
TRITA-ICT-EX-2010:90

A performane-driven SoC arhiteture for videosynthesisSébastien Bourdeauduq

Stokholm 2010Master of Siene Thesis in System-on-Chip DesignRoyal Institute of TehnologyDepartment of Software and Computer Systems

TRITA-ICT-EX-2010:90© Sébastien Bourdeauduq, June 2010. Milkymist is a trademark of SébastienBourdeauduq. This report is distributed under the Creative Commons Attribution-Share Alike 3.0 Unported liense.KTH, Stokholm 2010

AbstratCommerial system-on-hips with advaned graphis aeleration apabilities arebeoming ubiquitous today. However, in ontradition with the open soure idea,little is known about the details of their arhiteture and implementation, as theyare usually overed by trade serets.Fostered by the falling osts of high-density FPGAs, our thesis projet enom-passes researhing, developing and implementing the key points of the arhitetureof an open soure and omprehensive system-on-hip with ompetitive yet reason-able graphis apabilities. The hosen target appliation is the synthesis of visuale�ets similar to those produed by the popular MilkDrop visualization plug-in forWinamp.Our system-on-hip design onsists prinipally of a ustom bus infrastruture,a ustom DDR SDRAM memory ontroller, a miroproessor ore, and ustomgraphis aelerators for texture mapping and �oating point proessing.Our base miroproessor system is apable of running Linux (without MMU)and outperforms a Miroblaze-based solution tested in similar onditions by a 15 to35% inrease in speed of exeution. For our video synthesis appliation, our texturemapping aelerator ahieves an average �ll rate of 44 megapixels per seond andour �oating point proessing unit provides in exess of 70 million �oating point op-erations per seond. Everything, inluding I/O peripherals (AC97 audio, Ethernet,RS232 UART, GPIO), is implemented on a Virtex-4 XC4VLX25 FPGA, where itutilizes about 80% of the resoures.Finally, we have suessfully developed an embedded video synthesis programthat leverages the possibilities of our hardware arhiteture to permit the live ren-dering of many MilkDrop e�ets in 640x480 resolution at 30 frames per seond.TRITA-ICT-EX-2010:90

iii

AknowledgmentsFirst, I would like to express my gratitude to Professor Mats Brorsson, my supervisorand examiner at the Royal Institute of Tehnology, for having the open-mindednessof letting me write my thesis on this subjet and for his help and advie with it.I would also like to thank Lattie Semiondutor for opening the soure ode oftheir LattieMio32 proessor ore.Speial thanks go to all the people who are indiretly involved with this Master'sthesis projet: Henry de Beauhesne (Xilinx) for getting me started with high-endFPGA tools, Shawn Tan (Aeste Works (M) Sdn Bhd) for his help with understand-ing the WISHBONE bus, Gregory Taylor (NASA's Jet Propulsion Laboratory) forletting me know that they were using parts of my ode in the development of aommuniations system to be put on board the international spae station, TakeshiMatsuya (Keio University) for his work on the port of Linux to the system-on-hipdesribed herein, Mihael Walle for developing support of the system-on-hip in theQEMU emulator and Wolfgang Spraul (Sharism at Work Ltd.) for proposing me anagreement for manufaturing devies using the system-on-hip design.Thanks to the Eid�lon musi band (Rheims, Frane), for whom I wrote my �rstPC-based video synthesis program in 2005, whih has been a soure of inspirationfor this projet.Finally, I would like to thank all the researhers who have retained their opyrighton their papers (or have put them in the publi domain) and distribute them onlinefor everybody to download freely (inidentally in aordane with the priniple offree exhange of information from the KTH ethis poliy). This in spite of the defaultagreement of many publishers suh as the IEEE, whih asks authors to assign theiropyrights to the publishers so the latter have the exlusive permission to sell thedownload of douments that they did not write, without giving bak to the authors,at a prie supposedly meant to over publishing expenses but whih is not justi�edby today's low osts of network bandwidth and servers.Thanks to these researhers, I have been able to aess quality sienti� literaturebefore I went to a university, from whih I have learned a lot. Even throughoutthe writing of this Master's thesis, papers freely available online enabled greaterprodutivity as aess to them was muh faster.

iv

Contents
1 Introdution 12 Bakground 52.1 Video synthesis . 52.1.1 Overview . 52.1.2 Priniple . 62.2 Open soure SoC platforms . 112.3 DRAM tehnology . 142.3.1 Multiple banks . 162.3.2 Refreshing . 172.4 Texture mapping . 172.5 Organization . 183 Memory subsystem 233.1 Attaking the memory wall . 233.2 Another approah . 243.3 Memory system features . 243.3.1 Single SDRAM and system lok domain 243.3.2 Page mode ontrol algorithm 253.3.3 Burst aesses . 253.3.4 Burst reordering . 263.3.5 Pipelining . 263.4 Pratial implementation . 263.5 Performane measurement . 293.5.1 Introdution . 293.5.2 Method . 293.5.3 Results . 314 SoC interonnet 334.1 General SoC interonnet: the Wishbone bus 334.2 Con�guration and Status Registers: the CSR bus 334.3 High-throughput memory aess bus: the FML bus 344.3.1 Variable lateny . 344.3.2 Burst only . 34v

vi Contents4.3.3 Burst reordering . 354.3.4 Pipelining . 354.3.5 Usage . 354.4 Bridging Wishbone to FML . 354.5 Cahe ohereny . 364.5.1 Cohereny issues around the CPU (L1) ahe 364.5.2 Cohereny issues around the Wishbone-FML (L2) ahe . . . 365 Texture mapping unit 395.1 Algorithm . 395.1.1 Two-dimensional interpolation 395.1.2 One-dimensional interpolation 405.1.3 Bilinear �ltering . 425.2 Performane onsiderations . 445.2.1 Context . 445.2.2 Exeution time of the interpolation algorithm 445.2.3 Total exeution time . 455.3 Pipelined hardware implementation 465.3.1 Strategy . 465.3.2 Vertex feth engine . 465.3.3 Interpolators . 485.3.4 Clamping/wrapping . 495.3.5 Address generator . 505.3.6 Texel ahe . 505.3.7 Bilinear �lter . 655.3.8 Write bu�er . 655.3.9 Control interfae . 675.4 Extra features . 675.5 Implementation results . 676 Floating point o-proessor 716.1 Purpose . 716.2 Forms of parallelism . 716.3 Hardware arhiteture . 726.3.1 Overview . 726.3.2 Instrution set . 746.3.3 Instrution RAM . 746.3.4 ALU . 746.4 Run-time ompiler . 756.4.1 Compilation into virtual mahine instrutions 766.4.2 Sheduling . 776.4.3 Constants and user variables 786.5 Results . 79

Contents vii7 Software 817.1 LattieMio32 . 817.2 Capabilities . 827.3 Benhmarking . 827.4 Design of a MilkDrop-like rendering program 867.4.1 Desription . 867.4.2 Cahe ohereny . 887.4.3 Event-driven operation . 897.4.4 Results . 898 Conlusion and future works 91

viii

List of Figures1.1 FPGA boards of the Ikos Pegasus ASIC emulator (a. 1999). 21.2 Projet logo. 22.1 Sample video frame from the MilkDrop visual synthesizer. 52.2 Sample video frame from Visikord, a program mixing live video intoMilkDrop. 62.3 The embedded user interfae (based on Genode FX [12℄) of Fliker-noise, the Milkymist VJ appliation. The path editor is shown, withper-frame and per-vertex equations. 72.4 Basi MilkDrop rendering �ow. 82.5 Exerpt from the MilkDrop preset �Geiss � Warp of Dali 1� (withsome simpli�ations). 92.6 Blok diagram of a DRAM memory bank. 152.7 Example of distorted piture. 182.8 Priniple of bilinear texture �ltering. 182.9 Rendering with bilinear �ltering enabled. 192.10 Rendering with bilinear �ltering disabled (the nearest texel is used). 192.11 SoC blok diagram. 213.1 Blok diagram of the HPDMC arhiteture. 273.2 FML transations. 303.3 Maximum utilization of a FML bus. 315.1 Typial deomposition into triangular primitives of the MilkDrop ren-dering surfae. 405.2 2D linear interpolation on a retangle. 405.3 One-dimensional linear interpolation algorithm. 415.4 Bilinear �ltering using the �xed point texture oordinates. 435.5 Blok diagram of the texture mapping unit arhiteture. 475.6 Vetor interpolator. 485.7 Pipelined salar interpolator. 495.8 Arhiteture of the four-hannel texel ahe. 525.9 Disposition of the hannels within the texture, general ase. 545.10 Disposition of the hannels within the texture, vertial wrapping. . . 545.11 Disposition of the hannels within the texture, horizontal wrapping. . 55ix

x List of Figures5.12 Disposition of the hannels within the texture, horizontal and vertialwrapping. 565.13 TMU output piture for the �opy� set (original piture). 605.14 TMU output piture for the �zoomin� set. 605.15 TMU output piture for the �zoomout� set. 615.16 TMU output piture for the �rotozoom� set. 615.17 Typial TMU simulation trae (exerpt). 625.18 Hit rates versus texel ahe size. The X axis (ahe size) uses alogarithmi sale. 635.19 Theoretial write bu�er throughput versus memory write aess time. 665.20 Measured TMU performane versus global texel ahe hit rate. . . . 686.1 Hardware arhiteture of the �oating point o-proessor. 736.2 Fast inverse square root algorithm. 777.1 LattieMio32 arhiteture (Lattie Semiondutor). 817.2 Linux booting on the Milkymist SoC. 827.3 Xilinx ML401 development board. 837.4 Comparative MiBenh results of Milkymist and Miroblaze. 857.5 Rendering software arhiteture. 868.1 Printed iruit board �oor plan of the Milkymist One. 93

List of Tables3.1 Estimate of the memory bandwidth onsumption. 273.2 Memory performane in di�erent onditions (Milkymist 0.5.1). Band-widths are in Mb/s. 325.1 Estimates of the ost of ommon software operations. 445.2 Detailed estimate of the exeution time of the interpolation algorithm. 455.3 Optimisti estimate of the exeution time of software texture mapping. 455.4 Texture oordinate sets used for benhmarking the texel ahe. . . . 595.5 Hit rates for eah set of texture oordinates and di�erent ahe sizes. 636.1 PFPU instrution format. 746.2 Greedy PFPU sheduler performane with the per-vertex math ofdi�erent MilkDrop pathes (Milkymist 0.5.1). 796.3 PFPU latenies in yles (Milkymist 0.5.1). 806.4 Exat ost in instrutions of ommon operations on the PFPU. . . . 807.1 User exeution times on Milkymist 0.2. 847.2 User exeution times on Miroblaze 10.1. 85

xi

xii

Chapter 1IntrodutionThe open soure model supports the idea that any individual, if he or she has therequired level of tehnial knowledge, an realistially use, share and modify thedesign of a tehnial system. During the nineties, this development model gainedpopularity in the software world with, most notably, the Linux operating system.But it was not viable for omplex SoCs until a few years ago, beause the ostof prototyping semiondutor hips is prohibitive and �eld programmable gate ar-rays (FPGAs) used to be too slow, too small, and too expensive. System-on-hipdesign and hands-on omputer arhiteture therefore remained a �eld reserved towell-funded aademia and researh and development laboratories of ompanies of asigni�ant size and wealth, who had aess to large FPGA lusters or even semion-dutor foundries.But the ost of FPGAs is falling (this was already the ase between 1985 and1994 [24℄ and the trend has ontinued sine then) and relatively fast and high-densitydevies are today beoming available to the general publi. For an example of thisfalling ost (and inreasing densities and speed), we will mention the Ikos Pegasusappliation spei� integrated iruit (ASIC) emulator, whose insides are depitedin �gure 1.1. The LattieMio32 CPU ore used in the system-on-hip desribed inthis thesis oupies alone 60% of the resoures of one of the XC4036XL FPGAs ofthis devie, and runs at 30MHz. The Ikos Pegasus was a state-of-the-art devie adeade ago. It onsumes up to 3 kilowatts of power, weights dozens of kilos andprobably osted the equivalent of several millions of SEK. The same CPU ore nowoupies about 15% of a modern FPGA osting less than 500 SEK, where it runs inexess of 100MHz.This evolution makes it possible to implement omplex high-performane system-on-hips (SoC) that an be modi�ed and improved by anyone, thanks to the �exi-bility of the FPGA platform.This Master's thesis introdues MilkymistTM [6℄, a fast and resoure-e�ientFPGA-based system-on-hip designed for the appliation of rendering live videoe�ets during performanes suh as onerts, lubs or ontemporary art installations.Suh e�ets are already popularized by artists known as �video jokeys�, or �VJs�.VJing is ommonly done with a PC and omputer software suh as GrandVJ [5℄ or1

2 Chapter 1. Introdution

Figure 1.1. FPGA boards of the Ikos Pegasus ASIC emulator (a. 1999).

Figure 1.2. Projet logo.

3Resolume [11℄. However, this approah has some drawbaks and using an embeddeddevie instead would be interesting:
• A devie of very small size and weight is possible, whih is onvenient in mobileor temporary setups.
• Boot and set-up time (launhing the software) an be greatly redued (to afew seonds).
• Many interfaes for interative performanes (MIDI, DMX, video input, low-level digital I/O for user sensors) an be integrated. By omparison, theequivalent PC-based solution would be expensive and bulky.Besides the fat that this is an interesting, reative and popular appliation,it is also demanding in terms of omputational power and memory performane.Suh a projet would also be a proof that high performane open soure system-on-hip design is possible in pratie; with a view to help, foster and atalyze similar�open hardware� initiatives. As the Milkymist system-on-hip is entirely made ofsynthesizable Verilog and, for the most part, released under the GNU General PubliLiense (GPL), its ode an be re-used by other open hardware projets.Meeting the performane onstraints while still using heap and relatively smallFPGAs is perhaps the most interesting and hallenging tehnial point of thisprojet, and it ould not be done without substantial work in the �eld of omputerarhiteture. This is what this Master's thesis overs.

4

Chapter 2Bakground2.1 Video synthesis2.1.1 OverviewMilkDrop [25℄ (�gure 2.1) is a popular open soure video synthesis framework thatwas originally made to develop visualization plug-ins for the Winamp audio player.People have sine then ported MilkDrop to many di�erent platforms [32℄ and made itreat to live events, suh as aptured audio and video [20℄ (�gure 2.2) or movementsof a Wiimote remote ontrol [21℄.The idea behind the Milkymist projet is to implement an embedded video syn-thesis platform on a ustom open soure system-on-hip, that is based on the samerendering priniple of MilkDrop but with more ontrol interfaes and features. Thedevie built around the system-on-hip should be stand-alone, whih means thata graphial user interfae for on�guring the visual e�ets should be implemented(�gure 2.3).

Figure 2.1. Sample video frame from the MilkDrop visual synthesizer.5

6 Chapter 2. Bakground

Figure 2.2. Sample video frame from Visikord, a program mixing live video intoMilkDrop.2.1.2 PrinipleGeneral mode of operationThe MilkDrop-like renderer is the most ompute and memory intensive proess,from whih stem most of the tehnial hallenges. We will now get into more detailsabout how the renderer works (�gure 2.4).Rendering is based on a frame bu�er on whih the steps below are ontinuouslyrepeated. This repetition is at the origin of many feedbak or �fratal� e�ets.
• The urrent frame is distorted (zoomed, translated, warped, saled, rotated...)by texture mapping. This step is desribed with more detail in setion 2.4.
• The frame is darkened (the olors are shifted to blak).
• A waveform of the urrently played musi is drawn. The wave an be drawnlinearly (like an osillosope), in a irle, et.
• Borders around the sreen are drawn. If the distortion zooms out, the borderswill be pulled into the piture (some e�ets are based on this).
• Motion vetors are drawn. Motion vetors are simply a grid of dots, whihan be used to generate e�ets by playing with the distortion.
• The proess repeats from the beginning.These are the basi features of MilkDrop. There are more (ustom waves,shapes,...) whih are listed on the MilkDrop website [25℄. Some other features(suh as adding live video) will be added to the Milkymist renderer in the future.

2.1. Video synthesis 7

Figure 2.3. The embedded user interfae (based on Genode FX [12℄) of Flikernoise,the Milkymist VJ appliation. The path editor is shown, with per-frame and per-vertex equations.This proess is done on an internal frame bu�er whose horizontal and vertialdimensions are a power of 2. This frame bu�er is then saled to the size of the sreenin order to be displayed. This brings two features:
• The sizes being a power of 2 allows out-of-bounds texture oordinates to bewrapped (in order to repeat the texture) by simply performing a bitwise ANDof the oordinate, instead of the full omputation of a division remainder whihis a muh more expensive operation (even on the traditional GPUs MilkDropwas designed for).
• It enables the implementation of the video eho e�et: after the internal framebu�er has been drawn to the sreen at its nominal dimensions, a zoomed andsemi-transparent opy of it an be overprinted.It must be noted that this two-step proess inreases the omputation time and theonsumption of memory bandwidth.All the steps of the rendering are heavily parameterizable by the user, using aoded format alled a path or preset whih de�nes the aspet and the interationforms of a partiular visual e�et. The listing of a sample path is given by �gure 2.5and the meaning of the language is explained below.

8 Chapter 2. Bakground

Figure 2.4. Basi MilkDrop rendering �ow.

2.1. Video synthesis 9
fDeay=0.980000nWaveMode=2bTexWrap=1bMotionVetorsOn=0zoom=1.046000rot=0.020000x=0.500000y=0.500000warp=0.969000sx=1.000000sy=1.000000wave_r=0.600000wave_g=0.600000wave_b=0.600000wave_x=0.500000wave_y=0.470000per_frame_1=wave_r = wave_r + 0.400*(0.60*sin(0.933*time)+ 0.40*sin(1.045*time));per_frame_2=wave_g = wave_g + 0.400*(0.60*sin(0.900*time)+ 0.40*sin(0.956*time));per_frame_3=wave_b = wave_b + 0.400*(0.60*sin(0.910*time)+ 0.40*sin(0.920*time));per_frame_4=zoom = zoom + 0.010*(0.60*sin(0.339*time)+ 0.40*sin(0.276*time));per_frame_5=rot = rot + 0.050*(0.60*sin(0.381*time)+ 0.40*sin(0.579*time));per_frame_6=x = x + 0.030*(0.60*sin(0.374*time)+ 0.40*sin(0.294*time));per_frame_7=y = y + 0.030*(0.60*sin(0.393*time)+ 0.40*sin(0.223*time));per_vertex_1=sx=sx-0.04*sin((y*2-1)*6+(x*2-1)*7+time*1.59);per_vertex_2=sy=sy-0.04*sin((x*2-1)*8-(y*2-1)*5+time*1.43);Figure 2.5. Exerpt from the MilkDrop preset �Geiss � Warp of Dali 1� (with somesimpli�ations).

10 Chapter 2. BakgroundInitial onditionsThe path begins with a series of parameters whih are used to initialize the renderer,and many of them are kept onstant during the exeution of the path. For example:
• bMotionVetorsOn=0 turns o� the drawing of the motion vetors.
• nWaveMode=2 selets one of the many ways of drawing the audio waveform.
• sx=1.000000 and sy=1.000000 set the X and Y saling fators of the distortionto 1 (i.e. the frame is initially not saled).
• wave_r=0.600000, wave_g=0.600000 and wave_b=0.600000 set the initial RGBolor with whih the wave is drawn (it is initially grey).Per-frame equationsUsing initial onditions only limits the interation and evolution possibilities of thepath.It is therefore possible to make the parameters evolve over time, thanks to theper-frame equations. As their name suggests, the per-frame equations are mathe-matial expressions that are evaluated at eah frame.The example path (�gure 2.5) shows some of them (the lines beginning withper_frame). In this example, they hange the wave olor over time by modifyingthe wave_r, wave_g and wave_b values in sinusoidal patterns, as well as the zoom(zoom), rotation (rot) and enter of rotation (x and y).Per-frame equations an make the path reat to sound, for example throughthe bass, mid and treb variables that indiate the intensity of the sound in threefrequeny bands. One of the ideas in Milkymist is to add other variables that an beontrolled by the DMX512 and MIDI protools, enabling the use of a whole rangeof devies ommonly found among musiians (eletroni instruments, faders, stagelight onsoles, joystiks,...) to ontrol the visual e�ets.Per-vertex equationsPer-vertex equations are used to �ne-tune the distortion applied to the piture.Indeed, as explained further in setion 2.4, the distortion works by using a meshof ontrol points (verties) that an be moved to transform the image in manydi�erent ways (e�ets suh as zooming, saling and rotating are implemented bymoving the verties).Per-vertex equations are thus evaluated at eah vertex (whose position an beretrieved through the x and y variables), and alter the position of that vertex. Inthe example path (�gure 2.5), the image is loally saled horizontally and vertiallyby fators depending on the position of the vertex and on the time, resulting in atwisted visual e�et.As disussed in hapter 5, the �oating point omputations for eah vertex areintensive and required the use of a dediated o-proessor.

2.2. Open soure SoC platforms 112.2 Open soure SoC platformsThere is an existing e�ort to build open soure system-on-hips. It is interesting toreview these projets in order to look forward to building upon them � possiblyadding hardware aelerators or performing other modi�ations in order to improveperformane.There are many SoC designs available on the Internet, whih are more or lessmature. The system-on-hip projets listed here meet the following riteria:
• they have been shown to work on at least one FPGA board
• they are released under an open soure liense
• they omprise a synthesizable RISC CPU
• the CPU is supported by a C and C++ ompiler
• they inlude a RS232 ompatible UART (for a debug onsole)
• they support interfaing to o�-hip SDRAM memoryOpenSPARCOpenSPARC [23℄ is the well-known SPARC proessor of Sun Mirosystems whih isnow released under an open soure liense and inluded into a SoC FPGA projet.Implemented on a FPGA, this proessor is extremely resoure-intensive. A ut-down version of the CPU ore only, alled the �Simply RISC S1�, oupies at least37000 FPGA look-up tables (LUT) without the ahes [28℄. This is about twie thelogi apaity of the Virtex-4 XC4VLX25 FPGA.As it turns out, the OpenSPARC arhiteture is a very omplex design whihimplements a huge number of tehniques whih inrease the software exeution speed(instrutions per lok yle). While this is a wise hoie for a software-entriproessor implemented on a fully ustom semiondutor hip, with a FPGA proessit is more appealing to keep the software proessor simple in order to save resouresand make room for ustom hardware aelerators, taking advantage of the FPGA�exibility.GRLIBGRLIB [13℄ is a very professional and standard-ompliant library of SoC ores.The library features a omprehensive set of ores: AMBA AHB/APB bus ontrolelements, the LEON3 SPARC proessor, a 32-bit PC133 SDRAM ontroller, a 32-bit PCI bridge with DMA, a 10/100/1000 Mb/s Ethernet MAC, 16/32/64-bit DDRSDRAM/DDR2 SDRAM ontrollers and more.However, its drawbaks are:
• Code omplexity. GRLIB is written in VHDL and makes intensive use ofustom types, pakages, generate statements, et.

12 Chapter 2. Bakground
• Cores are not self-ontained. GRLIB de�nes many �building bloks� that areused everywhere else in the ode, making it di�ult to re-use ode in anotherprojet whih is not based on GRLIB.
• Signi�ant FPGA resoure usage. A system omprising the LEON3 SPARCproessor with a 2-way set-assoiative 16kB ahe and no memory manage-ment unit (MMU), the DDR SDRAM ontroller, a RS232 serial port, and anEthernet 10/100 MAC uses 13264 FPGA look-up tables (LUT). They mapto 79% of the Virtex-4 XC4VLX25 FPGA. We have arried out the test withthe Xst synthesizer, Xilinx ISE 11.3, and GRLIB 1.0.21-b3957 (GPL release)using the default provided synthesis sripts. This undermines the possibilityof adding hardware aeleration ores. In [22℄, a signi�ant resoure usage wasalso reported for an older version of LEON.
• Relatively low lok frequeny. With the same parameters as above, the max-imum lok frequeny is 84MHz.Beause of these reasons, GRLIB was not retained.ORPSoC (OpenRISC)ORPSoC is based on the OpenRISC [26℄ proessor ore, whih is the �agship produtof OpenCores, a ommunity of developers of open soure system-on-hips. ORPSoCis essentially maintained by ORSoC AB.ORPSoC notably features the OpenRISC OR1200 proessor ore, the Wish-bone [9℄ bus, omprehensive debugging failities, a 16550-ompatible RS232 UART,a 10/100 Mb/s Ethernet MAC and a SDRAM ontroller.Unfortunately, ORPSoC is resoure-ine�ient and buggy. The OpenRISC im-plementation is not well optimized for synthesis. We arried out tests on the August17, 2009 OpenRISC release. Still using the XC4VLX25 FPGA as target, synthesiswith Xst and Xilinx ISE 11.4 yields an utilization of 5077 LUTs for the CPU oreonly (using the default FPGA on�guration: no ahes, no MMU, multiplier, andwith the implementation of the RAMs using the RAMB16 elements of the FPGAseleted), running at approximately 100MHz. A similar resoure usage is reportedin [22℄. The synthesis report shows asynhronous ontrol signals where there shouldnot be (suh as on the output of the program ounter), whih an be an indiation ofpoor quality of the design. Other IP ores omprising ORPSoC have similar issues(we tested the 16550 UART and the Ethernet MAC). Finally, the provided SDRAMontroller only supports the low-bandwidth 16-bit single data rate option, has a highlateny due to the extensive use of lok domain transfer FIFOs, does not supportpipelined transfers and has a poorly written ode.OpenRISC and ORPSoC therefore do not seem to be a good platform for theperformane-demanding and resoure-onstrained video synthesis appliation.

2.2. Open soure SoC platforms 13LattieMio32 SystemThis produt [30℄ from the FPGA vendor Lattie Semiondutor is omparable toMiroblaze [34℄ and Nios II [4℄ from its ompetitors, respetively Xilinx and Altera.Like its ompeting produts, LattieMio32 System features a broad library oflight, fast and FPGA-optimized SoC ores.One interesting move made by Lattie Semiondutor is that parts of the Lat-tieMio32 System are released under an open soure liense, and most notablythe ustom LattieMio32 miroproessor ore. LattieMio32 System is also basedupon the Wishbone [9℄ bus, whose spei�ation is free of harge and freely dis-tributable.While it is perhaps tehnially possible to build Milkymist on top of the Lat-tieMio32 System, there are liensing issues onerning most notably the DDRSDRAM ontroller whih is proprietary.However, the LattieMio32 miroproessor ore is interesting. Synthesized forthe XC4VLX25 with the 2-way set-assoiative ahes, the barrel shifter, the hard-ware divider and the hardware multiplier enabled, it oupies only about 2400 4-LUTs and runs at more than 100MHz.This miroproessor ore has been retained for use in Milkymist, as desribed inhapter 7.Miroblaze and Nios IIEven though we are not interested in proprietary designs, we still give a briefoverview of the resoure usage of Miroblaze and Nios II systems as a omparison.Miroblaze. In [22℄, the Miroblaze ore is reported to use approximately 2400LUTs, like LattieMio32. The platform builder GUI in Xilinx ISE 12.1 also limitsthe frequeny of Miroblaze systems to 100MHz when targeting the Virtex-4 family.Thus, Miroblaze is lose to LattieMio32 regarding area and frequeny.Nios II. Aording to an Altera report [3℄, Nios II/f uses 1600 Cylone II LEs.A LE is mainly omprised of a 4-LUT and a register, whih is omparable to theVirtex-4 arhiteture on whih LattieMio32 was tested. Thus, it seems that theNios II ore would be approximately two thirds of the area of LattieMio32.Some di�erenes an be noted between the LattieMio32 on�guration and theNios II/f on�guration used in the Altera report:
• Cahes are diret-mapped and 512 bytes (eah).
• There is no multiplier.
• Nios II/f uses a dynami branh preditor, while LattieMio32 uses a statibranh preditor.

14 Chapter 2. Bakground
• The report does not say if the optional hardware divider, multiplier and shifter(that were enabled in LattieMio32) were seleted.The Nios II is also reported to run at 140 MHz with this on�guration and UART,JTAG UART, SDR SDRAM ontroller and timer peripherals. This is very fast, butannot be ompared to the LattieMio32 results on Virtex-4 for two reasons:
• Routing resoures and logi delays for the two FPGA families are di�erent.
• It is possible that Altera hand-tuned the Nios II proessor to their FPGAtehnology.2.3 DRAM tehnologyDRAM is by far today's dominant memory tehnology, often being the only a�ord-able solution when relatively large densities (typially more than a few megabytes)are required. Unfortunately, DRAMs are not straightforward devies and we needpreliminary knowledge spei� to this tehnology in order to understand the hoiesdisussed in hapter 3. Indeed, in order to redue system osts, the intelligenehas been moved away from the memory hips and into the memory ontroller [2℄,leaving the ontroller designer with the task of dealing with the low-level details ofthe DRAM tehnology.We will therefore explain how the SDRAM (synhronous DRAM) tehnologyworks. These priniples are the same for the original single data rate (SDR) SDRAM,and for the subsequent double data rate DDR, DDR2 and DDR3 memories. In allthat follows, we suppose that the logi level 0 is represented by a voltage of 0 volts,and a logi level 1 is represented by a positive voltage H.A DRAM memory bank (�gure 2.6) is organized as a two dimensional array ofells. Eah ell is omprised of a transistor onneted to a apaitor. A ell storesone bit of information, indiated by the presene or not of a harge in the apaitor.The transistor ats as a swith that onnets the apaitor to the bit line (vertiallines) when the word line (horizontal lines) its gate is onneted to arries a highlogi level.A deoder translates the row address presented to the DRAM devie and ati-vates one of the word lines, aording to the address.Eah bit line is onneted to a sense ampli�er, whih is a positive feedbak deviethat, when swithed on, turns any voltage X on the bit line between 0 and H into 0(if X < H

2) or H (if X > H
2). The set of sense ampli�ers is alled the page bu�er.Aesses to a SDRAM bank are made as follows:1. We assume the SDRAM is in the preharged (idle) state. In this state, noword line is ative, the sense ampli�ers are turned o� and all the bit lines areheld at a voltage of H
2 .2. The SDRAM ontroller presents the row address and issues an ACTIVATEommand. In response to this ommand, the SDRAM devie enables the row

2.3. DRAM tehnology 15

Figure 2.6. Blok diagram of a DRAM memory bank.

16 Chapter 2. Bakgrounddeoder and one of the word lines is asserted. This has the e�et of onnetingall the apaitors of the DRAM ells in the row to their respetive bit lines. Atransfer of eletri harge ours between the �parasiti� apaitors of the wordlines (whih were harged at a voltage of H
2) and the DRAM ell apaitors,whih were either disharged (at 0 volts) or harged at a voltage of H. Thisauses a small hange ǫ in the potential of the bit line, whih beomes H

2 −ǫ or
H
2 + ǫ (depending on the harge initially stored in the DRAM ell apaitor).Then, the SDRAM devie turns on all the sense ampli�ers of the bank. On eahbit line, the positive feedbak takes over and ampli�es the voltage di�erene
ǫ until the level of the bit line reahes 0 or H. The ACTIVATE ommand isnow ompleted and the row is said to be opened. The DDR SDRAM hipsused in the projet (on the Xilinx ML401 board) take 20ns to omplete theseoperations.3. One a row has been opened, the ontroller an present the olumn addressand issue READ and WRITE ommands to transfer data. Reading is done bysimply measuring the voltages on the bit lines, and writing an be ahievedby foring the bit lines to a partiular level. There is a delay, alled the CAS1lateny, between a READ ommand being sent and the data being returned bythe devie. This delay is of 20ns with the hips used in the projet. However,read operations are pipelined, whih means that a new READ ommand an besent while the previous one is still transferring data. With proper sheduling,a full utilization of the available I/O bandwidth an be ahieved.4. Before aessing another row, the memory ontroller must disonnet theopened row from the bit lines and go bak into the preharged state. It doesso by issuing a PRECHARGE ommand to the devie. The devie takes sometime to proess the ommand (during whih the bank annot be aessed),whih is 20ns with the hips used in the projet.From this priniple of operation, it beomes apparent that a performane-orientedontroller should try to make several transfers in the same row before opening an-other one, in order to redue the time wasted to swithing rows.2.3.1 Multiple banksSDRAM memory hips ontain multiple DRAM banks internally, whih share theI/O, ommand and address pins. Additional bank address pins selet the bank tosend ommands to.Having multiple banks brings two advantages:

• Being able to exeute several ommands simultaneously (assuming there is noresoure on�it for the pins). For example, one bank an be ativating onerow while another bank is transferring data.1CAS stands for Column Address Strobe, whih is the name of the DRAM hip pin that theontroller asserts at this stage.

2.4. Texture mapping 17
• Having several rows open (one per bank), whih an redue the number ofrequired row swithes and thus improve performane.The ontroller is responsible for managing the banks, and mapping absolutememory addresses to partiular banks. Appropriate bank mapping an improveperformane [29℄.Standard DDR SDRAM hips ome with four internal banks.2.3.2 RefreshingBeause the DRAM apaitors are not perfet, they gradually lose their harge overtime, whih results in data orruption.The solution is to periodially reharge the apaitors, whih is done by openingthe rows one by one. SDRAM hips provide an AUTO REFRESH ommand whihopens and loses one row in all banks (and inrements an internal ounter so thatthe next AUTO REFRESH ommand will target another row), but it is the respon-sibility of the ontroller to issue it. Furthermore, the ontroller must preharge allbanks before a refresh.With the memory hips used in the projet, a refresh must be made every 7.8µsand takes in the worst ase 20+80+4 · 20 = 180ns (preharge time2 + refresh time+ ativation time for eah bank), so it has a small impat on the memory bandwidth(about 2%).2.4 Texture mappingTexture mapping is a ommon omputer graphis operation found in aelerated 3DAPIs like OpenGL and DiretX. It is typially used to draw textured 3D polygonson the sreen. It an also distort an image (see �gure 2.7 for an example), andMilkDrop uses it for this purpose.With ommon GPUs, texture mapping is performed on triangles (and moreomplex polygons are broke down into a series of triangles). The inputs to thealgorithm are the 2D (possibly projeted from the original 3D oordinates) positionsof the three verties of the triangle to be �lled, and the 2D texture oordinates forthese three verties.The algorithm then draws a textured triangle pixel by pixel, by interpolatinglinearly the texture oordinates of the verties for eah pixel and then opying thetexture pixel (texel) at these oordinates.Image proessing operations like zooming, rotating or saling an be implementedwith texture mapping, by simply hanging the verties' positions or the texturesoordinates at eah vertex.More often than not, the results of the linear interpolation are not integer, whihmeans that the texture should be sampled between four adjaent pixels (�gure 2.8).In this ase, for a better rendering, the four pixels should be read and their olors2All banks an be preharged at the same time with a single ommand.

18 Chapter 2. Bakground

Figure 2.7. Example of distorted piture.
Figure 2.8. Priniple of bilinear texture �ltering.should be averaged (with di�erent weights depending on the frational parts). Thisproess is alled bilinear �ltering and is required to obtain a good rendering ofMilkDrop presets (see �gures 2.9 and 2.10).In MilkDrop (and Milkymist), a speial ase of the texture mapping is used, asthe only purpose is to distort a 2D image. The target surfae is always a retanglethat overs the destination piture, on whih the verties are distributed evenly asa mesh whih is always kept the same regardless of the applied distortion. Thedistortion is de�ned by altering the texture oordinates at eah vertex.Texture mapping, espeially when bilinear �ltering is desired, is a very omputeintensive proess, as explained in hapter 5. A ustom hardware aelerator hasbeen developed, whose details are also overed in this hapter.2.5 OrganizationAording to this bakground, we an derive the following projet guidelines:

• develop a fast, resoure-e�ient and FPGA-optimized system-on-hip

2.5. Organization 19

Figure 2.9. Rendering with bilinear �ltering enabled.

Figure 2.10. Rendering with bilinear �ltering disabled (the nearest texel is used).

20 Chapter 2. Bakground
• develop an e�ient memory subsystem
• reuse a light-weight soft-ore CPU
• partition arefully the tasks between hardware and software
• develop ustom hardware aeleratorsThe proposed solution is outlined in �gure 2.11. Not all the bloks are ready atthe time of this writing, nor all of them are within the sope of this Master's thesis,whih fouses on omputer arhiteture.More spei�ally, the following omponents are not developed yet:
• miroSD ontroller (the urrent prototype use a CF ard through Xilinx Sys-temACE)
• USB ontroller
• Video input
• IR reeiver
• MIDI ontroller
• DMX512 ontrollerHardware aelerators have been developed for the omputation of verties po-sitions (PFPU) and for texture mapping (TMU), whih have been found to be themost ompute-intensive parts of the proess. They are disussed in detail in hapters6 and 5, respetively.Graphis proessing also requires a signi�ant amount of memory bandwidth,whih is disussed in hapter 3.Chapter 4 desribes the on-hip interonnet used to make the various bloksommuniate with one another.Finally, hapter 7 deals with the software exeution environment and how thesoftware is arhiteted to obtain a good performanes from the hardware.

2.5. Organization 21

Figure 2.11. SoC blok diagram.

22

Chapter 3Memory subsystem
3.1 Attaking the memory wallA reurrent point in many modern omputer systems is the memory performaneproblem. The term memory wall was oined [33℄ to refer to the growing disparity ofperformane between logi suh as CPUs and o�-hip memories. While miropro-essor performane has been improving at a rate of 60 perent per year, the aesstime to DRAM has been improving at less than 10 perent per year [27℄.Memory performane is measured with two metris:
• bandwidth, whih is the amount of data that the memory system an transferduring a given period of time.
• lateny, whih is the amount of time that the memory system spends betweenthe issue of a memory read or write request and its ompletion.A memory system an have both high bandwidth and lateny. If the logi makingthe memory aesses is able to issue requests in a pipelined fashion, sending a newrequest without waiting for the previous one to omplete, high lateny will not havean impat on bandwidth.Lateny and bandwidth are however linked in pratie. Dereasing the latenyalso inreases the bandwidth in many ases, beause lateny bloks sequential pro-esses and prevents them from utilizing the full available bandwidth.High-end proessors for servers and workstations have a good ability to ope withrelatively high memory lateny, beause tehniques suh as out-of-order exeutionand hardware multi-threading enable the proessor to issue new instrutions eventhough one is bloking on a memory aess.Some SDRAM ontrollers do a lot to optimize bandwidth but have little fouson lateny. Bandwidth-optimizing tehniques inlude:
• reordering memory transations to maximize the page mode hit rate.23

24 Chapter 3. Memory subsystem
• grouping reads and writes together to redue write reovery times. Along withthe above tehnique, this has a detrimental impat on lateny beause of thedelays inurred by the additional logi in the address data path.
• running the system and the SDRAM in asynhronous lok domains in orderto be able to run the SDRAM at its maximum allowable lok frequeny. Thisrequires the use of synhronizers or FIFOs, whih have a high lateny.
• on�guring the SDRAM at high CAS latenies in order to inrease its maxi-mum allowable lok frequeny. This trend is best illustrated by the adventof DDR2 and DDR3 memories whose key innovation is to run their internalDRAM ore at a sub-multiple of the I/O frequeny with a wide data bus whihis then serialized on the I/O pins. Sine the internal DRAM ore has a latenyomparable to that of the earlier SDR and DDR tehnologies, the number ofCAS lateny yles relative to the I/O lok is also multiplied.An extreme example of these memory ontroller bandwidth optimizations is theMemMax R© DRAM sheduler [17℄. This unit sits on top of an already existing mem-ory ontroller (whih already has its own lateny), adding seven stages of omplexand high-lateny pipelining that produes a good - but ompute-intensive - DRAMshedule. The atual e�ieny of this system has been questioned [15℄ beause ofthat signi�ant inrease in lateny.3.2 Another approahThe out-of-order exeution and hardware multi-threading proessor optimizationsdisussed above that ope with high memory lateny are omplex and impratial inthe ontext of small and heap embedded systems, espeially those targeted at FPGAimplementations. For example, FPGA implementations of the OpenSPARC [23℄proessor, whih employs suh optimizations, typially require an expensive high-end Xilinx XUPV5 board whose Virtex-5 FPGA alone osts roughly 13000 SEK.Milkymist therefore uses simple in-order exeution shemes in its CPU and inits aelerators, and strives to improve performane by fousing on reduing thememory lateny.The memory system features that improve lateny (but also bandwidth) aredisussed below.3.3 Memory system features3.3.1 Single SDRAM and system lok domainThe typial operating frequeny of early SDR and DDR SDRAM (tehnologies thatare prior to DDR2 and do not have a lok divider for the internal DRAM ore)is lose to the 100MHz frequeny at whih the FPGA is able to meet timing for

3.3. Memory system features 25the omplete SoC. Thus, it was deided to run the DRAM and the system syn-hronously in order to remove the need for any lok domain transfer logi andredue lateny. The SDRAM I/O registers are loked by the system lok, andtiming of the SDRAM interfae is met through the use of alibrated on-hip delayelements and delay-loked-loops (DLLs) to generate the o�-hip SDRAM lok andthe data strobes.3.3.2 Page mode ontrol algorithmThe Milkymist memory ontroller takes the so-alled page mode gamble: after anaess, the DRAM row is left open in the hope that the next transation to thememory bank will our within the same row. If the memory ontroller is right, theread or write ommand an be immediately registered into the SDRAM, and onlythe CAS or write lateny is inurred. If the memory ontroller is wrong, it must�rst preharge the DRAM bank and open the orret row, ausing extra delays.Thus, if the memory ontroller is often wrong, taking the page mode gamble willatually impat performane negatively. However, a study has shown [29℄ that, withtypial memory timings, the point at whih the gamble pays o� is for a page hitprobability of 0.375 only, attainable with many pratial memory aess patterns.Page hit probability is improved by the ability of the Milkymist memory on-troller to trak open rows independently in eah of the four memory banks thatommerial SDRAM hips are equipped with.This optimization positively a�ets both lateny and bandwidth.3.3.3 Burst aessesAll memory aesses are made using bursts, i.e. when an aess for a word is made,the following words are also read or written. Burst mode is a feature of the SDRAMhips: only one read of write ommand is sent to them, and several words aretransferred on subsequent lok yles.Using bursts frees the bus and DRAM ontrol signals while other words aretransferred, allowing the issue of new ommands overlapping the data phase of theprevious transation.Burst aess is a form of prefething that improves lateny. It is only e�ientwhen the prefethed data an be used by the requesting bus master. In the Milkymistsystem-on-hip, this is often the ase:
• The CPU ore has ahes whih aess memory by omplete ahe lines. Thus,if the ahe line length is a multiple of the burst length, the bursts an be easilyfully memorized.
• The video frame bu�er repeatedly reads the same blok of data in a sequentialmanner, and an easily make full use of the prefethed data assuming that ishas su�ient on-hip bu�er spae.

26 Chapter 3. Memory subsystem
• The texture mapping unit also has a ahe and a write bu�er whih work wellwith burst aesses. This is disussed in Chapter 5.3.3.4 Burst reorderingThis feature enables the use of the ritial-word-�rst sheme in ahes, reduing theoverall memory lateny.When a request is issued at an address whih is not a multiple of the burstlength, the order of the words in the burst is hanged so that the �rst word thatomes out is the very word that is at the requested memory address. The prefethaddress is then inremented and wraps to stay within the same burst.For example, assuming a burst length of 4:
• a request at address 0 fethes words 0, 1, 2 and 3 (in this order)
• a request at address 2 fethes words 2, 3, 0 and 1 (in this order)3.3.5 PipeliningThe memory bus of Milkymist [8℄ is pipelined. During the transfer of the prefethed(burst) data, a new request an be issued. This is illustrated for a read request bythe table below:Address A1 A1 A1 A2 A2 A2 A2Data � � M(A1) M(A1+1) M(A1+2) M(A1+3) M(A2)Address (ont.) � � �Data (ont.) M(A2+1) M(A2+2) M(A2+3)Together with burst aess, this helps ahieving high performane: the memoryontroller an hide DRAM latenies and row swith delays by issuing the requeststo the DRAM in advane, while the previous transation is still transferring data.3.4 Pratial implementationThe Milkymist SoC uses 32-bit DDR SDRAM, on�gured to its maximum burstlength of 8. Sine the DDR SDRAM transfers two words per lok yles (oneon eah edge), this is turned by the I/O registers into bursts of four 64-bit wordssynhronous to the system lok.The memory is run at 100MHz, yielding a peak theoretial bandwidth of 6.4Gb/s,whih is more than enough for the intended video synthesis appliation (table 3.1).This bandwidth is however never attained: events suh as swithing DRAM rowswhih takes signi�ant time and, to a lesser extent, DRAM refreshes introdue deadtimes on the data bus. We will see in setion 3.5 that suh an oversizing of theo�-hip memory is needed if we want to keep the memory system simple.

3.4. Pratial implementation 27Task Required bandwidthVGA frame bu�er, 1024x768, 75Hz, 16bpp 950Mb/sDistortion: texture mapping, 512x512 to512x512, 30fps, 16bpp 250Mb/sLive video: texture mapping, 720x576 to 512x512with transpareny, 30fps, 16bpp 300Mb/sSaling: texture mapping, 512x512 to 1024x768,30fps, 16bpp 500Mb/sVideo eho: texture mapping, 512x512 to1024x768 with transpareny, 30fps, 16bpp 900Mb/sNTSC input, 720x576, 30fps, 16bpp 200Mb/sSoftware and mis. 200Mb/sTotal 3.3Gb/sTable 3.1. Estimate of the memory bandwidth onsumption.

Figure 3.1. Blok diagram of the HPDMC arhiteture.The arhiteture of the memory ontroller, alled HPDMC (for �High Perfor-mane Dynami Memory Controller�), is outlined in �gure 3.1.The ontrol interfae is used by the system to on�gure the ontroller, and alsoto issue the start-up sequene to the SDRAM. Indeed, SDRAM hips require asophistiated sequene of ommands upon power-up. In many memory ontrollerdesigns, a hardware �nite state mahine is used to issue this ommand sequene.In order to save hardware resoures, the system used here leaves this task to the

28 Chapter 3. Memory subsystemsoftware, and, for this purpose, inludes a �bypass MUX� that routes diretly aon�guration and status register of HPDMC to the SDRAM ommand and addresspins. One the SoC has run a software routine that sends the orret initializationsequene to the SDRAM, it swithes permanently the bypass MUX to the �SDRAMmanagement unit� and an use o�-hip memory normally.The SDRAM management unit is a �nite state mahine that translates thetwo high-level memory ommands �read burst at address� and �write burst at ad-dress� into a series of lower-level ommands understandable by the SDRAM hips(preharge bank, selet row, read from row, et.). The management unit is respon-sible for keeping trak of the open rows, deteting page hits, swithing rows, andissuing periodi DRAM refresh yles.The management unit is onneted to the �data path ontroller�, that followsthe ativities performed by the management unit in order to deide the diretionof the bidiretional I/O pins (they should be set as outputs for writes and as inputfor reads). The data path ontroller is also responsible for sending signals to themanagement unit that indiate if it is safe to perform ertain low-level operations.For example, the read_safe signal goes low immediately after a read ommand isissued, beause if another one were sent immediately after, the two resulting burstswould overlap in time and this ould not work beause there is only one set of datapins. Eventually, the data path ontroller takes into aount the SDRAM write andread latenies to generate an aknowledgement signal when the data is atually there(or needs to be sent to the SDRAM) after a �read row� or �write row� ommand hasbeen sent to the SDRAM.Finally, the bus interfae is a piee of glue logi that onnets the SoC pipelinedmemory bus (FML) to the data path ontroller and the management unit.HPDMC has been implemented in Verilog HDL, tested and debugged in RTLsimulation using a DDR SDRAM Verilog model from Miron, integrated into theSoC, synthesized into FPGA tehnology, and eventually alibrated and tested bysoftware routines running on the atual hardware.This design of memory ontroller, spei�ally rafted for the Milkymist projetand released under the GNU GPL liense on the internet, has been piked up bythe NASA for a software de�ned radio projet and may be put up on board theinternational spae station in 2011. Gregory Taylor, Eletronis Engineer at theNASA Jet Propulsion Laboratory, wrote:While searhing for a suitable SDRAM ontroller for the Jet Propulsion Labo-ratory's Software-De�ned Radio on board NASA's CoNNeCT experiment, I foundSébastien's HPDMC SDRAM ontroller on OpenCores.org. We needed a ontrollerthat was both high performane and well doumented. Though the original HPDMController was designed for DDR SDRAM with a 32-bit bus, Sébastien learly ex-plained the modi�ations neessary to adapt the ontroller to our Single Data Rate,40-bit wide SDRAM hip. I found the ode to be well doumented and easy to follow.The performane has met our requirements and the FPGA size requirement is small.The Communiation Navigation and Networking Reon�gurable Testbed (CoN-NeCT) experiment to be installed on board the ISS is designed for the next generation

3.5. Performane measurement 29of SDRs onforming to the Spae Teleommuniations Radio Systems (STRS) openarhiteture standard. The HPDMC ontroller will likely �nd its way into one ormore loadable waveform payloads in the JPL SDR, and perhaps be used in otherNASA projets as well. It may eventually �nd its way into deep spae.3.5 Performane measurement3.5.1 IntrodutionWe wanted to validate and haraterize the memory system performane (atuallateny and bandwidth) and get an upper bound of of its ability to sustain loads, byextrapolating the maximum bandwidth one ould get assuming the memory aesstime remains onstant.Sine the memory performane depends on the partiular aess pattern that thesystem makes (beause of the ontroller taking the page mode gamble, we wantedto take the measurements on the real system while it is rendering video e�ets inorder to get an aurate result.3.5.2 MethodA logi ore has been added to the SoC that snoops on the memory bus ativity inorder to report the average lateny and bandwidth.That logi ore exploits properties of the FastMemoryLink signaling in order toredue its omplexity to two ounters that measure, for a given time period, thenumber of yles during whih the strobe and aknowledgement signals are ative.Several parameters an then be omputed:
• the net bandwidth arried by the link (based on the amount of data thatthe link has atually transferred)
• the average memory aess time, whih is the time, in yles, between therequest being made to the memory ontroller and the �rst word of data beingtransferred.
• the bus oupany whih is the perentage of time during whih the linkwas busy and therefore unavailable for a new request.Every FastMemoryLink transation begins with the assertion of the strobe signal.Then, after one or more wait yles, the memory ontroller asserts the aknowledge-ment signal together with the �rst word of data being transferred. The next yle,the strobe signal is de-asserted (unless a new transation begins) while the next wordin the burst is being transferred. A new transation an start with the assertion ofthe strobe signal even if a burst is already going on (pipelining). See �gure 3.2 foran example.In the equations that follow, these symbols are used:

30 Chapter 3. Memory subsystem

Figure 3.2. FML transations.
• f is the system lok frequeny in Hz.
• T is the time during whih the ounters have been enabled.
• w is the width of a FML word in bits.
• n is the FML burst length.
• S is the number of yles during whih the strobe signal was ative.
• A is the number of yles during whih the aknowledgement signal was ative.Net bandwidth. By ounting the number of yles for whih the aknowledge-ment signal was ative, one gets the number of transations. Sine eah transationarries exatly a burst of data, whih is w · n bits in size, the volume of data trans-ferred is given by w · n ·A. Thus, one an derive the net bandwidth as:

β =
w · n · A

T
(3.1)Average memory aess time. On the bus, a master is waiting when the strobesignal is asserted but the aknowledgement signal is not. Therefore, the total numberof wait yles is given by S − A. The average memory aess time an thus beomputed as:

∆ =
S −A

A
(3.2)The average memory aess time an be used to derive an upper bound onthe maximum bandwidth that the memory system an handle. Indeed, FML is apipelined bus whih supports only one outstanding (waiting) transation, so the asethat uses the most bandwidth for a given memory aess time is when the strobesignal is always asserted (�gure 3.3) so that a new transation begins as soon as the�rst word of the previous transation is transferred.

3.5. Performane measurement 31

Figure 3.3. Maximum utilization of a FML bus.Therefore, only a fration α of the peak bandwidth f · w an be used at most,and we have:
α = max(1, n

∆+ 1
) (3.3)The maximum bandwidth is:

βmax = α · f · w (3.4)Bus oupany. The bus is busy when the strobe signal is asserted. The busoupany is therefore given by:
ǫ =

S

T · f (3.5)By using this method, a very simple piee of hardware added to the systeman yield to the retrieval of interesting information about the performane of thememory system.3.5.3 ResultsResults are summarized in table 3.2. The �rst line orresponds to a system runningthe demonstration �rmware with the video output enabled at the standard VGAmode of 640x480 at 60Hz (therefore ontinuously sanning the sreen with datafrom system memory), but not rendering a preset. The other lines represent theresults while the demonstration �rmware is rendering di�erent MilkDrop presets,still at the same video resolution.It is di�ult to ompare these results to those of other memory ontrollers asthey are usually not published (or not measured at all).However, two onlusions an be drawn:
• there are enough oupany and bandwidth margins for the system to operateat higher resolutions and/or olor depths than 640x480 and 16 bits per pixel.The 3.3 Gb/s bandwidth requirement that was estimated in setion 3.4 seemsattainable, although hallenging.

32 Chapter 3. Memory subsystemPath β ǫ ∆ α βmaxIdle 292 7 % 5.51 61 % 3932Geiss - Bright Fiber Matrix 1 990 28 % 6.37 54 % 3474Geiss - Swirlie 3 1080 32 % 6.71 52 % 3320Geiss - Spaedust 1021 29 % 6.47 54 % 3427Illusion & Rovastar - Snow�ake Delight 1399 39 % 6.28 55 % 3516Rovastar & Idiot24-7 - Balk Aid 1427 41 % 6.38 54 % 3469Table 3.2. Memory performane in di�erent onditions (Milkymist 0.5.1). Band-widths are in Mb/s.
• to go further, an �out-of-order� memory ontroller an be envisioned. Suh aontroller would have a split transation bus (allowing a larger number of out-standing transations, thus minimizing the impat that lateny has on band-width) and would be able to reorder pending memory transations to maximizethe page hit rate.

Chapter 4SoC interonnetThis hapter explains how the di�erent interonnet busses work, what their featuresare, why they are there, and how they are ommuniate with eah other.The general SoC blok diagram and its interonnet is outlined in �gure 2.11.4.1 General SoC interonnet: the Wishbone busWishbone [9℄ is a general purpose royalty-free SoC bus with open spei�ations,advoated by the maintainers of the OpenCores.org website.Wishbone is a synhronous sequential bus with support for variable lateny (waitstates) through the use of an aknowledgement signal that marks the end of thetransation. Burst modes (automati transfer of onseutive words) are supportedand are on�gurable on a per-transation basis (i.e. bursts of arbitrary lengths andsingle-word transations an be freely mixed on the same bus). However, there isno pipelining.Wishbone is used around the SoC's LattieMio32 CPU ore and for simple DMAmasters whih have modest requirements of bandwidth and of volume of transferreddata. As explained in Setion 4.4, onneting DMA masters that transfer smallamounts of data (whih an �t in the L2 ahe) to the same bus as the CPU simpli�esdealing with ahe ohereny issues.The data width used for the Wishbone bus is 32, yielding a peak bandwidth of3.2Gb/s when the system is running at 100MHz.4.2 Con�guration and Status Registers: the CSR busMilkymist uses memory-mapped I/O through on�guration and status registers.If these registers were diretly aessed by the Wishbone CPU bus, two problemswould arise:
• Conneting all peripherals on the same Wishbone bus involves large multiplex-ers and high fanout signals, posing routing and timing problems.33

34 Chapter 4. SoC interonnet
• Wishbone requires the generation of an aknowledgement signal by eah slaveore. This signal is useful in many ases, as it supports peripherals with avariable lateny. However, on�guration and status register �les are usuallyimplemented with atual registers (�ip �ops) or SRAM, whih an always beaessed in one lok yle. Thus, there is no need for variable lateny and theaknowledgement signal. Keeping this signal for the on�guration and statusregisters wastes hardware resoures and development time.To alleviate these problems, the CSR bus has been developed [7℄ and used in thesystem through a bus bridge.The CSR bus is a simpler bus than Wishbone, where all transfers are done inone yle. It has an interfae similar to that of synhronous SRAM, onsisting onlyof address, data in, data out and write enable pins and loked by the system lok.A bridge onnets the CSR bus to the CPU Wishbone bus, to allow transparentmemory-mapped aess to the on�guration and status registers by the software.This bridge inludes registers for all the signals rossing the two busses, relaxing thetiming onstraints.4.3 High-throughput memory aess bus: the FML busFastMemoryLink (FML) [8℄ was o-designed with HPDMC (the memory ontroller)as a on-hip bus tailored to aess SDRAM memories at high speed while keepingthe memory ontroller simple. Its key features are listed below.4.3.1 Variable latenySDRAM lateny varies a lot depending on the state of the SDRAM at the timethe request is issued on the bus. It depends on whether the SDRAM was in themiddle of a refresh yle, whether the bank needs to be preharged, and whethera new row needs to be ativated. Therefore, FML provides support for a variablenumber of wait states, de�ned by the memory ontroller, through the use of anaknowledgement signal similar to that of Wishbone.4.3.2 Burst onlySDRAM is best aessed in burst mode (see subsetion 3.3.3).However, enabling or on�guring burst mode is a relatively lengthy and omplexoperation, requiring a reload of the SDRAMmode register whih takes several yles.Furthermore, supporting multiple burst lengths makes the sheduling of the transfersmore omplex to avoid �overlapping� transfers that would reate on�its at the datapins.Therefore, in order to greatly simplify the memory ontroller, all transfers onFML are made using a �xed and pre-de�ned burst length.

4.4. Bridging Wishbone to FML 354.3.3 Burst reorderingThis was disussed in subsetion 3.3.4.4.3.4 PipeliningThe bene�ts of this feature have already been disussed in subsetion 3.3.5.Pipelined requests may ome from the same ore that issued the initial transfer,or from another ore. The FML arbiter would then pipeline the request oming fromthe other ore.4.3.5 UsageThe data width used for the FML bus is 64, yielding a peak bandwidth of 6.4Gb/swhen the system is running at 100MHz. This is twie the peak bandwidth of theWishbone bus. Furthermore, this bus provides a short path to the memory on-troller, reduing lateny and therefore potentially further inreasing e�etive band-width, as disussed in Setion 3.1.Peripherals diretly onneted to FML are typially those whih transfer largeamounts of data (that would exeed the apaity of the L2 ahe presented in se-tion 4.4) and whih have high bandwidth requirements (and therefore an take ad-vantage of the bandwidth and lateny improvement ompared to Wishbone).In the Milkymist SoC, they are omprised of:
• the VGA output ontroller, whih needs to ontinuously san a frame bu�erup to several megabytes in size to generate the video signal.
• the (planned) video input, whih writes, every seond, dozens of digitized videoframes weighting hundreds of kilobytes eah.
• the texture mapping unit (hapter 5), whih needs to deal with large texturesat high speed.4.4 Bridging Wishbone to FMLFor Wishbone masters (like the CPU) to aess SDRAM transparently, it is neessaryto bridge the FML bus to the Wishbone bus.FML is a burst-only bus with a �xed burst length, while with Wishbone, burstsare optional and on�gured on a per-transation basis. To be e�ient, the bridgemust therefore be able to store data and slie it to meet the transfer size requirementsof the Wishbone and FML transations.A traditional write-bak ahe with a line length equal to the FML burst lengthprovides an elegant solution to this problem. This ahe is referred to as the �L2ahe�, beause, from the CPU point of view, it provides a seond level of aherelative to its integrated instrution and data ahes.

36 Chapter 4. SoC interonnet4.5 Cahe ohereny4.5.1 Cohereny issues around the CPU (L1) aheThe LattieMio32 CPU (setion 7.1) uses a write-through ahe without hardwareohereny. Thus, the following operations must be done by the software to ensureahe ohereny:
• Before reading DMA data from a peripheral using shared memory, the L1ahe should be leared as it may hold an outdated opy of the data.
• When writing DMA data to a peripheral using shared memory on the Wish-bone bus, no preaution should be taken. The CPU writes go diretly to thebus, and end up in the L2 ahe or the SDRAM where the peripheral willorretly retrieve them.It is noteworthy that the CSR address spae is non-ahe-able, therefore noahe-related preaution should be taken when reading or writing CSRs.4.5.2 Cohereny issues around the Wishbone-FML (L2) aheThe Wishbone-FML bridge provides very limited support for ahe ohereny. Caheohereny issues arise beause of the masters diretly onneted to the FML bus:
• The CPU may read a ahed opy of a data that has been modi�ed by a FMLmaster.
• A FML master may read a value that has been modi�ed by the CPU in theahe (dirty line) but not �ushed to the SDRAM.
• A FML master may update a value in SDRAM but not in the ahe. The linemay then go dirty, and, when �ushed, will erase the value written by the FMLmaster.Beause ahe ohereny is expensive to implement in hardware, the task ofmanaging the ohereny of ahes has been moved almost entirely to the software.The bridge exposes an interfae for the software to invalidate ahe lines, �ushingthem to the SDRAM if they are dirty. On the software side, devie drivers shoulduse this interfae appropriately when transferring data with hardware units that useshared memory.The only form of hardware ahe ohereny the system has is related to the videoframe bu�er. The VGA signal generator is onneted diretly to the SDRAM bus,beause the frame bu�er is ontinuously sanned and is too large to �t entirely inthe ahe.However, it is very ommon that software modi�es only a few pixels on the sreen.If there was no hardware ahe ohereny at all, it would be triky to implement asoftware mehanism that �ushes the bridge ahe at appropriate times. A solutionan be to �ush the ahe every time a pixel or a group of pixels are written (whih

4.5. Cahe ohereny 37an be extremely slow if only small regions of the sreen are modi�ed at a time).Another solution would be to periodially hek if the frame bu�er had been modi�edand �ush the ahe if it was.Sine those solutions are di�ult to implement as they require a signi�antsupport from both the operating system and appliations, it was hosen to makeframe bu�er read transations by the VGA signal generator oherent with respetto the bridge ahe. Every time the VGA signal generator fethes a burst of pixels,it �rst searhes the bridge ahe. If the data is in the ahe, it is used. If not, theVGA signal generator fethes it from SDRAM (but does not replae any ahe line).This also makes it easier to write Milkymist frame bu�er drivers within theframeworks of ommon operating systems, suh as Linux (�gure 7.2).

38

Chapter 5Texture mapping unitHigh performane texture mapping was perhaps the most hallenging and interestingpart of the SoC design projet. This hapter begins with the design of an e�ientalgorithm and ontinues with the hardware implementation of it, and in partiularhow it was pipelined and how its memory referenes are handled.5.1 Algorithm5.1.1 Two-dimensional interpolationAs underlined in setion 2.4, we need to interpolate linearly on a 2D polygon the Xand Y texture oordinates aording to known values on the verties of the polygon.Traditional GPUs use the triangle as the primitive polygon, beause it allowsthem to draw any other polygon by splitting it into a series of triangles. We donot need suh �exibility. For rendering MilkDrop presets, the surfae to be drawnis always a mesh of retangles whose edges are parallel to the borders of the sreen(traditional GPUs draw the surfae using a triangle deomposition similar to theone shown in �gure 5.1). We an therefore hoose, as the primitive polygon, theretangle with edges parallel to the borders of the sreen, whih is muh simpler todraw than arbitrary triangles.We then split the 2D interpolation problem into 1D interpolation problems asfollows:
• The X and Y texture oordinates are interpolated independently.
• First, eah oordinate is interpolated on the vertial edges of the retangles(vertial interpolation) for eah integer value of the ordinate.
• For eah integer value of the ordinate, the results from the vertial interpo-lation are interpolated again for eah integer value of the absissa (horizontalinterpolation). This sans all the pixels within the retangle.The proess is illustrated in �gure 5.2. 39

40 Chapter 5. Texture mapping unit

Figure 5.1. Typial deomposition into triangular primitives of the MilkDrop ren-dering surfae.One ould obtain the same result by starting with an horizontal interpolationfollowed by several vertial interpolations. However, when using a linear san framebu�er (as Milkymist does), doing it in the proposed way yields output pixels whosememory addresses are onseutive in most ases (exept when going to the nextordinate), whih works well with the bursty nature of SDRAM aesses (subse-tion 3.3.3) and the traditional organization of a ahe.

Figure 5.2. 2D linear interpolation on a retangle.5.1.2 One-dimensional interpolationThe problem now boils down to performing one-dimensional linear interpolations.Given two points A(x0, y0) and B(x1, y1) with integer oordinates, we need to om-pute the ordinate y of M(x, y) ∈ (AB) for all the integer values of x between x0 and

5.1. Algorithm 41
Dy ← y1 − y0
Dx← x1 − x0
Q← Dy/Dxa
R← Dy%Dxb
x← x0
[y]← y0
e← 0result(x)← [y]while x < x1

x← x+ 1
[y]← [y] +Q
e← e+Rif 2 · e > Dx

[y]← [y] + 1
e← e−Dxendresult(x)← [y]enda/ is the integer division operatorb% is the integer modulo operatorFigure 5.3. One-dimensional linear interpolation algorithm.

x1. For now, we are not interested in bilinear �ltering, so what we atually want isthe best integer approximation [y] of y so that the texture is sampled to the nearestpixel.In �gure 5.3 we propose a fast and integer-only1 algorithm, whih was inspiredby Bresenham's line drawing algorithm [1℄. Without loss of generality, we supposethat x0 ≤ x1 (the points an be reordered if this was not the ase). We also supposethat y0 ≤ y1 (it is easy to modify the algorithm to handle the y0 > y1 ase as well2).The orretness of the algorithm lies in the fat that every time the result isbeing written, those onditions are veri�ed (from whih it an be derived that [y] isthe best integer approximation of y):1. |e| ≤ Dx
2 (whih implies | e

Dx
| ≤ 1

2)2. The perfet (rational) interpolated value y is equal to y = [y] + e
Dx

.These onditions an be proven true by reursion:1. For x = x0, e = 0 therefore |e| ≤ Dx
2 . Let us now suppose that the hypothesisis true for a ertain value of x ≥ x0, and prove that it is true for x+ 1.1And thus more suited to a resoure-onstrained hardware implementation.2See the Verilog implementation in Milkymist (ores/tmu2/rtl/tmu2_geninterp18.v).

42 Chapter 5. Texture mapping unitThe instrutions that a�et e between two onseutive values of x are e← e+Rand, if 2 · e > Dx, e← e−Dx.After the �rst instrution:
• if e was negative or zero, we have −Dx

2 ≤ e < Dx < 3·Dx
2 (beause

0 ≤ R < Dx and the reursion hypothesis).
• if e was positive, it was inferior or equal to Dx

2 (beause of the reursionhypothesis), therefore we have 0 < e < 3·Dx
2 .After the seond instrution, if we had e > Dx
2 , we'll have e < 3·Dx

2 − Dx.Therefore, e ≤ Dx
2 . 22. We need to prove that every time the result is being written, the followingequation is veri�ed:

[y] +
e

Dx
= y0 +

y1 − y0
x1 − x0

· (x− x0) (5.1)For x = x0, [y]+ e
Dx

= y0, so the equation is veri�ed. Let us now suppose thatit is veri�ed for a ertain value of x ≥ x0, and prove that it is true for x+ 1.It an be noted that the instrutions within the �if� do not hange the value of
[y]+ e

Dx
. The only instrutions that hange the result between two onseutivevalues of x are [y]← [y]+Q and e← e+R. Therefore, after the loop iteration,we have:

[y] +
e

Dx
= y0 +

y1 − y0
x1 − x0

· (x− x0) +Q+
R

Dx
(5.2)

[y] +
e

Dx
= y0 +

y1 − y0
x1 − x0

· (x− x0) +
y1 − y0
x1 − x0

(5.3)
[y] +

e

Dx
= y0 +

y1 − y0
x1 − x0

· ((x+ 1)− x0) (5.4)
25.1.3 Bilinear �lteringAs outlined in setion 2.4, bilinear �ltering is needed to obtain good rendering results.We will therefore try to improve the previous algorithm so that we get a morepreise, non-integer interpolation result. Preferably, the result should be in �xedpoint format so that it an be easily handled for the atual �ltering stage (weightedaverage of adjaent pixels olors).The �rst thing that omes to mind is to try to use the error value e

Dx
. However,this would require an integer to �xed point division to be performed at eah inter-polated result (the horizontal interpolation alone would require two suh operationsper pixel), whih is expensive.A more elegant solution onsists in multiplying all the texture oordinates by apower of 2, noted S (this is an inexpensive operation, as it an be implemented with

5.1. Algorithm 43a bit shift). Sine the interpolation proess is linear, the outputs are also multipliedby S � but the preision is inreased. In other words, the output of the interpolationstages omes diretly in �xed point format, with log2(S) digits after the radix point.Figure 5.4 illustrates how the bilinear �ltering is done using the �xed pointtexture oordinates. The texture oordinates are noted X.i, X.f, Y.i and Y.f, with�i� denoting the integer part of the �xed point number (bits before the radix point)and �f� denoting the frational part (bits after the radix point).

Figure 5.4. Bilinear �ltering using the �xed point texture oordinates.The weights in the average should be proportional to the surfae that the texelto be sampled with non-integer oordinates (the grey box on the �gure) overs ineah of the real texture pixels (numbered 1 to 4 on the �gure). Thus, if c1, c2, c3and c4 are respetively the olor vetors of the texture pixels 1 to 4 and c is theolor vetor of the result, we have:
c =

(S −X.f)(S − Y.f) · c1 +X.f(S − Y.f) · c2 + (S −X.f)Y.f · c3 +X.fY.f · c4
S2 (5.5)Sine we are working with the RGB565 olor format, having more than 6 extrabits of preision would not make a di�erene for the �ltering. Therefore, we hoose

S = 26 = 64.

44 Chapter 5. Texture mapping unitOperation CostAddition or subtration 1 yleMultipliation 2 ylesDivision or modulo 32 ylesBit shift 1 yleTest (<, >, =, et.) 1 yleConditional jump 3 ylesAssignment free (whih is optimisti)Reading or writing to the frame bu�er 2 ylesTable 5.1. Estimates of the ost of ommon software operations.5.2 Performane onsiderations5.2.1 ContextTo motivate the implementation hoie of the texture mapping, we will study itsexeution time in the following situation:
• The size of the soure (texture) and destination pitures is 512x512.
• The size of the primitive retangles is 16x16.
• We need at least 120 runs per seond. Indeed, the renderer needs to distort theimage, inlude live video, sale it, and apply the video eho e�et 30 times perseond (subsetion 2.1.2). We therefore have approximately 8 ms of proessingtime at most (whih orresponds to 31 megapixels per seond). This is a veryoptimisti estimate: sine saling, inlusion of live video and the video ehoe�et work with resolutions greater than 512x512, these proesses are expetedto take more time than the 512x512 → 512x512 distortion.
• The system lok is 100MHz.
• The 2 · e > Dx test is always false (whih is optimisti).
• We optimistially do not take into aount the extra instrutions needed tohandle interpolations with a negative slope (y0 > y1).For a software implementation, we use the ost estimates of table 5.1.5.2.2 Exeution time of the interpolation algorithmFor eah 1D interpolation with n steps, we need the amount of time detailed intable 5.2. The steps are in the same order as in �gure 5.3.

5.2. Performane onsiderations 45Operation Cyles2 subtrations 2Division 32Modulo 32Test nConditional jump 3 · n3 additions 3 · nBit shift (multiply by 2) nTest nConditional jump 3 · nTotal 66 + 12 · nTable 5.2. Detailed estimate of the exeution time of the interpolation algorithm.Operation Cyles TimeVertial interpolation 503808 5 msHorizontal interpolation 8060928 81 msFrame bu�er reads 2097152 21 msBilinear �ltering 19660800 197 msFrame bu�er writes 524288 5 msTotal 30846976 308 msTable 5.3. Optimisti estimate of the exeution time of software texture mapping.5.2.3 Total exeution timeUsing the above formula with n = 15, we an ompute an estimate of the exeutiontime of a software implementation (table 5.3).1D interpolations need to be done twie, one for eah texture oordinate.The number of frame bu�er reads is omputed by onsidering that for eah pixelwritten to the 512x512 destination piture, 4 pixels must be read from the sourepiture.The ost of bilinear �ltering is omputed, for eah destination pixel, with 4subtrations, 8 multipliations, 4 additions and 1 bit shift times 3 olor hannels,whih yields 75 yles. This is optimisti as it does not take into aount the timeneeded to deode the �xed point format.Aording to this (yet optimisti) estimate, it beomes lear that a softwareimplementation ould not su�e, as the required performane is 8 ms. Even thevertial interpolation an hardly be implemented in software, as it would use alonemore than 60% of the CPU power (whih is needed for other tasks). We need anoverall speedup by a fator of more than 40, using hardware aeleration.

46 Chapter 5. Texture mapping unit5.3 Pipelined hardware implementation5.3.1 StrategyGiven the performane onstraints and the slowness of software implementations,we deided to implement the omplete texture mapping proess in hardware.It is expeted that the memory lateny for reading the frame bu�er would be aperformane-limiting fator. Instead of trying to alleviate its e�ets by using om-plex and potentially resoure-intensive tehniques suh as advaned prefething ornon-bloking ahes, we simply use a diret-mapped bloking texel ahe providingsimpliity and fast hit times, and design the rest of the texture mapping unit so thatthe memory read lateny beomes the only limiting fator.With a diret-mapped texel ahe having a hit rate of 90%, a hit time of 1 yleand a miss penalty of 9 yles, the average memory aess times is 1.8 yles. Witha 100MHz system lok, suh a ahe has a throughput of 55 megapixels per seond,well above the optimisti estimate made in subsetion 5.2.1.3To make sure that the memory aess time is the only limiting fator, it washosen that the rest of the system should be designed to support a throughputof approximately one output pixel per lok yle. This heuristi was in�uenedby the fat that it orresponds to a spatial implementation of the algorithm (i.e.with little or no time-based resoure sharing of the hardware omponents) but doesnot require resoure-intensive dupliation of large hardware units either. A spatialimplementation requires more area than a time-shared one, but it is simpler tounderstand, and needs fewer multiplexers and is less prone to routing ongestion,making it easier to ahieve timing losure in FPGAs.A deeply pipelined implementation of the texture mapping algorithm was thushosen, whose blok diagram is depited in �gure 5.5. Many of the stages haveinternal pipeline sub-stages, and they are detailed below.5.3.2 Vertex feth engineThere is not muh to say about this stage, whih is a straightforward �nite statemahine-based Wishbone bus master that fethes the texture oordinates of eahvertex from the system memory, and sends them down the pipeline to the vertialinterpolator.The vertex feth engine is onneted to the lower-bandwidth Wishbone bus be-ause this saves resoures ompared to FML (whih has a wider data path) andmakes it easier to handle ahe ohereny issues (setion 4.5).3This is a quik estimate assuming a normal ahe that does not support bilinear �ltering. Toimplement bilinear �ltering, the situation is more omplex as the ahe needs to look up 4 pixelsat one. This is disussed in subsetion 5.3.6.

5.3. Pipelined hardware implementation 47

Figure 5.5. Blok diagram of the texture mapping unit arhiteture.

48 Chapter 5. Texture mapping unit5.3.3 InterpolatorsThe horizontal and vertial interpolators are both implemented in the same way.They are vetor interpolators, whih ontain two salar interpolators (�gure 5.6, onefor eah texture oordinate). Eah salar interpolator ontains additional internalpipeline sub-stages, as desribed in �gure 5.7.The vertial interpolator ontains two vetor interpolators, one for eah vertialedge of the retangle.

Figure 5.6. Vetor interpolator.Stages of the salar interpolatorStage A: Dx and Dy omputation. This stage omputes the two di�erenes
y1 − y0 and x1 − x0. It is based on simple registered arithmeti ombinatorialfuntions, whih ompute the two di�erenes in one lok yle.Stage B: Q and R omputation. The next operation is to perform the Eu-lidean division of Dy by Dx. The hardware does so by using the restoring divisionmethod [19℄, whih takes as many yles as there are quotient digits (our implemen-tation has 18).In order to keep the resoure usage low, the divider is not pipelined. Afteroperands are sent to it, it stalls transmissions from the upstream stage for severalyles until the division is omplete.Stage C: Interpolation loop. Finally, the ore of the algorithm (the �while� loopfrom �gure 5.3) is implemented in the last stage. This unit reeives the Q and Rvalues from the dividers, as well as the start y0 value and the range x0 to x1 (whih

5.3. Pipelined hardware implementation 49

Figure 5.7. Pipelined salar interpolator.are forwarded through the previous stages). It then sends the series of interpolatedvalues [y] for x0 ≤ x < x1.The throughput of the stage is one interpolation point per lok yle. Whilethe interpolation is taking plae, transmission of new parameters from the upstreamstage is stalled. This justi�es the hoie of a slow but low-area restoring divider instage B: with a typial retangle size of 16, the proessing times of the interpolationloop and of the divider are roughly the same, making the pipeline balaned.5.3.4 Clamping/wrappingThis unit proesses interpolated texture points whose oordinates are beyond theboundaries of the texture (i.e. they are negative or exeed the texture's horizontalor vertial resolution).There are two, seletable, ways of dealing with them:
• lamping, whih onsists in replaing an out-of-range oordinate with 0 (if itwas negative) or with the horizontal or vertial resolution of the texture minusone (if it was too large).
• wrapping, whih repeats the texture and onsists in omputing the positivemodulo of eah oordinate with respet to the horizontal or vertial textureresolution. In order to avoid using an expensive fast divider, only textureswhose sizes are a power of 2 are supported for wrapping. This enables thereplaement of the divider with a bitwise AND operation, whih is way less

50 Chapter 5. Texture mapping unitexpensive. The problem of negative texture oordinates is solved by simplymasking out the sign bit, whih yields the orret result as the oordinates arerepresented in two's omplement format.This stage is implemented by simple arithmeti ombinatorial funtions, whihare registered and pipelined on two sub-stages to meet timing requirements.5.3.5 Address generatorThe address generator is a simple arithmeti iruit that turns the �oating pointtexture oordinates into the four memory addresses of the pixels they over, and thedestination oordinate into the orresponding memory address in the destinationframe bu�er. It is pipelined on three sub-stages to meet timing goals.The formula used to onvert a oordinate (x, y) into a pixel address A withina 16bpp frame bu�er starting at Abase and with an horizontal resolution H is thefollowing:
A = Abase + (H · y + x) · 2 (5.6)5.3.6 Texel ahePresentationOne the addresses of the four texture pixels have been omputed, the next step is toretrieve data from the memory. This should be done fast: to meet the performanegoal of 31 megapixels per seond at the output of the texture mapping unit, thetexel ahe must be able to feth at least 124 megapixels per seond. This is, onaverage, at least 1.24 pixel per lok yle with a 100MHz system lok.In onsistene with the heuristi made at subsetion 5.3.1 that onsists in design-ing the system for a performane of one output pixel per lok yle in the abseneof memory read delays, the texel ahe should be able to servie the four requestports (alled hannels) in one lok yle if all the hannels hit the ahe.Channel are numbered as follows (see �gure 2.8):

• Channel 1 fethes the base pixel, that is to say, the pixel at the oordinatesobtained by �ooring the non-integer texture oordinates. It is always ative.
• Channel 2 fethes the pixel at the right of the base pixel. It is ative when theX texture oordinate has a non-zero frational part.
• Channel 3 fethes the pixel at the bottom of the base pixel. It is ative whenthe Y texture oordinate has a non-zero frational part.
• Channel 4 fethes the pixel at the bottom-right of the base pixel. It is ativewhen both the X and Y texture oordinate have a non-zero frational part.

5.3. Pipelined hardware implementation 51Separate vs. shared ahesThe obvious solution seems have one separate ahe per hannel. However, thissolution is not optimal in terms of speed and memory e�ieny. For example, let ustake the ase when the texture mapping onsists in zooming the texture by a fatorof 2 (the texture oordinates at eah vertex are the vertex oordinates divided by2). Assuming an empty ahe at the beginning, the sequene of events is as follows:1. The interpolated �xed-point texture oordinates are (0, 0). Channel 1 missesits ahe for a feth of the pixel at (0, 0). Sine the oordinates are integer,hannels 2, 3 and 4 are idle and do not need to feth data.2. The texture oordinates beome (0.5, 0). Channel 1 hits its ahe for the pixelat (0, 0). However, hannel 2 misses its ahe for the pixel at (1, 0) and a newmemory request needs to be performed, even though the pixel at (1, 0) is inthe ahe of hannel 1 (it was part of the burst that fethed the (0, 0) pixel).Channels 3 and 4 are idle, sine the Y oordinate is integer.The problem repeats every time the X texture oordinate rosses a memory burstboundary, and is also present in the Y diretion with hannels 3 and 4. In total, thetexel ahe uses four times as muh memory bandwidth as it would use if it wereable to share data between the hannels' respetive ahes.4 Zooming (loally orglobally) is a very ommon operation, so the issue needs to be addressed.A more e�ient solution, whih has been retained, onsists therefore in havinga single multi-ported data store.ImplementationOur implementation is based on the traditional diret-mapped ahe, but usingquad-port SRAM for the data and tag stores. Quad-port SRAM an be mapped toFPGA tehnologies at a moderate ost by using two primitive dual-port SRAMs inwhih the data is repliated. During normal operation (hits), eah port serves onehannel, and, when re�lling the ahe on a miss, reading is disabled and two of theports (one per primitive dual-port SRAM) are used to feed the data into the RAMs.A simpli�ed blok diagram of the texel ahe is given in �gure 5.8. This blokdiagram does not inlude all of the logi needed to handle pipeline stalls and laksthe �valid� bits of the tags.At eah lok yle, the texel ahe proesses, in a pipelined manner,5 fourmemory addresses from eah hannel if they hit the ahes. The �hit� signal is kepthigh and the pipeline is always running.In ase of a miss, the �hit� signal goes low (stalling the pipeline), and the priorityenoder and the multiplexer (MUX) selet one of the missed addresses (there an4Assuming at least two omplete horizontal lines of pixels from a primitive retangle �t in theahe, whih is generally the ase.5The SRAMs are registered, in order to improve timing and to map to the blok RAMs ofommon modern FPGAs whih always ontain an internal register.

52 Chapter 5. Texture mapping unit

Figure 5.8. Arhiteture of the four-hannel texel ahe.

5.3. Pipelined hardware implementation 53be one or many). The FastMemoryLink master issues a memory transation toretrieve the data from the system memory, replaes the ontents of the ahe lineand rewrites the tag. The address now beomes a ahe hit. If no other addressmisses the ahe, the texel ahe has suessfully handled the 4-hannel transationand the �hit� signal goes high again to proeed to the next. Otherwise, the proessrepeats until all addresses hit the ahe. Our design does not take advantage of thepipelining feature of the FastMemoryLink bus and issues requests sequentially.Inter-hannel ahe on�itsAn inter-hannel ahe on�it (ICCC) ours when two or more hannels requestdi�erent addresses that have di�erent tags but map to the same ahe line.This ondition is not desirable. With our implementation, the texel ahe wouldgo into an in�nite loop fething data from the memory in an attempt to make allhannels hit the ahe � whih it an never ahieve � until it is manually reset.6This hoie has been made for two reasons: �rst, adding hardware to deal withICCCs would yield poor performane anyway as some memory bursts would be thereonly for retrieving one pixel and solving the on�it,7 seond, ICCCs are easy toavoid for our purposes, and we will see how.For simpliity, we use the pixel (2 bytes) as unit. In the equations that follow:
• H is the horizontal texture resolution in pixels.
• V is the vertial texture resolution in pixels.
• Nl is the number of pixels a ahe line an hold. It is equal to the line size inbytes divided by 2.
• Nc is the total number of pixels the texel ahe an hold. It is equal to theahe size in bytes (not ounting the tag memory) divided by 2.Charaterization of ahe on�its. A pixel at address ap (measured in pixels,i.e. 2-byte words) is mapped to the ahe line indexed by:

lp =

⌊

ap
Nl

⌋

(mod
Nc

Nl

) (5.7)6As a safety measure, it is therefore reommended that software drivers for the texture mappingunit hek for the possibility of ICCC onditions before running the TMU and report an error ifan ICCC is possible.7This is true only if we keep a diret-mapped ahe. With a multiple-way set-assoiative aheand a smart replaement poliy that alloates one spei� way to eah on�iting hannel whenan ICCC ours, the hardware an both deal with ICCCs and yield high performane. However,it is more omplex and expensive. Furthermore, when keeping a diret-mapped ahe, it makessense to add hardware that would deal with infrequent ases of ICCCs suh as those arising whenwrapping at texture boundaries.

54 Chapter 5. Texture mapping unitThus, two pixels at addresses a1 and a2 on�it in the ahe if and only if:
{

|a1 − a2| ≥ Nl
⌊

a1
Nl

⌋

≡
⌊

a2
Nl

⌋

(mod Nc

Nl
)

(5.8)Texture lamping only auses one or more hannel addresses to be equal, andtherefore does not introdue additional ases of ICCCs. However, texture wrappingdoes introdue new dispositions of the hannels within the texture, and new ICCConditions.

Figure 5.9. Disposition of the hannels within the texture, general ase.

Figure 5.10. Disposition of the hannels within the texture, vertial wrapping.Con�its between hannels 1 and 2 (or 3 and 4). The addresses aA and aBof these two hannels an be separated by either:
• 1 pixel in the most ommon ase (sampling in the middle of the texture, see�gure 5.9). This annot ause inter-hannel ahe on�its.

5.3. Pipelined hardware implementation 55
• H − 1 pixels if texture wrapping is enabled and the texture is sampled at oneof its vertial edges (�gure 5.10). In this ase, the ondition |aA − aB| ≥ Nl isoften veri�ed (exept for small textures where H−1 < Nl). To make sure thatthere will be no ICCC, we must thus make sure that the following onditionis also veri�ed:

⌊

aA
Nl

⌋

6≡
⌊

aA +H − 1

Nl

⌋

(mod
Nc

Nl

) (5.9)To make sure that this ondition is veri�ed for all possible pixel addresses, itis su�ient to hek that:
∀a ∈ {0, 1, ...Nl − 1},

⌊

a+H − 1

Nl

⌋

6≡ 0 (mod
Nc

Nl

) (5.10)Indeed, by division by Nl we have aA = k ·Nl + a with 0 ≤ a ≤ Nl − 1, whihtransforms equation 5.9 into:
k +

⌊

a

Nl

⌋

6≡ k +

⌊

a+H − 1

Nl

⌋

(mod
Nc

Nl

) (5.11)whih leads easily to the result, onsidering that ⌊ a
Nl

⌋

= 0.This an be further simpli�ed:

⌊

H−1
Nl

⌋

6≡ 0 (mod Nc

Nl
)

1 +
⌊

H−1
Nl

⌋

6≡ 0 (mod Nc

Nl
)

(5.12)

Figure 5.11. Disposition of the hannels within the texture, horizontal wrapping.Con�its between hannels 1 and 3 (or 2 and 4). The separation betweenthe hannels' addresses an be:

56 Chapter 5. Texture mapping unit
• H pixels (aording to the equation 5.6) in the general ase (�gure 5.9). Usingthe same reasoning from above, we an dedue that it is su�ient to hekthat H < Nl or:

⌊

H
Nl

⌋

6≡ 0 (mod Nc

Nl
)

1 +
⌊

H
Nl

⌋

6≡ 0 (mod Nc

Nl
)

(5.13)
• H · (V − 1) pixels if texture wrapping is enabled and the texture is sampledat one of its horizontal edges (�gure 5.11). Again, it is su�ient to hek that

H · (V − 1) < Nl or:

⌊

H·(V−1)
Nl

⌋

6≡ 0 (mod Nc

Nl
)

1 +
⌊

H·(V−1)
Nl

⌋

6≡ 0 (mod Nc

Nl
)

(5.14)

Figure 5.12. Disposition of the hannels within the texture, horizontal and vertialwrapping.Con�its between hannels 1 and 4. The hannels' addresses an be separatedby:
• H + 1 pixels (aording to the equation 5.6) in the general ase (�gure 5.9).It is therefore su�ient to hek that H + 1 < Nl or:

⌊

H+1
Nl

⌋

6≡ 0 (mod Nc

Nl
)

1 +
⌊

H+1
Nl

⌋

6≡ 0 (mod Nc

Nl
)

(5.15)
• 1 pixel in ase of vertial wrapping (�gure 5.10). This annot ause ICCCs.
• H · (V − 1) − 1 pixels in ase of horizontal wrapping (�gure 5.11). Similarly,we an hek that H · (V − 1)− 1 < Nl or:

⌊

H·(V−1)−1
Nl

⌋

6≡ 0 (mod Nc

Nl
)

1 +
⌊

H·(V−1)−1
Nl

⌋

6≡ 0 (mod Nc

Nl
)

(5.16)

5.3. Pipelined hardware implementation 57
• H · V − 1 in ase of wrapping in both diretions (�gure 5.12). We an hekthat H · V − 1 < Nl or:

⌊

H·V−1
Nl

⌋

6≡ 0 (mod Nc

Nl
)

1 +
⌊

H·V−1
Nl

⌋

6≡ 0 (mod Nc

Nl
)

(5.17)
Con�its between hannels 2 and 3. Like above, we an hek that H−1 < Nlor:

⌊

H−1
Nl

⌋

6≡ 0 (mod Nc

Nl
)

1 +
⌊

H−1
Nl

⌋

6≡ 0 (mod Nc

Nl
)

(5.18)Furthermore, if texture wrapping is enabled, the di�erenes between pixel ad-dresses an beome (resulting in similar onditions to hek for):
• 2 ·H − 1 (vertial wrapping, �gure 5.10).
• H · (V − 1) + 1 (horizontal wrapping, �gure 5.11).
• H · (V − 2) + 1 (wrapping in both diretions, �gure 5.12).Summary. To avoid inter-hannel ahe on�its, when texture lamping is used,it is su�ient to hek that (all equivalenes are modulo Nc

Nl
):

H − 1 < Nl or

⌊

H−1
Nl

⌋

6≡ 0

1 +
⌊

H−1
Nl

⌋

6≡ 0

H < Nl or

⌊

H
Nl

⌋

6≡ 0

1 +
⌊

H
Nl

⌋

6≡ 0

H + 1 < Nl or

⌊

H+1
Nl

⌋

6≡ 0

1 +
⌊

H+1
Nl

⌋

6≡ 0

(5.19)

58 Chapter 5. Texture mapping unitIf texture wrapping is used, additional onditions appear:

H · (V − 1)− 1 < Nl or

⌊

H·(V−1)−1
Nl

⌋

6≡ 0

1 +
⌊

H·(V−1)−1
Nl

⌋

6≡ 0

H · (V − 1) < Nl or

⌊

H·(V−1)
Nl

⌋

6≡ 0

1 +
⌊

H·(V−1)
Nl

⌋

6≡ 0

H · (V − 1) + 1 < Nl or

⌊

H·(V−1)+1
Nl

⌋

6≡ 0

1 +
⌊

H·(V−1)+1
Nl

⌋

6≡ 0

H · (V − 2) + 1 < Nl or

⌊

H·(V−2)+1
Nl

⌋

6≡ 0

1 +
⌊

H·(V−2)+1
Nl

⌋

6≡ 0

2 ·H − 1 < Nl or

⌊

2·H−1
Nl

⌋

6≡ 0

1 +
⌊

2·H−1
Nl

⌋

6≡ 0

H · V − 1 < Nl or

⌊

H·V−1
Nl

⌋

6≡ 0

1 +
⌊

H·V−1
Nl

⌋

6≡ 0

(5.20)
Cahe sizeWe must now determine an optimal size for the texel ahe. The size must representa ompromise between hit rate (and, thus, performane) and ostly utilization ofon-hip RAM. Furthermore, it must be hosen so that inter-hannel ahe on�itsdo not our for our use ases.To study the impat of the ahe size on the hit rate, we simulated the ompleteVerilog ode of texture mapping unit with di�erent ahe sizes. The CSR interfaeof the texture mapping unit (subsetion 5.3.9) supports eight registers that measure,for eah hannel, the number of requests8 and how many of those requests hit theahe. Those registers are still present after logi synthesis, and an be used tovalidate the performane of the texel ahe in the real system.9The soure and destination images have a resolution of 512x512 pixels, andare tessellated with 16x16 retangles forming a 32x32 mesh � whih mathes theon�guration used for distortions by the renderer program. Di�erent sets of textureoordinates were used at eah vertex, aording to table 5.4. Texture oordinatesare multiplied by 64 to perform the onversion of integers into the �xed point format8As outlined above, hannels are only ative (i.e. issue a ahe request) when needed (i.e. whenthe interpolated texture oordinates are not integer). Channel 1 is always ative and thereforemakes as many aesses as there are pixels in the output piture. Its aesses are however stillounted as a means to hek that the texture mapping unit is operating orretly.9The reason why we performed the tests using Verilog simulations instead of the real FPGA-based system is beause logi synthesis � needed for eah tested ahe size � takes a long time, andsome ahe on�gurations may ause resoure shortages, timing problems or even Xst synthesizerbugs that would need to be manually addressed.

5.3. Pipelined hardware implementation 59Set name Output piture X Yopy Figure 5.13 x · 16 · 64 y · 16 · 64zoomin Figure 5.14 x · 10 · 64 y · 10 · 64zoomout Figure 5.15 x · 40 · 64 y · 40 · 64rotozoom Figure 5.16 (x·16−256)·67−(y·
16−256)·28+256·64

(x·16−256)·28+(y·
16−256)·67+256·64Table 5.4. Texture oordinate sets used for benhmarking the texel ahe.used throughout the linear interpolation proess (see subsetion 5.1.3). x and y referto the indies of the vertex in the mesh. Texture wrapping was enabled, as it putsmore load on the ahe than texture lamping.The sets were hosen for the following reasons:

• opy does not introdue any distortion and is meant to test the performaneof the TMU as a blitter, that ould be used e.g. for GUI aeleration. It isalso a very simple ase that veri�es the onsisteny of the results.
• zoomin sales up the piture. This tests the TMU in a favorable ase: as theamount of zoom is important, the texels are swept aross slower than outputpixels are drawn. This is expeted to generate a lot of ahe hits.
• zoomout sales down and repeats the piture. This is a detrimental ase:the texels are swept aross faster than the output pixel are drawn, and somevalues from the ahe lines read from memory will have to be disarded. Thisis expeted to generate a lot of ahe misses.
• rotozoom slightly sales down and rotates the piture. This is an intermediatease that re�ets what MilkDrop typially does: rotation and slight sale-downare ommon preset e�ets.The length of the ahe line is set to the length of a FML burst in the SoC (4words of 64 bits eah) for simpliity of the design.Simulations were arried out using the free GPL Cver Verilog simulator [31℄.To visually inspet the results of the distortions stemming from eah set of textureoordinates, the simulation reads and writes input and output piture �les thanks toa Verilog VPI [10℄ plug-in.10 A typial simulation trae is reprodued in �gure 5.17.Even though GPL Cver is relatively slow11 to arry out suh a omplex simulation,it produed onsistent results, whih supports the idea that it is, in many ases,a viable alternative to proprietary and expensive simulators ommonly taught inuniversity ourses.Results are reported in table 5.5 and �gure 5.18. Only the global hit rate isreported, whih is omputed as the global number of hits over the global number of10This was also part of the usual test benh used to debug the Verilog implementation of thetexture mapping unit.11Its runtime is between one and three minutes on a Intel Core 2 Duo 2.5GHz mahine.

60 Chapter 5. Texture mapping unit

Figure 5.13. TMU output piture for the �opy� set (original piture).

Figure 5.14. TMU output piture for the �zoomin� set.

5.3. Pipelined hardware implementation 61

Figure 5.15. TMU output piture for the �zoomout� set.

Figure 5.16. TMU output piture for the �rotozoom� set.

62 Chapter 5. Texture mapping unit$ make TB=tb_tmu2.vver +loadvpi=./vpi_images.so:vpi_register tb_tmu2.v(...)GPLCVER_2.12a of 05/16/07 (Linux-elf).Copyright () 1991-2007 Pragmati C Software Corp.All Rights reserved. Liensed under the GNU General PubliLiense (GPL).See the 'COPYING' file for details. NO WARRANTY provided.Today is Tue May 4 14:46:22 2010.PLI Image I/O funtions registeredCompiling soure file "tb_tmu2.v"Compiling soure file "../rtl/tmu2_adrgen.v"(...)Opening input piture...Configuring TMU...CSR write: 0000002=01000000CSR write: 00000004=00000020(...)CSR write: 00000044=00000010CSR write: 00000048=0000003fStarting TMU...CSR write: 00000000=00000001Reeived DONE IRQ from TMU!Gathering texel ahe statistis...CSR read : 00000050=00040000CSR read : 00000054=0003000(...)CSR read : 00000068=00000000CSR read : 0000006=00000000Channel A: 245760 / 262144 hits (93.750000 %)Channel B: 0 / 0 hits (nan %)Channel C: 0 / 0 hits (nan %)Channel D: 0 / 0 hits (nan %)GLOBAL : 245760 / 262144 hits (93.750000 %)Writing output piture...All done!Halted at loation **tb_tmu2.v(367) time 4585546 from allto $finish.There were 0 error(s), 32 warning(s), and 402 inform(s).Figure 5.17. Typial TMU simulation trae (exerpt).

5.3. Pipelined hardware implementation 63Cahe size opy zoomin zoomout rotozoom2kB 93.75 % 98.08 % 83.33 % 73.06 %4kB 93.75 % 98.08 % 83.33 % 82.94 %8kB 93.75 % 98.62 % 83.33 % 93.73 %16kB 93.75 % 99.27 % 86.94 % 95.74 %32kB 93.75 % 99.27 % 91.44 % 96.02 %64kB 93.75 % 99.27 % 94.14 % 96.02 %128kB 93.75 % 99.27 % 94.14 % 96.15 %Table 5.5. Hit rates for eah set of texture oordinates and di�erent ahe sizes.aesses. The global number of hits (respetively aesses) is the sum of the numberof hits (respetively aesses) for all hannels. The reported ahe size is the size ofthe data store only (not ounting the tag memory).

Figure 5.18. Hit rates versus texel ahe size. The X axis (ahe size) uses alogarithmi sale.Before we go on hoosing a texel ahe size, a few omments on these results anbe made.First, for the �opy� set, the hit rate remains at a onstant 93.75 %. This isexpeted and supports the validity of the results. Indeed, the texture mappingunit is opying retangles whose horizontal size is the length in pixels of a aheline (4 words of 64-bit eah yields 16 pixels of 16 bits eah). In our tests, the

64 Chapter 5. Texture mapping unittexture frame bu�er was aligned to the beginning of a ahe line and 512 (thehorizontal texture size) is a multiple of the ahe line length in pixels, therefore eahhorizontal line in a retangle orresponds to a ahe line. Eah texture pixel is readexatly one (hannels 2, 3 and 4 are idle as the interpolated texture oordinates arealways integer). What happens is that, for eah horizontal line in eah retangle,the �rst texel is read and misses the ahe. Then, the next 15 texels in the lineare immediately read and hit the ahe. This indeed yields a ahe hit rate of
15
16 = 0.9375.A result more surprising at �rst sight is that for the �zoomout� set, whih issupposed to be the worst ase, the ahe hit rate is low � as expeted � andinreases, until it slightly exeeds the hit rate for the �opy� set for ahe sizes of64kB and above.This has to do with the fat that the texture mapping unit draws the retanglesin the same order as frame bu�ers are sanned (from left to right and top to bottom).When the ahe reahes 64kB, it is able to memorize a full band of texels that ismore than 48 pixels high (512 · 48 · 2 = 49152 < 65536) whih ontains more thanall the texels needed to draw a full line of retangles (16 pixels high) in the outputpiture. Sine the output piture repeats the texture, the repetition generates ahehits that are not present with the �opy� set.As for hoosing a texel ahe size, we went for a 32kB ahe. There is no signif-iant performane improvement with using a larger ahe exept for the �zoomout�set for whih there is a slight inrease in the hit rate between 32kB and 64kB. Sinethe �zoomout� set is a worst-ase senario seldom found in pratie (MilkDrop usu-ally zooms out by fators muh less than the one we used, resulting in fewer ahemisses), we felt it was not worth doubling the ahe size to improve its performane.We also need to hek that this ahe size annot ause inter-hannel aheon�its (ICCCs). The ahe line size is 32 bytes, thus, the ahe line length in16bpp pixels is Nl = 16 and the ahe holds Nc

Nl
= 1024 lines. The texture mappingunit is operated with 512x512 textures and texture wrapping is enabled.With these parameters, all the onditions of equations 5.19 and 5.20 are veri�ed,exept one: we have 1+ ⌊

H·V−1
Nl

⌋

≡ 0, whih means that there an be inter-hannelahe on�its between hannels 1 and 4 due to wrapping. Without additionalhypotheses, this an only be solved by inreasing the ahe size to at least 1MB,whih would be very expensive.Fortunately, there is a heaper solution. What we atually need to verify is thisondition, obtained in the same way as equation 5.9:
⌊

aA
Nl

⌋

6≡
⌊

aA +H · V − 1

Nl

⌋

(mod
Nc

Nl

) (5.21)We add the hypothesis that the frame bu�er address is a multiple of the aheline length, whih we an easily ahieve by imposing alignment requirements to thesoftware tool hain. Without loss of generality, we suppose that aA is the address ofhannel 4, whih is equal to the address of the frame bu�er in the ase reating the

5.3. Pipelined hardware implementation 65problem (�gure 5.12). aA
Nl

is therefore integer, and the only ondition that impliesthe absene of on�it between hannels 1 and 4 beomes:
⌊

H · V − 1

Nl

⌋

6≡ 0 (mod
Nc

Nl

) (5.22)This ondition is veri�ed. So, ICCCs will always be avoided with a 32kB texel aheif we make sure that the 512x512 texture is aligned to a 32-byte boundary.5.3.7 Bilinear �lterThe bilinear �lter is a straightforward arithmeti iruit that implements the equa-tion 5.5 with �ve pipeline sub-stages.5.3.8 Write bu�erThe write bu�er is in harge of gathering the �nal pixels produed by the algorithm,assemble them into FML bursts and write them to the memory.The write bu�er has enough memory apaity to store two bursts on-hip. Thisstorage spae is used for a �double bu�ering� tehnique: while the �rst burst bu�erreeives pixels from the pipeline, the other bu�er an transmit data to the memoryontroller. Bursts an be omplete, whih means that all data in them is valid, orinomplete, whih means that the write bu�er has not reeived a value for all thepixels within the burst but still needs to move the partial burst data it has o�-hipbeause it does not have spae to store it. Inomplete bursts are performed usingthe data mask (DM) signals of FML that prevent some bytes from being written tothe memory during the burst. Inomplete bursts should be avoided as they wastememory bandwidth and redue performane.This small amount of on-hip memory is enough to perform well. Indeed, the al-gorithm sans the retangles one by one horizontally and then vertially (�gure 5.2)and onseutive pixels on the same horizontal line are ontiguous in memory (equa-tion 5.6). Thus, if the destination frame bu�er is aligned to the start of a FML burstand if the horizontal size of the retangles is a multiple of the number of pixels ina FML burst, the burst bu�ers will be used very e�iently, with omplete burstsonly. This is the reommended mode of operation for the texture mapping unit.Under this assumption, what limits the throughput of the write bu�er is thetime it takes to empty the seond burst bu�er into the memory. This time is equalto the memory write aess time plus the length of the FML burst.In the equations that follow, these symbols are used:
• f is the system lok frequeny in Hz.
• w is the width of a FML word in bits.
• n is the FML burst length.
• ∆w is the memory write aess time.

66 Chapter 5. Texture mapping unit
• d is the number of bits per pixel.
• T is the throughput of the write bu�er, in pixels per seond.We therefore have:

T =
f · n · w

d · (∆w + n)
(5.23)Thus, the write bu�er an ahieve a throughput of one pixel per lok yle(T = f) if the memory write aess time veri�es:

∆w ≤
n · w
d
− n (5.24)In Milkymist, the olor format uses 16 bits per pixel and the FML bus is basedon bursts of four 64-bit words, whih leads to the throughput plot of �gure 5.19.12The write bu�er an tolerate write latenies of up to 12 yles while maintainingan exellent performane of one pixel per lok yle, whih seems ahievable evenwhen taking into aount the delays due to bus arbitration. Beyond this point,performane drops.

 40

 50

 60

 70

 80

 90

 100

 110

 120

 10 15 20 25 30

P
er

fo
rm

an
ce

 (
M

pi
xe

ls
/s

)

Memory write access time (cycles)Figure 5.19. Theoretial write bu�er throughput versus memory write aess time.12In our implementation, the throughput is also limited to a maximum of 100 megapixels perseond beause of the width of the write bu�er input port.

5.5. Implementation results 675.3.9 Control interfaeThe texture mapping unit is ompletely under software ontrol thanks to a CSRinterfae through whih the CPU an on�gure and ontrol it using a set of on-�guration and status registers. The texture mapping unit has one interrupt line tosignal ompletion of the proess to the CPU.5.4 Extra featuresBeyond this basi priniple of operation, the texture mapping unit supports sev-eral features whih are implemented as additional pipeline stages (not shown in�gure 5.5):
• Fade to blak. To implement the �deay� e�et of MilkDrop, the output piturean be darkened by multiplying all its olor omponents by a 6-bit �xed pointnumber between 0 and 1.
• Chroma key. Texels of a given olor an be ignored (not drawn in the outputframe bu�er). This is not used in normal rendering, but makes it possible todraw quikly text or symbols with transparent areas on the sreen.
• Semi-transpareny (alpha blending). The output an be made semi-transparentwith 64 transpareny levels. This is aomplished by reading the destinationpiture, mixing eah pixel with the output of the texture mapping (by omput-ing a weighted average) and writing the result bak to memory. If transparenyis not desired, the texture mapping unit skips reading the destination piture inorder to use less memory bandwidth and avoid bloking on unneeded memoryreferenes.5.5 Implementation resultsWe were unable to implement the planned 32kB texel ahe in the XC4VLX25 FPGAof our ML401 development board, beause the omplete SoC with suh a aheexeeds the on-hip SRAM apaity of the FPGA. Therefore, for these experiments,we had to use a 16kB ahe instead. This issue should be resolved easily in thefuture, as our �nal board (hapter 8) will have an FPGA with muh more on-hipmemory.We wanted to validate the performane of our texture mapping unit (TMU)design, measured in megapixels per seond at the output (also alled �ll rate).Sine it is a memory-bound proess (subsetion 5.3.1), it is relevant to examine itsperformane for di�erent values of the texel ahe hit rate.To do so, we varied the texel ahe hit rate by making the TMU zoom a piture atdi�erent levels. We proeeded with a texture size of 512x512 and an output pitureof 640x480. The vertex mesh had a resolution of 32x32, and, to implement thedi�erent zoom levels, the vertex oordinates were (z ·x, z ·y) with z varying between

68 Chapter 5. Texture mapping unit0 and 2047. Eah measurement was done twie to redue the risk of errors andtransients (CPU interrupts, DRAM refreshes, et.), yielding 4096 points whih areplotted in �gure 5.20. The measurements were done programmatially by a softwareroutine running on the system-on-hip itself. The video output was enabled duringthe proess (and showing the result of the texture mapping), running in the standardVGA mode of 640x480 at 60Hz and putting a bakground load of approximately 300Mb/s on the memory system for sanning the frame bu�er.

Figure 5.20. Measured TMU performane versus global texel ahe hit rate.The plot underlines the importane of the memory subsystem in a performane-driven texture mapping unit design. Indeed, performane drops sharply as soon asmany o�-hip memory referenes begin to be made (espeially between hit rates of100% and 98.5%). Our texture mapping unit is unable to meet its initial performanegoal of 31 megapixels per seond for hit rates below approximately 96%. Prefethingwould be a good way to improve this result [16℄, but it omes at the ost of aninreased hardware omplexity.However, our design still appears suitable for the appliation of rendering MilkDrop-like pathes with all the options enabled (i.e. in the worst ase) at VGA resolution(640x480). Indeed, this would involve:1. Distortion of a 512x512 texture to a 512x512 texture. This is representedby the �rotozoom� set of vertex oordinates (table 5.4) whose resulting ahehit rate is 95.74 % (table 5.5). The �ll rate is therefore approximately 30megapixels per seond (�gure 5.20). The time taken by this proess is thus
512·512
30·106 = 8.7ms.

5.5. Implementation results 692. Inlusion of a live video frame into the texture.13 We assume the input videoframe to be 720x288 (we are using bob de-interlaing, i.e. line doubling of theinterlaed video frames) and the target retangle in the texture to be 360x288.This is represented by the �zoomout� set with a ahe hit rate of 86.94 %yielding a �ll rate of very approximately 15 megapixels per seond. The timetaken by this proess is 360·288
15·106 = 6.9ms.3. Zooming of the 512x512 texture to 640x480 resolution, done twie (one forthe normal piture and one for video eho14). This is represented by the�zoomin� set of vertex oordinates. The texel hit rate is estimated at 99.27%,and the �ll rate at 55 megapixels per seond. The time taken is estimated tobe 2 · 640·480

55·106 = 11.2ms.The total time is 26.8ms, whih orresponds to 37 frames per seond. This ismore than enough to ahieve a smooth video animation.

13We are � very optimistially � negleting the time it takes to read the output piture whenalpha blending is enabled.14Again negleting the extra delay due to alpha blending.

70

Chapter 6Floating point o-proessor
6.1 PurposePathes de�ne �oating-point equations that are evaluated at eah vertex (subse-tion 2.1.2). Furthermore, per-frame variables suh as zoom, rot or x alter thetexture oordinates at eah vertex, and orrespond to built-in per-vertex equations.We would like to be able to generate a mesh of up to 64x64 verties at 30 framesper seond, that is to say, ompute the X and Y texture oordinates for 122880verties eah seond. With a 100MHz system lok, we have, on average, 813 ylesto fully proess eah vertex. We want to be able to do 470 basi �oating pointoperations (addition, subtration, multipliation) per vertex.1 This means we have,on average, 1.73 yles to perform eah basi �oating point operation.This rules out any software-based implementation. Even assuming a favorablease where pathes are ompiled (not interpreted) and the LattieMio32 ISA (se-tion 7.1) equipped with a traditional �oating point unit, eah basi �oating pointoperation would take approximately 5 yles at least.2 Even at 100% CPU utiliza-tion, a software implementation would be 3 times too slow!We have therefore designed and implemented a o-proessor for those omputa-tions, alled PFPU (Programmable Floating Point Unit).6.2 Forms of parallelismWe need a parallel implementation to solve the problem of performane. Two ap-proahes an be thought of: vertex-level parallelism and instrution-level parallelism.1The MilkDrop pathes ontain many other funtions. We ount divisions and square roots as15 basi �oating point operations and trigonometri funtions as 10. We want a path to be ableto do, per vertex, 150 base operations, 8 divisions/square root extrations, and 20 trigonometrioperations. This yields the estimate of 150 + 8 · 15 + 20 · 10 = 470 basi operations.2FPGAs are unlikely to ompute the totality of a �oating point operation in less than 50ns,whih is 5 yles at 100MHz. Sine LattieMio32 uses a �xed-length in-order pipeline, the CPUwould need to be stalled during those yles. 71

72 Chapter 6. Floating point o-proessorVertex-level parallelism is a very simple onept. Sine the verties are inde-pendent, the idea is to proess several at one. The problem with this approah isthat a signi�ant amount of (typially on-hip) memory is needed to store all theintermediate results generated by this tehnique.Instrution-level parallelism onsists in arrying out in parallel two or more in-dependent omputations for the same vertex. With this approah, the verties anbe omputed one by one, whih redues the required amount of on-hip storage forintermediate results and simpli�es the memory aess subsystem (as it does not haveto handle aesses to di�erent verties stemming from the same PFPU program).The two approahes are not mutually exlusive. A hybrid solution an onsistin starting with instrution-level parallelism, and then try to shedule more vertiesinto the same program until the on-hip memory apaity is exeeded.We do not want suh a omplex solution to begin with, so we are going withinstrution-level parallelism only. If more performane is needed, the addition ofvertex-level parallelism an be tried at the expense of relatively small modi�ationsto the hardware.6.3 Hardware arhiteture6.3.1 OverviewA fully software-based extration of instrution-level parallelism was hosen for sev-eral reasons:
• Hardware-based extration is more ostly in terms of resoures and more dif-�ult to develop.
• In terms of performane, hoosing an hardware-based extration only pays o�ompared to a software-based solution when some delays an only be deter-mined at run-time (for example, the memory referenes). In our ase, om-putations last for approximately 800 yles and end up with a memory writephase that takes approximately 10 yles, so the memory delays are negligi-ble and all the other proesses (arithmeti pipelines and register writes) haveknown latenies. Furthermore, we only write to the memory, whih means thatwe an even use a write queue to ompletely hide the memory write lateny.
• A software-based instrution sheduler an have a large instrution window,and thus extrat more parallelism than an hardware solution ould.This stati sheduling tehnique makes the �oating point o-proessor lose to aVLIW (Very Long Instrution Word) proessor � even though its instrution wordsare, in fat, not partiularly long, as the design is very simple (only one operation isissued per instrution, and jumps are not supported). The arhiteture we designedis outlined in �gure 6.1.

6.3. Hardware arhiteture 73

Figure 6.1. Hardware arhiteture of the �oating point o-proessor.

74 Chapter 6. Floating point o-proessorParameter Operand A Operand B Opode DestinationLength 7 7 4 7Bits 24..18 17..11 10..7 7..0Table 6.1. PFPU instrution format.6.3.2 Instrution setThe 25-bit PFPU instrution format is given in table 6.1. The PFPU exeutes onesuh instrution per lok yle.An instrution an be split into two parts: the issue part, made of the twooperand �elds and the opode �eld, and the ommit part, made of the destina-tion �eld. At eah yle, the issue part an feth two operands from the register�le and pushes them into one of the several arithmeti pipelines forming the ALU(Arithmeti and Logi Unit), seleted by the �opode� �eld. At the same time, theommit part an feth one result from the ALU (stemming from a previously issuedoperation that has just �nished) and write it bak to the register �le.The PFPU program must be written so that all data dependenies are satis�edand only up to one instrution �nishes at any given lok yle (having more thanone would reate a on�it as there is only a single write port on the register �le).A speial instrution is used to write the �nal result to the memory. It writesthe two operands in a format that an be diretly read as a texture oordinate bythe texture mapping unit (hapter 5). Upon the exeution of this instrution, theprogram for the urrent vertex is terminated and run again for the next, until allverties have been proessed.6.3.3 Instrution RAMThe instrution RAM belongs on-hip for two simple reasons:
• it is small: it must only ontain hundreds of instrutions (the program for onevertex), so its apaity is only a few kilobytes.
• it transfers a large amount of data: one 25-bit instrution on eah lok yleat 100MHz yields a bandwidth of 2.5Gb/s.There are no jumps or loop strutures (for eah vertex, the program is always exe-uted linearly), so it does not make sense to replae it with a DRAM-baked ahe.6.3.4 ALUOverviewThe Arithmeti and Logi Unit (ALU) uses 32-bit �oats using the same representa-tion as spei�ed by the IEEE 754 standard. This gives enough preision for graphisoperations.The major pipelines of the ALU are listed below.

6.4. Run-time ompiler 75Basi operationsThe unit has pipelines that perform ommon operations: addition, subtration,multipliation, absolute value and onversion between �oats and two's omplementintegers.Inverse square root approximationThe ALU an ompute an approximate of the inverse square root of a �oatingpoint number using the Quake III method [18℄. The ALU only performs the integeroperation 0x5f3759df - (i >> 1), the subsequent �oating point Newton-Raphsoniterations needing to be done with additional instrutions. This is desribed insubsetion 6.4.1.Sine and osineSine and osine are implemented with a look-up table and some logi that exploitsthe evenness and periodiity of those funtions to redue the size of the look-up table.To ompute the sine or osine of a �oating point number, additional instrutionsneed to be generated to onvert this number into an integer suitable for indexingthe look-up table.ComparisonsThe ALU an test the equality of two �oating point numbers and test if one isgreater than the other, using two separate opodes. The result of these operationsis 0.0 or 1.0, whih an be used as a �oating point number in other omputationsor written to register R2 to implement a onditional statement.Conditional statementsConditional statements (if... then... else...) are relatively unommon in MilkDroppathes, so a low area and straightforward � but slow� implementation was hosen.A speial opode enables a multiplexer that swithes between operand A and B andreturns the result. The multiplexer is ontrolled by the register R2, the value of thisregister being null or non-null selets one or the other input.Thus, to implement a onditional statement, the PFPU would need to omputeboth of its branhes and store their values in registers (inluding the branh that isnot taken), evaluate the ondition and store its value in R2 and �nally exeute anIF operation.6.4 Run-time ompilerEquations from the pathes need to be ompiled and sheduled before they an beevaluated by the programmable �oating point unit (PFPU). These operations takeplae on the CPU ore of the SoC (setion 7.1).

76 Chapter 6. Floating point o-proessor6.4.1 Compilation into virtual mahine instrutionsThe �rst step in this proess is the ompilation proper, i.e. parsing the equationsand generating instrutions for the so-alled �oating point virtual mahine (FPVM).This virtual mahine has the following properties:
• It has the same operations and opodes as the PFPU.
• Instrutions omplete and write their result to the register �le in one yle.
• The number of registers is unlimited.3The ompiler employs the fat that the number of registers is unlimited to gener-ate a ode that is free from false and output dependenies4 (by alloating a new reg-ister for eah result) in order to simplify the task of the sheduler (subsetion 6.4.2),whih does not have to perform register renaming to reate more opportunities forout-of-order exeution.Beause of the limited funtionality of the operations supported by the FPVM(and the PFPU), some �ompound� funtions need to be implemented with severalinstrutions. They are detailed below.Sine and osineThe sine and osine instrutions expet an integer angle expressed in 1

8192 turns.Angles outside of the range [0, 8191] are orretly proessed (i.e. multiples of 8192are added or subtrated, by simply ignoring the most signi�ant bits of the input).Therefore, to return the sine or osine of a �oating point angle expressed in radians,the ompiler needs to generate three instrutions:1. Multiply by 8192
2·π .2. Convert to integer.3. Look-up the sine or osine value.Inverse square rootThe inverse square root (1√

x
) is implemented using the Quake III algorithm [18℄,reprodued in �gure 6.2 with the two Newton-Raphson iterations for improved pre-ision. The input of the algorithm is x and the output y. The ast_to_�oat funtion3Atually, it is limited to 2

32 in our implementation, whih an be onsidered unlimited for ourpurposes.4Almost. In order to interfae in a simple way the ode with the �outside world� (subse-tion 6.4.3), the ompiler an be onstrained to alloate a given variable to a given register. De-pending on how the variable is used, false and output dependenies might atually appear. Thesheduler therefore has to hek for write-after-read (WAR) and write-after-write (WAW) hazards.Furthermore, onditional statements an ause WAR and WAW hazards around the R2 register,sine the IF operation an only use R2 to get the ondition value from. However, sine all thesehazards are extremely rare, they an be resolved by waiting (instead of register renaming) withouta signi�ant impat on performane.

6.4. Run-time ompiler 77
y ← ast_to_�oat(0x5f3759df− (ast_to_integer(x) >> 1))
y ← y · (1.5 − 0.5 · x · y · y) // �rst Newton-Raphson iteration
y ← y · (1.5 − 0.5 · x · y · y) // seond iterationFigure 6.2. Fast inverse square root algorithm.returns the �oat whose binary representation as spei�ed by IEEE 754 is the sameas that of the integer parameter. The ast_to_integer funtion performs the oppo-site operation. They allow the bit twiddling of the numbers in order to produe aninitial approximation of the result, whih is then re�ned using the Newton-Raphsonmethod. This is the ore idea of the algorithm.The algorithm produes an approximate value of the inverse square root, witha worst ase relative preision of 4.66 · 10−6 over all �oating point values when thetwo Newton-Raphson iterations are used (aording to [18℄).Only a speial instrution for performing the �rst approximation step is pro-vided. The ompiler must therefore generate extra multipliation and subtrationinstrutions for the two iteration steps.Square rootThe square root is implemented using inverse square root with an additional mul-tipliation, aording to √x = x · 1√

x
. The relative preision stays approximately5the same.Inverse and divisionThe inverse of positive numbers is implemented by squaring the inverse square root:

1
x
= 1√

x
· 1√

x
. The relative preision obtained is approximately 9.32 · 10−6.Divisions of arbitrary numbers are performed by �rst transferring the sign of thedenominator to the numerator, and then multiplying it by the inverse (obtained asabove) of the denominator: a

b
= sign(b) · a · 1√

|b|
· 1√

|b|
. The relative preision is stillapproximately 9.32 · 10−6.The ompiler needs to generate many instrutions to implement a division, whihmakes it a rather slow proess. However, with this method, very little hardwareneeds to be added to the PFPU: only support for transferring the sign to the nu-merator needs to be implemented.6.4.2 ShedulingOne the omplete ode is available as FPVM instrutions, the next step is to mapthese instrutions to the PFPU and shedule them.5Not ounting the loss of preision inurred by trunating the mantissa of the �oating pointmultipliation result.

78 Chapter 6. Floating point o-proessorOur sheduling algorithm proeeds yle by yle. At eah PFPU yle (whihorresponds to a PFPU instrution), it searhes the omplete set of FPVM instru-tions waiting to be sheduled for one that meets the following four onditions:1. No read-after-write (RAW) hazard. The operands for the instrution to besheduled must have been stored into the register �le of the PFPU, otherwise,the instrution is not sheduled.2. No write-after-write (WAW) hazard. If there is a previous unompleted in-strution that writes to the same register as the instrution to be sheduled,the instrution is not sheduled.3. No write-after-read (WAR) hazard. If there is a previous unsheduled FPVMinstrution that reads the register that the instrution to be sheduled modi�es,the instrution is not sheduled.4. No output on�it. The instrution to be sheduled must not omplete at thesame yle as another previously sheduled instrution.If an instrution is found, the FPVM registers of its operands are translated toPFPU registers, a PFPU register is alloated for its output register so that furtherinstrutions needing the result an read it, and the instrution is written to thePFPU program. If no further instrution needs to read the operands of the instru-tion just sheduled, the registers are dealloated in order to save the limited PFPUregister spae (unless they are bound to a onstant or user variable, see subsetion6.4.3). The algorithm then proeeds to the next yle.It an be noted that the handling of WAW and WAR hazards is zealous, assome hazards deteted by the algorithm may atually not be present beause of thepipeline delays. Sine those hazards are infrequent, this approah does not have alarge impat on the performane but simpli�es the algorithm.Several instrutions an sometimes meet the onditions to be potentially shed-uled at the same yle. In this ase, the algorithm hooses the �rst one to appearin the FPVM instrution �ow. This greedy approah an ertainly be optimized,though no e�ort has been made in this diretion.6.4.3 Constants and user variablesConstant values are assigned a spei� register by the ompiler, that needs to beinitialized before the ode is run. User variables an also be bound to a given register,and thereby an be read and written from and to the PFPU. Those registers willthen be used exlusively for the onstant or user variable.To di�erentiate registers used by onstants and user variables from registersused to store internal results, the former are given positive numbers by the FPVMompiler while the latter are given negative numbers.

6.5. Results 79Path Instrutions Cyles CPIDefault 192 259 1.35Fvese - The Tunnel (Final Stage Mix)(simpli�ed) 208 286 1.38Geiss - Warp of Dali 1 220 292 1.33Krash - Digital Flame (simpli�ed) 216 293 1.36Unhained & Rovastar - Wormhole Pillars(Hall of Shadows mix) 231 326 1.41Table 6.2. Greedy PFPU sheduler performane with the per-vertex math of di�er-ent MilkDrop pathes (Milkymist 0.5.1).The sheduler then maps all positive FPVM registers to the PFPU registerwith the same number, so that they an be easily aessed by the user. Nega-tive FPVM registers are dynamially alloated during the sheduling among theremaining PFPU registers.6.5 ResultsThe performane of the PFPU depends diretly on the performane of the sheduler,that is to say, its ability to take advantage of out-of-order exeution opportunitiesto hide the latenies of the hardware.We ompiled and sheduled a few MilkDrop pathes, and ounted the resultingnumber of instrutions and the number of yles after sheduling. The ratio betweenthe two �gures is the CPI (Cyles Per Instrution), whih represents the averagetime it takes to exeute one instrution. The results are given in table 6.2. The�Default� path is a path that ontains no user-de�ned per-vertex equations, andthe instrutions orrespond to the impliit equations needed to implement the built-in e�ets (zoom, saling, ...).From this table, it is apparent that our approah, albeit simple, is very e�ientat extrating instrution-level parallelism. Indeed, the CPI stays between 1.38 and1.41 while the latenies of the hardware pipelines exeuting the instrutions aremuh higher, between 2 and 5 (table 6.3).To put this in ontrast with our initial goals (setion 6.1), let us onsider atypial path that performs, per vertex, 150 base operations (addition, subtration,multipliation), 4 divisions, 4 square root extrations and 20 sine or osine ompu-tations (whih is lose to the path used in our initial estimate). Aording to thetable 6.4, this would mean 318 PFPU instrutions. The maximum CPI that letsus ahieve our performane goal is therefore 2.56. Our performane goal is easilymet, assuming that other pathes expose the same opportunities for out-of-orderexeution.

80 Chapter 6. Floating point o-proessor
Instrution LatenyFloating point addition 4Floating point subtration 4Floating point multipliation 5Floating point absolute value 2Conversion from �oat to integer 2Conversion from integer to �oat 3Sine/osine table look-up 4Comparisons 2Copy 2Conditional 2Inversion of the sign of operand 1 if operand 2 is negative 2Inverse square root approximation 2Table 6.3. PFPU latenies in yles (Milkymist 0.5.1).

Operation InstrutionsAddition, subtration, multipliation 1Sine and osine 3Inverse square root 11Square root 12Division 15Table 6.4. Exat ost in instrutions of ommon operations on the PFPU.

Chapter 7Software
7.1 LattieMio32The heart of the software exeution apabilities of the SoC is the LattieMio32miroproessor ore [30℄. It is a lassi 6-stage in-order pipelined RISC proessor(�gure 7.1) with a ustom instrution set supported by the GNU (GCC-based)ompiler tool hain. It supports separate instrution and data ahes with up totwo ways. There are an optional barrel shifter, pipelined multiplier and multi-yledivider.

Figure 7.1. LattieMio32 arhiteture (Lattie Semiondutor).81

82 Chapter 7. SoftwareThe Milkymist system-on-hip uses LattieMio32 with 2-way ahes of 16kBeah, and all the optional features enabled.At the time this thesis is written, LattieMio32 is the only hardware omponentthat we have not developed spei�ally for the Milkymist projet.7.2 CapabilitiesThe �nommu� version of Linux has been ported to the Milkymist SoC (�gure 7.2).Sine this is a ommunity e�ort with a signi�ant ontribution by Takeshi Matsuyafrom Keio University, the details are not overed in this Master's thesis. Still, thisdemonstrates the ability of the platform to run omplex software.

Figure 7.2. Linux booting on the Milkymist SoC.
7.3 BenhmarkingThe performane of the Milkymist SoC was ompared to Miroblaze [34℄, the pro-prietary Xilinx soft-ore SoC platform.

7.3. Benhmarking 83The benhmark used was the �onsumer� MiBenh [14℄ suite. By ontrastto traditional benhmarks suh as SPEC, MiBenh is tailored to typial work-loads of embedded systems. Only two benhmarks are missing from the �on-sumer� set: tiff2rgba (it tried to use too muh ontiguous memory for the nommuMilkymist/Linux alloator to handle) and lame (it rashed on Miroblaze).

Figure 7.3. Xilinx ML401 development board.All tests were run on a Xilinx ML401 (XC4VLX25 FPGA, see �gure 7.3) devel-opment board, with a system frequeny of 100MHz.For Milkymist, the on�guration used was the default one of the port to theML401 board:
• Proessor with hardware multiplier, divider and barrel shifter
• 16kB L1 instrution and data (write-through) ahe (2-way set-assoiative)
• No memory management unit (LattieMio32 does not have one)
• 16kB FML bridge write-bak L2 ahe (diret mapped)
• HPDMC DDR SDRAM ontroller, 32-bit SDRAM bus width
• 100MHz DDR SDRAM lok

84 Chapter 7. SoftwareBenhmark Run 1 Run 2 Average Deviationjpeg 2.57 s 2.54 s 2.56 s 1.18 %mad 5.84 s 5.87 s 5.86 s 0.51 %ti�2bw 9.51 s 9.69 s 9.6 s 1.89 %ti�dither 19.28 s 19.3 s 19.29 s 0.10 %ti�median 26.48 s 26.26 s 26.37 s 0.84 %typeset 21.44 s 21.79 s 21.62 s 1.63 %Table 7.1. User exeution times on Milkymist 0.2.
• Video output running at standard VGA resolution, onsuming approximately300MBps of memory bandwidth
• Software: GCC 4.2.1 and Linux 2.6.23.For Miroblaze, the on�guration is as follows:
• Proessor with hardware multiplier, divider and barrel shifter
• 16kB L1 instrution and data (write-through) ahe (diret mapped, multi-wayahes are not supported)
• Full memory management unit
• No L2 ahe (not supported)
• MPMC DDR SDRAM ontroller, 32-bit SDRAM bus width
• 100MHz DDR SDRAM lok
• No video output
• Software: GCC 4.1.2 and Linux 2.6.32.4.The omparison seems learly in favor of Milkymist, with a rough 15%-35%(depending on the benhmark) redution in exeution time. Details are shown in�gure 7.4 and in tables 7.1 and 7.2. Deviation is omputed as:

|t1 − t2|min(t1, t2) (7.1)It is meant to hek that the results are deterministi and reproduible.The root auses of this performane improvement were not investigated; butsine LattieMio32 and Miroblaze share a very lose arhiteture, it is suspetedthat these di�erenes are vastly explained by the ombination of the low-latenyHPDMC memory ontroller and the improved ahes.The main point of this omparison is to on�rm the viability of Milkymist as apowerful SoC platform, that an withstand the ompetition with proprietary solu-tions.

7.3. Benhmarking 85

Figure 7.4. Comparative MiBenh results of Milkymist and Miroblaze.
Benhmark Run 1 Run 2 Average Deviationjpeg 3.42 s 3.58 s 3.5 s 4.68 %mad 6.72 s 7.11 s 6.92 s 5.80 %ti�2bw 15.19 s 14.12 s 14.66 s 7.58 %ti�dither 24.72 s 24.68 s 24.7 s 0.16 %ti�median 35.02 s 33.05 s 34.04 s 5.96 %typeset 28.91 s 28.83 s 28.87 s 0.28 %Table 7.2. User exeution times on Miroblaze 10.1.

86 Chapter 7. Software7.4 Design of a MilkDrop-like rendering program7.4.1 DesriptionWith all those elements at hand, the last task is to design a omplete rendererprogram ompatible with MilkDrop. The blok diagram of our renderer is given bythe �gure 7.5.

Figure 7.5. Rendering software arhiteture.Before the rendering proper an take plae, the ode of the path needs to beparsed and miroode for the PFPU generated (setion 6.4). This proess, imple-mented entirely in software, is slow (several hundreds of milliseonds) but it is notperformane-ritial, as it only needs to be done one before the rendering. Further-

7.4. Design of a MilkDrop-like rendering program 87more, its results ould be ahed to allow a smooth transition between pre-de�nedpathes.The �rst step of the rendering proess is to digitize the audio signal. This isahieved using the system-on-hip's AC97 ontroller and its devie driver. They areprogrammed to pak the audio samples into bu�ers, eah of them holding exatlythe number of samples that orresponds to the desired video frame rate of 30 framesper seond. The bu�ers are written to the memory using DMA through the L2ahe.The next operation is to analyze eah audio bu�er to extrat its energy ontentin three frequeny bands, in order to generate the bass, mid and treb parametersthat an be used in MilkDrop pathes to onnet the visual e�ets to sound. This isdone using three deimating �nite impulse response (FIR) �lters, eah followed byan aumulator that adds the energies of eah sample at its �lter's output. This isseveral times faster than the original MilkDrop implementation, whih onsisted inperforming a Fourier transform followed by a spetral summation of the energies inthe three bands, and allows a software implementation. Indeed, this proess has beenobserved to take approximately 8ms when run on the system-on-hip, whih is morethan 3 times less than the video frame period. The �lters operate diretly on theaudio data sent into the memory by the AC97 ontroller, avoiding any time-wastingmemory opy.The next step is to evaluate the per-frame equations. Even though hardwareaeleration is not really needed there, this step is still performed on the PFPU inorder to re-use the existing ompilation and evaluation infrastruture.One per-frame parameters are known, the renderer proeeds to evaluating per-vertex equations on the PFPU. This generates the full mesh of vertex oordinatesto be used later by the texture mapping unit for distorting the frame.All the proesses we have seen so far are part of the analysis loop. Its outputis a stream of pakets, eah paket desribing the operations to be done for oneframe. One paket ontains the audio samples, the results of the audio analysis, theoutputs of the per-vertex equations (as well as the �xed path parameters) and thedistortion mesh data. The paket is sent to the rendering loop.Upon reeption of the paket, the rendering loop takes its urrent frame, andruns the TMU (hapter 5) to distort it.Then, it superimposes waves, borders and motion vetors on the result. This isimplemented in software, as the proessor is fast enough for these tasks.Finally, the TMU is run twie to sale the internal frame bu�er to the sreensize and to apply the video eho.The output is now ready to be displayed. This is done by simply instruting theVGA ontroller to swith to the newly generated frame bu�er. The VGA ontrollerthen performs the requested bu�er swith during the next vertial blanking interval,in order to produe a transition without any tearing artifat. A triple-bu�eringtehnique is used so that the software never has to wait for the VGA ontroller to

88 Chapter 7. Softwarerelease a bu�er,1 at the expense of an inreased memory onsumption.7.4.2 Cahe oherenyThe system-on-hip provides limited support for ahe ohereny (setion 4.5). There-fore, several operations to ensure ohereny must be done by the software throughoutthe rendering proess.Cahe ohereny within the analysis loopThe only preaution that should be taken is to invalidate the L1 ahe after eahreeived bu�er from the AC97 audio ontroller.There is no need to invalidate the any ahe after evaluation of the per-frameequations, as the outputs are read diretly from the PFPU register �le whih ismapped in the non-ahe-able CSR address spae.The output the per-vertex equations is sent diretly to the rendering loop.Cahe ohereny between the analysis and rendering loopsAmong the data sent from the analysis loop, there is one element whih is notoherent with respet to the L1 ahe: the vertex data generated from the per-vertex equations. However, this data is not read by the CPU but only by the TMU.The latter fethes it from the L2 ahe, whih is also where the PFPU writes data.Therefore, no operation is needed to ensure ahe ohereny.Cahe ohereny within the rendering loopMost operations are done by the texture mapping unit, whih deals diretly withthe SDRAM. There are two ases where ahe ohereny issues an arise:1. Between the CPU and the TMU during the wave (and other elements) drawingproess.2. Between the CPU and the VGA ontroller. Indeed, the VGA ontroller makesoherent transations with respet to the L2 ahe. If the ahe holds anoutdated opy of the data, it will be used instead of the more reent versionin SDRAM.To solve these issues with a minimal number of ahe invalidations, we makesure that the L1 and L2 ahe never hold any data from any frame bu�er exeptduring the wave drawing proess. This is ensured by:1Assuming that the frame rate is less than the sreen refresh frequeny, whih is always the asein pratie as the frame rate is limited to 30 fps and all display devies refresh at muh more than30 Hz.

7.4. Design of a MilkDrop-like rendering program 891. Aligning all frame bu�ers to a multiple of both the line lengths of the L1 andL2 ahes (i.e. of the least ommon multiple of the line lengths). In our ase,this does not add any additional onstraint as those bu�ers already had tighteralignment requirements stemming from the VGA ontroller and the avoidaneof inter-hannel ahe on�its within the texture mapping unit.2. Invalidating the L1 and L2 ahe just after the wave drawing proess.7.4.3 Event-driven operationOur implementation is event-driven. Instead of being fully sequential, the softwarewaits for and ats upon events (for example, the texture mapping unit �nishingproessing, or a new audio bu�er being ready). After an event is reeived, theCPU an either proess the data itself (for example, run the FIR �lters after a newaudio bu�er is ready) or run another hardware unit (for example, run the TMUafter the PFPU has evaluated the per-vertex equations). This approah improvesperformane by letting the three main proessing units of the system (the CPU, thePFPU and the TMU) operate in parallel.7.4.4 ResultsOur system is able to render suessfully many original MilkDrop presets at 30frames per seonds in 640x480 resolution. However, it is often operating near itslimit, and sometimes above it, as some presets exhibit a lower frame rate. This isoften due to the fat that drawing the waves and the borders take a long time onthe CPU, espeially when many semi-transparent pixels need to be drawn. Thispreludes the possibility of supporting presets that employ omplex ustom wavesand shapes (that would be drawn by the CPU), unless further aeleration tehniquesare developed.

90

Chapter 8Conlusion and future works
Through this thesis projet, we have overed many di�erent aspets of omputer ar-hiteture, whih were neessary to ahieve our goal of designing a high-performanesystem-on-hip for video synthesis.We �rst exposed the di�ulties involved with the amount of memory required forthe video synthesis appliation, and the lateny and bandwidth hallenges stemmingfrom the DRAM tehnology. Our solution onsisted of a ombination of a pagemode ontrol algorithm, using of burst transfers with ritial-word-�rst support,and pipelining. It keeps the hardware small and simple, and our results have shownthat it allows using the memory bandwidth at roughly half the peak apaity of thehips, whih was enough for our appliation taking into aount an oversizing of thememory system.Then, we explained how we split the system interonnet on three di�erentbusses, solving high fanout and large multiplexer problems, enabling devies on dif-ferent bus segments to ommuniate in parallel, and having spei� bus standardson eah segment, depending on the feature and bandwidth needs of the devies usingit. We went on with the problems stemming from the ompute-intensive parts ofthe video rendering proess: texture mapping and fast evaluation of the equationsthat de�ne the texture oordinates. We solved those by developing ustom hard-ware aelerators, the texture mapping unit (TMU) and the programmable �oatingpoint unit (PFPU). The PFPU easily exeeded its design goals, but our TMU washallenged by its important onsumption of memory bandwidth and the assoiatedmemory latenies issues. It was nonetheless able to meet our expetation of enablingthe rendering of the video e�ets in VGA (640x480) resolution.Finally, we hose and integrated a good CPU ore to ontrol the system andperform less ompute-intensive and software-friendly tasks. Our hoie was the Lat-tieMio32 ore, whih, when integrated into our system, exeeded the performaneof the ompeting proprietary Miroblaze solution. We wrote video rendering soft-ware for it, leveraging the possibilities of our SoC arhiteture.91

92 Chapter 8. Conlusion and future worksOverall, our goal has been met as we have been suessful at rendering manyMilkDrop presets in VGA resolution on our system at a good frame rate. However,several traks for omputer arhiteture related improvements an be thought of:1. In order to be able to use more memory bandwidth from the SDRAM hips,an out-of-order memory ontroller ould be designed.2. The texture mapping unit ould use a prefething tehnique to be less a�etedby the memory lateny. Suh a tehnique ould also enable several outstandingmemory requests from the texture mapping unit at the same time, allowingthe memory ontroller to reorder them in order to leverage more bandwidthfrom the SDRAM hips.3. During the development of the texture mapping unit (whih was done in plainVerilog HDL), we felt that it was not very produtive to repeatedly designmanually the pipeline interloking logi for eah stage. This made us thinkof an ambitious researh projet that ould onsist in designing a program-ming language that would desribe similar pipelines from a higher level ofabstration, whih would bring many advantages. First, produtivity wouldbe improved as the designer would not have to design and ode manually (witha risk of errors) many elements. Seond, the language ould be simulated tovalidate the high level funtionality of the design. Third, this simulation ouldalso be used to explore the design spae of funtionally-equivalent implemen-tations with di�erent area, power and speed performanes (for example, byobserving the impat on speed that the ahe size of a memory aess pointhas in order to strike a good ompromise between the two). A omputer pro-gram ould even be used to perform part or all of this exploration in orderto meet pre-de�ned power, area and speed goals, and bak-annotate all thedesign hoies it made into the design.With suh a powerful tool, we ould, for example, quite easily upgrade thetexture mapping unit's graphis pipeline so it ould support the full OpenGLES spei�ation. It ould also ertainly be used in many other �elds unrelatedto omputer graphis.The Milkymist projet is not entirely about omputer arhiteture and system-on-hip design. We are also working, in ollaboration with Sharism at Work Ltd. andother ontributors, on building omplete �open soure hardware� produts aroundthe SoC desribed herein. Our �rst devie will be the Milkymist One interative VJstation. Tehnial aspets of this wider projet also inlude printed iruit boardlayout (�gure 8.1) and software engineering. All of the work is overed by opensoure lienses.We hope that this open hardware platform will be suessful � used not only forits intended live video synthesis purpose, but also as a learning tool, as a developmentplatform and as a base or even a design library for other open soure projets.

93

Figure 8.1. Printed iruit board �oor plan of the Milkymist One.

94

Bibliography[1℄ M. Abrash. Mihael Abrash's Graphis Programming Blak Book (Speial Edi-tion). Coriolis Group Books, 1997.[2℄ G. Allan. DDR SDRAM: A low ost, yet inreasingly omplex o�-hip memory solution for SoCs. https://www.synopsys.om/dw/do.php/wp/ddr_sdram_wp.pdf (Retrieved on 22/04/2010), 2007.[3℄ Altera. Nios II performane benhmarks.http://www.altera.om/literature/ds/ds_nios2_perf.pdf (version5.0, retrieved on 30/04/2010).[4℄ Altera. Nios II proessor: The world's most versatile embedded proessor.http://www.altera.om/produts/ip/proessors/nios2/ni2-index.html(Retrieved on 21/04/2010).[5℄ Arkaos. GrandVJ. http://www.arkaos.net (Retrieved on 21/04/2010).[6℄ S. Bourdeauduq. Milkymist interative VJ station.http://www.milkymist.org (Retrieved on 21/04/2010).[7℄ S. Bourdeauduq. Con�guration and status register (CSR) bus spei�ations.http://www.milkymist.org/do/sr.pdf (Retrieved on 21/04/2010), 2009.[8℄ S. Bourdeauduq. FastMemoryLink (FML) bus spei�ations.http://www.milkymist.org/do/fml.pdf (Retrieved on 21/04/2010),2009.[9℄ Siliore Corporation and OpenCores.org. WISHBONE System-on-Chip (SoC) interonnetion arhiteture for portable IP ores.http://openores.org/downloads/wbspe_b3.pdf (Retrieved on21/04/2010), 2002.[10℄ C. Dawson, S.K. Pattanam, and D. Roberts. The Verilog proedural interfaefor the Verilog hardware desription language. In Verilog HDL Conferene,1996. Proeedings., pages 17�23, Santa Clara, CA, USA, 1996. IEEE Interna-tional. 95

96 Bibliography[11℄ E. de Koning and B. van der Ploeg. Resolume. http://www.resolume.om(Retrieved on 21/04/2010).[12℄ N. Feske and M. Alles. Genode FX: an FPGA-based GUIwith bounded output lateny and guaranteed responsivenessto user input. http://www.genode-labs.om/ publiations/genode-fpga-graphis-2009.pdf (Retrieved on 22/04/2010).[13℄ Aero�ex Gaisler. SoC library. http://www.gaisler.om (Retrieved on21/04/2010).[14℄ M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B.Brown. MiBenh: A free, ommerially representative embedded benhmarksuite. InWWC '01: Proeedings of the Workload Charaterization, 2001. WWC-4. 2001 IEEE International Workshop, pages 3�14, Washington, DC, USA,2001. IEEE Computer Soiety.[15℄ S. Heitheker and R. Ernst. Tra� shaping for an FPGA based SDRAM on-troller with omplex QoS requirements. In DAC '05: Proeedings of the 42ndannual Design Automation Conferene, pages 575�578, New York, NY, USA,2005. ACM.[16℄ H. Igehy, M. Eldridge, and K. Proudfoot. Prefething in a textureahe arhiteture. In HWWS '98: Proeedings of the ACM SIG-GRAPH/EUROGRAPHICS workshop on Graphis hardware, pages 133��.,New York, NY, USA, 1998. ACM.[17℄ Sonis In. MemMax sheduler. http://www.sonisin.om/uploads/pdfs/MMSheduler_ds_final02_032109.pdf (Retrieved on 21/04/2010).[18℄ Chris Lomont. Fast inverse square root.http://www.lomont.org/Math/Papers/2003/InvSqrt.pdf (Retrieved on07/05/2010).[19℄ M. Lu. Arithmeti and logi in omputer systems. John Wiley and Sons, 2004.[20℄ D. Magdi. Visikord. http://visikord.om/ (Retrieved on 22/04/2010).[21℄ D. Magdi. Wiimote-reative MilkDrop visuals.http://forums.winamp.om/showthread.php?threadid=289007 (Retrievedon 22/04/2010).[22℄ D. Mattson and M. Christensson. Evaluation of synthesizable CPU ores. Mas-ter's thesis, Göteborg, Sweden, 2004.[23℄ Sun Mirosystems. OpenSPARC. http://www.openspar.net (Retrieved on21/04/2010).

Bibliography 97[24℄ W. Miller. Real word appliations for �eld programmable gate array devies� an overview. In WESCON/94. 'Idea/Miroeletronis'. Conferene Reord,pages 548�551, Anaheim, CA, USA, 1994. IEEE.[25℄ Nullsoft. Milkdrop plug-in for Winamp. http://www.nullsoft.om/free/milkdrop/ (Retrieved on 21/04/2010).[26℄ Openores. OpenRISC. http://www.openores.org/projet,or1k (Re-trieved on 21/04/2010).[27℄ D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton, C. Kozyrakis,R. Thomas, and K. Yelik. A ase for intelligent RAM. IEEE Miro, 17:34�44,1997.[28℄ Simply RISC. Simply RISC S1 ore. http://www.sris.om/?s1 (Retrievedon 21/04/2010).[29℄ T. Rokiki. Indexing memory banks to maximize page mode hit perentage andminimize memory lateny. Tehnial report, HP Laboratories Palo Alto, 2003.http://www.hpl.hp.om/tehreports/96/HPL-96-95R1.html (Retrieved on21/04/2010).[30℄ Lattie Semiondutor. LattieMio32. http://www.lattiesemi.om/produts/intelletualproperty/ipores/mio32/index.fm (Retrieved on21/04/2010).[31℄ Pragmati C Software. GPL Cver. http://soureforge.net/projets/gplver/(Retrieved on 04/05/2010).[32℄ Wikipedia. MilkDrop. http://en.wikipedia.org/wiki/MilkDrop (Retrievedon 21/04/2010).[33℄ Wm. A. Wulf and Sally A. MKee. Hitting the memory wall: impliations ofthe obvious. SIGARCH Comput. Arhit. News, 23(1):20�24, 1995.[34℄ Xilinx. Miroblaze soft proessor ore. http://www.xilinx.om/tools/miroblaze.htm(Retrieved on 21/04/2010).

