forked from M-Labs/nac3
340 lines
11 KiB
C++
340 lines
11 KiB
C++
#pragma once
|
|
|
|
#include "irrt/debug.hpp"
|
|
#include "irrt/exception.hpp"
|
|
#include "irrt/int_types.hpp"
|
|
#include "irrt/ndarray/def.hpp"
|
|
|
|
namespace {
|
|
namespace ndarray::basic {
|
|
/**
|
|
* @brief Assert that `shape` does not contain negative dimensions.
|
|
*
|
|
* @param ndims Number of dimensions in `shape`
|
|
* @param shape The shape to check on
|
|
*/
|
|
template<typename SizeT>
|
|
void assert_shape_no_negative(SizeT ndims, const SizeT* shape) {
|
|
for (SizeT axis = 0; axis < ndims; axis++) {
|
|
if (shape[axis] < 0) {
|
|
raise_exception(SizeT, EXN_VALUE_ERROR,
|
|
"negative dimensions are not allowed; axis {0} "
|
|
"has dimension {1}",
|
|
axis, shape[axis], NO_PARAM);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Assert that two shapes are the same in the context of writing output to an ndarray.
|
|
*/
|
|
template<typename SizeT>
|
|
void assert_output_shape_same(SizeT ndarray_ndims,
|
|
const SizeT* ndarray_shape,
|
|
SizeT output_ndims,
|
|
const SizeT* output_shape) {
|
|
if (ndarray_ndims != output_ndims) {
|
|
// There is no corresponding NumPy error message like this.
|
|
raise_exception(SizeT, EXN_VALUE_ERROR, "Cannot write output of ndims {0} to an ndarray with ndims {1}",
|
|
output_ndims, ndarray_ndims, NO_PARAM);
|
|
}
|
|
|
|
for (SizeT axis = 0; axis < ndarray_ndims; axis++) {
|
|
if (ndarray_shape[axis] != output_shape[axis]) {
|
|
// There is no corresponding NumPy error message like this.
|
|
raise_exception(SizeT, EXN_VALUE_ERROR,
|
|
"Mismatched dimensions on axis {0}, output has "
|
|
"dimension {1}, but destination ndarray has dimension {2}.",
|
|
axis, output_shape[axis], ndarray_shape[axis]);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Return the number of elements of an ndarray given its shape.
|
|
*
|
|
* @param ndims Number of dimensions in `shape`
|
|
* @param shape The shape of the ndarray
|
|
*/
|
|
template<typename SizeT>
|
|
SizeT calc_size_from_shape(SizeT ndims, const SizeT* shape) {
|
|
SizeT size = 1;
|
|
for (SizeT axis = 0; axis < ndims; axis++)
|
|
size *= shape[axis];
|
|
return size;
|
|
}
|
|
|
|
/**
|
|
* @brief Compute the array indices of the `nth` (0-based) element of an ndarray given only its shape.
|
|
*
|
|
* @param ndims Number of elements in `shape` and `indices`
|
|
* @param shape The shape of the ndarray
|
|
* @param indices The returned indices indexing the ndarray with shape `shape`.
|
|
* @param nth The index of the element of interest.
|
|
*/
|
|
template<typename SizeT>
|
|
void set_indices_by_nth(SizeT ndims, const SizeT* shape, SizeT* indices, SizeT nth) {
|
|
for (SizeT i = 0; i < ndims; i++) {
|
|
SizeT axis = ndims - i - 1;
|
|
SizeT dim = shape[axis];
|
|
|
|
indices[axis] = nth % dim;
|
|
nth /= dim;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Return the number of elements of an `ndarray`
|
|
*
|
|
* This function corresponds to `<an_ndarray>.size`
|
|
*/
|
|
template<typename SizeT>
|
|
SizeT size(const NDArray<SizeT>* ndarray) {
|
|
return calc_size_from_shape(ndarray->ndims, ndarray->shape);
|
|
}
|
|
|
|
/**
|
|
* @brief Return of the number of its content of an `ndarray`.
|
|
*
|
|
* This function corresponds to `<an_ndarray>.nbytes`.
|
|
*/
|
|
template<typename SizeT>
|
|
SizeT nbytes(const NDArray<SizeT>* ndarray) {
|
|
return size(ndarray) * ndarray->itemsize;
|
|
}
|
|
|
|
/**
|
|
* @brief Get the `len()` of an ndarray, and asserts that `ndarray` is a sized object.
|
|
*
|
|
* This function corresponds to `<an_ndarray>.__len__`.
|
|
*
|
|
* @param dst_length The length.
|
|
*/
|
|
template<typename SizeT>
|
|
SizeT len(const NDArray<SizeT>* ndarray) {
|
|
if (ndarray->ndims != 0) {
|
|
return ndarray->shape[0];
|
|
}
|
|
|
|
// numpy prohibits `__len__` on unsized objects
|
|
raise_exception(SizeT, EXN_TYPE_ERROR, "len() of unsized object", NO_PARAM, NO_PARAM, NO_PARAM);
|
|
__builtin_unreachable();
|
|
}
|
|
|
|
/**
|
|
* @brief Return a boolean indicating if `ndarray` is (C-)contiguous.
|
|
*
|
|
* You may want to see ndarray's rules for C-contiguity:
|
|
* https://github.com/numpy/numpy/blob/df256d0d2f3bc6833699529824781c58f9c6e697/numpy/core/src/multiarray/flagsobject.c#L95C1-L99C45
|
|
*/
|
|
template<typename SizeT>
|
|
bool is_c_contiguous(const NDArray<SizeT>* ndarray) {
|
|
// References:
|
|
// - tinynumpy's implementation:
|
|
// https://github.com/wadetb/tinynumpy/blob/0d23d22e07062ffab2afa287374c7b366eebdda1/tinynumpy/tinynumpy.py#L102
|
|
// - ndarray's flags["C_CONTIGUOUS"]:
|
|
// https://numpy.org/doc/stable/reference/generated/numpy.ndarray.flags.html#numpy.ndarray.flags
|
|
// - ndarray's rules for C-contiguity:
|
|
// https://github.com/numpy/numpy/blob/df256d0d2f3bc6833699529824781c58f9c6e697/numpy/core/src/multiarray/flagsobject.c#L95C1-L99C45
|
|
|
|
// From
|
|
// https://github.com/numpy/numpy/blob/df256d0d2f3bc6833699529824781c58f9c6e697/numpy/core/src/multiarray/flagsobject.c#L95C1-L99C45:
|
|
//
|
|
// The traditional rule is that for an array to be flagged as C contiguous,
|
|
// the following must hold:
|
|
//
|
|
// strides[-1] == itemsize
|
|
// strides[i] == shape[i+1] * strides[i + 1]
|
|
// [...]
|
|
// According to these rules, a 0- or 1-dimensional array is either both
|
|
// C- and F-contiguous, or neither; and an array with 2+ dimensions
|
|
// can be C- or F- contiguous, or neither, but not both. Though there
|
|
// there are exceptions for arrays with zero or one item, in the first
|
|
// case the check is relaxed up to and including the first dimension
|
|
// with shape[i] == 0. In the second case `strides == itemsize` will
|
|
// can be true for all dimensions and both flags are set.
|
|
|
|
if (ndarray->ndims == 0) {
|
|
return true;
|
|
}
|
|
|
|
if (ndarray->strides[ndarray->ndims - 1] != ndarray->itemsize) {
|
|
return false;
|
|
}
|
|
|
|
for (SizeT i = 1; i < ndarray->ndims; i++) {
|
|
SizeT axis_i = ndarray->ndims - i - 1;
|
|
if (ndarray->strides[axis_i] != ndarray->shape[axis_i + 1] * ndarray->strides[axis_i + 1]) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* @brief Return the pointer to the element indexed by `indices` along the ndarray's axes.
|
|
*
|
|
* This function does no bound check.
|
|
*/
|
|
template<typename SizeT>
|
|
void* get_pelement_by_indices(const NDArray<SizeT>* ndarray, const SizeT* indices) {
|
|
void* element = ndarray->data;
|
|
for (SizeT dim_i = 0; dim_i < ndarray->ndims; dim_i++)
|
|
element = static_cast<uint8_t*>(element) + indices[dim_i] * ndarray->strides[dim_i];
|
|
return element;
|
|
}
|
|
|
|
/**
|
|
* @brief Return the pointer to the nth (0-based) element of `ndarray` in flattened view.
|
|
*
|
|
* This function does no bound check.
|
|
*/
|
|
template<typename SizeT>
|
|
void* get_nth_pelement(const NDArray<SizeT>* ndarray, SizeT nth) {
|
|
void* element = ndarray->data;
|
|
for (SizeT i = 0; i < ndarray->ndims; i++) {
|
|
SizeT axis = ndarray->ndims - i - 1;
|
|
SizeT dim = ndarray->shape[axis];
|
|
element = static_cast<uint8_t*>(element) + ndarray->strides[axis] * (nth % dim);
|
|
nth /= dim;
|
|
}
|
|
return element;
|
|
}
|
|
|
|
/**
|
|
* @brief Update the strides of an ndarray given an ndarray `shape` to be contiguous.
|
|
*
|
|
* You might want to read https://ajcr.net/stride-guide-part-1/.
|
|
*/
|
|
template<typename SizeT>
|
|
void set_strides_by_shape(NDArray<SizeT>* ndarray) {
|
|
SizeT stride_product = 1;
|
|
for (SizeT i = 0; i < ndarray->ndims; i++) {
|
|
SizeT axis = ndarray->ndims - i - 1;
|
|
ndarray->strides[axis] = stride_product * ndarray->itemsize;
|
|
stride_product *= ndarray->shape[axis];
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Set an element in `ndarray`.
|
|
*
|
|
* @param pelement Pointer to the element in `ndarray` to be set.
|
|
* @param pvalue Pointer to the value `pelement` will be set to.
|
|
*/
|
|
template<typename SizeT>
|
|
void set_pelement_value(NDArray<SizeT>* ndarray, void* pelement, const void* pvalue) {
|
|
__builtin_memcpy(pelement, pvalue, ndarray->itemsize);
|
|
}
|
|
|
|
/**
|
|
* @brief Copy data from one ndarray to another of the exact same size and itemsize.
|
|
*
|
|
* Both ndarrays will be viewed in their flatten views when copying the elements.
|
|
*/
|
|
template<typename SizeT>
|
|
void copy_data(const NDArray<SizeT>* src_ndarray, NDArray<SizeT>* dst_ndarray) {
|
|
// TODO: Make this faster with memcpy when we see a contiguous segment.
|
|
// TODO: Handle overlapping.
|
|
|
|
debug_assert_eq(SizeT, src_ndarray->itemsize, dst_ndarray->itemsize);
|
|
|
|
for (SizeT i = 0; i < size(src_ndarray); i++) {
|
|
auto src_element = ndarray::basic::get_nth_pelement(src_ndarray, i);
|
|
auto dst_element = ndarray::basic::get_nth_pelement(dst_ndarray, i);
|
|
ndarray::basic::set_pelement_value(dst_ndarray, dst_element, src_element);
|
|
}
|
|
}
|
|
} // namespace ndarray::basic
|
|
} // namespace
|
|
|
|
extern "C" {
|
|
using namespace ndarray::basic;
|
|
|
|
void __nac3_ndarray_util_assert_shape_no_negative(int32_t ndims, int32_t* shape) {
|
|
assert_shape_no_negative(ndims, shape);
|
|
}
|
|
|
|
void __nac3_ndarray_util_assert_shape_no_negative64(int64_t ndims, int64_t* shape) {
|
|
assert_shape_no_negative(ndims, shape);
|
|
}
|
|
|
|
void __nac3_ndarray_util_assert_output_shape_same(int32_t ndarray_ndims,
|
|
const int32_t* ndarray_shape,
|
|
int32_t output_ndims,
|
|
const int32_t* output_shape) {
|
|
assert_output_shape_same(ndarray_ndims, ndarray_shape, output_ndims, output_shape);
|
|
}
|
|
|
|
void __nac3_ndarray_util_assert_output_shape_same64(int64_t ndarray_ndims,
|
|
const int64_t* ndarray_shape,
|
|
int64_t output_ndims,
|
|
const int64_t* output_shape) {
|
|
assert_output_shape_same(ndarray_ndims, ndarray_shape, output_ndims, output_shape);
|
|
}
|
|
|
|
uint32_t __nac3_ndarray_size(NDArray<int32_t>* ndarray) {
|
|
return size(ndarray);
|
|
}
|
|
|
|
uint64_t __nac3_ndarray_size64(NDArray<int64_t>* ndarray) {
|
|
return size(ndarray);
|
|
}
|
|
|
|
uint32_t __nac3_ndarray_nbytes(NDArray<int32_t>* ndarray) {
|
|
return nbytes(ndarray);
|
|
}
|
|
|
|
uint64_t __nac3_ndarray_nbytes64(NDArray<int64_t>* ndarray) {
|
|
return nbytes(ndarray);
|
|
}
|
|
|
|
int32_t __nac3_ndarray_len(NDArray<int32_t>* ndarray) {
|
|
return len(ndarray);
|
|
}
|
|
|
|
int64_t __nac3_ndarray_len64(NDArray<int64_t>* ndarray) {
|
|
return len(ndarray);
|
|
}
|
|
|
|
bool __nac3_ndarray_is_c_contiguous(NDArray<int32_t>* ndarray) {
|
|
return is_c_contiguous(ndarray);
|
|
}
|
|
|
|
bool __nac3_ndarray_is_c_contiguous64(NDArray<int64_t>* ndarray) {
|
|
return is_c_contiguous(ndarray);
|
|
}
|
|
|
|
void* __nac3_ndarray_get_nth_pelement(const NDArray<int32_t>* ndarray, int32_t nth) {
|
|
return get_nth_pelement(ndarray, nth);
|
|
}
|
|
|
|
void* __nac3_ndarray_get_nth_pelement64(const NDArray<int64_t>* ndarray, int64_t nth) {
|
|
return get_nth_pelement(ndarray, nth);
|
|
}
|
|
|
|
void* __nac3_ndarray_get_pelement_by_indices(const NDArray<int32_t>* ndarray, int32_t* indices) {
|
|
return get_pelement_by_indices(ndarray, indices);
|
|
}
|
|
|
|
void* __nac3_ndarray_get_pelement_by_indices64(const NDArray<int64_t>* ndarray, int64_t* indices) {
|
|
return get_pelement_by_indices(ndarray, indices);
|
|
}
|
|
|
|
void __nac3_ndarray_set_strides_by_shape(NDArray<int32_t>* ndarray) {
|
|
set_strides_by_shape(ndarray);
|
|
}
|
|
|
|
void __nac3_ndarray_set_strides_by_shape64(NDArray<int64_t>* ndarray) {
|
|
set_strides_by_shape(ndarray);
|
|
}
|
|
|
|
void __nac3_ndarray_copy_data(NDArray<int32_t>* src_ndarray, NDArray<int32_t>* dst_ndarray) {
|
|
copy_data(src_ndarray, dst_ndarray);
|
|
}
|
|
|
|
void __nac3_ndarray_copy_data64(NDArray<int64_t>* src_ndarray, NDArray<int64_t>* dst_ndarray) {
|
|
copy_data(src_ndarray, dst_ndarray);
|
|
}
|
|
} |