use std::borrow::Borrow; use std::{collections::HashMap, sync::Arc}; use super::typecheck::type_inferencer::PrimitiveStore; use super::typecheck::typedef::{SharedUnifier, Type, TypeEnum, Unifier}; use crate::symbol_resolver::SymbolResolver; use inkwell::context::Context; use parking_lot::{Mutex, RwLock}; use rustpython_parser::ast::{self, Stmt}; #[derive(PartialEq, Eq, PartialOrd, Ord, Clone, Copy)] pub struct DefinitionId(pub usize); pub enum TopLevelDef { Class { // object ID used for TypeEnum object_id: DefinitionId, // type variables bounded to the class. type_vars: Vec, // class fields fields: Vec<(String, Type)>, // class methods, pointing to the corresponding function definition. methods: Vec<(String, Type, DefinitionId)>, // ancestor classes, including itself. ancestors: Vec, // symbol resolver of the module defined the class, none if it is built-in type resolver: Option>>, }, Function { // prefix for symbol, should be unique globally, and not ending with numbers name: String, // function signature. signature: Type, /// Function instance to symbol mapping /// Key: string representation of type variable values, sorted by variable ID in ascending /// order, including type variables associated with the class. /// Value: function symbol name. instance_to_symbol: HashMap, /// Function instances to annotated AST mapping /// Key: string representation of type variable values, sorted by variable ID in ascending /// order, including type variables associated with the class. Excluding rigid type /// variables. /// Value: AST annotated with types together with a unification table index. Could contain /// rigid type variables that would be substituted when the function is instantiated. instance_to_stmt: HashMap>, usize)>, // symbol resolver of the module defined the class resolver: Option>>, }, Initializer { class_id: DefinitionId, }, } pub struct TopLevelContext { pub definitions: Arc>>>, pub unifiers: Arc>>, pub conetexts: Arc>>>, } // like adding some info on top of the TopLevelDef for // later parsing the class bases, method, and function sigatures pub struct TopLevelDefInfo { // the definition entry def: TopLevelDef, // the entry in the top_level unifier ty: Type, // the ast submitted by applications, primitives and // class methods will have None value here ast: Option>, } pub struct TopLevelComposer { // list of top level definitions and their info pub definition_list: RwLock>, // primitive store pub primitives: PrimitiveStore, // start as a primitive unifier, will add more top_level defs inside pub unifier: Unifier, // mangled class method name to def_id pub class_method_to_def_id: HashMap, } impl TopLevelComposer { fn name_mangling(mut class_name: String, method_name: &str) -> String { class_name.push_str(method_name); class_name } pub fn make_primitives() -> (PrimitiveStore, Unifier) { let mut unifier = Unifier::new(); let int32 = unifier.add_ty(TypeEnum::TObj { obj_id: DefinitionId(0), fields: HashMap::new().into(), params: HashMap::new().into(), }); let int64 = unifier.add_ty(TypeEnum::TObj { obj_id: DefinitionId(1), fields: HashMap::new().into(), params: HashMap::new().into(), }); let float = unifier.add_ty(TypeEnum::TObj { obj_id: DefinitionId(2), fields: HashMap::new().into(), params: HashMap::new().into(), }); let bool = unifier.add_ty(TypeEnum::TObj { obj_id: DefinitionId(3), fields: HashMap::new().into(), params: HashMap::new().into(), }); let none = unifier.add_ty(TypeEnum::TObj { obj_id: DefinitionId(4), fields: HashMap::new().into(), params: HashMap::new().into(), }); let primitives = PrimitiveStore { int32, int64, float, bool, none }; crate::typecheck::magic_methods::set_primitives_magic_methods(&primitives, &mut unifier); (primitives, unifier) } /// return a composer and things to make a "primitive" symbol resolver, so that the symbol /// resolver can later figure out primitive type definitions when passed a primitive type name pub fn new() -> (Vec<(String, DefinitionId, Type)>, Self) { let primitives = Self::make_primitives(); // the def list including the entries of primitive info let definition_list: Vec = vec![ TopLevelDefInfo { def: Self::make_top_level_class_def(0, None), ast: None, ty: primitives.0.int32, }, TopLevelDefInfo { def: Self::make_top_level_class_def(1, None), ast: None, ty: primitives.0.int64, }, TopLevelDefInfo { def: Self::make_top_level_class_def(2, None), ast: None, ty: primitives.0.float, }, TopLevelDefInfo { def: Self::make_top_level_class_def(3, None), ast: None, ty: primitives.0.bool, }, TopLevelDefInfo { def: Self::make_top_level_class_def(4, None), ast: None, ty: primitives.0.none, }, ]; let composer = TopLevelComposer { definition_list: definition_list.into(), primitives: primitives.0, unifier: primitives.1, class_method_to_def_id: Default::default(), }; (vec![ ("int32".into(), DefinitionId(0), composer.primitives.int32), ("int64".into(), DefinitionId(1), composer.primitives.int64), ("float".into(), DefinitionId(2), composer.primitives.float), ("bool".into(), DefinitionId(3), composer.primitives.bool), ("none".into(), DefinitionId(4), composer.primitives.none), ], composer) } /// already include the definition_id of itself inside the ancestors vector pub fn make_top_level_class_def( index: usize, resolver: Option>>, ) -> TopLevelDef { TopLevelDef::Class { object_id: DefinitionId(index), type_vars: Default::default(), fields: Default::default(), methods: Default::default(), ancestors: vec![DefinitionId(index)], resolver, } } pub fn make_top_level_function_def( name: String, ty: Type, resolver: Option>>, ) -> TopLevelDef { TopLevelDef::Function { name, signature: ty, instance_to_symbol: Default::default(), instance_to_stmt: Default::default(), resolver, } } pub fn register_top_level( &mut self, ast: ast::Stmt<()>, resolver: Option>>, ) -> Result<(String, DefinitionId, Type), String> { match &ast.node { ast::StmtKind::ClassDef { name, body, .. } => { let class_name = name.to_string(); let mut def_list = self.definition_list.write(); let class_def_id = def_list.len(); // add the class to the unifier let ty = self.unifier.add_ty(TypeEnum::TObj { obj_id: DefinitionId(class_def_id), fields: Default::default(), params: Default::default(), }); // add the class to the definition list def_list.push(TopLevelDefInfo { def: Self::make_top_level_class_def(class_def_id, resolver.clone()), // NOTE: Temporarily none here since function body need to be read later ast: None, ty, }); // parse class def body and register class methods into the def list // module's symbol resolver would not know the name of the class methods, // thus cannot return their definition_id? so we have to manage it ourselves // by using the field `class_method_to_def_id` for b in body { if let ast::StmtKind::FunctionDef { name, .. } = &b.node { let fun_name = Self::name_mangling(class_name.clone(), name); let def_id = def_list.len(); // add to unifier let ty = self.unifier.add_ty(TypeEnum::TFunc( crate::typecheck::typedef::FunSignature { args: Default::default(), ret: self.primitives.none, vars: Default::default(), }, )); // add to the definition list def_list.push(TopLevelDefInfo { def: Self::make_top_level_function_def(fun_name.clone(), ty, resolver.clone()), ty, // since it is inside the class def body statments, the ast is None ast: None, }); // class method, do not let the symbol manager manage it, use our own map self.class_method_to_def_id.insert(fun_name, DefinitionId(def_id)); // if it is the contructor, special handling is needed. In the above // handling, we still add __init__ function to the class method if name == "__init__" { // FIXME: how can this later be fetched? def_list.push(TopLevelDefInfo { def: TopLevelDef::Initializer { class_id: DefinitionId(class_def_id) }, // arbitary picked one for the constructor ty: self.primitives.none, // it is inside the class def body statments, so None ast: None, }) } } } // move the ast to the entry of the class in the def_list def_list.get_mut(class_def_id).unwrap().ast = Some(ast); // return Ok((class_name, DefinitionId(class_def_id), ty)) }, ast::StmtKind::FunctionDef { name, .. } => { let fun_name = name.to_string(); // add to the unifier let ty = self.unifier.add_ty(TypeEnum::TFunc(crate::typecheck::typedef::FunSignature { args: Default::default(), ret: self.primitives.none, vars: Default::default(), })); // add to the definition list let mut def_list = self.definition_list.write(); def_list.push(TopLevelDefInfo { def: Self::make_top_level_function_def( name.into(), self.primitives.none, resolver, ), ast: Some(ast), ty, }); Ok((fun_name, DefinitionId(def_list.len() - 1), ty)) } _ => Err("only registrations of top level classes/functions are supprted".into()), } } /// this should be called after all top level classes are registered, and will actually fill in those fields of the previous dummy one pub fn analyze_top_level(&mut self) -> Result<(), String> { for d in self.definition_list.write().iter_mut() { // only analyze those with ast, and class_method(ast in class def) if let Some(ast) = &d.ast { match &ast.node { ast::StmtKind::ClassDef { bases, body, .. } => { // get the mutable reference of the entry in the definition list, get the `TopLevelDef` let ( ancestors, fields, methods, type_vars, resolver, ) = if let TopLevelDef::Class { object_id: _, ancestors, fields, methods, type_vars, resolver: Some(resolver) } = &mut d.def { (ancestors, fields, methods, type_vars, resolver.lock()) } else { unreachable!() }; // try to get mutable reference of the entry in the unification table, get the `TypeEnum` let (params, fields ) = if let TypeEnum::TObj { // FIXME: this params is immutable, and what // should the key be, get the original typevar's var_id? params, fields, .. } = self.unifier.get_ty(d.ty).borrow() { (params, fields) } else { unreachable!() }; // ancestors and typevars associate with the class are analyzed by looking // into the `bases` ast node for b in bases { match &b.node { // typevars bounded to the class, only support things like `class A(Generic[T, V])`, // things like `class A(Generic[T, V, ImportedModule.T])` is not supported // i.e. only simple names are allowed in the subscript // should update the TopLevelDef::Class.typevars and the TypeEnum::TObj.params ast::ExprKind::Subscript {value, slice, ..} if { if let ast::ExprKind::Name {id, ..} = &value.node { id == "Generic" } else { false } } => { match &slice.node { // `class Foo(Generic[T, V, P]):` ast::ExprKind::Tuple {elts, ..} => { for e in elts { // resolver.parse_type_annotation(self.definition_list.) // FIXME: } }, // `class Foo(Generic[T]):` ast::ExprKind::Name {id, ..} => { // the def_list // type_vars.push(resolver.get_symbol_type(id).ok_or_else(|| "unknown type variable".to_string())?); FIXME: // the TypeEnum of the class // FIXME: the `params` destructed above is not mutable, even if this is mutable, what should the key be? unimplemented!() }, _ => return Err("not supported, only simple names are allowed in the subscript".into()) }; }, /* // base class, name directly available inside the // module, can use this module's symbol resolver ast::ExprKind::Name {id, ..} => { // let def_id = resolver.get_identifier_def(id); FIXME: // the definition list // ancestors.push(def_id); }, // base class, things can be like `class A(BaseModule.Base)`, here we have to get the // symbol resolver of the module `BaseModule`? ast::ExprKind::Attribute {value, attr, ..} => { if let ast::ExprKind::Name {id, ..} = &value.node { // if let Some(base_module_resolver) = resolver.get_module_resolver(id) { // let def_id = base_module_resolver.get_identifier_def(attr); // // the definition list // ancestors.push(def_id); // } else { return Err("unkown imported module".into()) } FIXME: } else { return Err("unkown imported module".into()) } }, // `class Foo(ImportedModule.A[int, bool])`, A is a class with associated type variables ast::ExprKind::Subscript {value, slice, ..} => { unimplemented!() }, */ // base class is possible in other cases, we parse for thr base class _ => return Err("not supported".into()) } } // class method and field are analyzed by // looking into the class body ast node for stmt in body { if let ast::StmtKind::FunctionDef { name, args, body, returns, .. } = &stmt.node { } else { } // do nothing. we do not care about things like this? // class A: // a = 3 // b = [2, 3] } }, // top level function definition ast::StmtKind::FunctionDef { name, args, body, returns, .. } => { unimplemented!() } node => { return Err("only expect function and class definitions to be submitted here to be analyzed".into()) } } } } Ok(()) } }