_UPDATE delays until a delay is found that lets IO_UPDATE be registered in
the next SYNC_CLK cycle. Return a IO_UPDATE delay that is as far away from that SYNC_CLK edge
as possible.

This method assumes that the IO_UPDATE TTLOut device has one machine unit resolution (SERDES).

This method and tune_sync_delay() can be run in any order.

Returns Stable IO_UPDATE delay to be passed to the constructor AD9910 via the device
database.

tune_sync_delay(search_seed=15)
Find a stable SYNC_IN delay.

This method first locates a valid SYNC_IN delay at zero validation window size (setup/hold margin)
by scanning around search_seed. It then looks for similar valid delays at successively larger validation
window sizes until none can be found. It then decreases the validation window a bit to provide some slack
and stability and returns the optimal values.

This method and tune_io_update_delay() can be run in any order.

Parameters search_seed – Start value for valid SYNC_IN delay search. Defaults to 15 (half
range).

Returns Tuple of optimal delay and window size.

turns_amplitude_to_ram(turns, amplitude, ram)
Convert phase and amplitude values to RAM profile data.

To be used with RAM_DEST_POWASF.

Parameters

• turns – List of phase values in turns.

• amplitude – List of amplitude values in units of full scale.

• ram – List to write RAM data into. Suitable for write_ram().

turns_to_pow(turns)
Return the phase offset word corresponding to the given phase in turns.

turns_to_ram(turns, ram)
Convert phase values to RAM profile data.

To be used with RAM_DEST_POW.

Parameters

• turns – List of phase values in turns.

• ram – List to write RAM data into. Suitable for write_ram().

write32(addr, data)
Write to 32 bit register.

Parameters

• addr – Register address

• data – Data to be written

write64(addr, data_high, data_low)
Write to 64 bit register.

14.3. RF generation drivers 93

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

Parameters

• addr – Register address

• data_high – High (MSB) 32 bits of the data

• data_low – Low (LSB) 32 data bits

write_ram(data)
Write data to RAM.

The profile to write to and the step, start, and end address need to be configured before and separately
using set_profile_ram() and the parent CPLD set_profile.

Parameters List(int32) (data) – Data to be written to RAM.

14.3.3 artiq.coredevice.ad9912 module
class artiq.coredevice.ad9912.AD9912(dmgr, chip_select, cpld_device, sw_device=None,

pll_n=10)
AD9912 DDS channel on Urukul

This class supports a single DDS channel and exposes the DDS, the digital step attenuator, and the RF switch.

Parameters

• chip_select – Chip select configuration. On Urukul this is an encoded chip select and
not “one-hot”.

• cpld_device – Name of the Urukul CPLD this device is on.

• sw_device – Name of the RF switch device. The RF switch is a TTLOut channel available
as the sw attribute of this instance.

• pll_n – DDS PLL multiplier. The DDS sample clock is f_ref/clk_div*pll_n where f_ref
is the reference frequency and clk_div is the reference clock divider (both set in the parent
Urukul CPLD instance).

cfg_sw(state)
Set CPLD CFG RF switch state. The RF switch is controlled by the logical or of the CPLD configuration
shift register RF switch bit and the SW TTL line (if used).

Parameters state – CPLD CFG RF switch bit

frequency_to_ftw(frequency)
Returns the frequency tuning word corresponding to the given frequency.

ftw_to_frequency(ftw)
Returns the frequency corresponding to the given frequency tuning word.

init()
Initialize and configure the DDS.

Sets up SPI mode, confirms chip presence, powers down unused blocks, and configures the PLL. Does not
wait for PLL lock. Uses the IO_UPDATE signal multiple times.

read(addr, length)
Variable length read from a register. Up to 4 bytes.

Parameters

• addr – Register address

• length – Length in bytes (1-4)

Returns Data read

94 Chapter 14. Core drivers reference

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

set(frequency, phase=0.0)
Set profile 0 data in SI units.

See also:

set_mu()

Parameters

• ftw – Frequency in Hz

• pow – Phase tuning word in turns

set_att(att)
Set digital step attenuator in SI units.

See also:

artiq.coredevice.urukul.CPLD.set_att()

Parameters att – Attenuation in dB. Higher values mean more attenuation.

set_att_mu(att)
Set digital step attenuator in machine units.

See also:

artiq.coredevice.urukul.CPLD.set_att_mu()

Parameters att – Attenuation setting, 8 bit digital.

set_mu(ftw, pow)
Set profile 0 data in machine units.

After the SPI transfer, the shared IO update pin is pulsed to activate the data.

Parameters

• ftw – Frequency tuning word: 32 bit unsigned.

• pow – Phase tuning word: 16 bit unsigned.

turns_to_pow(phase)
Returns the phase offset word corresponding to the given phase.

write(addr, data, length)
Variable length write to a register. Up to 4 bytes.

Parameters

• addr – Register address

• data – Data to be written: int32

• length – Length in bytes (1-4)

14.3.4 artiq.coredevice.ad9914 module
Driver for the AD9914 DDS (with parallel bus) on RTIO.

class artiq.coredevice.ad9914.AD9914(dmgr, sysclk, bus_channel, channel,
core_device=’core’)

Driver for one AD9914 DDS channel.

14.3. RF generation drivers 95

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

The time cursor is not modified by any function in this class.

Output event replacement is not supported and issuing commands at the same time is an error.

Parameters

• sysclk – DDS system frequency. The DDS system clock must be a phase-locked multiple
of the RTIO clock.

• bus_channel – RTIO channel number of the DDS bus.

• channel – channel number (on the bus) of the DDS device to control.

amplitude_to_asf(amplitude)
Returns amplitude scale factor corresponding to given amplitude.

asf_to_amplitude(asf)
Returns the amplitude corresponding to the given amplitude scale factor.

exit_x()
Exits extended-resolution mode.

frequency_to_ftw(frequency)
Returns the frequency tuning word corresponding to the given frequency.

frequency_to_xftw(frequency)
Returns the frequency tuning word corresponding to the given frequency (extended resolution mode).

ftw_to_frequency(ftw)
Returns the frequency corresponding to the given frequency tuning word.

init()
Resets and initializes the DDS channel.

This needs to be done for each DDS channel before it can be used, and it is recommended to use the startup
kernel for this purpose.

init_sync(sync_delay)
Resets and initializes the DDS channel as well as configures the AD9914 DDS for synchronisation. The
synchronisation procedure follows the steps outlined in the AN-1254 application note.

This needs to be done for each DDS channel before it can be used, and it is recommended to use the startup
kernel for this.

This function cannot be used in a batch; the correct way of initializing multiple DDS channels is to call
this function sequentially with a delay between the calls. 10ms provides a good timing margin.

Parameters sync_delay – integer from 0 to 0x3f that sets the value of SYNC_OUT (bits 3-5)
and SYNC_IN (bits 0-2) delay ADJ bits.

pow_to_turns(pow)
Returns the phase in turns corresponding to the given phase offset word.

set(frequency, phase=0.0, phase_mode=-1, amplitude=1.0)
Like set_mu(), but uses Hz and turns.

set_mu(ftw, pow=0, phase_mode=-1, asf=4095, ref_time_mu=-1)
Sets the DDS channel to the specified frequency and phase.

This uses machine units (FTW and POW). The frequency tuning word width is 32, the phase offset word
width is 16, and the amplitude scale factor width is 12.

The “frequency update” pulse is sent to the DDS with a fixed latency with respect to the current position
of the time cursor.

96 Chapter 14. Core drivers reference

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

Parameters

• ftw – frequency to generate.

• pow – adds an offset to the phase.

• phase_mode – if specified, overrides the default phase mode set by
set_phase_mode() for this call.

• ref_time_mu – reference time used to compute phase. Specifying this makes it easier
to have a well-defined phase relationship between DDSes on the same bus that are updated
at a similar time.

Returns Resulting phase offset word after application of phase tracking offset. When using
PHASE_MODE_CONTINUOUS in subsequent calls, use this value as the “current” phase.

set_phase_mode(phase_mode)
Sets the phase mode of the DDS channel. Supported phase modes are:

• PHASE_MODE_CONTINUOUS: the phase accumulator is unchanged when switching frequencies.
The DDS phase is the sum of the phase accumulator and the phase offset. The only discrete jumps in
the DDS output phase come from changes to the phase offset.

• PHASE_MODE_ABSOLUTE: the phase accumulator is reset when switching frequencies. Thus, the
phase of the DDS at the time of the frequency change is equal to the phase offset.

• PHASE_MODE_TRACKING: when switching frequencies, the phase accumulator is set to the value it
would have if the DDS had been running at the specified frequency since the start of the experiment.

Warning: This setting may become inconsistent when used as part of a DMA recording. When using
DMA, it is recommended to specify the phase mode explicitly when calling set() or set_mu().

set_x(frequency, amplitude=1.0)
Like set_x_mu(), but uses Hz and turns.

Note that the precision of float is less than the precision of the extended frequency tuning word.

set_x_mu(xftw, amplitude=4095)
Set the DDS frequency and amplitude with an extended-resolution (63-bit) frequency tuning word.

Phase control is not implemented in this mode; the phase offset can assume any value.

After this function has been called, exit extended-resolution mode before calling functions that use
standard-resolution mode.

turns_to_pow(turns)
Returns the phase offset word corresponding to the given phase in turns.

xftw_to_frequency(xftw)
Returns the frequency corresponding to the given frequency tuning word (extended resolution mode).

14.3.5 artiq.coredevice.spline module
class artiq.coredevice.spline.Spline(width, time_width, channel, core_device, scale=1.0)

Spline interpolating RTIO channel.

One knot of a polynomial basis spline (B-spline) u(t) is defined by the coefficients un up to order n = k. If the

14.3. RF generation drivers 97

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

coefficients are evaluated starting at time t0, the output u(t) for t > t0, t0 is:

u(t) =

k∑
n=0

un
n!

(t− t0)n

= u0 + u1(t− t0) +
u2
2
(t− t0)2 + . . .

This class contains multiple methods to convert spline knot data from SI to machine units and multiple methods
that set the current spline coefficient data. None of these advance the timeline. The smooth() method is the
only method that advances the timeline.

Parameters

• width – Width in bits of the quantity that this spline controls

• time_width – Width in bits of the time counter of this spline

• channel – RTIO channel number

• core_device – Core device that this spline is attached to

• scale – Scale for conversion between machine units and physical units; to be given as the
“full scale physical value”.

coeff_as_packed(coeff)
Convert floating point spline coefficients into 32 bit integer packed data.

This is a host-only method that can be used to generate packed spline coefficient data to be frozen into
kernels at compile time.

coeff_as_packed_mu(coeff64)
Pack 64 bit integer machine units coefficients into 32 bit integer RTIO data list.

This is a host-only method that can be used to generate packed spline coefficient data to be frozen into
kernels at compile time.

coeff_to_mu(coeff, coeff64)
Convert a floating point list of coefficients into a 64 bit integer (preallocated).

Parameters

• coeff – TList(TFloat) list of coefficients in physical units.

• coeff64 – TList(TInt64) preallocated list of coefficients in machine units.

from_mu(value: artiq.compiler.types.TMono(’int’, OrderedDict([(’width’, ar-
tiq.compiler.types.TValue(32))]))) -> artiq.compiler.types.TMono(’float’, OrderedDict())

Convert 32 bit integer value from machine units to floating point physical units.

pack_coeff_mu(coeff, packed)
Pack coefficients into RTIO data

Parameters

• coeff – TList(TInt64) list of machine units spline coefficients. Lowest (zeroth) order
first. The coefficient list is zero-extended by the RTIO gateware.

• packed – TList(TInt32) list for packed RTIO data. Must be pre-allocated. Length in bits
is n*width + (n - 1)*n//2*time_width

set(value: artiq.compiler.types.TMono(’float’, OrderedDict()))
Set spline value.

Parameters value – Spline value relative to full-scale.

98 Chapter 14. Core drivers reference

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

set_coeff(coeff)
Set spline coefficients.

Missing coefficients (high order) are zero-extended byt the RTIO gateware.

If more coefficients are supplied than the gateware supports the extra coefficients are ignored.

Parameters value – List of floating point spline coefficients, lowest order (constant) coeffi-
cient first. Units are the unit of this spline’s value times increasing powers of 1/s.

set_coeff_mu(value)
Set spline raw values.

Parameters value – Spline packed raw values.

set_mu(value: artiq.compiler.types.TMono(’int’, OrderedDict([(’width’, ar-
tiq.compiler.types.TValue(32))])))

Set spline value (machine units).

Parameters value – Spline value in integer machine units.

smooth(start: artiq.compiler.types.TMono(’float’, OrderedDict()), stop: ar-
tiq.compiler.types.TMono(’float’, OrderedDict()), duration: artiq.compiler.types.TMono(’float’,
OrderedDict()), order: artiq.compiler.types.TMono(’int’, OrderedDict([(’width’, ar-
tiq.compiler.types.TValue(32))])))

Initiate an interpolated value change.

For zeroth order (step) interpolation, the step is at start + duration/2.

First order interpolation corresponds to a linear value ramp from start to stop over duration.

The third order interpolation is constrained to have zero first order derivative at both start and stop.

For first order and third order interpolation (linear and cubic) the interpolator needs to be stopped explicitly
at the stop time (e.g. by setting spline coefficient data or starting a new smooth() interpolation).

This method advances the timeline by duration.

Parameters

• start – Initial value of the change. In physical units.

• stop – Final value of the change. In physical units.

• duration – Duration of the interpolation. In physical units.

• order – Order of the interpolation. Only 0, 1, and 3 are valid: step, linear, cubic.

to_mu(value: artiq.compiler.types.TMono(’float’, OrderedDict())) -> artiq.compiler.types.TMono(’int’,
OrderedDict([(’width’, artiq.compiler.types.TValue(32))]))

Convert floating point value from physical units to 32 bit integer machine units.

to_mu64(value: artiq.compiler.types.TMono(’float’, OrderedDict())) -> ar-
tiq.compiler.types.TMono(’int’, OrderedDict([(’width’, artiq.compiler.types.TValue(64))]))

Convert floating point value from physical units to 64 bit integer machine units.

14.3.6 artiq.coredevice.sawg module
Driver for the Smart Arbitrary Waveform Generator (SAWG) on RTIO.

The SAWG is an “improved DDS” built in gateware and interfacing to high-speed DACs.

Output event replacement is supported except on the configuration channel.

14.3. RF generation drivers 99

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

class artiq.coredevice.sawg.Config(channel, core, cordic_gain=1.0)
SAWG configuration.

Exposes the configurable quantities of a single SAWG channel.

Access to the configuration registers for a SAWG channel can not be concurrent. There must be at least
_rtio_interval machine units of delay between accesses. Replacement is not supported and will be lead
to an RTIOCollision as this is likely a programming error. All methods therefore advance the timeline by
the duration of one configuration register transfer.

Parameters

• channel – RTIO channel number of the channel.

• core – Core device.

set_clr(clr0: artiq.compiler.types.TMono(’int’, OrderedDict([(’width’, ar-
tiq.compiler.types.TValue(32))])), clr1: artiq.compiler.types.TMono(’int’, Ordered-
Dict([(’width’, artiq.compiler.types.TValue(32))])), clr2: artiq.compiler.types.TMono(’int’,
OrderedDict([(’width’, artiq.compiler.types.TValue(32))])))

Set the accumulator clear mode for the three phase accumulators.

When the clr bit for a given DDS/DUC phase accumulator is set, that phase accumulator will be cleared
with every phase offset RTIO command and the output phase of the DDS/DUC will be exactly the phase
RTIO value (“absolute phase update mode”).

q′(t) = p′ + (t− t′)f ′

In turn, when the bit is cleared, the phase RTIO channels determine a phase offset to the current (carrier-)
value of the DDS/DUC phase accumulator. This “relative phase update mode” is sometimes also called
“continuous phase mode”.

q′(t) = q(t′) + (p′ − p) + (t− t′)f ′

Where:

• q, q′: old/new phase accumulator

• p, p′: old/new phase offset

• f ′: new frequency

• t′: timestamp of setting new p, f

• t: running time

Parameters

• clr0 – Auto-clear phase accumulator of the phase0/ frequency0 DUC. Default:
True

• clr1 – Auto-clear phase accumulator of the phase1/ frequency1 DDS. Default:
True

• clr2 – Auto-clear phase accumulator of the phase2/ frequency2 DDS. Default:
True

set_div(div: artiq.compiler.types.TMono(’int’, OrderedDict([(’width’, ar-
tiq.compiler.types.TValue(32))])), n: artiq.compiler.types.TMono(’int’, Ordered-
Dict([(’width’, artiq.compiler.types.TValue(32))])) = 0)

Set the spline evolution divider and current counter value.

100 Chapter 14. Core drivers reference

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

The divider and the spline evolution are synchronized across all spline channels within a SAWG channel.
The DDS/DUC phase accumulators always evolves at full speed.

Note: The spline evolution divider has not been tested extensively and is currently considered a techno-
logical preview only.

Parameters

• div – Spline evolution divider, such that t_sawg_spline/t_rtio_coarse =
div + 1. Default: 0.

• n – Current value of the counter. Default: 0.

set_duc_max(limit: artiq.compiler.types.TMono(’float’, OrderedDict()))
Set the digital up-converter (DUC) I and Q data summing junctions upper limit.

Each of the three summing junctions has a saturating adder with configurable upper and lower limits. The
three summing junctions are:

• At the in-phase input to the phase0/frequency0 fast DUC, after the anti-aliasing FIR filter.

• At the quadrature input to the phase0/frequency0 fast DUC, after the anti-aliasing FIR filter.
The in-phase and quadrature data paths both use the same limits.

• Before the DAC, where the following three data streams are added together:

– the output of the offset spline,

– (optionally, depending on i_enable) the in-phase output of the phase0/frequency0 fast
DUC, and

– (optionally, depending on q_enable) the quadrature output of the phase0/frequency0 fast
DUC of the buddy channel.

Refer to the documentation of SAWG for a mathematical description of the summing junctions.

Parameters limit – Limit value [-1, 1]. The output of the limiter will never exceed this
limit. The default limits are the full range [-1, 1].

See also:

• set_duc_max(): Upper limit of the in-phase and quadrature inputs to the DUC.

• set_duc_min(): Lower limit of the in-phase and quadrature inputs to the DUC.

• set_out_max(): Upper limit of the DAC output.

• set_out_min(): Lower limit of the DAC output.

set_duc_max_mu(limit: artiq.compiler.types.TMono(’int’, OrderedDict([(’width’, ar-
tiq.compiler.types.TValue(32))])))

Set the digital up-converter (DUC) I and Q data summing junctions upper limit. In machine units.

The default limits are chosen to reach maximum and minimum DAC output amplitude.

For a description of the limiter functions in normalized units see:

See also:

set_duc_max()

14.3. RF generation drivers 101

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

set_duc_min(limit: artiq.compiler.types.TMono(’float’, OrderedDict()))

See also:

set_duc_max()

set_duc_min_mu(limit: artiq.compiler.types.TMono(’int’, OrderedDict([(’width’, ar-
tiq.compiler.types.TValue(32))])))

See also:

set_duc_max_mu()

set_iq_en(i_enable: artiq.compiler.types.TMono(’int’, OrderedDict([(’width’, ar-
tiq.compiler.types.TValue(32))])), q_enable: artiq.compiler.types.TMono(’int’, Or-
deredDict([(’width’, artiq.compiler.types.TValue(32))])))

Enable I/Q data on this DAC channel.

Every pair of SAWG channels forms a buddy pair. The iq_en configuration controls which DDS data is
emitted to the DACs.

Refer to the documentation of SAWG for a mathematical description of i_enable and q_enable.

Note: Quadrature data from the buddy channel is currently a technological preview only. The data is
ignored in the SAWG gateware and not added to the DAC output. This is equivalent to the q_enable
switch always being 0.

Parameters

• i_enable – Controls adding the in-phase DUC-DDS data of this SAWG channel to this
DAC channel. Default: 1.

• q_enable – controls adding the quadrature DUC-DDS data of this SAWG’s buddy chan-
nel to this DAC channel. Default: 0.

set_out_max(limit: artiq.compiler.types.TMono(’float’, OrderedDict()))

See also:

set_duc_max()

set_out_max_mu(limit: artiq.compiler.types.TMono(’int’, OrderedDict([(’width’, ar-
tiq.compiler.types.TValue(32))])))

See also:

set_duc_max_mu()

set_out_min(limit: artiq.compiler.types.TMono(’float’, OrderedDict()))

See also:

set_duc_max()

set_out_min_mu(limit: artiq.compiler.types.TMono(’int’, OrderedDict([(’width’, ar-
tiq.compiler.types.TValue(32))])))

See also:

102 Chapter 14. Core drivers reference

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

set_duc_max_mu()

class artiq.coredevice.sawg.SAWG(dmgr, channel_base, parallelism, core_device=’core’)
Smart arbitrary waveform generator channel. The channel is parametrized as:

oscillators = exp(2j*pi*(frequency0*t + phase0))*(
amplitude1*exp(2j*pi*(frequency1*t + phase1)) +
amplitude2*exp(2j*pi*(frequency2*t + phase2)))

output = (offset +
i_enable*Re(oscillators) +
q_enable*Im(buddy_oscillators))

This parametrization can be viewed as two complex (quadrature) oscillators (frequency1/phase1 and
frequency2/phase2) that are executing and sampling at the coarse RTIO frequency. They can represent
frequencies within the first Nyquist zone from -f_rtio_coarse/2 to f_rtio_coarse/2.

Note: The coarse RTIO frequency f_rtio_coarse is the inverse of ref_period*multiplier. Both
are arguments of the Core device, specified in the device database device_db.py.

The sum of their outputs is then interpolated by a factor of parallelism (2, 4, 8 depending on the bitstream)
using a finite-impulse-response (FIR) anti-aliasing filter (more accurately a half-band filter).

The filter is followed by a configurable saturating limiter.

After the limiter, the data is shifted in frequency using a complex digital up-converter (DUC,
frequency0/phase0) running at parallelism times the coarse RTIO frequency. The first Nyquist zone
of the DUC extends from -f_rtio_coarse*parallelism/2 to f_rtio_coarse*parallelism/
2. Other Nyquist zones are usable depending on the interpolation/modulation options configured in the DAC.

The real/in-phase data after digital up-conversion can be offset using another spline interpolator offset.

The i_enable/q_enable switches enable emission of quadrature signals for later analog quadrature mixing
distinguishing upper and lower sidebands and thus doubling the bandwidth. They can also be used to emit
four-tone signals.

Note: Quadrature data from the buddy channel is currently ignored in the SAWG gateware and not added to
the DAC output. This is equivalent to the q_enable switch always being 0.

The configuration channel and the nine artiq.coredevice.spline.Spline interpolators are accessible
as attributes:

• config: Config

• offset, amplitude1, amplitude2: in units of full scale

• phase0, phase1, phase2: in units of turns

• frequency0, frequency1, frequency2: in units of Hz

Note: The latencies (pipeline depths) of the nine data channels (i.e. all except config) are matched. Equiva-
lent channels (e.g. phase1 and phase2) are exactly matched. Channels of different type or functionality (e.g.
offset vs amplitude1, DDS vs DUC, phase0 vs phase1) are only matched to within one coarse RTIO
cycle.

Parameters

14.3. RF generation drivers 103

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

• channel_base – RTIO channel number of the first channel (amplitude). The configu-
ration channel and frequency/phase/amplitude channels are then assumed to be successive
channels.

• parallelism – Number of output samples per coarse RTIO clock cycle.

• core_device – Name of the core device that this SAWG is on.

reset()
Re-establish initial conditions.

This clears all spline interpolators, accumulators and configuration settings.

This method advances the timeline by the time required to perform all 7 writes to the configuration channel,
plus 9 coarse RTIO cycles.

14.4 DAC/ADC drivers

14.4.1 artiq.coredevice.ad53xx module
“RTIO driver for the Analog Devices AD53[67][0123] family of multi-channel Digital to Analog Converters.

Output event replacement is not supported and issuing commands at the same time is an error.

class artiq.coredevice.ad53xx.AD53xx(dmgr, spi_device, ldac_device=None,
clr_device=None, chip_select=1, div_write=4,
div_read=16, vref=5.0, offset_dacs=8192,
core=’core’)

Analog devices AD53[67][0123] family of multi-channel Digital to Analog Converters.

Parameters

• spi_device – SPI bus device name

• ldac_device – LDAC RTIO TTLOut channel name (optional)

• clr_device – CLR RTIO TTLOut channel name (optional)

• chip_select – Value to drive on SPI chip select lines during transactions (default: 1)

• div_write – SPI clock divider for write operations (default: 4, 50MHz max SPI clock
with {t_high, t_low} >=8ns)

• div_read – SPI clock divider for read operations (default: 8, not optimized for speed, but
cf data sheet t22: 25ns min SCLK edge to SDO valid)

• vref – DAC reference voltage (default: 5.)

• offset_dacs – Initial register value for the two offset DACs, device dependent and must
be set correctly for correct voltage to mu conversions. Knowledge of his state is not trans-
ferred between experiments. (default: 8192)

• core_device – Core device name (default: “core”)

calibrate(channel, vzs, vfs)
Two-point calibration of a DAC channel.

Programs the offset and gain register to trim out DAC errors. Does not take effect until LDAC is pulsed
(see :meth load:).

Calibration consists of measuring the DAC output voltage for a channel with the DAC set to zero-scale
(0x0000) and full-scale (0xffff).

Note that only negative offsets and full-scale errors (DAC gain too high) can be calibrated in this fashion.

104 Chapter 14. Core drivers reference

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

Parameters channel – The number of the calibrated channel

Params vzs Measured voltage with the DAC set to zero-scale (0x0000)

Params vfs Measured voltage with the DAC set to full-scale (0xffff)

init(blind=False)
Configures the SPI bus, drives LDAC and CLR high, programmes the offset DACs, and enables overtem-
perature shutdown.

This method must be called before any other method at start-up or if the SPI bus has been accessed by
another device.

Parameters blind – If True, do not attempt to read back control register or check for overtem-
perature.

load()
Pulse the LDAC line.

Note that there is a <= 1.5us “BUSY” period (t10) after writing to a DAC input/gain/offset register. All
DAC registers may be programmed normally during the busy period, however LDACs during the busy pe-
riod cause the DAC output to change after the BUSY period has completed, instead of the usual immediate
update on LDAC behaviour.

This method advances the timeline by two RTIO clock periods.

read_reg(channel=0, op=1024)
Read a DAC register.

This method advances the timeline by the duration of two SPI transfers plus two RTIO coarse cycles plus
270 ns and consumes all slack.

Parameters

• channel – Channel number to read from (default: 0)

• op – Operation to perform, one of AD53XX_READ_X1A, AD53XX_READ_X1B,
AD53XX_READ_OFFSET, AD53XX_READ_GAIN etc. (default:
AD53XX_READ_X1A).

Returns The 16 bit register value

set_dac(voltages, channels=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,
23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39])

Program multiple DAC channels and pulse LDAC to update the DAC outputs.

This method does not advance the timeline; write events are scheduled in the past. The DACs will syn-
chronously start changing their output levels now.

If no LDAC device was defined, the LDAC pulse is skipped.

Parameters

• voltages – list of voltages to program the DAC channels to

• channels – list of DAC channels to program. If not specified, we program the DAC
channels sequentially, starting at 0.

set_dac_mu(values, channels=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39])

Program multiple DAC channels and pulse LDAC to update the DAC outputs.

This method does not advance the timeline; write events are scheduled in the past. The DACs will syn-
chronously start changing their output levels now.

If no LDAC device was defined, the LDAC pulse is skipped.

14.4. DAC/ADC drivers 105

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

See :meth load:.

Parameters

• values – list of DAC values to program

• channels – list of DAC channels to program. If not specified, we program the DAC
channels sequentially, starting at 0.

write_dac(channel, voltage)
Program the DAC output voltage for a channel.

The DAC output is not updated until LDAC is pulsed (see :meth load:). This method advances the timeline
by the duration of one SPI transfer.

write_dac_mu(channel, value)
Program the DAC input register for a channel.

The DAC output is not updated until LDAC is pulsed (see :meth load:). This method advances the timeline
by the duration of one SPI transfer.

write_gain_mu(channel, gain=65535)
Program the gain register for a DAC channel.

The DAC output is not updated until LDAC is pulsed (see :meth load:). This method advances the timeline
by the duration of one SPI transfer.

Parameters gain – 16-bit gain register value (default: 0xffff)

write_offset(channel, voltage)
Program the DAC offset voltage for a channel.

An offset of +V can be used to trim out a DAC offset error of -V. The DAC output is not updated until
LDAC is pulsed (see :meth load:). This method advances the timeline by the duration of one SPI transfer.

Parameters voltage – the offset voltage

write_offset_dacs_mu(value)
Program the OFS0 and OFS1 offset DAC registers.

Writes to the offset DACs take effect immediately without requiring a LDAC. This method advances the
timeline by the duration of two SPI transfers.

Parameters value – Value to set both offset DAC registers to

write_offset_mu(channel, offset=32768)
Program the offset register for a DAC channel.

The DAC output is not updated until LDAC is pulsed (see :meth load:). This method advances the timeline
by the duration of one SPI transfer.

Parameters offset – 16-bit offset register value (default: 0x8000)

artiq.coredevice.ad53xx.ad53xx_cmd_read_ch(channel, op)
Returns the word that must be written to the DAC to read a given DAC channel register.

Parameters

• channel – DAC channel to read (8 bits)

• op – The channel register to read, one of AD53XX_READ_X1A, AD53XX_READ_X1B,
AD53XX_READ_OFFSET, AD53XX_READ_GAIN etc.

Returns The 24-bit word to be written to the DAC to initiate read

106 Chapter 14. Core drivers reference

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

artiq.coredevice.ad53xx.ad53xx_cmd_write_ch(channel, value, op)
Returns the word that must be written to the DAC to set a DAC channel register to a given value.

Parameters

• channel – DAC channel to write to (8 bits)

• value – 16-bit value to write to the register

• op – The channel register to write to, one of AD53XX_CMD_DATA,
AD53XX_CMD_OFFSET or AD53XX_CMD_GAIN.

Returns The 24-bit word to be written to the DAC

artiq.coredevice.ad53xx.voltage_to_mu(voltage, offset_dacs=8192, vref=5.0)
Returns the DAC register value required to produce a given output voltage, assuming offset and gain errors have
been trimmed out.

Also used to return offset register value required to produce a given voltage when the DAC register is set to
mid-scale. An offset of V can be used to trim out a DAC offset error of -V.

Parameters

• voltage – Voltage

• offset_dacs – Register value for the two offset DACs (default: 0x2000)

• vref – DAC reference voltage (default: 5.)

14.4.2 artiq.coredevice.zotino module
RTIO driver for the Zotino 32-channel, 16-bit 1MSPS DAC.

Output event replacement is not supported and issuing commands at the same time is an error.

class artiq.coredevice.zotino.Zotino(dmgr, spi_device, ldac_device=None,
clr_device=None, div_write=4, div_read=8, vref=5.0,
core=’core’)

Zotino 32-channel, 16-bit 1MSPS DAC.

Controls the AD5372 DAC and the 8 user LEDs via a shared SPI interface.

Parameters

• spi_device – SPI bus device name

• ldac_device – LDAC RTIO TTLOut channel name.

• clr_device – CLR RTIO TTLOut channel name.

• div_write – SPI clock divider for write operations (default: 4, 50MHz max SPI clock)

• div_read – SPI clock divider for read operations (default: 8, not optimized for speed, but
cf data sheet t22: 25ns min SCLK edge to SDO valid)

• vref – DAC reference voltage (default: 5.)

• core_device – Core device name (default: “core”)

set_leds(leds)
Sets the states of the 8 user LEDs.

Parameters leds – 8-bit word with LED state

14.4. DAC/ADC drivers 107

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

14.4.3 artiq.coredevice.sampler module
class artiq.coredevice.sampler.Sampler(dmgr, spi_adc_device, spi_pgia_device, cnv_device,

div=8, gains=0, core_device=’core’)
Sampler ADC.

Controls the LTC2320-16 8 channel 16 bit ADC with SPI interface and the switchable gain instrumentation
amplifiers.

Parameters

• spi_adc_device – ADC SPI bus device name

• spi_pgia_device – PGIA SPI bus device name

• cnv_device – CNV RTIO TTLOut channel name

• div – SPI clock divider (default: 8)

• gains – Initial value for PGIA gains shift register (default: 0x0000). Knowledge of this
state is not transferred between experiments.

• core_device – Core device name

get_gains_mu()
Read the PGIA gain settings of all channels.

Returns The PGIA gain settings in machine units.

init()
Initialize the device.

Sets up SPI channels.

sample(data)
Acquire a set of samples.

See also:

sample_mu()

Parameters data – List of floating point data samples to fill.

sample_mu(data)
Acquire a set of samples.

Perform a conversion and transfer the samples.

This assumes that the input FIFO of the ADC SPI RTIO channel is deep enough to buffer the samples (half
the length of data deep). If it is not, there will be RTIO input overflows.

Parameters data – List of data samples to fill. Must have even length. Samples are always
read from the last channel (channel 7) down. The data list will always be filled with the last
item holding to the sample from channel 7.

set_gain_mu(channel, gain)
Set instrumentation amplifier gain of a channel.

The four gain settings (0, 1, 2, 3) corresponds to gains of (1, 10, 100, 1000) respectively.

Parameters

• channel – Channel index

• gain – Gain setting

108 Chapter 14. Core drivers reference

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

artiq.coredevice.sampler.adc_mu_to_volt(data, gain=0)
Convert ADC data in machine units to Volts.

Parameters

• data – 16 bit signed ADC word

• gain – PGIA gain setting (0: 1, . . . , 3: 1000)

Returns Voltage in Volts

14.4.4 artiq.coredevice.novogorny module
class artiq.coredevice.novogorny.Novogorny(dmgr, spi_device, cnv_device, div=8, gains=0,

core_device=’core’)
Novogorny ADC.

Controls the LTC2335-16 8 channel ADC with SPI interface and the switchable gain instrumentation amplifiers
using a shift register.

Parameters

• spi_device – SPI bus device name

• cnv_device – CNV RTIO TTLOut channel name

• div – SPI clock divider (default: 8)

• gains – Initial value for PGIA gains shift register (default: 0x0000). Knowledge of this
state is not transferred between experiments.

• core_device – Core device name

burst_mu(data, dt_mu, ctrl=0)
Acquire a burst of samples.

If the burst is too long and the sample rate too high, there will be RTIO input overflows.

High sample rates lead to gain errors since the impedance between the instrumentation amplifier and the
ADC is high.

Parameters

• data – List of data values to write result packets into. In machine units.

• dt – Sample interval in machine units.

• ctrl – ADC control word to write during each result packet transfer.

configure(data)
Set up the ADC sequencer.

Parameters data – List of 8 bit control words to write into the sequencer table.

sample(next_ctrl=0)
Acquire a sample

See also:

sample_mu()

Parameters next_ctrl – ADC control word for the next sample

Returns The ADC result packet (Volt)

14.4. DAC/ADC drivers 109

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

sample_mu(next_ctrl=0)
Acquire a sample:

Perform a conversion and transfer the sample.

Parameters next_ctrl – ADC control word for the next sample

Returns The ADC result packet (machine units)

set_gain_mu(channel, gain)
Set instrumentation amplifier gain of a channel.

The four gain settings (0, 1, 2, 3) corresponds to gains of (1, 10, 100, 1000) respectively.

Parameters

• channel – Channel index

• gain – Gain setting

artiq.coredevice.novogorny.adc_channel(data)
Return the channel index from a result packet

artiq.coredevice.novogorny.adc_ctrl(channel=1, softspan=7, valid=1)
Build a LTC2335-16 control word

artiq.coredevice.novogorny.adc_data(data)
Return the ADC value from a result packet

artiq.coredevice.novogorny.adc_softspan(data)
Return the softspan configuration index from a result packet

artiq.coredevice.novogorny.adc_value(data, v_ref=5.0)
Convert a ADC result packet to SI units (Volt)

14.5 Miscellaneous

14.5.1 artiq.coredevice.suservo module
class artiq.coredevice.suservo.Channel(dmgr, channel, servo_device)

Sampler-Urukul Servo channel

Parameters

• channel – RTIO channel number

• servo_device – Name of the parent SUServo device

get_profile_mu(profile, data)
Retrieve profile data.

Profile data is returned in the data argument in machine units packed as: [ftw >> 16, b1, pow,
adc | (delay << 8), offset, a1, ftw & 0xffff, b0].

See also:

The individual fields are described in set_iir_mu() and set_dds_mu().

This method advances the timeline by 32 µs and consumes all slack.

Parameters

• profile – Profile number (0-31)

• data – List of 8 integers to write the profile data into

110 Chapter 14. Core drivers reference

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

get_y(profile)
Get a profile’s IIR state (filter output, Y0).

The IIR state is also know as the “integrator”, or the DDS amplitude scale factor. It is 18 bits wide and
unsigned.

This method does not advance the timeline but consumes all slack.

Parameters profile – Profile number (0-31)

Returns IIR filter output in Y0 units of full scale

get_y_mu(profile)
Get a profile’s IIR state (filter output, Y0) in machine units.

The IIR state is also know as the “integrator”, or the DDS amplitude scale factor. It is 18 bits wide and
unsigned.

This method does not advance the timeline but consumes all slack.

Parameters profile – Profile number (0-31)

Returns 18 bit unsigned Y0

set(en_out, en_iir=0, profile=0)
Operate channel.

This method does not advance the timeline. Output RF switch setting takes effect immediately and is
independent of any other activity (profile settings, other channels). The RF switch behaves like artiq.
coredevice.ttl.TTLOut. RTIO event replacement is supported. IIR updates take place once the RF
switch has been enabled for the configured delay and the profile setting has been stable. Profile changes
take between one and two servo cycles to reach the DDS.

Parameters

• en_out – RF switch enable

• en_iir – IIR updates enable

• profile – Active profile (0-31)

set_dds(profile, frequency, offset, phase=0.0)
Set profile DDS coefficients.

This method advances the timeline by four servo memory accesses. Profile parameter changes are not
synchronized. Activate a different profile or stop the servo to ensure synchronous changes.

Parameters

• profile – Profile number (0-31)

• frequency – DDS frequency in Hz

• offset – IIR offset (negative setpoint) in units of full scale. For positive ADC volt-
ages as setpoints, this should be negative. Due to rounding and representation as two’s
complement, offset=1 can not be represented while offset=-1 can.

• phase – DDS phase in turns

set_dds_mu(profile, ftw, offs, pow_=0)
Set profile DDS coefficients in machine units.

See also:

set_amplitude()

14.5. Miscellaneous 111

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

Parameters

• profile – Profile number (0-31)

• ftw – Frequency tuning word (32 bit unsigned)

• offs – IIR offset (17 bit signed)

• pow – Phase offset word (16 bit)

set_iir(profile, adc, kp, ki=0.0, g=0.0, delay=0.0)
Set profile IIR coefficients.

This method advances the timeline by four servo memory accesses. Profile parameter changes are not
synchronized. Activate a different profile or stop the servo to ensure synchronous changes.

Gains are given in units of output full per scale per input full scale.

The transfer function is (up to time discretization and coefficient quantization errors):

H(s) = kp +
ki

s+ ki

g

Where:

• s = σ + iω is the complex frequency

• kp is the proportional gain

• ki is the integrator gain

• g is the integrator gain limit

Parameters

• profile – Profile number (0-31)

• adc – ADC channel to take IIR input from (0-7)

• kp – Proportional gain (1). This is usually negative (closed loop, positive ADC voltage,
positive setpoint). When 0, this implements a pure I controller.

• ki – Integrator gain (rad/s). When 0 (the default) this implements a pure P controller.
Same sign as kp.

• g – Integrator gain limit (1). When 0 (the default) the integrator gain limit is infinite. Same
sign as ki.

• delay – Delay (in seconds, 0-300 µs) before allowing IIR updates after invoking set().
This is rounded to the nearest number of servo cycles (~1.2 µs). Since the RF switch
(set()) can be opened at any time relative to the servo cycle, the first DDS update
that carries updated IIR data will occur approximately between delay + 1 cycle and
delay + 2 cycles after set().

set_iir_mu(profile, adc, a1, b0, b1, dly=0)
Set profile IIR coefficients in machine units.

The recurrence relation is (all data signed and MSB aligned):

a0yn = a1yn−1 + b0(xn + o)/2 + b1(xn−1 + o)/2

Where:

• yn and yn−1 are the current and previous filter outputs, clipped to [0, 1[.

112 Chapter 14. Core drivers reference

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

• xn and xn−1 are the current and previous filter inputs in [−1, 1[.

• o is the offset

• a0 is the normalization factor 211

• a1 is the feedback gain

• b0 and b1 are the feedforward gains for the two delays

See also:

set_iir()

Parameters

• profile – Profile number (0-31)

• adc – ADC channel to take IIR input from (0-7)

• a1 – 18 bit signed A1 coefficient (Y1 coefficient, feedback, integrator gain)

• b0 – 18 bit signed B0 coefficient (recent, X0 coefficient, feed forward, proportional gain)

• b1 – 18 bit signed B1 coefficient (old, X1 coefficient, feed forward, proportional gain)

• dly – IIR update suppression time. In units of IIR cycles (~1.2 µs, 0-255).

set_y(profile, y)
Set a profile’s IIR state (filter output, Y0).

The IIR state is also know as the “integrator”, or the DDS amplitude scale factor. It is 18 bits wide and
unsigned.

This method must not be used when the servo could be writing to the same location. Either deactivate the
profile, or deactivate IIR updates, or disable servo iterations.

This method advances the timeline by one servo memory access.

Parameters

• profile – Profile number (0-31)

• y – IIR state in units of full scale

set_y_mu(profile, y)
Set a profile’s IIR state (filter output, Y0) in machine units.

The IIR state is also know as the “integrator”, or the DDS amplitude scale factor. It is 18 bits wide and
unsigned.

This method must not be used when the servo could be writing to the same location. Either deactivate the
profile, or deactivate IIR updates, or disable servo iterations.

This method advances the timeline by one servo memory access.

Parameters

• profile – Profile number (0-31)

• y – 17 bit unsigned Y0

class artiq.coredevice.suservo.SUServo(dmgr, channel, pgia_device, cpld0_device,
cpld1_device, dds0_device, dds1_device, gains=0,
core_device=’core’)

Sampler-Urukul Servo parent and configuration device.

14.5. Miscellaneous 113

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

Sampler-Urukul Servo is a integrated device controlling one 8-channel ADC (Sampler) and two 4-channel DDS
(Urukuls) with a DSP engine connecting the ADC data and the DDS output amplitudes to enable feedback. SU
Servo can for example be used to implement intensity stabilization of laser beams with an amplifier and AOM
driven by Urukul and a photodetector connected to Sampler.

Additionally SU Servo supports multiple preconfigured profiles per channel and features like automatic integra-
tor hold.

Notes

• See the SU Servo variant of the Kasli target for an example of how to connect the gateware and the devices.
Sampler and each Urukul need two EEM connections.

• Ensure that both Urukuls are AD9910 variants and have the on-board dip switches set to 1100 (first two
on, last two off).

• Refer to the Sampler and Urukul documentation and the SU Servo example device database for runtime
configuration of the devices (PLLs, gains, clock routing etc.)

Parameters

• channel – RTIO channel number

• pgia_device – Name of the Sampler PGIA gain setting SPI bus

• cpld0_device – Name of the first Urukul CPLD SPI bus

• cpld1_device – Name of the second Urukul CPLD SPI bus

• dds0_device – Name of the AD9910 device for the DDS on the first Urukul

• dds1_device – Name of the AD9910 device for the DDS on the second Urukul

• gains – Initial value for PGIA gains shift register (default: 0x0000). Knowledge of this
state is not transferred between experiments.

• core_device – Core device name

get_adc(channel)
Get an ADC reading (IIR filter input X0).

This method does not advance the timeline but consumes all slack.

The PGIA gain setting must be known prior to using this method, either by setting the gain
(set_pgia_mu()) or by supplying it (gains or via the constructor/device database).

Parameters adc – ADC channel number (0-7)

Returns ADC voltage

get_adc_mu(adc)
Get an ADC reading (IIR filter input X0) in machine units.

This method does not advance the timeline but consumes all slack.

Parameters adc – ADC channel number (0-7)

Returns 17 bit signed X0

get_status()
Get current SU Servo status.

This method does not advance the timeline but consumes all slack.

114 Chapter 14. Core drivers reference

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

The done bit indicates that a SU Servo cycle has completed. It is pulsed for one RTIO cycle every SU
Servo cycle and asserted continuously when the servo is not enabled and the pipeline has drained (the
last DDS update is done).

This method returns and clears the clip indicator for all channels. An asserted clip indicator corresponds
to the servo having encountered an input signal on an active channel that would have resulted in the IIR
state exceeding the output range.

Returns Status. Bit 0: enabled, bit 1: done, bits 8-15: channel clip indicators.

init()
Initialize the servo, Sampler and both Urukuls.

Leaves the servo disabled (see set_config()), resets and configures all DDS.

Urukul initialization is performed blindly as there is no readback from the DDS or the CPLDs.

This method does not alter the profile configuration memory or the channel controls.

read(addr)
Read from servo memory.

This method does not advance the timeline but consumes all slack.

Parameters addr – Memory location address.

set_config(enable)
Set SU Servo configuration.

This method advances the timeline by one servo memory access. It does not support RTIO event replace-
ment.

Parameters (int) (enable) – Enable servo operation. Enabling starts servo iterations be-
ginning with the ADC sampling stage. The first DDS update will happen about two servo
cycles (~2.3 µs) after enabling the servo. The delay is deterministic. This also provides a
mean for synchronization of servo updates to other RTIO activity. Disabling takes up to two
servo cycles (~2.3 µs) to clear the processing pipeline.

set_pgia_mu(channel, gain)
Set instrumentation amplifier gain of a ADC channel.

The four gain settings (0, 1, 2, 3) corresponds to gains of (1, 10, 100, 1000) respectively.

Parameters

• channel – Channel index

• gain – Gain setting

write(addr, value)
Write to servo memory.

This method advances the timeline by one coarse RTIO cycle.

Parameters

• addr – Memory location address.

• value – Data to be written.

artiq.coredevice.suservo.adc_mu_to_volts(x, gain)
Convert servo ADC data from machine units to Volt.

artiq.coredevice.suservo.y_mu_to_full_scale(y)
Convert servo Y data from machine units to units of full scale.

14.5. Miscellaneous 115

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

14.5.2 artiq.coredevice.grabber module
class artiq.coredevice.grabber.Grabber(dmgr, channel_base, res_width=12, count_shift=0,

core_device=’core’)
Driver for the Grabber camera interface.

gate_roi(mask)
Defines which ROI engines produce input events.

At the end of each video frame, the output from each ROI engine that has been enabled by the mask is
enqueued into the RTIO input FIFO.

This function sets the mask at the current position of the RTIO time cursor.

Setting the mask using this function is atomic; in other words, if the system is in the middle of processing
a frame and the mask is changed, the processing will complete using the value of the mask that it started
with.

Parameters mask – bitmask enabling or disabling each ROI engine.

gate_roi_pulse(mask, dt)
Sets a temporary mask for the specified duration (in seconds), before disabling all ROI engines.

input_mu(data)
Retrieves the accumulated values for one frame from the ROI engines. Blocks until values are available.

The input list must be a list of integers of the same length as there are enabled ROI engines. This method
replaces the elements of the input list with the outputs of the enabled ROI engines, sorted by number.

If the number of elements in the list does not match the number of ROI engines that produced output, an
exception will be raised during this call or the next.

setup_roi(n, x0, y0, x1, y1)
Defines the coordinates of a ROI.

The coordinates are set around the current position of the RTIO time cursor.

The user must keep the ROI engine disabled for the duration of more than one video frame after calling
this function, as the output generated for that video frame is undefined.

Advances the timeline by 4 coarse RTIO cycles.

exception artiq.coredevice.grabber.OutOfSyncException
Raised when an incorrect number of ROI engine outputs has been retrieved from the RTIO input FIFO.

116 Chapter 14. Core drivers reference

CHAPTER

FIFTEEN

PROTOCOLS REFERENCE

15.1 artiq.protocols.asyncio_server module

class artiq.protocols.asyncio_server.AsyncioServer
Generic TCP server based on asyncio.

Users of this class must derive from it and define the _handle_connection_cr() method/coroutine.

start(host, port)
Starts the server.

The user must call stop() to free resources properly after this method completes successfully.

This method is a coroutine.

Parameters

• host – Bind address of the server (see asyncio.start_server from the Python
standard library).

• port – TCP port to bind to.

stop()
Stops the server.

15.2 artiq.protocols.pyon module

This module provides serialization and deserialization functions for Python objects. Its main features are:

• Human-readable format compatible with the Python syntax.

• Each object is serialized on a single line, with only ASCII characters.

• Supports all basic Python data structures: None, booleans, integers, floats, complex numbers, strings, tuples,
lists, dictionaries.

• Those data types are accurately reconstructed (unlike JSON where e.g. tuples become lists, and dictionary keys
are turned into strings).

• Supports Numpy arrays.

The main rationale for this new custom serializer (instead of using JSON) is that JSON does not support Numpy and
more generally cannot be extended with other data types while keeping a concise syntax. Here we can use the Python
function call syntax to express special data types.

artiq.protocols.pyon.decode(s)
Parses a string in the Python syntax, reconstructs the corresponding object, and returns it.

117

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

artiq.protocols.pyon.encode(x, pretty=False)
Serializes a Python object and returns the corresponding string in Python syntax.

artiq.protocols.pyon.load_file(filename)
Parses the specified file and returns the decoded Python object.

artiq.protocols.pyon.store_file(filename, x)
Encodes a Python object and writes it to the specified file.

15.3 artiq.protocols.pc_rpc module

This module provides a remote procedure call (RPC) mechanism over sockets between conventional computers (PCs)
running Python. It strives to be transparent and uses artiq.protocols.pyon internally so that e.g. Numpy
arrays can be easily used.

Note that the server operates on copies of objects provided by the client, and modifications to mutable types are not
written back. For example, if the client passes a list as a parameter of an RPC method, and that method append()s
an element to the list, the element is not appended to the client’s list.

class artiq.protocols.pc_rpc.AsyncioClient
This class is similar to artiq.protocols.pc_rpc.Client, but uses asyncio instead of blocking calls.

All RPC methods are coroutines.

Concurrent access from different asyncio tasks is supported; all calls use a single lock.

close_rpc()
Closes the connection to the RPC server.

No further method calls should be done after this method is called.

connect_rpc(host, port, target_name)
Connects to the server. This cannot be done in __init__ because this method is a coroutine. See artiq.
protocols.pc_rpc.Client for a description of the parameters.

get_local_host()
Returns the address of the local end of the connection.

get_rpc_id()
Returns a tuple (target_names, description) containing the identification information of the server.

get_selected_target()
Returns the selected target, or None if no target has been selected yet.

select_rpc_target(target_name)
Selects a RPC target by name. This function should be called exactly once if the connection was created
with target_name=None.

class artiq.protocols.pc_rpc.AutoTarget
Use this as target value in clients for them to automatically connect to the target exposed by the server. Servers
must have only one target.

class artiq.protocols.pc_rpc.BestEffortClient(host, port, target_name, first-
con_timeout=1.0, retry=5.0)

This class is similar to artiq.protocols.pc_rpc.Client, but network errors are suppressed and con-
nections are retried in the background.

RPC calls that failed because of network errors return None. Other RPC calls are blocking and return the correct
value.

Parameters

118 Chapter 15. Protocols reference

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

• firstcon_timeout – Timeout to use during the first (blocking) connection attempt at
object initialization.

• retry – Amount of time to wait between retries when reconnecting in the background.

close_rpc()
Closes the connection to the RPC server.

No further method calls should be done after this method is called.

class artiq.protocols.pc_rpc.Client(host, port, target_name=<class ’ar-
tiq.protocols.pc_rpc.AutoTarget’>, timeout=None)

This class proxies the methods available on the server so that they can be used as if they were local methods.

For example, if the server provides method foo, and c is a local Client object, then the method can be called
as:

result = c.foo(param1, param2)

The parameters and the result are automatically transferred from the server.

Only methods are supported. Attributes must be accessed by providing and using “get” and/or “set” methods on
the server side.

At object initialization, the connection to the remote server is automatically attempted. The user must call
close_rpc() to free resources properly after initialization completes successfully.

Parameters

• host – Identifier of the server. The string can represent a hostname or a IPv4 or IPv6
address (see socket.create_connection in the Python standard library).

• port – TCP port to use.

• target_name – Target name to select. IncompatibleServer is raised if the target
does not exist. Use AutoTarget for automatic selection if the server has only one tar-
get. Use None to skip selecting a target. The list of targets can then be retrieved using
get_rpc_id() and then one can be selected later using select_rpc_target().

• timeout – Socket operation timeout. Use None for blocking (default), 0 for non-
blocking, and a finite value to raise socket.timeout if an operation does not com-
plete within the given time. See also socket.create_connection() and socket.
settimeout() in the Python standard library. A timeout in the middle of a RPC can
break subsequent RPCs (from the same client).

close_rpc()
Closes the connection to the RPC server.

No further method calls should be done after this method is called.

get_local_host()
Returns the address of the local end of the connection.

get_rpc_id()
Returns a tuple (target_names, description) containing the identification information of the server.

get_selected_target()
Returns the selected target, or None if no target has been selected yet.

select_rpc_target(target_name)
Selects a RPC target by name. This function should be called exactly once if the object was created with
target_name=None.

15.3. artiq.protocols.pc_rpc module 119

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

exception artiq.protocols.pc_rpc.IncompatibleServer
Raised by the client when attempting to connect to a server that does not have the expected target.

class artiq.protocols.pc_rpc.Server(targets, description=None, builtin_terminate=False, al-
low_parallel=False)

This class creates a TCP server that handles requests coming from Client objects (whether Client,
BestEffortClient, or AsyncioClient).

The server is designed using asyncio so that it can easily support multiple connections without the locking
issues that arise in multi-threaded applications. Multiple connection support is useful even in simple cases:
it allows new connections to be be accepted even when the previous client failed to properly shut down its
connection.

If a target method is a coroutine, it is awaited and its return value is sent to the RPC client. If
allow_parallel is true, multiple target coroutines may be executed in parallel (one per RPC client), other-
wise a lock ensures that the calls from several clients are executed sequentially.

Parameters

• targets – A dictionary of objects providing the RPC methods to be exposed to the client.
Keys are names identifying each object. Clients select one of these objects using its name
upon connection.

• description – An optional human-readable string giving more information about the
server.

• builtin_terminate – If set, the server provides a built-in terminate method that
unblocks any tasks waiting on wait_terminate. This is useful to handle server termi-
nation requests from clients.

• allow_parallel – Allow concurrent asyncio calls to the target’s methods.

artiq.protocols.pc_rpc.simple_server_loop(targets, host, port, description=None)
Runs a server until an exception is raised (e.g. the user hits Ctrl-C) or termination is requested by a client.

See artiq.protocols.pc_rpc.Server for a description of the parameters.

15.4 artiq.protocols.fire_and_forget module
class artiq.protocols.fire_and_forget.FFProxy(target)

Proxies a target object and runs its methods in the background.

All method calls to this object are forwarded to the target and executed in a background thread. Method calls
return immediately. Exceptions from the target method are turned into warnings. At most one method from
the target object may be executed in the background; if a new call is submitted while the previous one is still
executing, a warning is printed and the new call is dropped.

This feature is typically used to wrap slow and non-critical RPCs in experiments.

ff_join()
Waits until any background method finishes its execution.

15.5 artiq.protocols.sync_struct module

This module helps synchronizing a mutable Python structure owned and modified by one process (the publisher) with
copies of it (the subscribers) in different processes and possibly different machines.

Synchronization is achieved by sending a full copy of the structure to each subscriber upon connection (initialization),
followed by dictionaries describing each modification made to the structure (mods, see ModAction).

120 Chapter 15. Protocols reference

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

Structures must be PYON serializable and contain only lists, dicts, and immutable types. Lists and dicts can be nested
arbitrarily.

class artiq.protocols.sync_struct.ModAction
Describes the type of incremental modification.

Mods are represented by a dictionary m. m["action"] describes the type of modification, as per this enum,
serialized as a string if required.

The path (member field) the change applies to is given in m["path"] as a list; elements give successive levels
of indexing. (There is no path on initial initialization.)

Details on the modification are stored in additional data fields specific to each type.

For example, this represents appending the value 42 to an array data.counts[0]:

{
"action": "append",
"path": ["data", "counts", 0],
"x": 42

}

append = 'append'
Appends x to target list.

delitem = 'delitem'
Removes target’s key.

init = 'init'
A full copy of the data is sent in struct; no path given.

insert = 'insert'
Inserts x into target list at index i.

pop = 'pop'
Removes index i from target list.

setitem = 'setitem'
Sets target’s key to value.

class artiq.protocols.sync_struct.Notifier(backing_struct, root=None, path=[])
Encapsulates a structure whose changes need to be published.

All mutations to the structure must be made through the Notifier. The original structure must only be
accessed for reads.

In addition to the list methods below, the Notifier supports the index syntax for modification and deletion of
elements. Modification of nested structures can be also done using the index syntax, for example:

>>> n = Notifier([])
>>> n.append([])
>>> n[0].append(42)
>>> n.raw_view
[[42]]

This class does not perform any network I/O and is meant to be used with e.g. the Publisher for this purpose.
Only one publisher at most can be associated with a Notifier.

Parameters backing_struct – Structure to encapsulate.

append(x)
Append to a list.

15.5. artiq.protocols.sync_struct module 121

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

insert(i, x)
Insert an element into a list.

pop(i=-1)
Pop an element from a list. The returned element is not encapsulated in a Notifier and its mutations
are no longer tracked.

raw_view = None
The raw data encapsulated (read-only!).

class artiq.protocols.sync_struct.Publisher(notifiers)
A network server that publish changes to structures encapsulated in a Notifier.

Parameters notifiers – A dictionary containing the notifiers to associate with the Publisher.
The keys of the dictionary are the names of the notifiers to be used with Subscriber.

class artiq.protocols.sync_struct.Subscriber(notifier_name, target_builder, no-
tify_cb=None, disconnect_cb=None)

An asyncio-based client to connect to a Publisher.

Parameters

• notifier_name – Name of the notifier to subscribe to.

• target_builder – A function called during initialization that takes the object received
from the publisher and returns the corresponding local structure to use. Can be identity.

• notify_cb – An optional function called every time a mod is received from the publisher.
The mod is passed as parameter. The function is called after the mod has been processed. A
list of functions may also be used, and they will be called in turn.

• disconnect_cb – An optional function called when disconnection happens from exter-
nal causes (i.e. not when close is called).

artiq.protocols.sync_struct.process_mod(target, mod)
Apply a mod to the target, mutating it.

artiq.protocols.sync_struct.update_from_dict(target, source)
Updates notifier contents from given source dictionary.

Only the necessary changes are performed; unchanged fields are not written. (Currently, modifications are only
performed at the top level. That is, whenever there is a change to a child array/struct the entire member is
updated instead of choosing a more optimal set of mods.)

15.6 artiq.protocols.remote_exec module

This module provides facilities for experiment to execute code remotely on controllers.

The remotely executed code has direct access to the driver, so it can transfer large amounts of data with it, and only
exchange higher-level, processed data with the experiment (and over the network).

Controllers with support for remote execution contain an additional target that gives RPC access to instances of
RemoteExecServer. One such instance is created per client (experiment) connection and manages one Python
namespace in which the experiment can execute arbitrary code by calling the methods of RemoteExecServer.

The namespaces are initialized with the following global values:

• controller_driver - the driver instance of the controller.

• controller_initial_namespace - a controller-wide dictionary copied when initializing a new names-
pace.

• all values from controller_initial_namespace.

122 Chapter 15. Protocols reference

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

Access to a controller with support for remote execution is done through an additional device database entry of this
form:

"$REXEC_DEVICE_NAME": {
"type": "controller_aux_target",
"controller": "$CONTROLLER_DEVICE_NAME",
"target_name": "$TARGET_NAME_FOR_REXEC"

}

Specifying target_name is mandatory in all device database entries for all controllers with remote execution sup-
port.

class artiq.protocols.remote_exec.RemoteExecServer(initial_namespace)
RPC target created at each connection by controllers with remote execution support. Manages one Python
namespace and provides RPCs for code execution.

add_code(code)
Executes the specified code in the namespace.

Parameters code – a string containing valid Python code

call(function, *args, **kwargs)
Calls a function in the namespace, passing it positional and keyword arguments, and returns its value.

Parameters function – a string containing the name of the function to execute.

artiq.protocols.remote_exec.simple_rexec_server_loop(target_name, target, host, port,
description=None)

Runs a server with remote execution support, until an exception is raised (e.g. the user hits Ctrl-C) or termination
is requested by a client.

artiq.protocols.remote_exec.connect_global_rpc(controller_rexec, host=None,
port=3251, tar-
get=’master_dataset_db’,
name=’dataset_db’)

Creates a global RPC client in a controller that is used across all remote execution connections. With the default
parameters, it connects to the dataset database (i.e. gives direct dataset access to experiment code remotely
executing in controllers).

If a global object with the same name already exists, the function does nothing.

Parameters

• controller_rexec – the RPC client connected to the controller’s remote execution
interface.

• host – the host name to connect the RPC client to. Default is the local end of the remote
execution interface (typically, the ARTIQ master).

• port – TCP port to connect the RPC client to.

• target – name of the RPC target.

• name – name of the object to insert into the global namespace.

15.6. artiq.protocols.remote_exec module 123

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

124 Chapter 15. Protocols reference

CHAPTER

SIXTEEN

LIST OF AVAILABLE NDSPS

The following network device support packages are available for ARTIQ. This list is non-exhaustive.

Equipment Nix package Conda package Documen-
tation

PDQ2 Not available Not available HTML
Lab Brick Digital Atten-
uator

m-labs.lda ("main", "lda") HTML

Novatech 409B m-labs.novatech409b ("main",
"novatech409b")

HTML

Thorlabs T-Cubes m-labs.thorlabs_tcube ("main",
"thorlabs_tcube")

HTML

Korad KA3005P m-labs.korad_ka3005p ("main",
"korad_ka3005p")

HTML

Newfocus 8742 m-labs.newfocus8742 ("main",
"newfocus8742")

HTML

Princeton Instruments
PICam

Not available Not available Not available

Anel HUT2 power dis-
tribution

m-labs.hut2 ("main", "hut2") HTML

TOPTICA lasers m-labs.
toptica-lasersdk-artiq

See anaconda.org Not available

HighFinesse waveme-
ters

m-labs.highfinesse-net ("main",
"highfinessse-net")

HTML

In the “Nix package” column, m-labs refer to the Nix channel at https://nixbld.m-labs.hk/channel/custom/artiq/
main/channel.

The “Conda package” column gives the line to add into install-with-conda.py to install the corresponding
package. Conda packages may also be downloaded from https://nixbld.m-labs.hk/project/artiq and installed manually.

For PDQ2 see https://github.com/m-labs/pdq. For PICam see https://github.com/quartiq/picam.

125

https://pdq.readthedocs.io
https://nixbld.m-labs.hk/job/artiq/main/lda-manual-html/latest/download/1
https://nixbld.m-labs.hk/job/artiq/main/novatech409b-manual-html/latest/download/1
https://nixbld.m-labs.hk/job/artiq/main/thorlabs_tcube-manual-html/latest/download/1
https://nixbld.m-labs.hk/job/artiq/main/korad_ka3005p-manual-html/latest/download/1
https://nixbld.m-labs.hk/job/artiq/main/newfocus8742-manual-html/latest/download/1
https://nixbld.m-labs.hk/job/artiq/main/hut2-manual-html/latest/download/1
https://nixbld.m-labs.hk/job/artiq/main/highfinesse-net-manual-html/latest/download/1
https://nixbld.m-labs.hk/channel/custom/artiq/main/channel
https://nixbld.m-labs.hk/channel/custom/artiq/main/channel
https://nixbld.m-labs.hk/project/artiq
https://github.com/m-labs/pdq
https://github.com/quartiq/picam

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

126 Chapter 16. List of available NDSPs

CHAPTER

SEVENTEEN

DEVELOPING A NETWORK DEVICE SUPPORT PACKAGE (NDSP)

Most ARTIQ devices are interfaced through “controllers” that expose RPC interfaces to the network (based on
artiq.protocols.pc_rpc). The master never does direct I/O to the devices, but issues RPCs to the controllers
when needed. As opposed to running everything on the master, this architecture has those main advantages:

• Each driver can be run on a different machine, which alleviates cabling issues and OS compatibility problems.

• Reduces the impact of driver crashes.

• Reduces the impact of driver memory leaks.

This mechanism is for “slow” devices that are directly controlled by a PC, typically over a non-realtime channel such
as USB.

Certain devices (such as the PDQ2) may still perform real-time operations by having certain controls physically con-
nected to the core device (for example, the trigger and frame selection signals on the PDQ2). For handling such cases,
parts of the NDSPs may be kernels executed on the core device.

A network device support package (NDSP) is composed of several parts:

1. The driver, which contains the Python API functions to be called over the network, and performs the I/O to the
device. The top-level module of the driver is called artiq.devices.XXX.driver.

2. The controller, which instantiates, initializes and terminates the driver, and sets up the RPC server. The con-
troller is a front-end command-line tool to the user and is called artiq.frontend.aqctl_XXX. A setup.
py entry must also be created to install it.

3. An optional client, which connects to the controller and exposes the functions of the driver as a command-line
interface. Clients are front-end tools (called artiq.frontend.aqcli_XXX) that have setup.py entries.
In most cases, a custom client is not needed and the generic artiq_rpctool utility can be used instead.
Custom clients are only required when large amounts of data must be transferred over the network API, that
would be unwieldy to pass as artiq_rpctool command-line parameters.

4. An optional mediator, which is code executed on the client that supplements the network API. A mediator may
contain kernels that control real-time signals such as TTL lines connected to the device. Simple devices use
the network API directly and do not have a mediator. Mediator modules are called artiq.devices.XXX.
mediator and their public classes are exported at the artiq.devices.XXX level (via __init__.py)
for direct import and use by the experiments.

17.1 The driver and controller

A controller is a piece of software that receives commands from a client over the network (or the localhost
interface), drives a device, and returns information about the device to the client. The mechanism used is remote
procedure calls (RPCs) using artiq.protocols.pc_rpc, which makes the network layers transparent for the
driver’s user.

127

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

The controller we will develop is for a “device” that is very easy to work with: the console from which the controller
is run. The operation that the driver will implement is writing a message to that console.

For using RPC, the functions that a driver provides must be the methods of a single object. We will thus define a class
that provides our message-printing method:

class Hello:
def message(self, msg):

print("message: " + msg)

For a more complex driver, you would put this class definition into a separate Python module called driver.

To turn it into a server, we use artiq.protocols.pc_rpc. Import the function we will use:

from artiq.protocols.pc_rpc import simple_server_loop

and add a main function that is run when the program is executed:

def main():
simple_server_loop({"hello": Hello()}, "::1", 3249)

if __name__ == "__main__":
main()

tip Defining the main function instead of putting its code directly in the if __name__ ==
"__main__" body enables the controller to be used as well as a setuptools entry point.

The parameters ::1 and 3249 are respectively the address to bind the server to (IPv6 localhost) and the TCP port to
use. Then add a line:

#!/usr/bin/env python3

at the beginning of the file, save it to aqctl_hello.py and set its execution permissions:

$ chmod 755 aqctl_hello.py

Run it as:

$./aqctl_hello.py

and verify that you can connect to the TCP port:

$ telnet ::1 3249
Trying ::1...
Connected to ::1.
Escape character is '^]'.

tip Use the key combination Ctrl-AltGr-9 to get the telnet> prompt, and enter close to quit Telnet.
Quit the controller with Ctrl-C.

Also verify that a target (service) named “hello” (as passed in the first argument to simple_server_loop) exists
using the artiq_rpctool program from the ARTIQ front-end tools:

$ artiq_rpctool ::1 3249 list-targets
Target(s): hello

128 Chapter 17. Developing a Network Device Support Package (NDSP)

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

17.2 The client

Clients are small command-line utilities that expose certain functionalities of the drivers. The artiq_rpctool
utility contains a generic client that can be used in most cases, and developing a custom client is not required. Try
these commands

$ artiq_rpctool ::1 3249 list-methods
$ artiq_rpctool ::1 3249 call message test

In case you are developing a NDSP that is complex enough to need a custom client, we will see how to develop one.
Create a aqcli_hello.py file with the following contents:

#!/usr/bin/env python3

from artiq.protocols.pc_rpc import Client

def main():
remote = Client("::1", 3249, "hello")
try:

remote.message("Hello World!")
finally:

remote.close_rpc()

if __name__ == "__main__":
main()

Run it as before, while the controller is running. You should see the message appearing on the controller’s terminal:

$./aqctl_hello.py
message: Hello World!

When using the driver in an experiment, the Client instance can be returned by the environment mechanism (via the
get_device and attr_device methods of artiq.language.environment.HasEnvironment) and
used normally as a device.

warning RPC servers operate on copies of objects provided by the client, and modifications to mutable
types are not written back. For example, if the client passes a list as a parameter of an RPC method,
and that method append()s an element to the list, the element is not appended to the client’s list.

17.3 Command-line arguments

Use the Python argparse module to make the bind address(es) and port configurable on the controller, and the
server address, port and message configurable on the client.

We suggest naming the controller parameters --bind (which adds a bind address in addition to a default binding to
localhost), --no-bind-localhost (which disables the default binding to localhost), and --port, so that those
parameters stay consistent across controllers. Use -s/--server and --port on the client. The artiq.tools.
simple_network_args library function adds such arguments for the controller, and the artiq.tools.
bind_address_from_args function processes them.

The controller’s code would contain something similar to this:

from artiq.tools import simple_network_args

def get_argparser():

(continues on next page)

17.2. The client 129

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

(continued from previous page)

parser = argparse.ArgumentParser(description="Hello world controller")
simple_network_args(parser, 3249) # 3249 is the default TCP port
return parser

def main():
args = get_argparser().parse_args()
simple_server_loop(Hello(), bind_address_from_args(args), args.port)

We suggest that you define a function get_argparser that returns the argument parser, so that it can be used to
document the command line parameters using sphinx-argparse.

17.4 Logging

For the debug, information and warning messages, use the logging Python module and print the log on the standard
error output (the default setting). The logging level is by default “WARNING”, meaning that only warning messages
and more critical messages will get printed (and no debug nor information messages). By calling artiq.tools.
add_common_args() with the parser as argument, you add support for the --verbose (-v) and --quiet
(-q) arguments in the parser. Each occurence of -v (resp. -q) in the arguments will increase (resp. decrease)
the log level of the logging module. For instance, if only one -v is present in the arguments, then more messages
(info, warning and above) will get printed. If only one -q is present in the arguments, then only errors and critical
messages will get printed. If -qq is present in the arguments, then only critical messages will get printed, but no
debug/info/warning/error.

The program below exemplifies how to use logging:

import argparse
import logging

from artiq.tools import add_common_args, init_logger

get a logger that prints the module name
logger = logging.getLogger(__name__)

def get_argparser():
parser = argparse.ArgumentParser(description="Logging example")
parser.add_argument("--someargument",

help="some argument")
[...]
add_common_args(parser) # This adds the -q and -v handling
return parser

def main():
args = get_argparser().parse_args()
init_logger(args) # This initializes logging system log level according to -v/-q

↪→args

logger.debug("this is a debug message")
logger.info("this is an info message")
logger.warning("this is a warning message")
logger.error("this is an error message")
logger.critical("this is a critical message")

(continues on next page)

130 Chapter 17. Developing a Network Device Support Package (NDSP)

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

(continued from previous page)

if __name__ == "__main__":
main()

17.5 Remote execution support

If you wish to support remote execution in your controller, you may do so by simply replacing
simple_server_loop with artiq.protocols.remote_exec.simple_rexec_server_loop.

17.6 General guidelines

• Do not use __del__ to implement the cleanup code of your driver. Instead, define a close method, and call
it using a try...finally... block in the controller.

• Format your source code according to PEP8. We suggest using flake8 to check for compliance.

• Use new-style formatting (str.format) except for logging where it is not well supported, and double quotes
for strings.

• The device identification (e.g. serial number, or entry in /dev) to attach to must be passed as a command-line
parameter to the controller. We suggest using -d and --device as parameter name.

• Controllers must be able to operate in “simulation” mode, where they behave properly even if the associated
hardware is not connected. For example, they can print the data to the console instead of sending it to the device,
or dump it into a file.

• The simulation mode is entered whenever the --simulation option is specified.

• Keep command line parameters consistent across clients/controllers. When adding new command line op-
tions, look for a client/controller that does a similar thing and follow its use of argparse. If the original
client/controller could use argparse in a better way, improve it.

• Use docstrings for all public methods of the driver (note that those will be retrieved by artiq_rpctool).

• Choose a free default TCP port and add it to the default port list in this manual.

17.5. Remote execution support 131

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

132 Chapter 17. Developing a Network Device Support Package (NDSP)

CHAPTER

EIGHTEEN

UTILITIES

18.1 Local running tool

Local experiment running tool

usage: artiq_run [-h] [-v] [-q] [--version] [--device-db DEVICE_DB]
[--dataset-db DATASET_DB] [-e EXPERIMENT] [-o HDF5]
FILE [ARGUMENTS [ARGUMENTS ...]]

18.1.1 Positional Arguments
FILE file containing the experiment to run

ARGUMENTS run arguments

18.1.2 Named Arguments
--device-db device database file (default: ‘“device_db.py”’)

Default: “device_db.py”

--dataset-db dataset file (default: ‘“dataset_db.pyon”’)

Default: “dataset_db.pyon”

-e, --experiment experiment to run

-o, --hdf5 write results to specified HDF5 file (default: print them)

18.1.3 common
-v, --verbose increase logging level

Default: 0

-q, --quiet decrease logging level

Default: 0

--version print the ARTIQ version number

18.2 Remote Procedure Call tool

ARTIQ RPC tool

133

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

usage: artiq_rpctool [-h]
SERVER PORT {list-targets,list-methods,call,interactive}
...

18.2.1 Positional Arguments
SERVER hostname or IP of the controller to connect to

PORT TCP port to use to connect to the controller

action Possible choices: list-targets, list-methods, call, interactive

18.2.2 Sub-commands:

list-targets

list existing targets

artiq_rpctool list-targets [-h]

list-methods

list target’s methods

artiq_rpctool list-methods [-h] [-t TARGET]

Named Arguments

-t, --target target name

call

call a target’s method

artiq_rpctool call [-h] [-t TARGET] METHOD ...

Positional Arguments

METHOD method name

ARGS arguments

Named Arguments

-t, --target target name

interactive

enter interactive mode (default)

artiq_rpctool interactive [-h] [-t TARGET]

134 Chapter 18. Utilities

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

Named Arguments

-t, --target target name

This tool is the preferred way of handling simple ARTIQ controllers. Instead of writing a client for very simple cases
you can just use this tool in order to call remote functions of an ARTIQ controller.

• Listing existing targets

The list-targets sub-command will print to standard output the target list of the remote server:

$ artiq_rpctool hostname port list-targets

• Listing callable functions

The list-methods sub-command will print to standard output a sorted list of the functions you
can call on the remote server’s target.

The list will contain function names, signatures (arguments) and docstrings.

If the server has only one target, you can do:

$ artiq_rpctool hostname port list-methods

Otherwise you need to specify the target, using the -t target option:

$ artiq_rpctool hostname port list-methods -t target_name

• Remotely calling a function

The call sub-command will call a function on the specified remote server’s target, passing the
specified arguments. Like with the previous sub-command, you only need to provide the target name
(with -t target) if the server hosts several targets.

The following example will call the set_attenuation method of the Lda controller with the
argument 5:

$ artiq_rpctool ::1 3253 call -t lda set_attenuation 5

In general, to call a function named f with N arguments named respectively x1, x2, ..., xN
you can do:

$ artiq_rpctool hostname port call -t target f x1 x2 ... xN

You can use Python syntax to compute arguments as they will be passed to the eval() primitive.
The numpy package is available in the namespace as np. Beware to use quotes to separate arguments
which use spaces:

$ artiq_rpctool hostname port call -t target f '3 * 4 + 2' True '[1, 2]'
$ artiq_rpctool ::1 3256 call load_sample_values 'np.array([1.0, 2.0],
↪→dtype=float)'

If the called function has a return value, it will get printed to the standard output if the value is not
None like in the standard python interactive console:

$ artiq_rpctool ::1 3253 call get_attenuation
5.0 dB

18.2. Remote Procedure Call tool 135

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

18.3 Static compiler

This tool compiles an experiment into a ELF file. It is primarily used to prepare binaries for the default experiment
loaded in non-volatile storage of the core device. Experiments compiled with this tool are not allowed to use RPCs,
and their run entry point must be a kernel.

ARTIQ static compiler

usage: artiq_compile [-h] [-v] [-q] [--version] [--device-db DEVICE_DB]
[--dataset-db DATASET_DB] [-e EXPERIMENT] [-o OUTPUT]
FILE [ARGUMENTS [ARGUMENTS ...]]

18.3.1 Positional Arguments
FILE file containing the experiment to compile

ARGUMENTS run arguments

18.3.2 Named Arguments
--device-db device database file (default: ‘“device_db.py”’)

Default: “device_db.py”

--dataset-db dataset file (default: ‘“dataset_db.pyon”’)

Default: “dataset_db.pyon”

-e, --experiment experiment to compile

-o, --output output file

18.3.3 common
-v, --verbose increase logging level

Default: 0

-q, --quiet decrease logging level

Default: 0

--version print the ARTIQ version number

18.4 Flash storage image generator

This tool compiles key/value pairs into a binary image suitable for flashing into the flash storage space of the core
device.

ARTIQ flash storage image generator

usage: artiq_mkfs [-h] [-s KEY STRING] [-f KEY FILENAME] output

18.4.1 Positional Arguments
output output file

136 Chapter 18. Utilities

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

18.4.2 Named Arguments
-s add string

Default: []

-f add file contents

Default: []

18.5 Flashing/Loading tool

ARTIQ flashing/deployment tool

usage: artiq_flash [-h] [-v] [-q] [--version] [-n] [-H HOSTNAME] [-J JUMP]
[-t TARGET] [-V VARIANT] [-I PREINIT_COMMAND] [-f STORAGE]
[-d DIR] [--srcbuild]
[ACTION [ACTION ...]]

18.5.1 Positional Arguments
ACTION actions to perform, default: [‘gateware’, ‘bootloader’, ‘firmware’, ‘start’]

Default: [‘gateware’, ‘bootloader’, ‘firmware’, ‘start’]

18.5.2 Named Arguments
-n, --dry-run only show the openocd script that would be run

Default: False

-H, --host SSH host where the board is located

-J, --jump SSH host to jump through

-t, --target target board, default: “kasli”, one of: kasli sayma metlino kc705

Default: “kasli”

-V, --variant board variant. Autodetected if only one is installed.

-I, --preinit-command add a pre-initialization OpenOCD command. Useful for selecting a board
when several are connected.

Default: []

-f, --storage write file to storage area

-d, --dir look for board binaries in this directory

--srcbuild board binaries directory is laid out as a source build tree

Default: False

18.5.3 common
-v, --verbose increase logging level

Default: 0

-q, --quiet decrease logging level

Default: 0

18.5. Flashing/Loading tool 137

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

--version print the ARTIQ version number

Valid actions:

• gateware: write gateware bitstream to flash

• bootloader: write bootloader to flash

• storage: write storage image to flash

• firmware: write firmware to flash

• load: load gateware bitstream into device (volatile but fast)

• erase: erase flash memory

• start: trigger the target to (re)load its gateware bitstream from flash

Prerequisites:

• Connect the board through its/a JTAG adapter.

• Have OpenOCD installed and in your $PATH.

• Have access to the JTAG adapter’s devices. Udev rules from OpenOCD: ‘sudo cp openocd/contrib/99-
openocd.rules /etc/udev/rules.d’ and replug the device. Ensure you are member of the plugdev group: ‘sudo
adduser $USER plugdev’ and re-login.

18.6 Core device management tool

The artiq_coremgmt utility gives remote access to the core device logs, the Flash storage, and other management
functions.

To use this tool, you need to specify a device_db.py device database file which contains a comm device (an
example is provided in examples/master/device_db.py). This tells the tool how to connect to the core
device and with which parameters (e.g. IP address, TCP port). When not specified, the artiq_coremgmt utility will
assume that there is a file named device_db.py in the current directory.

To read core device logs:

$ artiq_coremgmt log

To set core device log level and UART log level (possible levels are TRACE, DEBUG, INFO, WARN and ERROR):

$ artiq_coremgmt log set_level LEVEL
$ artiq_coremgmt log set_uart_level LEVEL

Note that enabling the TRACE log level results in small core device slowdown, and printing large amounts of log
messages to the UART results in significant core device slowdown.

To read the record whose key is mac:

$ artiq_coremgmt config read mac

To write the value test_value in the key my_key:

$ artiq_coremgmt config write -s my_key test_value
$ artiq_coremgmt config read my_key
b'test_value'

You can also write entire files in a record using the -f parameter. This is useful for instance to write the startup and
idle kernels in the flash storage:

138 Chapter 18. Utilities

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

$ artiq_coremgmt config write -f idle_kernel idle.elf
$ artiq_coremgmt config read idle_kernel | head -c9
b'\x7fELF

You can write several records at once:

$ artiq_coremgmt config write -s key1 value1 -f key2 filename -s key3 value3

To remove the previously written key my_key:

$ artiq_coremgmt config delete my_key

You can remove several keys at once:

$ artiq_coremgmt config delete key1 key2

To erase the entire flash storage area:

$ artiq_coremgmt config erase

You do not need to remove a record in order to change its value, just overwrite it:

$ artiq_coremgmt config write -s my_key some_value
$ artiq_coremgmt config write -s my_key some_other_value
$ artiq_coremgmt config read my_key
b'some_other_value'

ARTIQ core device management tool

usage: artiq_coremgmt [-h] [-v] [-q] [--version] [--device-db DEVICE_DB]
[-D DEVICE]
{log,config,reboot,hotswap,profile,debug} ...

18.6.1 Positional Arguments
tool Possible choices: log, config, reboot, hotswap, profile, debug

18.6.2 Named Arguments
--device-db device database file (default: ‘“device_db.py”’)

Default: “device_db.py”

-D, --device use specified core device address instead of reading device database

18.6.3 common
-v, --verbose increase logging level

Default: 0

-q, --quiet decrease logging level

Default: 0

--version print the ARTIQ version number

18.6. Core device management tool 139

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

18.6.4 Sub-commands:

log

read logs and change log levels

artiq_coremgmt log [-h] {clear,set_level,set_uart_level} ...

Positional Arguments

action Possible choices: clear, set_level, set_uart_level

Sub-commands:

clear

clear log buffer

artiq_coremgmt log clear [-h]

set_level

set minimum level for messages to be logged

artiq_coremgmt log set_level [-h] LEVEL

Positional Arguments

LEVEL log level (one of: OFF ERROR WARN INFO DEBUG TRACE)

set_uart_level

set minimum level for messages to be logged to UART

artiq_coremgmt log set_uart_level [-h] LEVEL

Positional Arguments

LEVEL log level (one of: OFF ERROR WARN INFO DEBUG TRACE)

config

read and change core device configuration

artiq_coremgmt config [-h] {read,write,remove,erase} ...

Positional Arguments

action Possible choices: read, write, remove, erase

Sub-commands:

read

read key from core device config

140 Chapter 18. Utilities

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

artiq_coremgmt config read [-h] KEY

Positional Arguments

KEY key to be read from core device config

write

write key-value records to core device config

artiq_coremgmt config write [-h] [-s KEY STRING] [-f KEY FILENAME]

Named Arguments

-s, --string key-value records to be written to core device config

Default: []

-f, --file key and file whose content to be written to core device config

Default: []

remove

remove key from core device config

artiq_coremgmt config remove [-h] ...

Positional Arguments

KEY key to be removed from core device config

Default: []

erase

fully erase core device config

artiq_coremgmt config erase [-h]

reboot

reboot the currently running firmware

artiq_coremgmt reboot [-h]

hotswap

load the specified firmware in RAM

artiq_coremgmt hotswap [-h] IMAGE

Positional Arguments

IMAGE runtime image to be executed

18.6. Core device management tool 141

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

profile

account for communications CPU time

artiq_coremgmt profile [-h] {start,stop,save} ...

Positional Arguments

action Possible choices: start, stop, save

Sub-commands:

start

start profiling

artiq_coremgmt profile start [-h] [--interval MICROS] [--hits-size ENTRIES]
[--edges-size ENTRIES]

Named Arguments

--interval sampling interval, in microseconds

Default: 2000

--hits-size hit buffer size

Default: 8192

--edges-size edge buffer size

Default: 8192

stop

stop profiling

artiq_coremgmt profile stop [-h]

save

save profile

artiq_coremgmt profile save [-h] [--no-compression] [--no-demangle]
OUTPUT FIRMWARE

Positional Arguments

OUTPUT file to save profile to, in Callgrind format

FIRMWARE path to firmware ELF file

Named Arguments

--no-compression disable profile compression

Default: True

142 Chapter 18. Utilities

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

--no-demangle disable symbol demangling

Default: True

debug

specialized debug functions

artiq_coremgmt debug [-h] {allocator} ...

Positional Arguments

action Possible choices: allocator

Sub-commands:

allocator

show heap layout

artiq_coremgmt debug allocator [-h]

18.7 Core device logging controller

ARTIQ controller for core device logs

usage: aqctl_corelog [-h] [--bind BIND] [--no-localhost-bind] [-p PORT]
[--simulation]
CORE_ADDR

18.7.1 Positional Arguments
CORE_ADDR hostname or IP address of the core device

18.7.2 Named Arguments
--simulation Simulation - does not connect to device

Default: False

18.7.3 network server
--bind additional hostname or IP address to bind to; use ‘*’ to bind to all interfaces

(default: [])

Default: []

--no-localhost-bind do not implicitly also bind to localhost addresses

Default: False

-p, --port TCP port to listen on (default: 1068)

Default: 1068

18.7. Core device logging controller 143

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

18.8 Core device RTIO analyzer tool

artiq_coreanalyzer is a tool to convert core device RTIO logs to VCD waveform files that are readable by
third-party tools such as GtkWave. This tool extracts pre-recorded data from an ARTIQ core device buffer (or from
a file with the -r option), and converts it to a standard VCD file format. See RTIO analyzer for an example, or
artiq.test.coredevice.test_analyzer for a relevant unit test.

ARTIQ core device RTIO analysis tool

usage: artiq_coreanalyzer [-h] [-v] [-q] [--version] [--device-db DEVICE_DB]
[-r READ_DUMP] [-p] [-w WRITE_VCD] [-d WRITE_DUMP]
[-u]

18.8.1 Named Arguments
--device-db device database file (default: ‘“device_db.py”’)

Default: “device_db.py”

-r, --read-dump read raw dump file instead of accessing device

-p, --print-decoded print raw decoded messages

Default: False

-w, --write-vcd format and write contents to VCD file

-d, --write-dump write raw dump file

-u, --vcd-uniform-interval emit uniform time intervals between timed VCD events and show RTIO
event interval (in SI seconds) and timestamp (in machine units) as separate VCD
channels

Default: False

18.8.2 common
-v, --verbose increase logging level

Default: 0

-q, --quiet decrease logging level

Default: 0

--version print the ARTIQ version number

Note: The RTIO analyzer does not support SAWG.

18.9 DRTIO routing table manipulation tool

ARTIQ DRTIO routing table manipulation tool

usage: artiq_route [-h] FILE {init,show,set} ...

144 Chapter 18. Utilities

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

18.9.1 Positional Arguments
FILE target file

action Possible choices: init, show, set

18.9.2 Sub-commands:

init

create a new empty routing table

artiq_route init [-h]

show

show contents of routing table

artiq_route show [-h]

set

set routing table entry

artiq_route set [-h] DESTINATION [HOP [HOP ...]]

Positional Arguments

DESTINATION destination to operate on

HOP hop(s) to the destination

18.10 Data to InfluxDB bridge

ARTIQ data to InfluxDB bridge

usage: artiq_influxdb [-h] [--server-master SERVER_MASTER]
[--port-master PORT_MASTER]
[--retry-master RETRY_MASTER] [--baseurl-db BASEURL_DB]
[--user-db USER_DB] [--password-db PASSWORD_DB]
[--database DATABASE] [--table TABLE]
[--pattern-file PATTERN_FILE] [--bind BIND]
[--no-localhost-bind] [--port-control PORT_CONTROL] [-v]
[-q] [--version]

18.10.1 master
--server-master hostname or IP of the master to connect to

Default: “::1”

--port-master TCP port to use to connect to the master (default: 3250

Default: 3250

--retry-master retry timer for reconnecting to master

Default: 5.0

18.10. Data to InfluxDB bridge 145

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

18.10.2 database
--baseurl-db base URL to access InfluxDB (default: “http://localhost:8086”)

Default: “http://localhost:8086”

--user-db InfluxDB username

Default: “”

--password-db InfluxDB password

Default: “”

--database database name to use

Default: “db”

--table table name to use

Default: “lab”

18.10.3 filter
--pattern-file file to load the patterns from (default: “influxdb_patterns.cfg”). If the file is not

found, no patterns are loaded (everything is logged).

Default: “influxdb_patterns.cfg”

18.10.4 network server
--bind additional hostname or IP address to bind to; use ‘*’ to bind to all interfaces

(default: [])

Default: []

--no-localhost-bind do not implicitly also bind to localhost addresses

Default: False

--port-control TCP port for control connections (default: 3248)

Default: 3248

18.10.5 common
-v, --verbose increase logging level

Default: 0

-q, --quiet decrease logging level

Default: 0

--version print the ARTIQ version number

Pattern matching works as follows. The default action on a key (dataset name) is to log it. Then the patterns are
traversed in order and glob-matched with the key. Optional + and - pattern prefixes specify to either ignore or log keys
matching the rest of the pattern. Default (in the absence of prefix) is to ignore. Last matched pattern takes precedence.

146 Chapter 18. Utilities

http://localhost:8086
http://localhost:8086

CHAPTER

NINETEEN

DEFAULT NETWORK PORTS

Component Default port
Core device (management) 1380
Core device (main) 1381
Core device (analyzer) 1382
Core device (mon/inj) 1383
Master (logging input) 1066
Master (broadcasts) 1067
Core device logging controller 1068
InfluxDB bridge 3248
Controller manager 3249
Master (notifications) 3250
Master (control) 3251
PDQ2 (out-of-tree) 3252
LDA (out-of-tree) 3253
Novatech 409B (out-of-tree) 3254
Thorlabs T-Cube (out-of-tree) 3255
Korad KA3005P (out-of-tree) 3256
Newfocus 8742 (out-of-tree) 3257
PICam (out-of-tree) 3258
PTB Drivers (out-of-tree) 3259-3270
HUT2 (out-of-tree) 3271
TOPTICA Laser SDK (out-of-tree) 3272
HighFinesse (out-of-tree) 3273

147

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

148 Chapter 19. Default network ports

CHAPTER

TWENTY

FAQ

20.1 How do I . . .

20.1.1 find ARTIQ examples?
The examples are installed in the examples folder of the ARTIQ package. You can find where the ARTIQ package
is installed on your machine with:

python3 -c "import artiq; print(artiq.__path__[0])"

Copy the examples folder from that path into your home/user directory, and start experimenting!

20.1.2 prevent my first RTIO command from causing an underflow?
The first RTIO event is programmed with a small timestamp above the value of the timecounter when the core device
is reset. If the kernel needs more time than this timestamp to produce the event, an underflow will occur. You can
prevent it by calling break_realtime just before programming the first event, or by adding a sufficient delay.

If you are not resetting the core device, the time cursor stays where the previous experiment left it.

20.1.3 organize datasets in folders?
Use the dot (“.”) in dataset names to separate folders. The GUI will automatically create and delete folders in the
dataset tree display.

20.1.4 write a generator feeding a kernel feeding an analyze function?
Like this:

def run(self):
self.parse(self.pipe(iter(range(10))))

def pipe(self, gen):
for i in gen:

r = self.do(i)
yield r

def parse(self, gen):
for i in gen:

pass

@kernel
def do(self, i):

return i

149

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

20.1.5 create and use variable lengths arrays in kernels?
Don’t. Preallocate everything. Or chunk it and e.g. read 100 events per function call, push them upstream and retry
until the gate time closes.

20.1.6 execute multiple slow controller RPCs in parallel without losing time?
Use threading.Thread: portable, fast, simple for one-shot calls.

20.1.7 write part of my experiment as a coroutine/asyncio task/generator?
You can not change the API that your experiment exposes: build(), prepare(), run() and analyze()
need to be regular functions, not generators or asyncio coroutines. That would make reusing your own code in sub-
experiments difficult and fragile. You can however wrap your own generators/coroutines/tasks in regular functions
that you then expose as part of the API.

20.1.8 determine the pyserial URL to attach to a device by its serial number?
You can list your system’s serial devices and print their vendor/product id and serial number by running:

$ python3 -m serial.tools.list_ports -v

It will give you the /dev/ttyUSBxx (or the COMxx for Windows) device names. The hwid: field gives you the
string you can pass via the hwgrep:// feature of pyserial serial_for_url() in order to open a serial device.

The preferred way to specify a serial device is to make use of the hwgrep:// URL: it allows to select the serial
device by its USB vendor ID, product ID and/or serial number. Those never change, unlike the device file name.

For instance, if you want to specify the Vendor/Product ID and the USB Serial Number, you can do:

-d "hwgrep://<VID>:<PID> SNR=<serial_number>". for example:

-d "hwgrep://0403:faf0 SNR=83852734"

20.1.9 run unit tests?
The unit tests assume that the Python environment has been set up in such a way that import artiq will import the
code being tested, and that this is still true for any subprocess created. This is not the way setuptools operates as it adds
the path to ARTIQ to sys.path which is not passed to subprocesses; as a result, running the tests via setup.py is
not supported. The user must first install the package or set PYTHONPATH, and then run the tests with e.g. python3
-m unittest discover in the artiq/test folder and lit . in the artiq/test/lit folder.

For the hardware-in-the-loop unit tests, set the ARTIQ_ROOT environment variable to the path to a device database
containing the relevant devices.

The core device tests require the following TTL devices and connections:

• ttl_out: any output-only TTL.

• ttl_out_serdes: any output-only TTL that uses a SERDES (i.e. has a fine timestamp). Can be aliased to
ttl_out.

• loop_out: any output-only TTL. Must be physically connected to loop_in. Can be aliased to ttl_out.

• loop_in: any input-capable TTL. Must be physically connected to loop_out.

• loop_clock_out: a clock generator TTL. Must be physically connected to loop_clock_in.

• loop_clock_in: any input-capable TTL. Must be physically connected to loop_clock_out.

If TTL devices are missing, the corresponding tests are skipped.

150 Chapter 20. FAQ

http://pyserial.sourceforge.net/pyserial_api.html#serial.serial_for_url

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

20.1.10 find the dashboard and browser configuration files are stored?
:: python -c “from artiq.tools import get_user_config_dir; print(get_user_config_dir())”

20.1. How do I . . . 151

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

152 Chapter 20. FAQ

PYTHON MODULE INDEX

a
artiq.coredevice.ad53xx, 104
artiq.coredevice.ad9910, 88
artiq.coredevice.ad9912, 94
artiq.coredevice.ad9914, 95
artiq.coredevice.cache, 73
artiq.coredevice.core, 71
artiq.coredevice.dma, 72
artiq.coredevice.edge_counter, 78
artiq.coredevice.exceptions, 72
artiq.coredevice.grabber, 116
artiq.coredevice.i2c, 84
artiq.coredevice.novogorny, 109
artiq.coredevice.pcf8574a, 85
artiq.coredevice.sampler, 108
artiq.coredevice.sawg, 99
artiq.coredevice.shiftreg, 80
artiq.coredevice.spi2, 80
artiq.coredevice.spline, 97
artiq.coredevice.suservo, 110
artiq.coredevice.ttl, 74
artiq.coredevice.urukul, 85
artiq.coredevice.zotino, 107
artiq.language.core, 65
artiq.language.environment, 66
artiq.language.scan, 69
artiq.protocols.asyncio_server, 117
artiq.protocols.fire_and_forget, 120
artiq.protocols.pc_rpc, 118
artiq.protocols.pyon, 117
artiq.protocols.remote_exec, 122
artiq.protocols.sync_struct, 120

153

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

154 Python Module Index

INDEX

A
AD53xx (class in artiq.coredevice.ad53xx), 104
ad53xx_cmd_read_ch() (in module ar-

tiq.coredevice.ad53xx), 106
ad53xx_cmd_write_ch() (in module ar-

tiq.coredevice.ad53xx), 106
AD9910 (class in artiq.coredevice.ad9910), 88
AD9912 (class in artiq.coredevice.ad9912), 94
AD9914 (class in artiq.coredevice.ad9914), 95
adc_channel() (in module ar-

tiq.coredevice.novogorny), 110
adc_ctrl() (in module artiq.coredevice.novogorny),

110
adc_data() (in module artiq.coredevice.novogorny),

110
adc_mu_to_volt() (in module ar-

tiq.coredevice.sampler), 108
adc_mu_to_volts() (in module ar-

tiq.coredevice.suservo), 115
adc_softspan() (in module ar-

tiq.coredevice.novogorny), 110
adc_value() (in module artiq.coredevice.novogorny),

110
add_code() (artiq.protocols.remote_exec.RemoteExecServer

method), 123
amplitude_to_asf() (ar-

tiq.coredevice.ad9910.AD9910 method),
89

amplitude_to_asf() (ar-
tiq.coredevice.ad9914.AD9914 method),
96

amplitude_to_ram() (ar-
tiq.coredevice.ad9910.AD9910 method),
89

analyze() (artiq.language.environment.Experiment
method), 69

append (artiq.protocols.sync_struct.ModAction at-
tribute), 121

append() (artiq.protocols.sync_struct.Notifier
method), 121

append_to_dataset() (ar-
tiq.language.environment.HasEnvironment

method), 67
AppletsCCBDock (class in ar-

tiq.dashboard.applets_ccb), 50
artiq.coredevice.ad53xx (module), 104
artiq.coredevice.ad9910 (module), 88
artiq.coredevice.ad9912 (module), 94
artiq.coredevice.ad9914 (module), 95
artiq.coredevice.cache (module), 73
artiq.coredevice.core (module), 71
artiq.coredevice.dma (module), 72
artiq.coredevice.edge_counter (module), 78
artiq.coredevice.exceptions (module), 72
artiq.coredevice.grabber (module), 116
artiq.coredevice.i2c (module), 84
artiq.coredevice.novogorny (module), 109
artiq.coredevice.pcf8574a (module), 85
artiq.coredevice.sampler (module), 108
artiq.coredevice.sawg (module), 99
artiq.coredevice.shiftreg (module), 80
artiq.coredevice.spi2 (module), 80
artiq.coredevice.spline (module), 97
artiq.coredevice.suservo (module), 110
artiq.coredevice.ttl (module), 74
artiq.coredevice.urukul (module), 85
artiq.coredevice.zotino (module), 107
artiq.language.core (module), 65
artiq.language.environment (module), 66
artiq.language.scan (module), 69
artiq.protocols.asyncio_server (module),

117
artiq.protocols.fire_and_forget (module),

120
artiq.protocols.pc_rpc (module), 118
artiq.protocols.pyon (module), 117
artiq.protocols.remote_exec (module), 122
artiq.protocols.sync_struct (module), 120
asf_to_amplitude() (ar-

tiq.coredevice.ad9910.AD9910 method),
89

asf_to_amplitude() (ar-
tiq.coredevice.ad9914.AD9914 method),
96

155

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

AsyncioClient (class in artiq.protocols.pc_rpc), 118
AsyncioServer (class in ar-

tiq.protocols.asyncio_server), 117
at_mu() (in module artiq.language.core), 66
AutoTarget (class in artiq.protocols.pc_rpc), 118

B
BestEffortClient (class in artiq.protocols.pc_rpc),

118
BooleanValue (class in artiq.language.environment),

66
break_realtime() (artiq.coredevice.core.Core

method), 71
build() (artiq.language.environment.HasEnvironment

method), 67
burst_mu() (artiq.coredevice.novogorny.Novogorny

method), 109

C
CacheError, 72
calibrate() (artiq.coredevice.ad53xx.AD53xx

method), 104
call() (artiq.protocols.remote_exec.RemoteExecServer

method), 123
ccb_create_applet() (ar-

tiq.dashboard.applets_ccb.AppletsCCBDock
method), 50

ccb_disable_applet() (ar-
tiq.dashboard.applets_ccb.AppletsCCBDock
method), 51

ccb_disable_applet_group() (ar-
tiq.dashboard.applets_ccb.AppletsCCBDock
method), 51

CenterScan (class in artiq.language.scan), 70
cfg_sw() (artiq.coredevice.ad9910.AD9910 method),

89
cfg_sw() (artiq.coredevice.ad9912.AD9912 method),

94
cfg_sw() (artiq.coredevice.urukul.CPLD method), 86
cfg_switches() (artiq.coredevice.urukul.CPLD

method), 86
cfg_write() (artiq.coredevice.urukul.CPLD

method), 86
Channel (class in artiq.coredevice.suservo), 110
check_pause() (artiq.master.scheduler.Scheduler

method), 50
clear_smp_err() (artiq.coredevice.ad9910.AD9910

method), 89
Client (class in artiq.protocols.pc_rpc), 119
ClockFailure, 72
close_rpc() (artiq.protocols.pc_rpc.AsyncioClient

method), 118
close_rpc() (artiq.protocols.pc_rpc.BestEffortClient

method), 119

close_rpc() (artiq.protocols.pc_rpc.Client method),
119

coeff_as_packed() (artiq.coredevice.spline.Spline
method), 98

coeff_as_packed_mu() (ar-
tiq.coredevice.spline.Spline method), 98

coeff_to_mu() (artiq.coredevice.spline.Spline
method), 98

CompileError, 71
Config (class in artiq.coredevice.sawg), 99
configure() (artiq.coredevice.novogorny.Novogorny

method), 109
connect_global_rpc() (in module ar-

tiq.protocols.remote_exec), 123
connect_rpc() (ar-

tiq.protocols.pc_rpc.AsyncioClient method),
118

Core (class in artiq.coredevice.core), 71
CoreCache (class in artiq.coredevice.cache), 73
CoreDMA (class in artiq.coredevice.dma), 72
CoreException (class in artiq.coredevice.exceptions),

72
count() (artiq.coredevice.ttl.TTLInOut method), 75
CounterOverflow, 79
CPLD (class in artiq.coredevice.urukul), 85

D
decode() (in module artiq.protocols.pyon), 117
delay() (in module artiq.language.core), 66
delay_mu() (in module artiq.language.core), 66
delete() (artiq.master.scheduler.Scheduler method),

50
delitem (artiq.protocols.sync_struct.ModAction

attribute), 121
DMAError, 72
DMARecordContextManager (class in ar-

tiq.coredevice.dma), 73

E
EdgeCounter (class in ar-

tiq.coredevice.edge_counter), 79
encode() (in module artiq.protocols.pyon), 117
EnumerationValue (class in ar-

tiq.language.environment), 66
EnvExperiment (class in ar-

tiq.language.environment), 69
erase() (artiq.coredevice.dma.CoreDMA method), 73
exit_x() (artiq.coredevice.ad9914.AD9914 method),

96
Experiment (class in artiq.language.environment), 69
ExplicitScan (class in artiq.language.scan), 70

F
fetch_count() (ar-

156 Index

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

tiq.coredevice.edge_counter.EdgeCounter
method), 79

fetch_timestamped_count() (ar-
tiq.coredevice.edge_counter.EdgeCounter
method), 79

ff_join() (artiq.protocols.fire_and_forget.FFProxy
method), 120

FFProxy (class in artiq.protocols.fire_and_forget), 120
frequency_to_div() (ar-

tiq.coredevice.spi2.SPIMaster method), 81
frequency_to_ftw() (ar-

tiq.coredevice.ad9910.AD9910 method),
89

frequency_to_ftw() (ar-
tiq.coredevice.ad9912.AD9912 method),
94

frequency_to_ftw() (ar-
tiq.coredevice.ad9914.AD9914 method),
96

frequency_to_ftw() (ar-
tiq.coredevice.ttl.TTLClockGen method),
74

frequency_to_ram() (ar-
tiq.coredevice.ad9910.AD9910 method),
89

frequency_to_xftw() (ar-
tiq.coredevice.ad9914.AD9914 method),
96

from_mu() (artiq.coredevice.spline.Spline method), 98
ftw_to_frequency() (ar-

tiq.coredevice.ad9910.AD9910 method),
89

ftw_to_frequency() (ar-
tiq.coredevice.ad9912.AD9912 method),
94

ftw_to_frequency() (ar-
tiq.coredevice.ad9914.AD9914 method),
96

ftw_to_frequency() (ar-
tiq.coredevice.ttl.TTLClockGen method),
74

G
gate_both() (artiq.coredevice.edge_counter.EdgeCounter

method), 79
gate_both() (artiq.coredevice.ttl.TTLInOut method),

75
gate_both_mu() (ar-

tiq.coredevice.edge_counter.EdgeCounter
method), 79

gate_both_mu() (artiq.coredevice.ttl.TTLInOut
method), 75

gate_falling() (ar-
tiq.coredevice.edge_counter.EdgeCounter

method), 79
gate_falling() (artiq.coredevice.ttl.TTLInOut

method), 75
gate_falling_mu() (ar-

tiq.coredevice.edge_counter.EdgeCounter
method), 80

gate_falling_mu() (artiq.coredevice.ttl.TTLInOut
method), 76

gate_rising() (ar-
tiq.coredevice.edge_counter.EdgeCounter
method), 80

gate_rising() (artiq.coredevice.ttl.TTLInOut
method), 76

gate_rising_mu() (ar-
tiq.coredevice.edge_counter.EdgeCounter
method), 80

gate_rising_mu() (artiq.coredevice.ttl.TTLInOut
method), 76

gate_roi() (artiq.coredevice.grabber.Grabber
method), 116

gate_roi_pulse() (ar-
tiq.coredevice.grabber.Grabber method),
116

get() (artiq.coredevice.cache.CoreCache method), 73
get() (artiq.coredevice.pcf8574a.PCF8574A method),

85
get_adc() (artiq.coredevice.suservo.SUServo

method), 114
get_adc_mu() (artiq.coredevice.suservo.SUServo

method), 114
get_argument() (ar-

tiq.language.environment.HasEnvironment
method), 67

get_att_mu() (artiq.coredevice.urukul.CPLD
method), 86

get_dataset() (ar-
tiq.language.environment.HasEnvironment
method), 68

get_device() (artiq.language.environment.HasEnvironment
method), 68

get_device_db() (ar-
tiq.language.environment.HasEnvironment
method), 68

get_gains_mu() (artiq.coredevice.sampler.Sampler
method), 108

get_handle() (artiq.coredevice.dma.CoreDMA
method), 73

get_local_host() (ar-
tiq.protocols.pc_rpc.AsyncioClient method),
118

get_local_host() (artiq.protocols.pc_rpc.Client
method), 119

get_profile_mu() (ar-
tiq.coredevice.suservo.Channel method),

Index 157

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

110
get_rpc_id() (artiq.protocols.pc_rpc.AsyncioClient

method), 118
get_rpc_id() (artiq.protocols.pc_rpc.Client

method), 119
get_rtio_counter_mu() (ar-

tiq.coredevice.core.Core method), 71
get_rtio_destination_status() (ar-

tiq.coredevice.core.Core method), 71
get_selected_target() (ar-

tiq.protocols.pc_rpc.AsyncioClient method),
118

get_selected_target() (ar-
tiq.protocols.pc_rpc.Client method), 119

get_status() (artiq.coredevice.suservo.SUServo
method), 114

get_status() (artiq.master.scheduler.Scheduler
method), 50

get_y() (artiq.coredevice.suservo.Channel method),
110

get_y_mu() (artiq.coredevice.suservo.Channel
method), 111

Grabber (class in artiq.coredevice.grabber), 116

H
HasEnvironment (class in ar-

tiq.language.environment), 67
host_only() (in module artiq.language.core), 66

I
i2c_poll() (in module artiq.coredevice.i2c), 84
i2c_read_byte() (in module artiq.coredevice.i2c),

84
i2c_read_many() (in module artiq.coredevice.i2c),

84
i2c_write_byte() (in module artiq.coredevice.i2c),

85
i2c_write_many() (in module artiq.coredevice.i2c),

85
I2CError, 72
IncompatibleServer, 119
init (artiq.protocols.sync_struct.ModAction attribute),

121
init() (artiq.coredevice.ad53xx.AD53xx method), 105
init() (artiq.coredevice.ad9910.AD9910 method), 89
init() (artiq.coredevice.ad9912.AD9912 method), 94
init() (artiq.coredevice.ad9914.AD9914 method), 96
init() (artiq.coredevice.sampler.Sampler method), 108
init() (artiq.coredevice.suservo.SUServo method),

115
init() (artiq.coredevice.urukul.CPLD method), 86
init_sync() (artiq.coredevice.ad9914.AD9914

method), 96
input() (artiq.coredevice.ttl.TTLInOut method), 76

input_mu() (artiq.coredevice.grabber.Grabber
method), 116

insert (artiq.protocols.sync_struct.ModAction at-
tribute), 121

insert() (artiq.protocols.sync_struct.Notifier
method), 121

InternalError, 72
io_rst() (artiq.coredevice.urukul.CPLD method), 87

K
kernel() (in module artiq.language.core), 65

L
load() (artiq.coredevice.ad53xx.AD53xx method), 105
load_file() (in module artiq.protocols.pyon), 118

M
measure_io_update_alignment() (ar-

tiq.coredevice.ad9910.AD9910 method),
89

ModAction (class in artiq.protocols.sync_struct), 121
mu_to_seconds() (artiq.coredevice.core.Core

method), 71
MultiScanManager (class in artiq.language.scan),

70
mutate_dataset() (ar-

tiq.language.environment.HasEnvironment
method), 68

N
NoDefault (class in artiq.language.environment), 66
NoScan (class in artiq.language.scan), 69
Notifier (class in artiq.protocols.sync_struct), 121
Novogorny (class in artiq.coredevice.novogorny), 109
now_mu() (in module artiq.language.core), 66
NRTSPIMaster (class in artiq.coredevice.spi2), 83
NumberValue (class in artiq.language.environment),

66

O
off() (artiq.coredevice.ttl.TTLInOut method), 76
off() (artiq.coredevice.ttl.TTLOut method), 77
on() (artiq.coredevice.ttl.TTLInOut method), 76
on() (artiq.coredevice.ttl.TTLOut method), 77
OutOfSyncException, 116
output() (artiq.coredevice.ttl.TTLInOut method), 76

P
pack_coeff_mu() (artiq.coredevice.spline.Spline

method), 98
PCA9548 (class in artiq.coredevice.i2c), 84
PCF8574A (class in artiq.coredevice.pcf8574a), 85
playback() (artiq.coredevice.dma.CoreDMA

method), 73

158 Index

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

playback_handle() (ar-
tiq.coredevice.dma.CoreDMA method), 73

pop (artiq.protocols.sync_struct.ModAction attribute),
121

pop() (artiq.protocols.sync_struct.Notifier method),
122

portable() (in module artiq.language.core), 65
pow_to_turns() (artiq.coredevice.ad9910.AD9910

method), 90
pow_to_turns() (artiq.coredevice.ad9914.AD9914

method), 96
power_down() (artiq.coredevice.ad9910.AD9910

method), 90
prepare() (artiq.language.environment.EnvExperiment

method), 69
prepare() (artiq.language.environment.Experiment

method), 69
process_mod() (in module ar-

tiq.protocols.sync_struct), 122
Publisher (class in artiq.protocols.sync_struct), 122
pulse() (artiq.coredevice.ttl.TTLInOut method), 76
pulse() (artiq.coredevice.ttl.TTLOut method), 78
pulse_mu() (artiq.coredevice.ttl.TTLInOut method),

76
pulse_mu() (artiq.coredevice.ttl.TTLOut method), 78
put() (artiq.coredevice.cache.CoreCache method), 73
PYONValue (class in artiq.language.environment), 66

R
RangeScan (class in artiq.language.scan), 70
raw_view (artiq.protocols.sync_struct.Notifier at-

tribute), 122
read() (artiq.coredevice.ad9912.AD9912 method), 94
read() (artiq.coredevice.spi2.SPIMaster method), 81
read() (artiq.coredevice.suservo.SUServo method),

115
read32() (artiq.coredevice.ad9910.AD9910 method),

90
read64() (artiq.coredevice.ad9910.AD9910 method),

90
read_ram() (artiq.coredevice.ad9910.AD9910

method), 90
read_reg() (artiq.coredevice.ad53xx.AD53xx

method), 105
record() (artiq.coredevice.dma.CoreDMA method),

73
RemoteExecServer (class in ar-

tiq.protocols.remote_exec), 123
request_termination() (ar-

tiq.master.scheduler.Scheduler method),
50

reset() (artiq.coredevice.core.Core method), 71
reset() (artiq.coredevice.sawg.SAWG method), 104
rpc() (in module artiq.language.core), 65

RTIODestinationUnreachable, 72
RTIOOverflow, 72
RTIOUnderflow, 72
run() (artiq.language.environment.Experiment

method), 69

S
sample() (artiq.coredevice.novogorny.Novogorny

method), 109
sample() (artiq.coredevice.sampler.Sampler method),

108
sample_get() (artiq.coredevice.ttl.TTLInOut

method), 76
sample_get_nonrt() (ar-

tiq.coredevice.ttl.TTLInOut method), 77
sample_input() (artiq.coredevice.ttl.TTLInOut

method), 77
sample_mu() (artiq.coredevice.novogorny.Novogorny

method), 109
sample_mu() (artiq.coredevice.sampler.Sampler

method), 108
Sampler (class in artiq.coredevice.sampler), 108
SAWG (class in artiq.coredevice.sawg), 103
Scannable (class in artiq.language.scan), 70
Scheduler (class in artiq.master.scheduler), 50
seconds_to_mu() (artiq.coredevice.core.Core

method), 72
select() (artiq.coredevice.i2c.PCA9548 method), 84
select_rpc_target() (ar-

tiq.protocols.pc_rpc.AsyncioClient method),
118

select_rpc_target() (ar-
tiq.protocols.pc_rpc.Client method), 119

Server (class in artiq.protocols.pc_rpc), 120
set() (artiq.coredevice.ad9910.AD9910 method), 90
set() (artiq.coredevice.ad9912.AD9912 method), 94
set() (artiq.coredevice.ad9914.AD9914 method), 96
set() (artiq.coredevice.i2c.PCA9548 method), 84
set() (artiq.coredevice.i2c.TCA6424A method), 84
set() (artiq.coredevice.pcf8574a.PCF8574A method),

85
set() (artiq.coredevice.shiftreg.ShiftReg method), 80
set() (artiq.coredevice.spline.Spline method), 98
set() (artiq.coredevice.suservo.Channel method), 111
set() (artiq.coredevice.ttl.TTLClockGen method), 74
set_all_att_mu() (artiq.coredevice.urukul.CPLD

method), 87
set_att() (artiq.coredevice.ad9910.AD9910 method),

90
set_att() (artiq.coredevice.ad9912.AD9912 method),

95
set_att() (artiq.coredevice.urukul.CPLD method),

87

Index 159

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

set_att_mu() (artiq.coredevice.ad9910.AD9910
method), 91

set_att_mu() (artiq.coredevice.ad9912.AD9912
method), 95

set_att_mu() (artiq.coredevice.urukul.CPLD
method), 87

set_cfr1() (artiq.coredevice.ad9910.AD9910
method), 91

set_clr() (artiq.coredevice.sawg.Config method),
100

set_coeff() (artiq.coredevice.spline.Spline method),
98

set_coeff_mu() (artiq.coredevice.spline.Spline
method), 99

set_config() (artiq.coredevice.edge_counter.EdgeCounter
method), 80

set_config() (artiq.coredevice.spi2.SPIMaster
method), 81

set_config() (artiq.coredevice.suservo.SUServo
method), 115

set_config_mu() (ar-
tiq.coredevice.spi2.NRTSPIMaster method),
83

set_config_mu() (artiq.coredevice.spi2.SPIMaster
method), 82

set_dac() (artiq.coredevice.ad53xx.AD53xx method),
105

set_dac_mu() (artiq.coredevice.ad53xx.AD53xx
method), 105

set_dataset() (ar-
tiq.language.environment.HasEnvironment
method), 68

set_dds() (artiq.coredevice.suservo.Channel
method), 111

set_dds_mu() (artiq.coredevice.suservo.Channel
method), 111

set_default_scheduling() (ar-
tiq.language.environment.HasEnvironment
method), 68

set_div() (artiq.coredevice.sawg.Config method),
100

set_duc_max() (artiq.coredevice.sawg.Config
method), 101

set_duc_max_mu() (artiq.coredevice.sawg.Config
method), 101

set_duc_min() (artiq.coredevice.sawg.Config
method), 101

set_duc_min_mu() (artiq.coredevice.sawg.Config
method), 102

set_gain_mu() (ar-
tiq.coredevice.novogorny.Novogorny method),
110

set_gain_mu() (artiq.coredevice.sampler.Sampler
method), 108

set_iir() (artiq.coredevice.suservo.Channel
method), 112

set_iir_mu() (artiq.coredevice.suservo.Channel
method), 112

set_iq_en() (artiq.coredevice.sawg.Config method),
102

set_leds() (artiq.coredevice.zotino.Zotino method),
107

set_mu() (artiq.coredevice.ad9910.AD9910 method),
91

set_mu() (artiq.coredevice.ad9912.AD9912 method),
95

set_mu() (artiq.coredevice.ad9914.AD9914 method),
96

set_mu() (artiq.coredevice.spline.Spline method), 99
set_mu() (artiq.coredevice.ttl.TTLClockGen method),

74
set_out_max() (artiq.coredevice.sawg.Config

method), 102
set_out_max_mu() (artiq.coredevice.sawg.Config

method), 102
set_out_min() (artiq.coredevice.sawg.Config

method), 102
set_out_min_mu() (artiq.coredevice.sawg.Config

method), 102
set_pgia_mu() (artiq.coredevice.suservo.SUServo

method), 115
set_phase_mode() (ar-

tiq.coredevice.ad9910.AD9910 method),
91

set_phase_mode() (ar-
tiq.coredevice.ad9914.AD9914 method),
97

set_profile() (artiq.coredevice.urukul.CPLD
method), 87

set_profile_ram() (ar-
tiq.coredevice.ad9910.AD9910 method),
92

set_sync() (artiq.coredevice.ad9910.AD9910
method), 92

set_sync_div() (artiq.coredevice.urukul.CPLD
method), 87

set_time_manager() (in module ar-
tiq.language.core), 66

set_x() (artiq.coredevice.ad9914.AD9914 method), 97
set_x_mu() (artiq.coredevice.ad9914.AD9914

method), 97
set_y() (artiq.coredevice.suservo.Channel method),

113
set_y_mu() (artiq.coredevice.suservo.Channel

method), 113
setattr_argument() (ar-

tiq.language.environment.HasEnvironment
method), 68

160 Index

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

setattr_dataset() (ar-
tiq.language.environment.HasEnvironment
method), 68

setattr_device() (ar-
tiq.language.environment.HasEnvironment
method), 68

setitem (artiq.protocols.sync_struct.ModAction
attribute), 121

setup_roi() (artiq.coredevice.grabber.Grabber
method), 116

ShiftReg (class in artiq.coredevice.shiftreg), 80
simple_rexec_server_loop() (in module ar-

tiq.protocols.remote_exec), 123
simple_server_loop() (in module ar-

tiq.protocols.pc_rpc), 120
smooth() (artiq.coredevice.spline.Spline method), 99
SPIError, 72
SPIMaster (class in artiq.coredevice.spi2), 80
Spline (class in artiq.coredevice.spline), 97
sta_read() (artiq.coredevice.urukul.CPLD method),

87
start() (artiq.protocols.asyncio_server.AsyncioServer

method), 117
stop() (artiq.coredevice.ttl.TTLClockGen method), 74
stop() (artiq.protocols.asyncio_server.AsyncioServer

method), 117
store_file() (in module artiq.protocols.pyon), 118
StringValue (class in artiq.language.environment),

67
submit() (artiq.master.scheduler.Scheduler method),

50
Subscriber (class in artiq.protocols.sync_struct), 122
SUServo (class in artiq.coredevice.suservo), 113
syscall() (in module artiq.language.core), 65

T
TCA6424A (class in artiq.coredevice.i2c), 84
TerminationRequested, 66
timestamp_mu() (artiq.coredevice.ttl.TTLInOut

method), 77
to_mu() (artiq.coredevice.spline.Spline method), 99
to_mu64() (artiq.coredevice.spline.Spline method), 99
TTLClockGen (class in artiq.coredevice.ttl), 74
TTLInOut (class in artiq.coredevice.ttl), 74
TTLOut (class in artiq.coredevice.ttl), 77
tune_io_update_delay() (ar-

tiq.coredevice.ad9910.AD9910 method),
93

tune_sync_delay() (ar-
tiq.coredevice.ad9910.AD9910 method),
93

turns_amplitude_to_ram() (ar-
tiq.coredevice.ad9910.AD9910 method),
93

turns_to_pow() (artiq.coredevice.ad9910.AD9910
method), 93

turns_to_pow() (artiq.coredevice.ad9912.AD9912
method), 95

turns_to_pow() (artiq.coredevice.ad9914.AD9914
method), 97

turns_to_ram() (artiq.coredevice.ad9910.AD9910
method), 93

U
update_from_dict() (in module ar-

tiq.protocols.sync_struct), 122
update_xfer_duration_mu() (ar-

tiq.coredevice.spi2.SPIMaster method), 82
urukul_cfg() (in module artiq.coredevice.urukul), 88
urukul_sta_ifc_mode() (in module ar-

tiq.coredevice.urukul), 88
urukul_sta_pll_lock() (in module ar-

tiq.coredevice.urukul), 88
urukul_sta_proto_rev() (in module ar-

tiq.coredevice.urukul), 88
urukul_sta_rf_sw() (in module ar-

tiq.coredevice.urukul), 88
urukul_sta_smp_err() (in module ar-

tiq.coredevice.urukul), 88

V
voltage_to_mu() (in module ar-

tiq.coredevice.ad53xx), 107

W
wait_until_mu() (artiq.coredevice.core.Core

method), 72
watch_done() (artiq.coredevice.ttl.TTLInOut

method), 77
watch_stay_off() (artiq.coredevice.ttl.TTLInOut

method), 77
watch_stay_on() (artiq.coredevice.ttl.TTLInOut

method), 77
WatchdogExpired, 72
write() (artiq.coredevice.ad9912.AD9912 method), 95
write() (artiq.coredevice.spi2.SPIMaster method), 83
write() (artiq.coredevice.suservo.SUServo method),

115
write32() (artiq.coredevice.ad9910.AD9910 method),

93
write64() (artiq.coredevice.ad9910.AD9910 method),

93
write_dac() (artiq.coredevice.ad53xx.AD53xx

method), 106
write_dac_mu() (artiq.coredevice.ad53xx.AD53xx

method), 106
write_gain_mu() (artiq.coredevice.ad53xx.AD53xx

method), 106

Index 161

ARTIQ Documentation, Release 5.6865.bc2cfd77.beta

write_offset() (artiq.coredevice.ad53xx.AD53xx
method), 106

write_offset_dacs_mu() (ar-
tiq.coredevice.ad53xx.AD53xx method),
106

write_offset_mu() (ar-
tiq.coredevice.ad53xx.AD53xx method),
106

write_ram() (artiq.coredevice.ad9910.AD9910
method), 94

X
xftw_to_frequency() (ar-

tiq.coredevice.ad9914.AD9914 method),
97

Y
y_mu_to_full_scale() (in module ar-

tiq.coredevice.suservo), 115

Z
Zotino (class in artiq.coredevice.zotino), 107

162 Index

	Introduction
	Installing ARTIQ
	Installing via Nix (Linux)
	Installing via Conda (Windows, Linux)
	Upgrading ARTIQ (with Nix)
	Upgrading ARTIQ (with Conda)
	Flashing gateware and firmware into the core device
	Setting up the core device IP networking
	Miscellaneous configuration of the core device

	Developing ARTIQ
	Release notes
	ARTIQ-5
	ARTIQ-4
	ARTIQ-3
	ARTIQ-2
	ARTIQ-1

	ARTIQ Real-Time I/O Concepts
	The timeline
	Underflow exceptions
	Sequence errors
	Collisions
	Busy errors
	Input channels and events
	Overflow exceptions
	Seamless handover
	Synchronization
	RTIO reset

	Getting started with the core language
	Connecting to the core device
	Host/core device interaction (RPC)
	Real-time Input/Output (RTIO)
	Parallel and sequential blocks
	RTIO analyzer
	Direct Memory Access (DMA)

	Compiler
	Supported Python features
	Remote procedure calls
	Pitfalls
	Asynchronous RPCs
	Additional optimizations

	Getting started with the management system
	Starting your first experiment with the master
	Adding an argument
	Setting up Git integration
	Datasets

	Core device
	Flash storage
	FPGA board ports

	Management system
	Components
	Experiment scheduling
	Git integration
	Scheduler API reference
	Client control broadcasts (CCBs)
	Front-end tool reference

	The environment
	The device database
	Arguments
	Datasets

	Distributed Real Time Input/Output (DRTIO)
	Using DRTIO
	Internal details

	Core language reference
	artiq.language.core module
	artiq.language.environment module
	artiq.language.scan module
	artiq.language.units module

	Core drivers reference
	System drivers
	Digital I/O drivers
	RF generation drivers
	DAC/ADC drivers
	Miscellaneous

	Protocols reference
	artiq.protocols.asyncio_server module
	artiq.protocols.pyon module
	artiq.protocols.pc_rpc module
	artiq.protocols.fire_and_forget module
	artiq.protocols.sync_struct module
	artiq.protocols.remote_exec module

	List of available NDSPs
	Developing a Network Device Support Package (NDSP)
	The driver and controller
	The client
	Command-line arguments
	Logging
	Remote execution support
	General guidelines

	Utilities
	Local running tool
	Remote Procedure Call tool
	Static compiler
	Flash storage image generator
	Flashing/Loading tool
	Core device management tool
	Core device logging controller
	Core device RTIO analyzer tool
	DRTIO routing table manipulation tool
	Data to InfluxDB bridge

	Default network ports
	FAQ
	How do I …

	Python Module Index
	Index

