Compare commits

..

1 Commits

Author SHA1 Message Date
ychenfo 87b71a2db3 nac3core: maintain order of unifying dummy types in top level 2021-12-01 01:55:38 +08:00
203 changed files with 8193 additions and 46259 deletions

View File

@ -1,32 +0,0 @@
BasedOnStyle: LLVM
Language: Cpp
Standard: Cpp11
AccessModifierOffset: -1
AlignEscapedNewlines: Left
AlwaysBreakAfterReturnType: None
AlwaysBreakTemplateDeclarations: Yes
AllowAllParametersOfDeclarationOnNextLine: false
AllowShortFunctionsOnASingleLine: Inline
BinPackParameters: false
BreakBeforeBinaryOperators: NonAssignment
BreakBeforeTernaryOperators: true
BreakConstructorInitializers: AfterColon
BreakInheritanceList: AfterColon
ColumnLimit: 120
ConstructorInitializerAllOnOneLineOrOnePerLine: true
ContinuationIndentWidth: 4
DerivePointerAlignment: false
IndentCaseLabels: true
IndentPPDirectives: None
IndentWidth: 4
MaxEmptyLinesToKeep: 1
PointerAlignment: Left
ReflowComments: true
SortIncludes: false
SortUsingDeclarations: true
SpaceAfterTemplateKeyword: false
SpacesBeforeTrailingComments: 2
TabWidth: 4
UseTab: Never

View File

@ -1 +0,0 @@
doc-valid-idents = ["CPython", "NumPy", ".."]

2
.gitignore vendored
View File

@ -1,4 +1,2 @@
__pycache__ __pycache__
/target /target
/nac3standalone/demo/linalg/target
nix/windows/msys2

View File

@ -1,24 +0,0 @@
# See https://pre-commit.com for more information
# See https://pre-commit.com/hooks.html for more hooks
default_stages: [pre-commit]
repos:
- repo: local
hooks:
- id: nac3-cargo-fmt
name: nac3 cargo format
entry: nix
language: system
types: [file, rust]
pass_filenames: false
description: Runs cargo fmt on the codebase.
args: [develop, -c, cargo, fmt, --all]
- id: nac3-cargo-clippy
name: nac3 cargo clippy
entry: nix
language: system
types: [file, rust]
pass_filenames: false
description: Runs cargo clippy on the codebase.
args: [develop, -c, cargo, clippy, --tests]

1330
Cargo.lock generated

File diff suppressed because it is too large Load Diff

View File

@ -1,15 +1,13 @@
[workspace] [workspace]
members = [ members = [
"nac3ld",
"nac3ast", "nac3ast",
"nac3parser", "nac3parser",
"nac3core", "nac3core",
"nac3core/nac3core_derive",
"nac3standalone", "nac3standalone",
"nac3artiq", "nac3artiq",
"runkernel", "runkernel",
] ]
resolver = "2"
[profile.release] [profile.release]
debug = true debug = true

View File

@ -1,62 +1,25 @@
<div align="center"> # NAC3 compiler
![icon](https://git.m-labs.hk/M-Labs/nac3/raw/branch/master/nac3.svg)
</div>
# NAC3
NAC3 is a major, backward-incompatible rewrite of the compiler for the [ARTIQ](https://m-labs.hk/artiq) physics experiment control and data acquisition system. It features greatly improved compilation speeds, a much better type system, and more predictable and transparent operation.
NAC3 has a modular design and its applicability reaches beyond ARTIQ. The ``nac3core`` module does not contain anything specific to ARTIQ, and can be used in any project that requires compiling Python to machine code.
**WARNING: NAC3 is currently experimental software and several important features are not implemented yet.**
## Packaging
NAC3 is packaged using the [Nix](https://nixos.org) Flakes system. Install Nix 2.8+ and enable flakes by adding ``experimental-features = nix-command flakes`` to ``nix.conf`` (e.g. ``~/.config/nix/nix.conf``).
## Try NAC3
### Linux
After setting up Nix as above, use ``nix shell git+https://github.com/m-labs/artiq.git?ref=nac3`` to get a shell with the NAC3 version of ARTIQ. See the ``examples`` directory in ARTIQ (``nac3`` Git branch) for some samples of NAC3 kernel code.
### Windows
Install [MSYS2](https://www.msys2.org/), and open "MSYS2 CLANG64". Edit ``/etc/pacman.conf`` to add:
```
[artiq]
SigLevel = Optional TrustAll
Server = https://msys2.m-labs.hk/artiq-nac3
```
Then run the following commands:
```
pacman -Syu
pacman -S mingw-w64-clang-x86_64-artiq
```
## For developers
This repository contains: This repository contains:
- ``nac3ast``: Python abstract syntax tree definition (based on RustPython). - nac3ast: Python abstract syntax tree definition (based on RustPython).
- ``nac3parser``: Python parser (based on RustPython). - nac3parser: Python parser (based on RustPython).
- ``nac3core``: Core compiler library, containing type-checking and code generation. - nac3core: Core compiler library, containing type-checking and code
- ``nac3standalone``: Standalone compiler tool (core language only). generation.
- ``nac3ld``: Minimalist RISC-V and ARM linker. - nac3standalone: Standalone compiler tool (core language only).
- ``nac3artiq``: Integration with ARTIQ and implementation of ARTIQ-specific extensions to the core language. - nac3artiq: Integration with ARTIQ and implementation of ARTIQ-specific
- ``runkernel``: Simple program that runs compiled ARTIQ kernels on the host and displays RTIO operations. Useful for testing without hardware. extensions to the core language.
- runkernel: Simple program that runs compiled ARTIQ kernels on the host
and displays RTIO operations. Useful for testing without hardware.
Use ``nix develop`` in this repository to enter a development shell.
If you are using a different shell than bash you can use e.g. ``nix develop --command fish``.
Build NAC3 with ``cargo build --release``. See the demonstrations in ``nac3artiq`` and ``nac3standalone``. The core compiler knows nothing about symbol resolution, host variables
etc. nac3artiq and nac3standalone provide (implement) the
symbol resolver to the core compiler for resolving the type and value for
unknown symbols. The core compiler only type checks classes and functions
requested by nac3artiq/nac3standalone (the API should allow the
caller to specify which methods should be compiled). After type checking, the
compiler analyses the set of functions/classes that are used and performs
code generation.
### Pre-Commit Hooks value could be integer values, boolean values, bytes (for memcpy), function ID
(full name + concrete type)
You are strongly recommended to use the provided pre-commit hooks to automatically reformat files and check for non-optimal Rust practices using Clippy. Run `pre-commit install` to install the hook and `pre-commit` will automatically run `cargo fmt` and `cargo clippy` for you.
Several things to note:
- If `cargo fmt` or `cargo clippy` returns an error, the pre-commit hook will fail. You should fix all errors before trying to commit again.
- If `cargo fmt` reformats some files, the pre-commit hook will also fail. You should review the changes and, if satisfied, try to commit again.

View File

@ -2,16 +2,16 @@
"nodes": { "nodes": {
"nixpkgs": { "nixpkgs": {
"locked": { "locked": {
"lastModified": 1731319897, "lastModified": 1637636156,
"narHash": "sha256-PbABj4tnbWFMfBp6OcUK5iGy1QY+/Z96ZcLpooIbuEI=", "narHash": "sha256-E2ym4Vcpqu9JYoQDXJZR48gVD+LPPbaCoYveIk7Xu3Y=",
"owner": "NixOS", "owner": "NixOS",
"repo": "nixpkgs", "repo": "nixpkgs",
"rev": "dc460ec76cbff0e66e269457d7b728432263166c", "rev": "b026e1cf87a108dd06fe521f224fdc72fd0b013d",
"type": "github" "type": "github"
}, },
"original": { "original": {
"owner": "NixOS", "owner": "NixOS",
"ref": "nixos-unstable", "ref": "release-21.11",
"repo": "nixpkgs", "repo": "nixpkgs",
"type": "github" "type": "github"
} }

204
flake.nix
View File

@ -1,154 +1,29 @@
{ {
description = "The third-generation ARTIQ compiler"; description = "The third-generation ARTIQ compiler";
inputs.nixpkgs.url = github:NixOS/nixpkgs/nixos-unstable; inputs.nixpkgs.url = github:NixOS/nixpkgs/release-21.11;
outputs = { self, nixpkgs }: outputs = { self, nixpkgs }:
let let
pkgs = import nixpkgs { system = "x86_64-linux"; }; # We can't use overlays because llvm dependencies are handled internally in llvmPackages_xx
pkgs32 = import nixpkgs { system = "i686-linux"; }; pkgs-orig = import nixpkgs { system = "x86_64-linux"; };
nixpkgs-patched = pkgs-orig.applyPatches {
name = "nixpkgs";
src = nixpkgs;
patches = [ ./llvm-future-riscv-abi.diff ./llvm-restrict-targets.diff ];
};
pkgs = import nixpkgs-patched { system = "x86_64-linux"; };
in rec { in rec {
packages.x86_64-linux = rec { inherit nixpkgs-patched;
llvm-nac3 = pkgs.callPackage ./nix/llvm {};
llvm-tools-irrt = pkgs.runCommandNoCC "llvm-tools-irrt" {} packages.x86_64-linux = {
''
mkdir -p $out/bin
ln -s ${pkgs.llvmPackages_14.clang-unwrapped}/bin/clang $out/bin/clang-irrt
ln -s ${pkgs.llvmPackages_14.llvm.out}/bin/llvm-as $out/bin/llvm-as-irrt
'';
demo-linalg-stub = pkgs.rustPlatform.buildRustPackage {
name = "demo-linalg-stub";
src = ./nac3standalone/demo/linalg;
cargoLock = {
lockFile = ./nac3standalone/demo/linalg/Cargo.lock;
};
doCheck = false;
};
demo-linalg-stub32 = pkgs32.rustPlatform.buildRustPackage {
name = "demo-linalg-stub32";
src = ./nac3standalone/demo/linalg;
cargoLock = {
lockFile = ./nac3standalone/demo/linalg/Cargo.lock;
};
doCheck = false;
};
nac3artiq = pkgs.python3Packages.toPythonModule ( nac3artiq = pkgs.python3Packages.toPythonModule (
pkgs.rustPlatform.buildRustPackage rec { pkgs.rustPlatform.buildRustPackage {
name = "nac3artiq"; name = "nac3artiq";
outputs = [ "out" "runkernel" "standalone" ];
src = self; src = self;
cargoLock = { cargoSha256 = "sha256-otKLhr58HYMjVXAof6AdObNpggPnvK6qOl7I+4LWIP8=";
lockFile = ./Cargo.lock; nativeBuildInputs = [ pkgs.python3 pkgs.llvm_12 ];
}; buildInputs = [ pkgs.python3 pkgs.libffi pkgs.libxml2 pkgs.llvm_12 ];
passthru.cargoLock = cargoLock;
nativeBuildInputs = [ pkgs.python3 (pkgs.wrapClangMulti pkgs.llvmPackages_14.clang) llvm-tools-irrt pkgs.llvmPackages_14.llvm.out llvm-nac3 ];
buildInputs = [ pkgs.python3 llvm-nac3 ];
checkInputs = [ (pkgs.python3.withPackages(ps: [ ps.numpy ps.scipy ])) ];
checkPhase =
''
echo "Checking nac3standalone demos..."
pushd nac3standalone/demo
patchShebangs .
export DEMO_LINALG_STUB=${demo-linalg-stub}/lib/liblinalg.a
export DEMO_LINALG_STUB32=${demo-linalg-stub32}/lib/liblinalg.a
./check_demos.sh -i686
popd
echo "Running Cargo tests..."
cargoCheckHook
'';
installPhase =
''
PYTHON_SITEPACKAGES=$out/${pkgs.python3Packages.python.sitePackages}
mkdir -p $PYTHON_SITEPACKAGES
cp target/x86_64-unknown-linux-gnu/release/libnac3artiq.so $PYTHON_SITEPACKAGES/nac3artiq.so
mkdir -p $runkernel/bin
cp target/x86_64-unknown-linux-gnu/release/runkernel $runkernel/bin
mkdir -p $standalone/bin
cp target/x86_64-unknown-linux-gnu/release/nac3standalone $standalone/bin
'';
}
);
python3-mimalloc = pkgs.python3 // rec {
withMimalloc = pkgs.python3.buildEnv.override({ makeWrapperArgs = [ "--set LD_PRELOAD ${pkgs.mimalloc}/lib/libmimalloc.so" ]; });
withPackages = f: let packages = f pkgs.python3.pkgs; in withMimalloc.override { extraLibs = packages; };
};
# LLVM PGO support
llvm-nac3-instrumented = pkgs.callPackage ./nix/llvm {
stdenv = pkgs.llvmPackages_14.stdenv;
extraCmakeFlags = [ "-DLLVM_BUILD_INSTRUMENTED=IR" ];
};
nac3artiq-instrumented = pkgs.python3Packages.toPythonModule (
pkgs.rustPlatform.buildRustPackage {
name = "nac3artiq-instrumented";
src = self;
inherit (nac3artiq) cargoLock;
nativeBuildInputs = [ pkgs.python3 packages.x86_64-linux.llvm-tools-irrt llvm-nac3-instrumented ];
buildInputs = [ pkgs.python3 llvm-nac3-instrumented ];
cargoBuildFlags = [ "--package" "nac3artiq" "--features" "init-llvm-profile" ];
doCheck = false;
configurePhase =
''
export CARGO_TARGET_X86_64_UNKNOWN_LINUX_GNU_RUSTFLAGS="-C link-arg=-L${pkgs.llvmPackages_14.compiler-rt}/lib/linux -C link-arg=-lclang_rt.profile-x86_64"
'';
installPhase =
''
TARGET_DIR=$out/${pkgs.python3Packages.python.sitePackages}
mkdir -p $TARGET_DIR
cp target/x86_64-unknown-linux-gnu/release/libnac3artiq.so $TARGET_DIR/nac3artiq.so
'';
}
);
nac3artiq-profile = pkgs.stdenvNoCC.mkDerivation {
name = "nac3artiq-profile";
srcs = [
(pkgs.fetchFromGitHub {
owner = "m-labs";
repo = "sipyco";
rev = "094a6cd63ffa980ef63698920170e50dc9ba77fd";
sha256 = "sha256-PPnAyDedUQ7Og/Cby9x5OT9wMkNGTP8GS53V6N/dk4w=";
})
(pkgs.fetchFromGitHub {
owner = "m-labs";
repo = "artiq";
rev = "28c9de3e251daa89a8c9fd79d5ab64a3ec03bac6";
sha256 = "sha256-vAvpbHc5B+1wtG8zqN7j9dQE1ON+i22v+uqA+tw6Gak=";
})
];
buildInputs = [
(python3-mimalloc.withPackages(ps: [ ps.numpy ps.scipy ps.jsonschema ps.lmdb ps.platformdirs nac3artiq-instrumented ]))
pkgs.llvmPackages_14.llvm.out
];
phases = [ "buildPhase" "installPhase" ];
buildPhase =
''
srcs=($srcs)
sipyco=''${srcs[0]}
artiq=''${srcs[1]}
export PYTHONPATH=$sipyco:$artiq
python -m artiq.frontend.artiq_ddb_template $artiq/artiq/examples/nac3devices/nac3devices.json > device_db.py
cp $artiq/artiq/examples/nac3devices/nac3devices.py .
python -m artiq.frontend.artiq_compile nac3devices.py
'';
installPhase =
''
mkdir $out
llvm-profdata merge -o $out/llvm.profdata /build/llvm/build/profiles/*
'';
};
llvm-nac3-pgo = pkgs.callPackage ./nix/llvm {
stdenv = pkgs.llvmPackages_14.stdenv;
extraCmakeFlags = [ "-DLLVM_PROFDATA_FILE=${nac3artiq-profile}/llvm.profdata" ];
};
nac3artiq-pgo = pkgs.python3Packages.toPythonModule (
pkgs.rustPlatform.buildRustPackage {
name = "nac3artiq-pgo";
src = self;
inherit (nac3artiq) cargoLock;
nativeBuildInputs = [ pkgs.python3 packages.x86_64-linux.llvm-tools-irrt llvm-nac3-pgo ];
buildInputs = [ pkgs.python3 llvm-nac3-pgo ];
cargoBuildFlags = [ "--package" "nac3artiq" ]; cargoBuildFlags = [ "--package" "nac3artiq" ];
cargoTestFlags = [ "--package" "nac3ast" "--package" "nac3parser" "--package" "nac3core" "--package" "nac3artiq" ]; cargoTestFlags = [ "--package" "nac3ast" "--package" "nac3parser" "--package" "nac3core" "--package" "nac3artiq" ];
installPhase = installPhase =
@ -161,52 +36,29 @@
); );
}; };
packages.x86_64-w64-mingw32 = import ./nix/windows { inherit pkgs; }; devShell.x86_64-linux = pkgs.mkShell {
devShells.x86_64-linux.default = pkgs.mkShell {
name = "nac3-dev-shell"; name = "nac3-dev-shell";
buildInputs = with pkgs; [ buildInputs = with pkgs; [
# build dependencies llvm_12
packages.x86_64-linux.llvm-nac3 clang_12
(pkgs.wrapClangMulti llvmPackages_14.clang) llvmPackages_14.llvm.out # for running nac3standalone demos lld_12
packages.x86_64-linux.llvm-tools-irrt
cargo cargo
rustc
# runtime dependencies
lld_14 # for running kernels on the host
(packages.x86_64-linux.python3-mimalloc.withPackages(ps: [ ps.numpy ps.scipy ]))
# development tools
cargo-insta cargo-insta
rustc
libffi
libxml2
clippy clippy
pre-commit (python3.withPackages(ps: [ ps.numpy ]))
rustfmt
];
shellHook =
''
export DEMO_LINALG_STUB=${packages.x86_64-linux.demo-linalg-stub}/lib/liblinalg.a
export DEMO_LINALG_STUB32=${packages.x86_64-linux.demo-linalg-stub32}/lib/liblinalg.a
'';
};
devShells.x86_64-linux.msys2 = pkgs.mkShell {
name = "nac3-dev-shell-msys2";
buildInputs = with pkgs; [
curl
pacman
fakeroot
packages.x86_64-w64-mingw32.wine-msys2
]; ];
}; };
hydraJobs = { hydraJobs = {
inherit (packages.x86_64-linux) llvm-nac3 nac3artiq nac3artiq-pgo; inherit (packages.x86_64-linux) nac3artiq;
llvm-nac3-msys2 = packages.x86_64-w64-mingw32.llvm-nac3; } // (pkgs.lib.foldr (a: b: {"${pkgs.lib.strings.getName a}" = a;} // b) {} devShell.x86_64-linux.buildInputs);
nac3artiq-msys2 = packages.x86_64-w64-mingw32.nac3artiq;
nac3artiq-msys2-pkg = packages.x86_64-w64-mingw32.nac3artiq-pkg;
};
}; };
nixConfig = { nixConfig = {
extra-trusted-public-keys = "nixbld.m-labs.hk-1:5aSRVA5b320xbNvu30tqxVPXpld73bhtOeH6uAjRyHc="; binaryCachePublicKeys = ["nixbld.m-labs.hk-1:5aSRVA5b320xbNvu30tqxVPXpld73bhtOeH6uAjRyHc="];
extra-substituters = "https://nixbld.m-labs.hk"; binaryCaches = ["https://nixbld.m-labs.hk" "https://cache.nixos.org"];
}; };
} }

View File

@ -0,0 +1,61 @@
commit 6e2dea56207b4e52ade9d1eee6a4f198336dd0a6
Author: Sebastien Bourdeauducq <sb@m-labs.hk>
Date: Thu Nov 11 23:32:13 2021 +0800
llvm: switch RISC-V ABI when FPU is present
diff --git a/pkgs/development/compilers/llvm/12/llvm/default.nix b/pkgs/development/compilers/llvm/12/llvm/default.nix
index 30a1a7a16df..41b7211b2a5 100644
--- a/pkgs/development/compilers/llvm/12/llvm/default.nix
+++ b/pkgs/development/compilers/llvm/12/llvm/default.nix
@@ -66,6 +66,7 @@ in stdenv.mkDerivation (rec {
sha256 = "sha256:12s8vr6ibri8b48h2z38f3afhwam10arfiqfy4yg37bmc054p5hi";
stripLen = 1;
})
+ ./llvm-future-riscv-abi.diff
] ++ lib.optional enablePolly ./gnu-install-dirs-polly.patch;
postPatch = optionalString stdenv.isDarwin ''
@@ -183,7 +184,7 @@ in stdenv.mkDerivation (rec {
cp NATIVE/bin/llvm-config $dev/bin/llvm-config-native
'';
- doCheck = stdenv.isLinux && (!stdenv.isx86_32) && (!stdenv.hostPlatform.isMusl);
+ doCheck = false; # the ABI change breaks RISC-V FP tests
checkTarget = "check-all";
diff --git a/pkgs/development/compilers/llvm/12/llvm/llvm-future-riscv-abi.diff b/pkgs/development/compilers/llvm/12/llvm/llvm-future-riscv-abi.diff
new file mode 100644
index 00000000000..2427ed0e02c
--- /dev/null
+++ b/pkgs/development/compilers/llvm/12/llvm/llvm-future-riscv-abi.diff
@@ -0,0 +1,28 @@
+diff --git a/lib/Target/RISCV/MCTargetDesc/RISCVBaseInfo.cpp b/lib/Target/RISCV/MCTargetDesc/RISCVBaseInfo.cpp
+index 0aba18b20..9bb75e7f4 100644
+--- a/lib/Target/RISCV/MCTargetDesc/RISCVBaseInfo.cpp
++++ b/lib/Target/RISCV/MCTargetDesc/RISCVBaseInfo.cpp
+@@ -33,6 +33,8 @@ ABI computeTargetABI(const Triple &TT, FeatureBitset FeatureBits,
+ auto TargetABI = getTargetABI(ABIName);
+ bool IsRV64 = TT.isArch64Bit();
+ bool IsRV32E = FeatureBits[RISCV::FeatureRV32E];
++ bool IsRV32D = FeatureBits[RISCV::FeatureStdExtD];
++ bool IsRV32F = FeatureBits[RISCV::FeatureStdExtF];
+
+ if (!ABIName.empty() && TargetABI == ABI_Unknown) {
+ errs()
+@@ -56,10 +58,10 @@ ABI computeTargetABI(const Triple &TT, FeatureBitset FeatureBits,
+ if (TargetABI != ABI_Unknown)
+ return TargetABI;
+
+- // For now, default to the ilp32/ilp32e/lp64 ABI if no explicit ABI is given
+- // or an invalid/unrecognised string is given. In the future, it might be
+- // worth changing this to default to ilp32f/lp64f and ilp32d/lp64d when
+- // hardware support for floating point is present.
++ if (IsRV32D)
++ return ABI_ILP32D;
++ if (IsRV32F)
++ return ABI_ILP32F;
+ if (IsRV32E)
+ return ABI_ILP32E;
+ if (IsRV64)

View File

@ -0,0 +1,12 @@
diff --git a/pkgs/development/compilers/llvm/12/llvm/default.nix b/pkgs/development/compilers/llvm/12/llvm/default.nix
index 41b7211b2a5..dfc707f034d 100644
--- a/pkgs/development/compilers/llvm/12/llvm/default.nix
+++ b/pkgs/development/compilers/llvm/12/llvm/default.nix
@@ -127,6 +127,7 @@ in stdenv.mkDerivation (rec {
"-DLLVM_HOST_TRIPLE=${stdenv.hostPlatform.config}"
"-DLLVM_DEFAULT_TARGET_TRIPLE=${stdenv.hostPlatform.config}"
"-DLLVM_ENABLE_DUMP=ON"
+ "-DLLVM_TARGETS_TO_BUILD=X86;ARM;RISCV"
] ++ optionals enableSharedLibraries [
"-DLLVM_LINK_LLVM_DYLIB=ON"
] ++ optionals enableManpages [

View File

@ -1,56 +0,0 @@
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<svg
id="a"
width="128"
height="128"
viewBox="0 0 95.99999 95.99999"
version="1.1"
sodipodi:docname="nac3.svg"
inkscape:version="1.1.1 (3bf5ae0d25, 2021-09-20)"
xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
xmlns="http://www.w3.org/2000/svg"
xmlns:svg="http://www.w3.org/2000/svg">
<defs
id="defs11" />
<sodipodi:namedview
id="namedview9"
pagecolor="#ffffff"
bordercolor="#666666"
borderopacity="1.0"
inkscape:pageshadow="2"
inkscape:pageopacity="0.0"
inkscape:pagecheckerboard="0"
inkscape:document-units="mm"
showgrid="false"
units="px"
width="128px"
inkscape:zoom="5.9448568"
inkscape:cx="60.472441"
inkscape:cy="60.556547"
inkscape:window-width="2560"
inkscape:window-height="1371"
inkscape:window-x="0"
inkscape:window-y="32"
inkscape:window-maximized="1"
inkscape:current-layer="a" />
<rect
x="40.072601"
y="-26.776209"
width="55.668747"
height="55.668747"
transform="matrix(0.71803815,0.69600374,-0.71803815,0.69600374,0,0)"
style="fill:#be211e;stroke:#000000;stroke-width:4.37375px;stroke-linecap:round;stroke-linejoin:round"
id="rect2" />
<line
x1="38.00692"
y1="63.457153"
x2="57.993061"
y2="63.457153"
style="fill:none;stroke:#000000;stroke-width:4.37269px;stroke-linecap:round;stroke-linejoin:round"
id="line4" />
<path
d="m 48.007301,57.843329 c -1.943097,0 -3.877522,-0.41727 -5.686157,-1.246007 -3.218257,-1.474616 -5.650382,-4.075418 -6.849639,-7.323671 -2.065624,-5.588921 -1.192751,-10.226647 2.575258,-13.827 0.611554,-0.584909 1.518048,-0.773041 2.323689,-0.488206 0.80673,0.286405 1.369495,0.998486 1.447563,1.827234 0.237469,2.549302 2.439719,5.917376 4.28414,6.55273 0.396859,0.13506 0.820953,-0.05859 1.097084,-0.35222 0.339254,-0.360754 0.451065,-0.961893 -1.013597,-3.191372 -2.089851,-3.181137 -4.638728,-8.754903 -0.262407,-15.069853 0.494457,-0.713491 1.384673,-1.068907 2.256469,-0.909156 0.871795,0.161332 1.583757,0.806404 1.752251,1.651189 0.716448,3.591862 2.962357,6.151755 5.199306,8.023138 1.935503,1.61861 4.344688,3.867387 5.435687,7.096643 2.283183,6.758017 -1.202511,14.114988 -8.060822,16.494025 -1.467083,0.509226 -2.98513,0.762536 -4.498836,0.762536 z M 39.358865,40.002192 c -0.304711,0.696206 -0.541636,2.080524 -0.56865,2.237454 -0.330316,1.918771 0.168305,3.803963 0.846157,5.539951 0.856828,2.19436 2.437543,3.942467 4.583411,4.925713 2.143691,0.981675 4.554131,1.097816 6.789992,0.322666 4.571485,-1.586549 6.977584,-6.532238 5.363036,-11.02597 v -5.27e-4 C 55.455481,39.447968 54.023463,38.162043 52.221335,36.65432 50.876945,35.529534 49.409662,33.987726 48.417983,32.135555 48.01343,31.37996 47.79547,30.34303 47.76669,29.413263 c -0.187481,0.669514 -0.212441,2.325923 -0.150396,2.93691 0.179209,1.764456 1.333476,3.644546 2.340611,5.171243 1.311568,1.988179 2.72058,6.037272 0.459681,8.367985 -1.54192,1.58953 -4.038511,2.052034 -5.839973,1.38492 -2.398314,-0.888147 -3.942744,-2.690627 -4.941118,-4.768029 -0.121194,-0.25217 -0.532464,-1.174187 -0.276619,-2.5041 z"
id="path6"
style="stroke-width:1.09317" />
</svg>

Before

Width:  |  Height:  |  Size: 3.3 KiB

View File

@ -2,20 +2,16 @@
name = "nac3artiq" name = "nac3artiq"
version = "0.1.0" version = "0.1.0"
authors = ["M-Labs"] authors = ["M-Labs"]
edition = "2021" edition = "2018"
[lib] [lib]
name = "nac3artiq" name = "nac3artiq"
crate-type = ["cdylib"] crate-type = ["cdylib"]
[dependencies] [dependencies]
itertools = "0.13" pyo3 = { version = "0.14", features = ["extension-module"] }
pyo3 = { version = "0.21", features = ["extension-module", "gil-refs"] } inkwell = { git = "https://github.com/TheDan64/inkwell", branch = "master", features = ["llvm12-0"] }
parking_lot = "0.12" parking_lot = "0.11"
tempfile = "3.13" tempfile = "3"
nac3parser = { path = "../nac3parser" }
nac3core = { path = "../nac3core" } nac3core = { path = "../nac3core" }
nac3ld = { path = "../nac3ld" }
[features]
init-llvm-profile = []
no-escape-analysis = ["nac3core/no-escape-analysis"]

View File

@ -1,6 +1,5 @@
from min_artiq import * from min_artiq import *
@nac3 @nac3
class Demo: class Demo:
core: KernelInvariant[Core] core: KernelInvariant[Core]

View File

@ -1,66 +0,0 @@
class EmbeddingMap:
def __init__(self):
self.object_inverse_map = {}
self.object_map = {}
self.string_map = {}
self.string_reverse_map = {}
self.function_map = {}
self.attributes_writeback = []
# preallocate exception names
self.preallocate_runtime_exception_names(["RuntimeError",
"RTIOUnderflow",
"RTIOOverflow",
"RTIODestinationUnreachable",
"DMAError",
"I2CError",
"CacheError",
"SPIError",
"0:ZeroDivisionError",
"0:IndexError",
"0:ValueError",
"0:RuntimeError",
"0:AssertionError",
"0:KeyError",
"0:NotImplementedError",
"0:OverflowError",
"0:IOError",
"0:UnwrapNoneError"])
def preallocate_runtime_exception_names(self, names):
for i, name in enumerate(names):
if ":" not in name:
name = "0:artiq.coredevice.exceptions." + name
exn_id = self.store_str(name)
assert exn_id == i
def store_function(self, key, fun):
self.function_map[key] = fun
return key
def store_object(self, obj):
obj_id = id(obj)
if obj_id in self.object_inverse_map:
return self.object_inverse_map[obj_id]
key = len(self.object_map) + 1
self.object_map[key] = obj
self.object_inverse_map[obj_id] = key
return key
def store_str(self, s):
if s in self.string_reverse_map:
return self.string_reverse_map[s]
key = len(self.string_map)
self.string_map[key] = s
self.string_reverse_map[s] = key
return key
def retrieve_function(self, key):
return self.function_map[key]
def retrieve_object(self, key):
return self.object_map[key]
def retrieve_str(self, key):
return self.string_map[key]

View File

@ -1,24 +0,0 @@
from min_artiq import *
from numpy import int32
@nac3
class EmptyList:
core: KernelInvariant[Core]
def __init__(self):
self.core = Core()
@rpc
def get_empty(self) -> list[int32]:
return []
@kernel
def run(self):
a: list[int32] = self.get_empty()
if a != []:
raise ValueError
if __name__ == "__main__":
EmptyList().run()

View File

@ -3,96 +3,24 @@ from functools import wraps
from types import SimpleNamespace from types import SimpleNamespace
from numpy import int32, int64 from numpy import int32, int64
from typing import Generic, TypeVar from typing import Generic, TypeVar
from math import floor, ceil
import nac3artiq import nac3artiq
from embedding_map import EmbeddingMap
__all__ = ["KernelInvariant", "extern", "kernel", "portable", "nac3",
__all__ = [ "ms", "us", "ns",
"Kernel", "KernelInvariant", "virtual", "ConstGeneric",
"Option", "Some", "none", "UnwrapNoneError",
"round64", "floor64", "ceil64",
"extern", "kernel", "portable", "nac3",
"rpc", "ms", "us", "ns",
"print_int32", "print_int64", "print_int32", "print_int64",
"Core", "TTLOut", "Core", "TTLOut", "parallel", "sequential"]
"parallel", "sequential"
]
T = TypeVar('T') T = TypeVar('T')
class Kernel(Generic[T]):
pass
class KernelInvariant(Generic[T]): class KernelInvariant(Generic[T]):
pass pass
# The virtual class must exist before nac3artiq.NAC3 is created.
class virtual(Generic[T]):
pass
class Option(Generic[T]):
_nac3_option: T
def __init__(self, v: T):
self._nac3_option = v
def is_none(self):
return self._nac3_option is None
def is_some(self):
return not self.is_none()
def unwrap(self):
if self.is_none():
raise UnwrapNoneError()
return self._nac3_option
def __repr__(self) -> str:
if self.is_none():
return "none"
else:
return "Some({})".format(repr(self._nac3_option))
def __str__(self) -> str:
if self.is_none():
return "none"
else:
return "Some({})".format(str(self._nac3_option))
def Some(v: T) -> Option[T]:
return Option(v)
none = Option(None)
class _ConstGenericMarker:
pass
def ConstGeneric(name, constraint):
return TypeVar(name, _ConstGenericMarker, constraint)
def round64(x):
return round(x)
def floor64(x):
return floor(x)
def ceil64(x):
return ceil(x)
import device_db import device_db
core_arguments = device_db.device_db["core"]["arguments"] core_arguments = device_db.device_db["core"]["arguments"]
artiq_builtins = { compiler = nac3artiq.NAC3(core_arguments["target"])
"none": none,
"virtual": virtual,
"_ConstGenericMarker": _ConstGenericMarker,
"Option": Option,
}
compiler = nac3artiq.NAC3(core_arguments["target"], artiq_builtins)
allow_registration = True allow_registration = True
# Delay NAC3 analysis until all referenced variables are supposed to exist on the CPython side. # Delay NAC3 analysis until all referenced variables are supposed to exist on the CPython side.
registered_functions = set() registered_functions = set()
@ -113,15 +41,6 @@ def extern(function):
return function return function
def rpc(arg=None, flags={}):
"""Decorates a function or method to be executed on the host interpreter."""
if arg is None:
def inner_decorator(function):
return rpc(function, flags)
return inner_decorator
register_function(arg)
return arg
def kernel(function_or_method): def kernel(function_or_method):
"""Decorates a function or method to be executed on the core device.""" """Decorates a function or method to be executed on the core device."""
register_function(function_or_method) register_function(function_or_method)
@ -202,11 +121,8 @@ class Core:
def run(self, method, *args, **kwargs): def run(self, method, *args, **kwargs):
global allow_registration global allow_registration
embedding = EmbeddingMap()
if allow_registration: if allow_registration:
compiler.analyze(registered_functions, registered_classes, set()) compiler.analyze(registered_functions, registered_classes)
allow_registration = False allow_registration = False
if hasattr(method, "__self__"): if hasattr(method, "__self__"):
@ -216,7 +132,7 @@ class Core:
obj = method obj = method
name = "" name = ""
compiler.compile_method_to_file(obj, name, args, "module.elf", embedding) compiler.compile_method_to_file(obj, name, args, "module.elf")
@kernel @kernel
def reset(self): def reset(self):
@ -291,10 +207,5 @@ class KernelContextManager:
def __exit__(self): def __exit__(self):
pass pass
@nac3
class UnwrapNoneError(Exception):
"""raised when unwrapping a none value"""
artiq_builtin = True
parallel = KernelContextManager() parallel = KernelContextManager()
sequential = KernelContextManager() sequential = KernelContextManager()

View File

@ -1,26 +0,0 @@
from min_artiq import *
from numpy import ndarray, zeros as np_zeros
@nac3
class StrFail:
core: KernelInvariant[Core]
def __init__(self):
self.core = Core()
@kernel
def hello(self, arg: str):
pass
@kernel
def consume_ndarray(self, arg: ndarray[str, 1]):
pass
def run(self):
self.hello("world")
self.consume_ndarray(np_zeros([10], dtype=str))
if __name__ == "__main__":
StrFail().run()

View File

@ -1,24 +0,0 @@
from min_artiq import *
from numpy import int32
@nac3
class Demo:
core: KernelInvariant[Core]
attr1: KernelInvariant[str]
attr2: KernelInvariant[int32]
def __init__(self):
self.core = Core()
self.attr2 = 32
self.attr1 = "SAMPLE"
@kernel
def run(self):
print_int32(self.attr2)
self.attr1
if __name__ == "__main__":
Demo().run()

View File

@ -1,40 +0,0 @@
from min_artiq import *
from numpy import int32
@nac3
class Demo:
attr1: KernelInvariant[int32] = 2
attr2: int32 = 4
attr3: Kernel[int32]
@kernel
def __init__(self):
self.attr3 = 8
@nac3
class NAC3Devices:
core: KernelInvariant[Core]
attr4: KernelInvariant[int32] = 16
def __init__(self):
self.core = Core()
@kernel
def run(self):
Demo.attr1 # Supported
# Demo.attr2 # Field not accessible on Kernel
# Demo.attr3 # Only attributes can be accessed in this way
# Demo.attr1 = 2 # Attributes are immutable
self.attr4 # Attributes can be accessed within class
obj = Demo()
obj.attr1 # Attributes can be accessed by class objects
NAC3Devices.attr4 # Attributes accessible for classes without __init__
if __name__ == "__main__":
NAC3Devices().run()

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -1,23 +1,10 @@
use itertools::Either; use nac3core::codegen::CodeGenContext;
use inkwell::{values::BasicValueEnum, AddressSpace, AtomicOrdering};
use nac3core::{
codegen::CodeGenContext,
inkwell::{
values::{BasicValueEnum, CallSiteValue},
AddressSpace, AtomicOrdering,
},
};
/// Functions for manipulating the timeline.
pub trait TimeFns { pub trait TimeFns {
/// Emits LLVM IR for `now_mu`. fn emit_now_mu<'ctx, 'a>(&self, ctx: &mut CodeGenContext<'ctx, 'a>) -> BasicValueEnum<'ctx>;
fn emit_now_mu<'ctx>(&self, ctx: &mut CodeGenContext<'ctx, '_>) -> BasicValueEnum<'ctx>; fn emit_at_mu<'ctx, 'a>(&self, ctx: &mut CodeGenContext<'ctx, 'a>, t: BasicValueEnum<'ctx>);
fn emit_delay_mu<'ctx, 'a>(&self, ctx: &mut CodeGenContext<'ctx, 'a>, dt: BasicValueEnum<'ctx>);
/// Emits LLVM IR for `at_mu`.
fn emit_at_mu<'ctx>(&self, ctx: &mut CodeGenContext<'ctx, '_>, t: BasicValueEnum<'ctx>);
/// Emits LLVM IR for `delay_mu`.
fn emit_delay_mu<'ctx>(&self, ctx: &mut CodeGenContext<'ctx, '_>, dt: BasicValueEnum<'ctx>);
} }
pub struct NowPinningTimeFns64 {} pub struct NowPinningTimeFns64 {}
@ -25,143 +12,176 @@ pub struct NowPinningTimeFns64 {}
// For FPGA design reasons, on VexRiscv with 64-bit data bus, the "now" CSR is split into two 32-bit // For FPGA design reasons, on VexRiscv with 64-bit data bus, the "now" CSR is split into two 32-bit
// values that are each padded to 64-bits. // values that are each padded to 64-bits.
impl TimeFns for NowPinningTimeFns64 { impl TimeFns for NowPinningTimeFns64 {
fn emit_now_mu<'ctx>(&self, ctx: &mut CodeGenContext<'ctx, '_>) -> BasicValueEnum<'ctx> { fn emit_now_mu<'ctx, 'a>(&self, ctx: &mut CodeGenContext<'ctx, 'a>) -> BasicValueEnum<'ctx> {
let i64_type = ctx.ctx.i64_type(); let i64_type = ctx.ctx.i64_type();
let i32_type = ctx.ctx.i32_type(); let i32_type = ctx.ctx.i32_type();
let now = ctx let now = ctx
.module .module
.get_global("now") .get_global("now")
.unwrap_or_else(|| ctx.module.add_global(i64_type, None, "now")); .unwrap_or_else(|| ctx.module.add_global(i64_type, None, "now"));
let now_hiptr = ctx let now_hiptr = ctx.builder.build_bitcast(
.builder now,
.build_bit_cast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr") i32_type.ptr_type(AddressSpace::Generic),
.map(BasicValueEnum::into_pointer_value) "now_hiptr"
.unwrap(); );
if let BasicValueEnum::PointerValue(now_hiptr) = now_hiptr {
let now_loptr = unsafe { let now_loptr = unsafe {
ctx.builder.build_gep(now_hiptr, &[i32_type.const_int(2, false)], "now.lo.addr") ctx.builder.build_gep(
now_hiptr,
&[i32_type.const_int(2, false)],
"now_gep",
)
};
if let (
BasicValueEnum::IntValue(now_hi),
BasicValueEnum::IntValue(now_lo)
) = (
ctx.builder.build_load(now_hiptr, "now_hi"),
ctx.builder.build_load(now_loptr, "now_lo")
) {
let zext_hi = ctx.builder.build_int_z_extend(
now_hi,
i64_type,
"now_zext_hi"
);
let shifted_hi = ctx.builder.build_left_shift(
zext_hi,
i64_type.const_int(32, false),
"now_shifted_zext_hi"
);
let zext_lo = ctx.builder.build_int_z_extend(
now_lo,
i64_type,
"now_zext_lo"
);
ctx.builder.build_or(shifted_hi, zext_lo, "now_or").into()
} else {
unreachable!();
}
} else {
unreachable!();
} }
.unwrap();
let now_hi = ctx
.builder
.build_load(now_hiptr, "now.hi")
.map(BasicValueEnum::into_int_value)
.unwrap();
let now_lo = ctx
.builder
.build_load(now_loptr, "now.lo")
.map(BasicValueEnum::into_int_value)
.unwrap();
let zext_hi = ctx.builder.build_int_z_extend(now_hi, i64_type, "").unwrap();
let shifted_hi =
ctx.builder.build_left_shift(zext_hi, i64_type.const_int(32, false), "").unwrap();
let zext_lo = ctx.builder.build_int_z_extend(now_lo, i64_type, "").unwrap();
ctx.builder.build_or(shifted_hi, zext_lo, "now_mu").map(Into::into).unwrap()
} }
fn emit_at_mu<'ctx>(&self, ctx: &mut CodeGenContext<'ctx, '_>, t: BasicValueEnum<'ctx>) { fn emit_at_mu<'ctx, 'a>(&self, ctx: &mut CodeGenContext<'ctx, 'a>, t: BasicValueEnum<'ctx>) {
let i32_type = ctx.ctx.i32_type(); let i32_type = ctx.ctx.i32_type();
let i64_type = ctx.ctx.i64_type(); let i64_type = ctx.ctx.i64_type();
let i64_32 = i64_type.const_int(32, false); let i64_32 = i64_type.const_int(32, false);
let time = t.into_int_value(); if let BasicValueEnum::IntValue(time) = t {
let time_hi = ctx.builder.build_int_truncate(
let time_hi = ctx ctx.builder
.builder .build_right_shift(time, i64_32, false, "now_lshr"),
.build_int_truncate(
ctx.builder.build_right_shift(time, i64_32, false, "time.hi").unwrap(),
i32_type, i32_type,
"", "now_trunc",
) );
.unwrap(); let time_lo = ctx.builder.build_int_truncate(time, i32_type, "now_trunc");
let time_lo = ctx.builder.build_int_truncate(time, i32_type, "time.lo").unwrap();
let now = ctx let now = ctx
.module .module
.get_global("now") .get_global("now")
.unwrap_or_else(|| ctx.module.add_global(i64_type, None, "now")); .unwrap_or_else(|| ctx.module.add_global(i64_type, None, "now"));
let now_hiptr = ctx let now_hiptr = ctx.builder.build_bitcast(
.builder now,
.build_bit_cast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr") i32_type.ptr_type(AddressSpace::Generic),
.map(BasicValueEnum::into_pointer_value) "now_bitcast",
.unwrap(); );
if let BasicValueEnum::PointerValue(now_hiptr) = now_hiptr {
let now_loptr = unsafe { let now_loptr = unsafe {
ctx.builder.build_gep(now_hiptr, &[i32_type.const_int(2, false)], "now.lo.addr") ctx.builder.build_gep(
} now_hiptr,
.unwrap(); &[i32_type.const_int(2, false)],
"now_gep",
)
};
ctx.builder ctx.builder
.build_store(now_hiptr, time_hi) .build_store(now_hiptr, time_hi)
.unwrap()
.set_atomic_ordering(AtomicOrdering::SequentiallyConsistent) .set_atomic_ordering(AtomicOrdering::SequentiallyConsistent)
.unwrap(); .unwrap();
ctx.builder ctx.builder
.build_store(now_loptr, time_lo) .build_store(now_loptr, time_lo)
.unwrap()
.set_atomic_ordering(AtomicOrdering::SequentiallyConsistent) .set_atomic_ordering(AtomicOrdering::SequentiallyConsistent)
.unwrap(); .unwrap();
} else {
unreachable!();
}
} else {
unreachable!();
}
} }
fn emit_delay_mu<'ctx>(&self, ctx: &mut CodeGenContext<'ctx, '_>, dt: BasicValueEnum<'ctx>) { fn emit_delay_mu<'ctx, 'a>(&self, ctx: &mut CodeGenContext<'ctx, 'a>, dt: BasicValueEnum<'ctx>) {
let i64_type = ctx.ctx.i64_type(); let i64_type = ctx.ctx.i64_type();
let i32_type = ctx.ctx.i32_type(); let i32_type = ctx.ctx.i32_type();
let now = ctx let now = ctx
.module .module
.get_global("now") .get_global("now")
.unwrap_or_else(|| ctx.module.add_global(i64_type, None, "now")); .unwrap_or_else(|| ctx.module.add_global(i64_type, None, "now"));
let now_hiptr = ctx let now_hiptr = ctx.builder.build_bitcast(
.builder now,
.build_bit_cast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr") i32_type.ptr_type(AddressSpace::Generic),
.map(BasicValueEnum::into_pointer_value) "now_hiptr"
.unwrap(); );
if let BasicValueEnum::PointerValue(now_hiptr) = now_hiptr {
let now_loptr = unsafe { let now_loptr = unsafe {
ctx.builder.build_gep(now_hiptr, &[i32_type.const_int(2, false)], "now.lo.addr") ctx.builder.build_gep(
} now_hiptr,
.unwrap(); &[i32_type.const_int(2, false)],
"now_loptr",
let now_hi = ctx
.builder
.build_load(now_hiptr, "now.hi")
.map(BasicValueEnum::into_int_value)
.unwrap();
let now_lo = ctx
.builder
.build_load(now_loptr, "now.lo")
.map(BasicValueEnum::into_int_value)
.unwrap();
let dt = dt.into_int_value();
let zext_hi = ctx.builder.build_int_z_extend(now_hi, i64_type, "").unwrap();
let shifted_hi =
ctx.builder.build_left_shift(zext_hi, i64_type.const_int(32, false), "").unwrap();
let zext_lo = ctx.builder.build_int_z_extend(now_lo, i64_type, "").unwrap();
let now_val = ctx.builder.build_or(shifted_hi, zext_lo, "now").unwrap();
let time = ctx.builder.build_int_add(now_val, dt, "time").unwrap();
let time_hi = ctx
.builder
.build_int_truncate(
ctx.builder
.build_right_shift(time, i64_type.const_int(32, false), false, "")
.unwrap(),
i32_type,
"time.hi",
) )
.unwrap(); };
let time_lo = ctx.builder.build_int_truncate(time, i32_type, "time.lo").unwrap(); if let (
BasicValueEnum::IntValue(now_hi),
BasicValueEnum::IntValue(now_lo),
BasicValueEnum::IntValue(dt)
) = (
ctx.builder.build_load(now_hiptr, "now_hi"),
ctx.builder.build_load(now_loptr, "now_lo"),
dt
) {
let zext_hi = ctx.builder.build_int_z_extend(
now_hi,
i64_type,
"now_zext_hi"
);
let shifted_hi = ctx.builder.build_left_shift(
zext_hi,
i64_type.const_int(32, false),
"now_shifted_zext_hi"
);
let zext_lo = ctx.builder.build_int_z_extend(
now_lo,
i64_type,
"now_zext_lo"
);
let now_val = ctx.builder.build_or(shifted_hi, zext_lo, "now_or");
let time = ctx.builder.build_int_add(now_val, dt, "now_add");
let time_hi = ctx.builder.build_int_truncate(
ctx.builder
.build_right_shift(
time,
i64_type.const_int(32, false),
false,
"now_lshr"
),
i32_type,
"now_trunc",
);
let time_lo = ctx.builder.build_int_truncate(time, i32_type, "now_trunc");
ctx.builder ctx.builder
.build_store(now_hiptr, time_hi) .build_store(now_hiptr, time_hi)
.unwrap()
.set_atomic_ordering(AtomicOrdering::SequentiallyConsistent) .set_atomic_ordering(AtomicOrdering::SequentiallyConsistent)
.unwrap(); .unwrap();
ctx.builder ctx.builder
.build_store(now_loptr, time_lo) .build_store(now_loptr, time_lo)
.unwrap()
.set_atomic_ordering(AtomicOrdering::SequentiallyConsistent) .set_atomic_ordering(AtomicOrdering::SequentiallyConsistent)
.unwrap(); .unwrap();
} else {
unreachable!();
}
} else {
unreachable!();
};
} }
} }
@ -170,115 +190,122 @@ pub static NOW_PINNING_TIME_FNS_64: NowPinningTimeFns64 = NowPinningTimeFns64 {}
pub struct NowPinningTimeFns {} pub struct NowPinningTimeFns {}
impl TimeFns for NowPinningTimeFns { impl TimeFns for NowPinningTimeFns {
fn emit_now_mu<'ctx>(&self, ctx: &mut CodeGenContext<'ctx, '_>) -> BasicValueEnum<'ctx> { fn emit_now_mu<'ctx, 'a>(&self, ctx: &mut CodeGenContext<'ctx, 'a>) -> BasicValueEnum<'ctx> {
let i64_type = ctx.ctx.i64_type(); let i64_type = ctx.ctx.i64_type();
let now = ctx let now = ctx
.module .module
.get_global("now") .get_global("now")
.unwrap_or_else(|| ctx.module.add_global(i64_type, None, "now")); .unwrap_or_else(|| ctx.module.add_global(i64_type, None, "now"));
let now_raw = ctx let now_raw = ctx.builder.build_load(now.as_pointer_value(), "now");
.builder if let BasicValueEnum::IntValue(now_raw) = now_raw {
.build_load(now.as_pointer_value(), "now")
.map(BasicValueEnum::into_int_value)
.unwrap();
let i64_32 = i64_type.const_int(32, false); let i64_32 = i64_type.const_int(32, false);
let now_lo = ctx.builder.build_left_shift(now_raw, i64_32, "now.lo").unwrap(); let now_lo = ctx.builder.build_left_shift(now_raw, i64_32, "now_shl");
let now_hi = ctx.builder.build_right_shift(now_raw, i64_32, false, "now.hi").unwrap(); let now_hi = ctx
ctx.builder.build_or(now_lo, now_hi, "now_mu").map(Into::into).unwrap() .builder
.build_right_shift(now_raw, i64_32, false, "now_lshr");
ctx.builder.build_or(now_lo, now_hi, "now_or").into()
} else {
unreachable!();
}
} }
fn emit_at_mu<'ctx>(&self, ctx: &mut CodeGenContext<'ctx, '_>, t: BasicValueEnum<'ctx>) { fn emit_at_mu<'ctx, 'a>(&self, ctx: &mut CodeGenContext<'ctx, 'a>, t: BasicValueEnum<'ctx>) {
let i32_type = ctx.ctx.i32_type(); let i32_type = ctx.ctx.i32_type();
let i64_type = ctx.ctx.i64_type(); let i64_type = ctx.ctx.i64_type();
let i64_32 = i64_type.const_int(32, false); let i64_32 = i64_type.const_int(32, false);
if let BasicValueEnum::IntValue(time) = t {
let time = t.into_int_value(); let time_hi = ctx.builder.build_int_truncate(
let time_hi = ctx
.builder
.build_int_truncate(
ctx.builder.build_right_shift(time, i64_32, false, "").unwrap(),
i32_type,
"time.hi",
)
.unwrap();
let time_lo = ctx.builder.build_int_truncate(time, i32_type, "now_trunc").unwrap();
let now = ctx
.module
.get_global("now")
.unwrap_or_else(|| ctx.module.add_global(i64_type, None, "now"));
let now_hiptr = ctx
.builder
.build_bit_cast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr")
.map(BasicValueEnum::into_pointer_value)
.unwrap();
let now_loptr = unsafe {
ctx.builder.build_gep(now_hiptr, &[i32_type.const_int(1, false)], "now.lo.addr")
}
.unwrap();
ctx.builder ctx.builder
.build_store(now_hiptr, time_hi) .build_right_shift(time, i64_32, false, "now_lshr"),
.unwrap()
.set_atomic_ordering(AtomicOrdering::SequentiallyConsistent)
.unwrap();
ctx.builder
.build_store(now_loptr, time_lo)
.unwrap()
.set_atomic_ordering(AtomicOrdering::SequentiallyConsistent)
.unwrap();
}
fn emit_delay_mu<'ctx>(&self, ctx: &mut CodeGenContext<'ctx, '_>, dt: BasicValueEnum<'ctx>) {
let i32_type = ctx.ctx.i32_type();
let i64_type = ctx.ctx.i64_type();
let i64_32 = i64_type.const_int(32, false);
let now = ctx
.module
.get_global("now")
.unwrap_or_else(|| ctx.module.add_global(i64_type, None, "now"));
let now_raw = ctx
.builder
.build_load(now.as_pointer_value(), "")
.map(BasicValueEnum::into_int_value)
.unwrap();
let dt = dt.into_int_value();
let now_lo = ctx.builder.build_left_shift(now_raw, i64_32, "now.lo").unwrap();
let now_hi = ctx.builder.build_right_shift(now_raw, i64_32, false, "now.hi").unwrap();
let now_val = ctx.builder.build_or(now_lo, now_hi, "now_val").unwrap();
let time = ctx.builder.build_int_add(now_val, dt, "time").unwrap();
let time_hi = ctx
.builder
.build_int_truncate(
ctx.builder.build_right_shift(time, i64_32, false, "time.hi").unwrap(),
i32_type, i32_type,
"now_trunc", "now_trunc",
) );
.unwrap(); let time_lo = ctx.builder.build_int_truncate(time, i32_type, "now_trunc");
let time_lo = ctx.builder.build_int_truncate(time, i32_type, "time.lo").unwrap(); let now = ctx
let now_hiptr = ctx .module
.builder .get_global("now")
.build_bit_cast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr") .unwrap_or_else(|| ctx.module.add_global(i64_type, None, "now"));
.map(BasicValueEnum::into_pointer_value) let now_hiptr = ctx.builder.build_bitcast(
.unwrap(); now,
i32_type.ptr_type(AddressSpace::Generic),
"now_bitcast",
);
if let BasicValueEnum::PointerValue(now_hiptr) = now_hiptr {
let now_loptr = unsafe { let now_loptr = unsafe {
ctx.builder.build_gep(now_hiptr, &[i32_type.const_int(1, false)], "now.lo.addr") ctx.builder.build_gep(
} now_hiptr,
.unwrap(); &[i32_type.const_int(1, false)],
"now_gep",
)
};
ctx.builder ctx.builder
.build_store(now_hiptr, time_hi) .build_store(now_hiptr, time_hi)
.unwrap()
.set_atomic_ordering(AtomicOrdering::SequentiallyConsistent) .set_atomic_ordering(AtomicOrdering::SequentiallyConsistent)
.unwrap(); .unwrap();
ctx.builder ctx.builder
.build_store(now_loptr, time_lo) .build_store(now_loptr, time_lo)
.unwrap()
.set_atomic_ordering(AtomicOrdering::SequentiallyConsistent) .set_atomic_ordering(AtomicOrdering::SequentiallyConsistent)
.unwrap(); .unwrap();
} else {
unreachable!();
}
} else {
unreachable!();
}
}
fn emit_delay_mu<'ctx, 'a>(&self, ctx: &mut CodeGenContext<'ctx, 'a>, dt: BasicValueEnum<'ctx>) {
let i32_type = ctx.ctx.i32_type();
let i64_type = ctx.ctx.i64_type();
let i64_32 = i64_type.const_int(32, false);
let now = ctx
.module
.get_global("now")
.unwrap_or_else(|| ctx.module.add_global(i64_type, None, "now"));
let now_raw = ctx.builder.build_load(now.as_pointer_value(), "now");
if let (BasicValueEnum::IntValue(now_raw), BasicValueEnum::IntValue(dt)) =
(now_raw, dt)
{
let now_lo = ctx.builder.build_left_shift(now_raw, i64_32, "now_shl");
let now_hi = ctx
.builder
.build_right_shift(now_raw, i64_32, false, "now_lshr");
let now_val = ctx.builder.build_or(now_lo, now_hi, "now_or");
let time = ctx.builder.build_int_add(now_val, dt, "now_add");
let time_hi = ctx.builder.build_int_truncate(
ctx.builder
.build_right_shift(time, i64_32, false, "now_lshr"),
i32_type,
"now_trunc",
);
let time_lo = ctx.builder.build_int_truncate(time, i32_type, "now_trunc");
let now_hiptr = ctx.builder.build_bitcast(
now,
i32_type.ptr_type(AddressSpace::Generic),
"now_bitcast",
);
if let BasicValueEnum::PointerValue(now_hiptr) = now_hiptr {
let now_loptr = unsafe {
ctx.builder.build_gep(
now_hiptr,
&[i32_type.const_int(1, false)],
"now_gep",
)
};
ctx.builder
.build_store(now_hiptr, time_hi)
.set_atomic_ordering(AtomicOrdering::SequentiallyConsistent)
.unwrap();
ctx.builder
.build_store(now_loptr, time_lo)
.set_atomic_ordering(AtomicOrdering::SequentiallyConsistent)
.unwrap();
} else {
unreachable!();
}
} else {
unreachable!();
}
} }
} }
@ -287,37 +314,34 @@ pub static NOW_PINNING_TIME_FNS: NowPinningTimeFns = NowPinningTimeFns {};
pub struct ExternTimeFns {} pub struct ExternTimeFns {}
impl TimeFns for ExternTimeFns { impl TimeFns for ExternTimeFns {
fn emit_now_mu<'ctx>(&self, ctx: &mut CodeGenContext<'ctx, '_>) -> BasicValueEnum<'ctx> { fn emit_now_mu<'ctx, 'a>(&self, ctx: &mut CodeGenContext<'ctx, 'a>) -> BasicValueEnum<'ctx> {
let now_mu = ctx.module.get_function("now_mu").unwrap_or_else(|| { let now_mu = ctx
ctx.module.add_function("now_mu", ctx.ctx.i64_type().fn_type(&[], false), None) .module
}); .get_function("now_mu")
.unwrap_or_else(|| ctx.module.add_function("now_mu", ctx.ctx.i64_type().fn_type(&[], false), None));
ctx.builder ctx.builder
.build_call(now_mu, &[], "now_mu") .build_call(now_mu, &[], "now_mu")
.map(CallSiteValue::try_as_basic_value) .try_as_basic_value()
.map(Either::unwrap_left) .left()
.unwrap() .unwrap()
} }
fn emit_at_mu<'ctx>(&self, ctx: &mut CodeGenContext<'ctx, '_>, t: BasicValueEnum<'ctx>) { fn emit_at_mu<'ctx, 'a>(&self, ctx: &mut CodeGenContext<'ctx, 'a>, t: BasicValueEnum<'ctx>) {
let at_mu = ctx.module.get_function("at_mu").unwrap_or_else(|| { let at_mu = ctx
ctx.module.add_function( .module
"at_mu", .get_function("at_mu")
ctx.ctx.void_type().fn_type(&[ctx.ctx.i64_type().into()], false), .unwrap_or_else(|| ctx.module.add_function("at_mu", ctx.ctx.void_type().fn_type(&[ctx.ctx.i64_type().into()], false), None));
None, ctx.builder
) .build_call(at_mu, &[t], "at_mu");
});
ctx.builder.build_call(at_mu, &[t.into()], "at_mu").unwrap();
} }
fn emit_delay_mu<'ctx>(&self, ctx: &mut CodeGenContext<'ctx, '_>, dt: BasicValueEnum<'ctx>) { fn emit_delay_mu<'ctx, 'a>(&self, ctx: &mut CodeGenContext<'ctx, 'a>, dt: BasicValueEnum<'ctx>) {
let delay_mu = ctx.module.get_function("delay_mu").unwrap_or_else(|| { let delay_mu = ctx
ctx.module.add_function( .module
"delay_mu", .get_function("delay_mu")
ctx.ctx.void_type().fn_type(&[ctx.ctx.i64_type().into()], false), .unwrap_or_else(|| ctx.module.add_function("delay_mu", ctx.ctx.void_type().fn_type(&[ctx.ctx.i64_type().into()], false), None));
None, ctx.builder
) .build_call(delay_mu, &[dt], "delay_mu");
});
ctx.builder.build_call(delay_mu, &[dt.into()], "delay_mu").unwrap();
} }
} }

View File

@ -2,7 +2,7 @@
name = "nac3ast" name = "nac3ast"
version = "0.1.0" version = "0.1.0"
authors = ["RustPython Team", "M-Labs"] authors = ["RustPython Team", "M-Labs"]
edition = "2021" edition = "2018"
[features] [features]
default = ["constant-optimization", "fold"] default = ["constant-optimization", "fold"]
@ -10,6 +10,8 @@ constant-optimization = ["fold"]
fold = [] fold = []
[dependencies] [dependencies]
parking_lot = "0.12" num-bigint = "0.4.0"
string-interner = "0.17" lazy_static = "1.4.0"
fxhash = "0.2" parking_lot = "0.11.1"
string-interner = "0.13.0"
fxhash = "0.2.1"

File diff suppressed because it is too large Load Diff

View File

@ -1,10 +1,12 @@
use num_bigint::BigInt;
#[derive(Clone, Debug, PartialEq)] #[derive(Clone, Debug, PartialEq)]
pub enum Constant { pub enum Constant {
None, None,
Bool(bool), Bool(bool),
Str(String), Str(String),
Bytes(Vec<u8>), Bytes(Vec<u8>),
Int(i128), Int(BigInt),
Tuple(Vec<Constant>), Tuple(Vec<Constant>),
Float(f64), Float(f64),
Complex { real: f64, imag: f64 }, Complex { real: f64, imag: f64 },
@ -26,14 +28,9 @@ impl From<bool> for Constant {
Self::Bool(b) Self::Bool(b)
} }
} }
impl From<i32> for Constant { impl From<BigInt> for Constant {
fn from(i: i32) -> Constant { fn from(i: BigInt) -> Constant {
Self::Int(i128::from(i)) Self::Int(i)
}
}
impl From<i64> for Constant {
fn from(i: i64) -> Constant {
Self::Int(i128::from(i))
} }
} }
@ -50,7 +47,6 @@ pub enum ConversionFlag {
} }
impl ConversionFlag { impl ConversionFlag {
#[must_use]
pub fn try_from_byte(b: u8) -> Option<Self> { pub fn try_from_byte(b: u8) -> Option<Self> {
match b { match b {
b's' => Some(Self::Str), b's' => Some(Self::Str),
@ -70,7 +66,6 @@ pub struct ConstantOptimizer {
#[cfg(feature = "constant-optimization")] #[cfg(feature = "constant-optimization")]
impl ConstantOptimizer { impl ConstantOptimizer {
#[inline] #[inline]
#[must_use]
pub fn new() -> Self { pub fn new() -> Self {
Self { _priv: () } Self { _priv: () }
} }
@ -87,10 +82,14 @@ impl<U> crate::fold::Fold<U> for ConstantOptimizer {
fn fold_expr(&mut self, node: crate::Expr<U>) -> Result<crate::Expr<U>, Self::Error> { fn fold_expr(&mut self, node: crate::Expr<U>) -> Result<crate::Expr<U>, Self::Error> {
match node.node { match node.node {
crate::ExprKind::Tuple { elts, ctx } => { crate::ExprKind::Tuple { elts, ctx } => {
let elts = let elts = elts
elts.into_iter().map(|x| self.fold_expr(x)).collect::<Result<Vec<_>, _>>()?; .into_iter()
let expr = .map(|x| self.fold_expr(x))
if elts.iter().all(|e| matches!(e.node, crate::ExprKind::Constant { .. })) { .collect::<Result<Vec<_>, _>>()?;
let expr = if elts
.iter()
.all(|e| matches!(e.node, crate::ExprKind::Constant { .. }))
{
let tuple = elts let tuple = elts
.into_iter() .into_iter()
.map(|e| match e.node { .map(|e| match e.node {
@ -98,11 +97,18 @@ impl<U> crate::fold::Fold<U> for ConstantOptimizer {
_ => unreachable!(), _ => unreachable!(),
}) })
.collect(); .collect();
crate::ExprKind::Constant { value: Constant::Tuple(tuple), kind: None } crate::ExprKind::Constant {
value: Constant::Tuple(tuple),
kind: None,
}
} else { } else {
crate::ExprKind::Tuple { elts, ctx } crate::ExprKind::Tuple { elts, ctx }
}; };
Ok(crate::Expr { node: expr, custom: node.custom, location: node.location }) Ok(crate::Expr {
node: expr,
custom: node.custom,
location: node.location,
})
} }
_ => crate::fold::fold_expr(self, node), _ => crate::fold::fold_expr(self, node),
} }
@ -118,7 +124,7 @@ mod tests {
use crate::fold::Fold; use crate::fold::Fold;
use crate::*; use crate::*;
let location = Location::new(0, 0, FileName::default()); let location = Location::new(0, 0);
let custom = (); let custom = ();
let ast = Located { let ast = Located {
location, location,
@ -129,12 +135,18 @@ mod tests {
Located { Located {
location, location,
custom, custom,
node: ExprKind::Constant { value: 1.into(), kind: None }, node: ExprKind::Constant {
value: BigInt::from(1).into(),
kind: None,
},
}, },
Located { Located {
location, location,
custom, custom,
node: ExprKind::Constant { value: 2.into(), kind: None }, node: ExprKind::Constant {
value: BigInt::from(2).into(),
kind: None,
},
}, },
Located { Located {
location, location,
@ -145,17 +157,26 @@ mod tests {
Located { Located {
location, location,
custom, custom,
node: ExprKind::Constant { value: 3.into(), kind: None }, node: ExprKind::Constant {
value: BigInt::from(3).into(),
kind: None,
},
}, },
Located { Located {
location, location,
custom, custom,
node: ExprKind::Constant { value: 4.into(), kind: None }, node: ExprKind::Constant {
value: BigInt::from(4).into(),
kind: None,
},
}, },
Located { Located {
location, location,
custom, custom,
node: ExprKind::Constant { value: 5.into(), kind: None }, node: ExprKind::Constant {
value: BigInt::from(5).into(),
kind: None,
},
}, },
], ],
}, },
@ -163,7 +184,9 @@ mod tests {
], ],
}, },
}; };
let new_ast = ConstantOptimizer::new().fold_expr(ast).unwrap_or_else(|e| match e {}); let new_ast = ConstantOptimizer::new()
.fold_expr(ast)
.unwrap_or_else(|e| match e {});
assert_eq!( assert_eq!(
new_ast, new_ast,
Located { Located {
@ -171,9 +194,13 @@ mod tests {
custom, custom,
node: ExprKind::Constant { node: ExprKind::Constant {
value: Constant::Tuple(vec![ value: Constant::Tuple(vec![
1.into(), BigInt::from(1).into(),
2.into(), BigInt::from(2).into(),
Constant::Tuple(vec![3.into(), 4.into(), 5.into(),]) Constant::Tuple(vec![
BigInt::from(3).into(),
BigInt::from(4).into(),
BigInt::from(5).into(),
])
]), ]),
kind: None kind: None
}, },

View File

@ -64,4 +64,11 @@ macro_rules! simple_fold {
}; };
} }
simple_fold!(usize, String, bool, StrRef, constant::Constant, constant::ConversionFlag); simple_fold!(
usize,
String,
bool,
StrRef,
constant::Constant,
constant::ConversionFlag
);

View File

@ -2,7 +2,6 @@ use crate::{Constant, ExprKind};
impl<U> ExprKind<U> { impl<U> ExprKind<U> {
/// Returns a short name for the node suitable for use in error messages. /// Returns a short name for the node suitable for use in error messages.
#[must_use]
pub fn name(&self) -> &'static str { pub fn name(&self) -> &'static str {
match self { match self {
ExprKind::BoolOp { .. } | ExprKind::BinOp { .. } | ExprKind::UnaryOp { .. } => { ExprKind::BoolOp { .. } | ExprKind::BinOp { .. } | ExprKind::UnaryOp { .. } => {
@ -35,7 +34,10 @@ impl<U> ExprKind<U> {
ExprKind::Starred { .. } => "starred", ExprKind::Starred { .. } => "starred",
ExprKind::Slice { .. } => "slice", ExprKind::Slice { .. } => "slice",
ExprKind::JoinedStr { values } => { ExprKind::JoinedStr { values } => {
if values.iter().any(|e| matches!(e.node, ExprKind::JoinedStr { .. })) { if values
.iter()
.any(|e| matches!(e.node, ExprKind::JoinedStr { .. }))
{
"f-string expression" "f-string expression"
} else { } else {
"literal" "literal"

View File

@ -1,12 +1,5 @@
#![deny(future_incompatible, let_underscore, nonstandard_style, clippy::all)] #[macro_use]
#![warn(clippy::pedantic)] extern crate lazy_static;
#![allow(
clippy::missing_errors_doc,
clippy::missing_panics_doc,
clippy::module_name_repetitions,
clippy::too_many_lines,
clippy::wildcard_imports
)]
mod ast_gen; mod ast_gen;
mod constant; mod constant;
@ -16,6 +9,6 @@ mod impls;
mod location; mod location;
pub use ast_gen::*; pub use ast_gen::*;
pub use location::{FileName, Location}; pub use location::Location;
pub type Suite<U = ()> = Vec<Stmt<U>>; pub type Suite<U = ()> = Vec<Stmt<U>>;

View File

@ -1,55 +1,17 @@
//! Datatypes to support source location information. //! Datatypes to support source location information.
use crate::ast_gen::StrRef;
use std::cmp::Ordering;
use std::fmt; use std::fmt;
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
pub struct FileName(pub StrRef);
impl Default for FileName {
fn default() -> Self {
FileName("unknown".into())
}
}
impl From<String> for FileName {
fn from(s: String) -> Self {
FileName(s.into())
}
}
/// A location somewhere in the sourcecode. /// A location somewhere in the sourcecode.
#[derive(Clone, Copy, Debug, Default, Eq, PartialEq)] #[derive(Clone, Copy, Debug, Default, PartialEq)]
pub struct Location { pub struct Location {
pub row: usize, row: usize,
pub column: usize, column: usize,
pub file: FileName,
} }
impl fmt::Display for Location { impl fmt::Display for Location {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{}:{}:{}", self.file.0, self.row, self.column) write!(f, "line {} column {}", self.row, self.column)
}
}
impl Ord for Location {
fn cmp(&self, other: &Self) -> Ordering {
let file_cmp = self.file.0.to_string().cmp(&other.file.0.to_string());
if file_cmp != Ordering::Equal {
return file_cmp;
}
let row_cmp = self.row.cmp(&other.row);
if row_cmp != Ordering::Equal {
return row_cmp;
}
self.column.cmp(&other.column)
}
}
impl PartialOrd for Location {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(self.cmp(other))
} }
} }
@ -76,22 +38,23 @@ impl Location {
) )
} }
} }
Visualize { loc: *self, line, desc } Visualize {
loc: *self,
line,
desc,
}
} }
} }
impl Location { impl Location {
#[must_use] pub fn new(row: usize, column: usize) -> Self {
pub fn new(row: usize, column: usize, file: FileName) -> Self { Location { row, column }
Location { row, column, file }
} }
#[must_use]
pub fn row(&self) -> usize { pub fn row(&self) -> usize {
self.row self.row
} }
#[must_use]
pub fn column(&self) -> usize { pub fn column(&self) -> usize {
self.column self.column
} }

View File

@ -2,33 +2,19 @@
name = "nac3core" name = "nac3core"
version = "0.1.0" version = "0.1.0"
authors = ["M-Labs"] authors = ["M-Labs"]
edition = "2021" edition = "2018"
[features]
default = ["derive"]
derive = ["dep:nac3core_derive"]
no-escape-analysis = []
[dependencies] [dependencies]
itertools = "0.13" num-bigint = "0.3"
crossbeam = "0.8" num-traits = "0.2"
indexmap = "2.6" inkwell = { git = "https://github.com/TheDan64/inkwell", branch = "master", features = ["llvm12-0"] }
parking_lot = "0.12" itertools = "0.10.1"
rayon = "1.10" crossbeam = "0.8.1"
nac3core_derive = { path = "nac3core_derive", optional = true } parking_lot = "0.11.1"
rayon = "1.5.1"
nac3parser = { path = "../nac3parser" } nac3parser = { path = "../nac3parser" }
strum = "0.26"
strum_macros = "0.26"
[dependencies.inkwell]
version = "0.5"
default-features = false
features = ["llvm14-0-prefer-dynamic", "target-x86", "target-arm", "target-riscv", "no-libffi-linking"]
[dev-dependencies] [dev-dependencies]
test-case = "1.2.0" test-case = "1.2.0"
indoc = "2.0" indoc = "1.0"
insta = "=1.11.0" insta = "1.5"
[build-dependencies]
regex = "1.10"

View File

@ -1,109 +0,0 @@
use std::{
env,
fs::File,
io::Write,
path::Path,
process::{Command, Stdio},
};
use regex::Regex;
fn main() {
let out_dir = env::var("OUT_DIR").unwrap();
let out_dir = Path::new(&out_dir);
let irrt_dir = Path::new("irrt");
let irrt_cpp_path = irrt_dir.join("irrt.cpp");
/*
* HACK: Sadly, clang doesn't let us emit generic LLVM bitcode.
* Compiling for WASM32 and filtering the output with regex is the closest we can get.
*/
let mut flags: Vec<&str> = vec![
"--target=wasm32",
"-x",
"c++",
"-std=c++20",
"-fno-discard-value-names",
"-fno-exceptions",
"-fno-rtti",
"-emit-llvm",
"-S",
"-Wall",
"-Wextra",
"-o",
"-",
"-I",
irrt_dir.to_str().unwrap(),
irrt_cpp_path.to_str().unwrap(),
];
match env::var("PROFILE").as_deref() {
Ok("debug") => {
flags.push("-O0");
flags.push("-DIRRT_DEBUG_ASSERT");
}
Ok("release") => {
flags.push("-O3");
}
flavor => panic!("Unknown or missing build flavor {flavor:?}"),
}
// Tell Cargo to rerun if any file under `irrt_dir` (recursive) changes
println!("cargo:rerun-if-changed={}", irrt_dir.to_str().unwrap());
// Compile IRRT and capture the LLVM IR output
let output = Command::new("clang-irrt")
.args(flags)
.output()
.inspect(|o| {
assert!(o.status.success(), "{}", std::str::from_utf8(&o.stderr).unwrap());
})
.unwrap();
// https://github.com/rust-lang/regex/issues/244
let output = std::str::from_utf8(&output.stdout).unwrap().replace("\r\n", "\n");
let mut filtered_output = String::with_capacity(output.len());
// Filter out irrelevant IR
//
// Regex:
// - `(?ms:^define.*?\}$)` captures LLVM `define` blocks
// - `(?m:^declare.*?$)` captures LLVM `declare` lines
// - `(?m:^%.+?=\s*type\s*\{.+?\}$)` captures LLVM `type` declarations
// - `(?m:^@.+?=.+$)` captures global constants
let regex_filter = Regex::new(
r"(?ms:^define.*?\}$)|(?m:^declare.*?$)|(?m:^%.+?=\s*type\s*\{.+?\}$)|(?m:^@.+?=.+$)",
)
.unwrap();
for f in regex_filter.captures_iter(&output) {
assert_eq!(f.len(), 1);
filtered_output.push_str(&f[0]);
filtered_output.push('\n');
}
let filtered_output = Regex::new("(#\\d+)|(, *![0-9A-Za-z.]+)|(![0-9A-Za-z.]+)|(!\".*?\")")
.unwrap()
.replace_all(&filtered_output, "");
// For debugging
// Doing `DEBUG_DUMP_IRRT=1 cargo build -p nac3core` dumps the LLVM IR generated
const DEBUG_DUMP_IRRT: &str = "DEBUG_DUMP_IRRT";
println!("cargo:rerun-if-env-changed={DEBUG_DUMP_IRRT}");
if env::var(DEBUG_DUMP_IRRT).is_ok() {
let mut file = File::create(out_dir.join("irrt.ll")).unwrap();
file.write_all(output.as_bytes()).unwrap();
let mut file = File::create(out_dir.join("irrt-filtered.ll")).unwrap();
file.write_all(filtered_output.as_bytes()).unwrap();
}
let mut llvm_as = Command::new("llvm-as-irrt")
.stdin(Stdio::piped())
.arg("-o")
.arg(out_dir.join("irrt.bc"))
.spawn()
.unwrap();
llvm_as.stdin.as_mut().unwrap().write_all(filtered_output.as_bytes()).unwrap();
assert!(llvm_as.wait().unwrap().success());
}

View File

@ -1,5 +0,0 @@
#include "irrt/exception.hpp"
#include "irrt/list.hpp"
#include "irrt/math.hpp"
#include "irrt/ndarray.hpp"
#include "irrt/slice.hpp"

View File

@ -1,9 +0,0 @@
#pragma once
#include "irrt/int_types.hpp"
template<typename SizeT>
struct CSlice {
void* base;
SizeT len;
};

View File

@ -1,25 +0,0 @@
#pragma once
// Set in nac3core/build.rs
#ifdef IRRT_DEBUG_ASSERT
#define IRRT_DEBUG_ASSERT_BOOL true
#else
#define IRRT_DEBUG_ASSERT_BOOL false
#endif
#define raise_debug_assert(SizeT, msg, param1, param2, param3) \
raise_exception(SizeT, EXN_ASSERTION_ERROR, "IRRT debug assert failed: " msg, param1, param2, param3)
#define debug_assert_eq(SizeT, lhs, rhs) \
if constexpr (IRRT_DEBUG_ASSERT_BOOL) { \
if ((lhs) != (rhs)) { \
raise_debug_assert(SizeT, "LHS = {0}. RHS = {1}", lhs, rhs, NO_PARAM); \
} \
}
#define debug_assert(SizeT, expr) \
if constexpr (IRRT_DEBUG_ASSERT_BOOL) { \
if (!(expr)) { \
raise_debug_assert(SizeT, "Got false.", NO_PARAM, NO_PARAM, NO_PARAM); \
} \
}

View File

@ -1,85 +0,0 @@
#pragma once
#include "irrt/cslice.hpp"
#include "irrt/int_types.hpp"
/**
* @brief The int type of ARTIQ exception IDs.
*/
using ExceptionId = int32_t;
/*
* Set of exceptions C++ IRRT can use.
* Must be synchronized with `setup_irrt_exceptions` in `nac3core/src/codegen/irrt/mod.rs`.
*/
extern "C" {
ExceptionId EXN_INDEX_ERROR;
ExceptionId EXN_VALUE_ERROR;
ExceptionId EXN_ASSERTION_ERROR;
ExceptionId EXN_TYPE_ERROR;
}
/**
* @brief Extern function to `__nac3_raise`
*
* The parameter `err` could be `Exception<int32_t>` or `Exception<int64_t>`. The caller
* must make sure to pass `Exception`s with the correct `SizeT` depending on the `size_t` of the runtime.
*/
extern "C" void __nac3_raise(void* err);
namespace {
/**
* @brief NAC3's Exception struct
*/
template<typename SizeT>
struct Exception {
ExceptionId id;
CSlice<SizeT> filename;
int32_t line;
int32_t column;
CSlice<SizeT> function;
CSlice<SizeT> msg;
int64_t params[3];
};
constexpr int64_t NO_PARAM = 0;
template<typename SizeT>
void _raise_exception_helper(ExceptionId id,
const char* filename,
int32_t line,
const char* function,
const char* msg,
int64_t param0,
int64_t param1,
int64_t param2) {
Exception<SizeT> e = {
.id = id,
.filename = {.base = reinterpret_cast<void*>(const_cast<char*>(filename)),
.len = static_cast<SizeT>(__builtin_strlen(filename))},
.line = line,
.column = 0,
.function = {.base = reinterpret_cast<void*>(const_cast<char*>(function)),
.len = static_cast<SizeT>(__builtin_strlen(function))},
.msg = {.base = reinterpret_cast<void*>(const_cast<char*>(msg)),
.len = static_cast<SizeT>(__builtin_strlen(msg))},
};
e.params[0] = param0;
e.params[1] = param1;
e.params[2] = param2;
__nac3_raise(reinterpret_cast<void*>(&e));
__builtin_unreachable();
}
} // namespace
/**
* @brief Raise an exception with location details (location in the IRRT source files).
* @param SizeT The runtime `size_t` type.
* @param id The ID of the exception to raise.
* @param msg A global constant C-string of the error message.
*
* `param0` to `param2` are optional format arguments of `msg`. They should be set to
* `NO_PARAM` to indicate they are unused.
*/
#define raise_exception(SizeT, id, msg, param0, param1, param2) \
_raise_exception_helper<SizeT>(id, __FILE__, __LINE__, __FUNCTION__, msg, param0, param1, param2)

View File

@ -1,27 +0,0 @@
#pragma once
#if __STDC_VERSION__ >= 202000
using int8_t = _BitInt(8);
using uint8_t = unsigned _BitInt(8);
using int32_t = _BitInt(32);
using uint32_t = unsigned _BitInt(32);
using int64_t = _BitInt(64);
using uint64_t = unsigned _BitInt(64);
#else
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wdeprecated-type"
using int8_t = _ExtInt(8);
using uint8_t = unsigned _ExtInt(8);
using int32_t = _ExtInt(32);
using uint32_t = unsigned _ExtInt(32);
using int64_t = _ExtInt(64);
using uint64_t = unsigned _ExtInt(64);
#pragma clang diagnostic pop
#endif
// NDArray indices are always `uint32_t`.
using NDIndex = uint32_t;
// The type of an index or a value describing the length of a range/slice is always `int32_t`.
using SliceIndex = int32_t;

View File

@ -1,81 +0,0 @@
#pragma once
#include "irrt/int_types.hpp"
#include "irrt/math_util.hpp"
extern "C" {
// Handle list assignment and dropping part of the list when
// both dest_step and src_step are +1.
// - All the index must *not* be out-of-bound or negative,
// - The end index is *inclusive*,
// - The length of src and dest slice size should already
// be checked: if dest.step == 1 then len(src) <= len(dest) else len(src) == len(dest)
SliceIndex __nac3_list_slice_assign_var_size(SliceIndex dest_start,
SliceIndex dest_end,
SliceIndex dest_step,
void* dest_arr,
SliceIndex dest_arr_len,
SliceIndex src_start,
SliceIndex src_end,
SliceIndex src_step,
void* src_arr,
SliceIndex src_arr_len,
const SliceIndex size) {
/* if dest_arr_len == 0, do nothing since we do not support extending list */
if (dest_arr_len == 0)
return dest_arr_len;
/* if both step is 1, memmove directly, handle the dropping of the list, and shrink size */
if (src_step == dest_step && dest_step == 1) {
const SliceIndex src_len = (src_end >= src_start) ? (src_end - src_start + 1) : 0;
const SliceIndex dest_len = (dest_end >= dest_start) ? (dest_end - dest_start + 1) : 0;
if (src_len > 0) {
__builtin_memmove(static_cast<uint8_t*>(dest_arr) + dest_start * size,
static_cast<uint8_t*>(src_arr) + src_start * size, src_len * size);
}
if (dest_len > 0) {
/* dropping */
__builtin_memmove(static_cast<uint8_t*>(dest_arr) + (dest_start + src_len) * size,
static_cast<uint8_t*>(dest_arr) + (dest_end + 1) * size,
(dest_arr_len - dest_end - 1) * size);
}
/* shrink size */
return dest_arr_len - (dest_len - src_len);
}
/* if two range overlaps, need alloca */
uint8_t need_alloca = (dest_arr == src_arr)
&& !(max(dest_start, dest_end) < min(src_start, src_end)
|| max(src_start, src_end) < min(dest_start, dest_end));
if (need_alloca) {
void* tmp = __builtin_alloca(src_arr_len * size);
__builtin_memcpy(tmp, src_arr, src_arr_len * size);
src_arr = tmp;
}
SliceIndex src_ind = src_start;
SliceIndex dest_ind = dest_start;
for (; (src_step > 0) ? (src_ind <= src_end) : (src_ind >= src_end); src_ind += src_step, dest_ind += dest_step) {
/* for constant optimization */
if (size == 1) {
__builtin_memcpy(static_cast<uint8_t*>(dest_arr) + dest_ind, static_cast<uint8_t*>(src_arr) + src_ind, 1);
} else if (size == 4) {
__builtin_memcpy(static_cast<uint8_t*>(dest_arr) + dest_ind * 4,
static_cast<uint8_t*>(src_arr) + src_ind * 4, 4);
} else if (size == 8) {
__builtin_memcpy(static_cast<uint8_t*>(dest_arr) + dest_ind * 8,
static_cast<uint8_t*>(src_arr) + src_ind * 8, 8);
} else {
/* memcpy for var size, cannot overlap after previous alloca */
__builtin_memcpy(static_cast<uint8_t*>(dest_arr) + dest_ind * size,
static_cast<uint8_t*>(src_arr) + src_ind * size, size);
}
}
/* only dest_step == 1 can we shrink the dest list. */
/* size should be ensured prior to calling this function */
if (dest_step == 1 && dest_end >= dest_start) {
__builtin_memmove(static_cast<uint8_t*>(dest_arr) + dest_ind * size,
static_cast<uint8_t*>(dest_arr) + (dest_end + 1) * size,
(dest_arr_len - dest_end - 1) * size);
return dest_arr_len - (dest_end - dest_ind) - 1;
}
return dest_arr_len;
}
} // extern "C"

View File

@ -1,93 +0,0 @@
#pragma once
namespace {
// adapted from GNU Scientific Library: https://git.savannah.gnu.org/cgit/gsl.git/tree/sys/pow_int.c
// need to make sure `exp >= 0` before calling this function
template<typename T>
T __nac3_int_exp_impl(T base, T exp) {
T res = 1;
/* repeated squaring method */
do {
if (exp & 1) {
res *= base; /* for n odd */
}
exp >>= 1;
base *= base;
} while (exp);
return res;
}
} // namespace
#define DEF_nac3_int_exp_(T) \
T __nac3_int_exp_##T(T base, T exp) { \
return __nac3_int_exp_impl(base, exp); \
}
extern "C" {
// Putting semicolons here to make clang-format not reformat this into
// a stair shape.
DEF_nac3_int_exp_(int32_t);
DEF_nac3_int_exp_(int64_t);
DEF_nac3_int_exp_(uint32_t);
DEF_nac3_int_exp_(uint64_t);
int32_t __nac3_isinf(double x) {
return __builtin_isinf(x);
}
int32_t __nac3_isnan(double x) {
return __builtin_isnan(x);
}
double tgamma(double arg);
double __nac3_gamma(double z) {
// Handling for denormals
// | x | Python gamma(x) | C tgamma(x) |
// --- | ----------------- | --------------- | ----------- |
// (1) | nan | nan | nan |
// (2) | -inf | -inf | inf |
// (3) | inf | inf | inf |
// (4) | 0.0 | inf | inf |
// (5) | {-1.0, -2.0, ...} | inf | nan |
// (1)-(3)
if (__builtin_isinf(z) || __builtin_isnan(z)) {
return z;
}
double v = tgamma(z);
// (4)-(5)
return __builtin_isinf(v) || __builtin_isnan(v) ? __builtin_inf() : v;
}
double lgamma(double arg);
double __nac3_gammaln(double x) {
// libm's handling of value overflows differs from scipy:
// - scipy: gammaln(-inf) -> -inf
// - libm : lgamma(-inf) -> inf
if (__builtin_isinf(x)) {
return x;
}
return lgamma(x);
}
double j0(double x);
double __nac3_j0(double x) {
// libm's handling of value overflows differs from scipy:
// - scipy: j0(inf) -> nan
// - libm : j0(inf) -> 0.0
if (__builtin_isinf(x)) {
return __builtin_nan("");
}
return j0(x);
}
} // namespace

View File

@ -1,13 +0,0 @@
#pragma once
namespace {
template<typename T>
const T& max(const T& a, const T& b) {
return a > b ? a : b;
}
template<typename T>
const T& min(const T& a, const T& b) {
return a > b ? b : a;
}
} // namespace

View File

@ -1,144 +0,0 @@
#pragma once
#include "irrt/int_types.hpp"
namespace {
template<typename SizeT>
SizeT __nac3_ndarray_calc_size_impl(const SizeT* list_data, SizeT list_len, SizeT begin_idx, SizeT end_idx) {
__builtin_assume(end_idx <= list_len);
SizeT num_elems = 1;
for (SizeT i = begin_idx; i < end_idx; ++i) {
SizeT val = list_data[i];
__builtin_assume(val > 0);
num_elems *= val;
}
return num_elems;
}
template<typename SizeT>
void __nac3_ndarray_calc_nd_indices_impl(SizeT index, const SizeT* dims, SizeT num_dims, NDIndex* idxs) {
SizeT stride = 1;
for (SizeT dim = 0; dim < num_dims; dim++) {
SizeT i = num_dims - dim - 1;
__builtin_assume(dims[i] > 0);
idxs[i] = (index / stride) % dims[i];
stride *= dims[i];
}
}
template<typename SizeT>
SizeT __nac3_ndarray_flatten_index_impl(const SizeT* dims, SizeT num_dims, const NDIndex* indices, SizeT num_indices) {
SizeT idx = 0;
SizeT stride = 1;
for (SizeT i = 0; i < num_dims; ++i) {
SizeT ri = num_dims - i - 1;
if (ri < num_indices) {
idx += stride * indices[ri];
}
__builtin_assume(dims[i] > 0);
stride *= dims[ri];
}
return idx;
}
template<typename SizeT>
void __nac3_ndarray_calc_broadcast_impl(const SizeT* lhs_dims,
SizeT lhs_ndims,
const SizeT* rhs_dims,
SizeT rhs_ndims,
SizeT* out_dims) {
SizeT max_ndims = lhs_ndims > rhs_ndims ? lhs_ndims : rhs_ndims;
for (SizeT i = 0; i < max_ndims; ++i) {
const SizeT* lhs_dim_sz = i < lhs_ndims ? &lhs_dims[lhs_ndims - i - 1] : nullptr;
const SizeT* rhs_dim_sz = i < rhs_ndims ? &rhs_dims[rhs_ndims - i - 1] : nullptr;
SizeT* out_dim = &out_dims[max_ndims - i - 1];
if (lhs_dim_sz == nullptr) {
*out_dim = *rhs_dim_sz;
} else if (rhs_dim_sz == nullptr) {
*out_dim = *lhs_dim_sz;
} else if (*lhs_dim_sz == 1) {
*out_dim = *rhs_dim_sz;
} else if (*rhs_dim_sz == 1) {
*out_dim = *lhs_dim_sz;
} else if (*lhs_dim_sz == *rhs_dim_sz) {
*out_dim = *lhs_dim_sz;
} else {
__builtin_unreachable();
}
}
}
template<typename SizeT>
void __nac3_ndarray_calc_broadcast_idx_impl(const SizeT* src_dims,
SizeT src_ndims,
const NDIndex* in_idx,
NDIndex* out_idx) {
for (SizeT i = 0; i < src_ndims; ++i) {
SizeT src_i = src_ndims - i - 1;
out_idx[src_i] = src_dims[src_i] == 1 ? 0 : in_idx[src_i];
}
}
} // namespace
extern "C" {
uint32_t __nac3_ndarray_calc_size(const uint32_t* list_data, uint32_t list_len, uint32_t begin_idx, uint32_t end_idx) {
return __nac3_ndarray_calc_size_impl(list_data, list_len, begin_idx, end_idx);
}
uint64_t
__nac3_ndarray_calc_size64(const uint64_t* list_data, uint64_t list_len, uint64_t begin_idx, uint64_t end_idx) {
return __nac3_ndarray_calc_size_impl(list_data, list_len, begin_idx, end_idx);
}
void __nac3_ndarray_calc_nd_indices(uint32_t index, const uint32_t* dims, uint32_t num_dims, NDIndex* idxs) {
__nac3_ndarray_calc_nd_indices_impl(index, dims, num_dims, idxs);
}
void __nac3_ndarray_calc_nd_indices64(uint64_t index, const uint64_t* dims, uint64_t num_dims, NDIndex* idxs) {
__nac3_ndarray_calc_nd_indices_impl(index, dims, num_dims, idxs);
}
uint32_t
__nac3_ndarray_flatten_index(const uint32_t* dims, uint32_t num_dims, const NDIndex* indices, uint32_t num_indices) {
return __nac3_ndarray_flatten_index_impl(dims, num_dims, indices, num_indices);
}
uint64_t
__nac3_ndarray_flatten_index64(const uint64_t* dims, uint64_t num_dims, const NDIndex* indices, uint64_t num_indices) {
return __nac3_ndarray_flatten_index_impl(dims, num_dims, indices, num_indices);
}
void __nac3_ndarray_calc_broadcast(const uint32_t* lhs_dims,
uint32_t lhs_ndims,
const uint32_t* rhs_dims,
uint32_t rhs_ndims,
uint32_t* out_dims) {
return __nac3_ndarray_calc_broadcast_impl(lhs_dims, lhs_ndims, rhs_dims, rhs_ndims, out_dims);
}
void __nac3_ndarray_calc_broadcast64(const uint64_t* lhs_dims,
uint64_t lhs_ndims,
const uint64_t* rhs_dims,
uint64_t rhs_ndims,
uint64_t* out_dims) {
return __nac3_ndarray_calc_broadcast_impl(lhs_dims, lhs_ndims, rhs_dims, rhs_ndims, out_dims);
}
void __nac3_ndarray_calc_broadcast_idx(const uint32_t* src_dims,
uint32_t src_ndims,
const NDIndex* in_idx,
NDIndex* out_idx) {
__nac3_ndarray_calc_broadcast_idx_impl(src_dims, src_ndims, in_idx, out_idx);
}
void __nac3_ndarray_calc_broadcast_idx64(const uint64_t* src_dims,
uint64_t src_ndims,
const NDIndex* in_idx,
NDIndex* out_idx) {
__nac3_ndarray_calc_broadcast_idx_impl(src_dims, src_ndims, in_idx, out_idx);
}
} // namespace

View File

@ -1,28 +0,0 @@
#pragma once
#include "irrt/int_types.hpp"
extern "C" {
SliceIndex __nac3_slice_index_bound(SliceIndex i, const SliceIndex len) {
if (i < 0) {
i = len + i;
}
if (i < 0) {
return 0;
} else if (i > len) {
return len;
}
return i;
}
SliceIndex __nac3_range_slice_len(const SliceIndex start, const SliceIndex end, const SliceIndex step) {
SliceIndex diff = end - start;
if (diff > 0 && step > 0) {
return ((diff - 1) / step) + 1;
} else if (diff < 0 && step < 0) {
return ((diff + 1) / step) + 1;
} else {
return 0;
}
}
} // namespace

View File

@ -1,21 +0,0 @@
[package]
name = "nac3core_derive"
version = "0.1.0"
edition = "2021"
[lib]
proc-macro = true
[[test]]
name = "structfields_tests"
path = "tests/structfields_test.rs"
[dev-dependencies]
nac3core = { path = ".." }
trybuild = { version = "1.0", features = ["diff"] }
[dependencies]
proc-macro2 = "1.0"
proc-macro-error = "1.0"
syn = "2.0"
quote = "1.0"

View File

@ -1,320 +0,0 @@
use proc_macro::TokenStream;
use proc_macro_error::{abort, proc_macro_error};
use quote::quote;
use syn::{
parse_macro_input, spanned::Spanned, Data, DataStruct, Expr, ExprField, ExprMethodCall,
ExprPath, GenericArgument, Ident, LitStr, Path, PathArguments, Type, TypePath,
};
/// Extracts all generic arguments of a [`Type`] into a [`Vec`].
///
/// Returns [`Some`] of a possibly-empty [`Vec`] if the path of `ty` matches with
/// `expected_ty_name`, otherwise returns [`None`].
fn extract_generic_args(expected_ty_name: &'static str, ty: &Type) -> Option<Vec<GenericArgument>> {
let Type::Path(TypePath { qself: None, path, .. }) = ty else {
return None;
};
let segments = &path.segments;
if segments.len() != 1 {
return None;
};
let segment = segments.iter().next().unwrap();
if segment.ident != expected_ty_name {
return None;
}
let PathArguments::AngleBracketed(path_args) = &segment.arguments else {
return Some(Vec::new());
};
let args = &path_args.args;
Some(args.iter().cloned().collect::<Vec<_>>())
}
/// Maps a `path` matching one of the `target_idents` into the `replacement` [`Ident`].
fn map_path_to_ident(path: &Path, target_idents: &[&str], replacement: &str) -> Option<Ident> {
path.require_ident()
.ok()
.filter(|ident| target_idents.iter().any(|target| ident == target))
.map(|ident| Ident::new(replacement, ident.span()))
}
/// Extracts the left-hand side of a dot-expression.
fn extract_dot_operand(expr: &Expr) -> Option<&Expr> {
match expr {
Expr::MethodCall(ExprMethodCall { receiver: operand, .. })
| Expr::Field(ExprField { base: operand, .. }) => Some(operand),
_ => None,
}
}
/// Replaces the top-level receiver of a dot-expression with an [`Ident`], returning `Some(&mut expr)` if the
/// replacement is performed.
///
/// The top-level receiver is the left-most receiver expression, e.g. the top-level receiver of `a.b.c.foo()` is `a`.
fn replace_top_level_receiver(expr: &mut Expr, ident: Ident) -> Option<&mut Expr> {
if let Expr::MethodCall(ExprMethodCall { receiver: operand, .. })
| Expr::Field(ExprField { base: operand, .. }) = expr
{
return if extract_dot_operand(operand).is_some() {
if replace_top_level_receiver(operand, ident).is_some() {
Some(expr)
} else {
None
}
} else {
*operand = Box::new(Expr::Path(ExprPath {
attrs: Vec::default(),
qself: None,
path: ident.into(),
}));
Some(expr)
};
}
None
}
/// Iterates all operands to the left-hand side of the `.` of an [expression][`Expr`], i.e. the container operand of all
/// [`Expr::Field`] and the receiver operand of all [`Expr::MethodCall`].
///
/// The iterator will return the operand expressions in reverse order of appearance. For example, `a.b.c.func()` will
/// return `vec![c, b, a]`.
fn iter_dot_operands(expr: &Expr) -> impl Iterator<Item = &Expr> {
let mut o = extract_dot_operand(expr);
std::iter::from_fn(move || {
let this = o;
o = o.as_ref().and_then(|o| extract_dot_operand(o));
this
})
}
/// Normalizes a value expression for use when creating an instance of this structure, returning a
/// [`proc_macro2::TokenStream`] of tokens representing the normalized expression.
fn normalize_value_expr(expr: &Expr) -> proc_macro2::TokenStream {
match &expr {
Expr::Path(ExprPath { qself: None, path, .. }) => {
if let Some(ident) = map_path_to_ident(path, &["usize", "size_t"], "llvm_usize") {
quote! { #ident }
} else {
abort!(
path,
format!(
"Expected one of `size_t`, `usize`, or an implicit call expression in #[value_type(...)], found {}",
quote!(#expr).to_string(),
)
)
}
}
Expr::Call(_) => {
quote! { ctx.#expr }
}
Expr::MethodCall(_) => {
let base_receiver = iter_dot_operands(expr).last();
match base_receiver {
// `usize.{...}`, `size_t.{...}` -> Rewrite the identifiers to `llvm_usize`
Some(Expr::Path(ExprPath { qself: None, path, .. }))
if map_path_to_ident(path, &["usize", "size_t"], "llvm_usize").is_some() =>
{
let ident =
map_path_to_ident(path, &["usize", "size_t"], "llvm_usize").unwrap();
let mut expr = expr.clone();
let expr = replace_top_level_receiver(&mut expr, ident).unwrap();
quote!(#expr)
}
// `ctx.{...}`, `context.{...}` -> Rewrite the identifiers to `ctx`
Some(Expr::Path(ExprPath { qself: None, path, .. }))
if map_path_to_ident(path, &["ctx", "context"], "ctx").is_some() =>
{
let ident = map_path_to_ident(path, &["ctx", "context"], "ctx").unwrap();
let mut expr = expr.clone();
let expr = replace_top_level_receiver(&mut expr, ident).unwrap();
quote!(#expr)
}
// No reserved identifier prefix -> Prepend `ctx.` to the entire expression
_ => quote! { ctx.#expr },
}
}
_ => {
abort!(
expr,
format!(
"Expected one of `size_t`, `usize`, or an implicit call expression in #[value_type(...)], found {}",
quote!(#expr).to_string(),
)
)
}
}
}
/// Derives an implementation of `codegen::types::structure::StructFields`.
///
/// The benefit of using `#[derive(StructFields)]` is that all index- or order-dependent logic required by
/// `impl StructFields` is automatically generated by this implementation, including the field index as required by
/// `StructField::new` and the fields as returned by `StructFields::to_vec`.
///
/// # Prerequisites
///
/// In order to derive from [`StructFields`], you must implement (or derive) [`Eq`] and [`Copy`] as required by
/// `StructFields`.
///
/// Moreover, `#[derive(StructFields)]` can only be used for `struct`s with named fields, and may only contain fields
/// with either `StructField` or [`PhantomData`] types.
///
/// # Attributes for [`StructFields`]
///
/// Each `StructField` field must be declared with the `#[value_type(...)]` attribute. The argument of `value_type`
/// accepts one of the following:
///
/// - An expression returning an instance of `inkwell::types::BasicType` (with or without the receiver `ctx`/`context`).
/// For example, `context.i8_type()`, `ctx.i8_type()`, and `i8_type()` all refer to `i8`.
/// - The reserved identifiers `usize` and `size_t` referring to an `inkwell::types::IntType` of the platform-dependent
/// integer size. `usize` and `size_t` can also be used as the receiver to other method calls, e.g.
/// `usize.array_type(3)`.
///
/// # Example
///
/// The following is an example of an LLVM slice implemented using `#[derive(StructFields)]`.
///
/// ```rust,ignore
/// use nac3core::{
/// codegen::types::structure::StructField,
/// inkwell::{
/// values::{IntValue, PointerValue},
/// AddressSpace,
/// },
/// };
/// use nac3core_derive::StructFields;
///
/// // All classes that implement StructFields must also implement Eq and Copy
/// #[derive(PartialEq, Eq, Clone, Copy, StructFields)]
/// pub struct SliceValue<'ctx> {
/// // Declares ptr have a value type of i8*
/// //
/// // Can also be written as `ctx.i8_type().ptr_type(...)` or `context.i8_type().ptr_type(...)`
/// #[value_type(i8_type().ptr_type(AddressSpace::default()))]
/// ptr: StructField<'ctx, PointerValue<'ctx>>,
///
/// // Declares len have a value type of usize, depending on the target compilation platform
/// #[value_type(usize)]
/// len: StructField<'ctx, IntValue<'ctx>>,
/// }
/// ```
#[proc_macro_derive(StructFields, attributes(value_type))]
#[proc_macro_error]
pub fn derive(input: TokenStream) -> TokenStream {
let input = parse_macro_input!(input as syn::DeriveInput);
let ident = &input.ident;
let Data::Struct(DataStruct { fields, .. }) = &input.data else {
abort!(input, "Only structs with named fields are supported");
};
if let Err(err_span) =
fields
.iter()
.try_for_each(|field| if field.ident.is_some() { Ok(()) } else { Err(field.span()) })
{
abort!(err_span, "Only structs with named fields are supported");
};
// Check if struct<'ctx>
if input.generics.params.len() != 1 {
abort!(input.generics, "Expected exactly 1 generic parameter")
}
let phantom_info = fields
.iter()
.filter(|field| extract_generic_args("PhantomData", &field.ty).is_some())
.map(|field| field.ident.as_ref().unwrap())
.cloned()
.collect::<Vec<_>>();
let field_info = fields
.iter()
.filter(|field| extract_generic_args("PhantomData", &field.ty).is_none())
.map(|field| {
let ident = field.ident.as_ref().unwrap();
let ty = &field.ty;
let Some(_) = extract_generic_args("StructField", ty) else {
abort!(field, "Only StructField and PhantomData are allowed")
};
let attrs = &field.attrs;
let Some(value_type_attr) =
attrs.iter().find(|attr| attr.path().is_ident("value_type"))
else {
abort!(field, "Expected #[value_type(...)] attribute for field");
};
let Ok(value_type_expr) = value_type_attr.parse_args::<Expr>() else {
abort!(value_type_attr, "Expected expression in #[value_type(...)]");
};
let value_expr_toks = normalize_value_expr(&value_type_expr);
(ident.clone(), value_expr_toks)
})
.collect::<Vec<_>>();
// `<*>::new` impl of `StructField` and `PhantomData` for `StructFields::new`
let phantoms_create = phantom_info
.iter()
.map(|id| quote! { #id: ::std::marker::PhantomData })
.collect::<Vec<_>>();
let fields_create = field_info
.iter()
.map(|(id, ty)| {
let id_lit = LitStr::new(&id.to_string(), id.span());
quote! {
#id: ::nac3core::codegen::types::structure::StructField::create(
&mut counter,
#id_lit,
#ty,
)
}
})
.collect::<Vec<_>>();
// `.into()` impl of `StructField` for `StructFields::to_vec`
let fields_into =
field_info.iter().map(|(id, _)| quote! { self.#id.into() }).collect::<Vec<_>>();
let impl_block = quote! {
impl<'ctx> ::nac3core::codegen::types::structure::StructFields<'ctx> for #ident<'ctx> {
fn new(ctx: impl ::nac3core::inkwell::context::AsContextRef<'ctx>, llvm_usize: ::nac3core::inkwell::types::IntType<'ctx>) -> Self {
let ctx = unsafe { ::nac3core::inkwell::context::ContextRef::new(ctx.as_ctx_ref()) };
let mut counter = ::nac3core::codegen::types::structure::FieldIndexCounter::default();
#ident {
#(#fields_create),*
#(#phantoms_create),*
}
}
fn to_vec(&self) -> ::std::vec::Vec<(&'static str, ::nac3core::inkwell::types::BasicTypeEnum<'ctx>)> {
vec![
#(#fields_into),*
]
}
}
};
impl_block.into()
}

View File

@ -1,9 +0,0 @@
use nac3core_derive::StructFields;
use std::marker::PhantomData;
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
pub struct EmptyValue<'ctx> {
_phantom: PhantomData<&'ctx ()>,
}
fn main() {}

View File

@ -1,20 +0,0 @@
use nac3core::{
codegen::types::structure::StructField,
inkwell::{
values::{IntValue, PointerValue},
AddressSpace,
},
};
use nac3core_derive::StructFields;
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
pub struct NDArrayValue<'ctx> {
#[value_type(usize)]
ndims: StructField<'ctx, IntValue<'ctx>>,
#[value_type(usize.ptr_type(AddressSpace::default()))]
shape: StructField<'ctx, PointerValue<'ctx>>,
#[value_type(i8_type().ptr_type(AddressSpace::default()))]
data: StructField<'ctx, PointerValue<'ctx>>,
}
fn main() {}

View File

@ -1,18 +0,0 @@
use nac3core::{
codegen::types::structure::StructField,
inkwell::{
values::{IntValue, PointerValue},
AddressSpace,
},
};
use nac3core_derive::StructFields;
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
pub struct SliceValue<'ctx> {
#[value_type(i8_type().ptr_type(AddressSpace::default()))]
ptr: StructField<'ctx, PointerValue<'ctx>>,
#[value_type(usize)]
len: StructField<'ctx, IntValue<'ctx>>,
}
fn main() {}

View File

@ -1,18 +0,0 @@
use nac3core::{
codegen::types::structure::StructField,
inkwell::{
values::{IntValue, PointerValue},
AddressSpace,
},
};
use nac3core_derive::StructFields;
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
pub struct SliceValue<'ctx> {
#[value_type(context.i8_type().ptr_type(AddressSpace::default()))]
ptr: StructField<'ctx, PointerValue<'ctx>>,
#[value_type(usize)]
len: StructField<'ctx, IntValue<'ctx>>,
}
fn main() {}

View File

@ -1,18 +0,0 @@
use nac3core::{
codegen::types::structure::StructField,
inkwell::{
values::{IntValue, PointerValue},
AddressSpace,
},
};
use nac3core_derive::StructFields;
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
pub struct SliceValue<'ctx> {
#[value_type(ctx.i8_type().ptr_type(AddressSpace::default()))]
ptr: StructField<'ctx, PointerValue<'ctx>>,
#[value_type(usize)]
len: StructField<'ctx, IntValue<'ctx>>,
}
fn main() {}

View File

@ -1,18 +0,0 @@
use nac3core::{
codegen::types::structure::StructField,
inkwell::{
values::{IntValue, PointerValue},
AddressSpace,
},
};
use nac3core_derive::StructFields;
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
pub struct SliceValue<'ctx> {
#[value_type(i8_type().ptr_type(AddressSpace::default()))]
ptr: StructField<'ctx, PointerValue<'ctx>>,
#[value_type(size_t)]
len: StructField<'ctx, IntValue<'ctx>>,
}
fn main() {}

View File

@ -1,10 +0,0 @@
#[test]
fn test_parse_empty() {
let t = trybuild::TestCases::new();
t.pass("tests/structfields_empty.rs");
t.pass("tests/structfields_slice.rs");
t.pass("tests/structfields_slice_ctx.rs");
t.pass("tests/structfields_slice_context.rs");
t.pass("tests/structfields_slice_sizet.rs");
t.pass("tests/structfields_ndarray.rs");
}

1
nac3core/rustfmt.toml Normal file
View File

@ -0,0 +1 @@
use_small_heuristics = "Max"

File diff suppressed because it is too large Load Diff

View File

@ -1,20 +1,15 @@
use std::collections::HashMap;
use indexmap::IndexMap;
use nac3parser::ast::StrRef;
use crate::{ use crate::{
symbol_resolver::SymbolValue, symbol_resolver::SymbolValue,
toplevel::DefinitionId, toplevel::DefinitionId,
typecheck::{ typecheck::{
type_inferencer::PrimitiveStore, type_inferencer::PrimitiveStore,
typedef::{ typedef::{FunSignature, FuncArg, Type, TypeEnum, Unifier},
into_var_map, FunSignature, FuncArg, Type, TypeEnum, TypeVar, TypeVarId, Unifier,
},
}, },
}; };
use nac3parser::ast::StrRef;
use std::collections::HashMap;
pub struct ConcreteTypeStore { pub struct ConcreteTypeStore {
store: Vec<ConcreteTypeEnum>, store: Vec<ConcreteTypeEnum>,
} }
@ -27,21 +22,15 @@ pub struct ConcreteFuncArg {
pub name: StrRef, pub name: StrRef,
pub ty: ConcreteType, pub ty: ConcreteType,
pub default_value: Option<SymbolValue>, pub default_value: Option<SymbolValue>,
pub is_vararg: bool,
} }
#[derive(Clone, Debug)] #[derive(Clone, Debug)]
pub enum Primitive { pub enum Primitive {
Int32, Int32,
Int64, Int64,
UInt32,
UInt64,
Float, Float,
Bool, Bool,
None, None,
Range,
Str,
Exception,
} }
#[derive(Debug)] #[derive(Debug)]
@ -49,12 +38,14 @@ pub enum ConcreteTypeEnum {
TPrimitive(Primitive), TPrimitive(Primitive),
TTuple { TTuple {
ty: Vec<ConcreteType>, ty: Vec<ConcreteType>,
is_vararg_ctx: bool, },
TList {
ty: ConcreteType,
}, },
TObj { TObj {
obj_id: DefinitionId, obj_id: DefinitionId,
fields: HashMap<StrRef, (ConcreteType, bool)>, fields: HashMap<StrRef, (ConcreteType, bool)>,
params: IndexMap<TypeVarId, ConcreteType>, params: HashMap<u32, ConcreteType>,
}, },
TVirtual { TVirtual {
ty: ConcreteType, ty: ConcreteType,
@ -62,15 +53,11 @@ pub enum ConcreteTypeEnum {
TFunc { TFunc {
args: Vec<ConcreteFuncArg>, args: Vec<ConcreteFuncArg>,
ret: ConcreteType, ret: ConcreteType,
vars: HashMap<TypeVarId, ConcreteType>, vars: HashMap<u32, ConcreteType>,
},
TLiteral {
values: Vec<SymbolValue>,
}, },
} }
impl ConcreteTypeStore { impl ConcreteTypeStore {
#[must_use]
pub fn new() -> ConcreteTypeStore { pub fn new() -> ConcreteTypeStore {
ConcreteTypeStore { ConcreteTypeStore {
store: vec![ store: vec![
@ -79,16 +66,10 @@ impl ConcreteTypeStore {
ConcreteTypeEnum::TPrimitive(Primitive::Float), ConcreteTypeEnum::TPrimitive(Primitive::Float),
ConcreteTypeEnum::TPrimitive(Primitive::Bool), ConcreteTypeEnum::TPrimitive(Primitive::Bool),
ConcreteTypeEnum::TPrimitive(Primitive::None), ConcreteTypeEnum::TPrimitive(Primitive::None),
ConcreteTypeEnum::TPrimitive(Primitive::Range),
ConcreteTypeEnum::TPrimitive(Primitive::Str),
ConcreteTypeEnum::TPrimitive(Primitive::Exception),
ConcreteTypeEnum::TPrimitive(Primitive::UInt32),
ConcreteTypeEnum::TPrimitive(Primitive::UInt64),
], ],
} }
} }
#[must_use]
pub fn get(&self, cty: ConcreteType) -> &ConcreteTypeEnum { pub fn get(&self, cty: ConcreteType) -> &ConcreteTypeEnum {
&self.store[cty.0] &self.store[cty.0]
} }
@ -106,16 +87,8 @@ impl ConcreteTypeStore {
.iter() .iter()
.map(|arg| ConcreteFuncArg { .map(|arg| ConcreteFuncArg {
name: arg.name, name: arg.name,
ty: if arg.is_vararg { ty: self.from_unifier_type(unifier, primitives, arg.ty, cache),
let tuple_ty = unifier
.add_ty(TypeEnum::TTuple { ty: vec![arg.ty], is_vararg_ctx: true });
self.from_unifier_type(unifier, primitives, tuple_ty, cache)
} else {
self.from_unifier_type(unifier, primitives, arg.ty, cache)
},
default_value: arg.default_value.clone(), default_value: arg.default_value.clone(),
is_vararg: arg.is_vararg,
}) })
.collect(), .collect(),
ret: self.from_unifier_type(unifier, primitives, signature.ret, cache), ret: self.from_unifier_type(unifier, primitives, signature.ret, cache),
@ -145,16 +118,6 @@ impl ConcreteTypeStore {
ConcreteType(3) ConcreteType(3)
} else if unifier.unioned(ty, primitives.none) { } else if unifier.unioned(ty, primitives.none) {
ConcreteType(4) ConcreteType(4)
} else if unifier.unioned(ty, primitives.range) {
ConcreteType(5)
} else if unifier.unioned(ty, primitives.str) {
ConcreteType(6)
} else if unifier.unioned(ty, primitives.exception) {
ConcreteType(7)
} else if unifier.unioned(ty, primitives.uint32) {
ConcreteType(8)
} else if unifier.unioned(ty, primitives.uint64) {
ConcreteType(9)
} else if let Some(cty) = cache.get(&ty) { } else if let Some(cty) = cache.get(&ty) {
if let Some(cty) = cty { if let Some(cty) = cty {
*cty *cty
@ -170,16 +133,19 @@ impl ConcreteTypeStore {
cache.insert(ty, None); cache.insert(ty, None);
let ty_enum = unifier.get_ty(ty); let ty_enum = unifier.get_ty(ty);
let result = match &*ty_enum { let result = match &*ty_enum {
TypeEnum::TTuple { ty, is_vararg_ctx } => ConcreteTypeEnum::TTuple { TypeEnum::TTuple { ty } => ConcreteTypeEnum::TTuple {
ty: ty ty: ty
.iter() .iter()
.map(|t| self.from_unifier_type(unifier, primitives, *t, cache)) .map(|t| self.from_unifier_type(unifier, primitives, *t, cache))
.collect(), .collect(),
is_vararg_ctx: *is_vararg_ctx, },
TypeEnum::TList { ty } => ConcreteTypeEnum::TList {
ty: self.from_unifier_type(unifier, primitives, *ty, cache),
}, },
TypeEnum::TObj { obj_id, fields, params } => ConcreteTypeEnum::TObj { TypeEnum::TObj { obj_id, fields, params } => ConcreteTypeEnum::TObj {
obj_id: *obj_id, obj_id: *obj_id,
fields: fields fields: fields
.borrow()
.iter() .iter()
.filter_map(|(name, ty)| { .filter_map(|(name, ty)| {
// here we should not have type vars, but some partial instantiated // here we should not have type vars, but some partial instantiated
@ -188,17 +154,12 @@ impl ConcreteTypeStore {
if let TypeEnum::TFunc( .. ) = &*unifier.get_ty(ty.0) { if let TypeEnum::TFunc( .. ) = &*unifier.get_ty(ty.0) {
None None
} else { } else {
Some(( Some((*name, (self.from_unifier_type(unifier, primitives, ty.0, cache), ty.1)))
*name,
(
self.from_unifier_type(unifier, primitives, ty.0, cache),
ty.1,
),
))
} }
}) })
.collect(), .collect(),
params: params params: params
.borrow()
.iter() .iter()
.map(|(id, ty)| { .map(|(id, ty)| {
(*id, self.from_unifier_type(unifier, primitives, *ty, cache)) (*id, self.from_unifier_type(unifier, primitives, *ty, cache))
@ -209,12 +170,10 @@ impl ConcreteTypeStore {
ty: self.from_unifier_type(unifier, primitives, *ty, cache), ty: self.from_unifier_type(unifier, primitives, *ty, cache),
}, },
TypeEnum::TFunc(signature) => { TypeEnum::TFunc(signature) => {
self.from_signature(unifier, primitives, signature, cache) let signature = signature.borrow();
self.from_signature(unifier, primitives, &*signature, cache)
} }
TypeEnum::TLiteral { values, .. } => { _ => unreachable!(),
ConcreteTypeEnum::TLiteral { values: values.clone() }
}
_ => unreachable!("{:?}", ty_enum.get_type_name()),
}; };
let index = if let Some(ConcreteType(index)) = cache.get(&ty).unwrap() { let index = if let Some(ConcreteType(index)) = cache.get(&ty).unwrap() {
self.store[*index] = result; self.store[*index] = result;
@ -239,7 +198,7 @@ impl ConcreteTypeStore {
return if let Some(ty) = ty { return if let Some(ty) = ty {
*ty *ty
} else { } else {
*ty = Some(unifier.get_dummy_var().ty); *ty = Some(unifier.get_fresh_var().0);
ty.unwrap() ty.unwrap()
}; };
} }
@ -249,25 +208,22 @@ impl ConcreteTypeStore {
let ty = match primitive { let ty = match primitive {
Primitive::Int32 => primitives.int32, Primitive::Int32 => primitives.int32,
Primitive::Int64 => primitives.int64, Primitive::Int64 => primitives.int64,
Primitive::UInt32 => primitives.uint32,
Primitive::UInt64 => primitives.uint64,
Primitive::Float => primitives.float, Primitive::Float => primitives.float,
Primitive::Bool => primitives.bool, Primitive::Bool => primitives.bool,
Primitive::None => primitives.none, Primitive::None => primitives.none,
Primitive::Range => primitives.range,
Primitive::Str => primitives.str,
Primitive::Exception => primitives.exception,
}; };
*cache.get_mut(&cty).unwrap() = Some(ty); *cache.get_mut(&cty).unwrap() = Some(ty);
return ty; return ty;
} }
ConcreteTypeEnum::TTuple { ty, is_vararg_ctx } => TypeEnum::TTuple { ConcreteTypeEnum::TTuple { ty } => TypeEnum::TTuple {
ty: ty ty: ty
.iter() .iter()
.map(|cty| self.to_unifier_type(unifier, primitives, *cty, cache)) .map(|cty| self.to_unifier_type(unifier, primitives, *cty, cache))
.collect(), .collect(),
is_vararg_ctx: *is_vararg_ctx,
}, },
ConcreteTypeEnum::TList { ty } => {
TypeEnum::TList { ty: self.to_unifier_type(unifier, primitives, *ty, cache) }
}
ConcreteTypeEnum::TVirtual { ty } => { ConcreteTypeEnum::TVirtual { ty } => {
TypeEnum::TVirtual { ty: self.to_unifier_type(unifier, primitives, *ty, cache) } TypeEnum::TVirtual { ty: self.to_unifier_type(unifier, primitives, *ty, cache) }
} }
@ -278,31 +234,34 @@ impl ConcreteTypeStore {
.map(|(name, cty)| { .map(|(name, cty)| {
(*name, (self.to_unifier_type(unifier, primitives, cty.0, cache), cty.1)) (*name, (self.to_unifier_type(unifier, primitives, cty.0, cache), cty.1))
}) })
.collect::<HashMap<_, _>>(), .collect::<HashMap<_, _>>()
params: into_var_map(params.iter().map(|(&id, cty)| { .into(),
let ty = self.to_unifier_type(unifier, primitives, *cty, cache); params: params
TypeVar { id, ty } .iter()
})), .map(|(id, cty)| (*id, self.to_unifier_type(unifier, primitives, *cty, cache)))
.collect::<HashMap<_, _>>()
.into(),
}, },
ConcreteTypeEnum::TFunc { args, ret, vars } => TypeEnum::TFunc(FunSignature { ConcreteTypeEnum::TFunc { args, ret, vars } => TypeEnum::TFunc(
FunSignature {
args: args args: args
.iter() .iter()
.map(|arg| FuncArg { .map(|arg| FuncArg {
name: arg.name, name: arg.name,
ty: self.to_unifier_type(unifier, primitives, arg.ty, cache), ty: self.to_unifier_type(unifier, primitives, arg.ty, cache),
default_value: arg.default_value.clone(), default_value: arg.default_value.clone(),
is_vararg: false,
}) })
.collect(), .collect(),
ret: self.to_unifier_type(unifier, primitives, *ret, cache), ret: self.to_unifier_type(unifier, primitives, *ret, cache),
vars: into_var_map(vars.iter().map(|(&id, cty)| { vars: vars
let ty = self.to_unifier_type(unifier, primitives, *cty, cache); .iter()
TypeVar { id, ty } .map(|(id, cty)| {
})), (*id, self.to_unifier_type(unifier, primitives, *cty, cache))
}), })
ConcreteTypeEnum::TLiteral { values, .. } => { .collect::<HashMap<_, _>>(),
TypeEnum::TLiteral { values: values.clone(), loc: None }
} }
.into(),
),
}; };
let result = unifier.add_ty(result); let result = unifier.add_ty(result);
if let Some(ty) = cache.get(&cty).unwrap() { if let Some(ty) = cache.get(&cty).unwrap() {

File diff suppressed because it is too large Load Diff

View File

@ -1,193 +0,0 @@
use inkwell::{
attributes::{Attribute, AttributeLoc},
values::{BasicValueEnum, CallSiteValue, FloatValue, IntValue},
};
use itertools::Either;
use super::CodeGenContext;
/// Macro to generate extern function
/// Both function return type and function parameter type are `FloatValue`
///
/// Arguments:
/// * `unary/binary`: Whether the extern function requires one (unary) or two (binary) operands
/// * `$fn_name:ident`: The identifier of the rust function to be generated
/// * `$extern_fn:literal`: Name of underlying extern function
///
/// Optional Arguments:
/// * `$(,$attributes:literal)*)`: Attributes linked with the extern function.
/// The default attributes are "mustprogress", "nofree", "nounwind", "willreturn", and "writeonly".
/// These will be used unless other attributes are specified
/// * `$(,$args:ident)*`: Operands of the extern function
/// The data type of these operands will be set to `FloatValue`
///
macro_rules! generate_extern_fn {
("unary", $fn_name:ident, $extern_fn:literal) => {
generate_extern_fn!($fn_name, $extern_fn, arg, "mustprogress", "nofree", "nounwind", "willreturn", "writeonly");
};
("unary", $fn_name:ident, $extern_fn:literal $(,$attributes:literal)*) => {
generate_extern_fn!($fn_name, $extern_fn, arg $(,$attributes)*);
};
("binary", $fn_name:ident, $extern_fn:literal) => {
generate_extern_fn!($fn_name, $extern_fn, arg1, arg2, "mustprogress", "nofree", "nounwind", "willreturn", "writeonly");
};
("binary", $fn_name:ident, $extern_fn:literal $(,$attributes:literal)*) => {
generate_extern_fn!($fn_name, $extern_fn, arg1, arg2 $(,$attributes)*);
};
($fn_name:ident, $extern_fn:literal $(,$args:ident)* $(,$attributes:literal)*) => {
#[doc = concat!("Invokes the [`", stringify!($extern_fn), "`](https://en.cppreference.com/w/c/numeric/math/", stringify!($llvm_name), ") function." )]
pub fn $fn_name<'ctx>(
ctx: &CodeGenContext<'ctx, '_>
$(,$args: FloatValue<'ctx>)*,
name: Option<&str>,
) -> FloatValue<'ctx> {
const FN_NAME: &str = $extern_fn;
let llvm_f64 = ctx.ctx.f64_type();
$(debug_assert_eq!($args.get_type(), llvm_f64);)*
let extern_fn = ctx.module.get_function(FN_NAME).unwrap_or_else(|| {
let fn_type = llvm_f64.fn_type(&[$($args.get_type().into()),*], false);
let func = ctx.module.add_function(FN_NAME, fn_type, None);
for attr in [$($attributes),*] {
func.add_attribute(
AttributeLoc::Function,
ctx.ctx.create_enum_attribute(Attribute::get_named_enum_kind_id(attr), 0),
);
}
func
});
ctx.builder
.build_call(extern_fn, &[$($args.into()),*], name.unwrap_or_default())
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}
};
}
generate_extern_fn!("unary", call_tan, "tan");
generate_extern_fn!("unary", call_asin, "asin");
generate_extern_fn!("unary", call_acos, "acos");
generate_extern_fn!("unary", call_atan, "atan");
generate_extern_fn!("unary", call_sinh, "sinh");
generate_extern_fn!("unary", call_cosh, "cosh");
generate_extern_fn!("unary", call_tanh, "tanh");
generate_extern_fn!("unary", call_asinh, "asinh");
generate_extern_fn!("unary", call_acosh, "acosh");
generate_extern_fn!("unary", call_atanh, "atanh");
generate_extern_fn!("unary", call_expm1, "expm1");
generate_extern_fn!(
"unary",
call_cbrt,
"cbrt",
"mustprogress",
"nofree",
"nosync",
"nounwind",
"readonly",
"willreturn"
);
generate_extern_fn!("unary", call_erf, "erf", "nounwind");
generate_extern_fn!("unary", call_erfc, "erfc", "nounwind");
generate_extern_fn!("unary", call_j1, "j1", "nounwind");
generate_extern_fn!("binary", call_atan2, "atan2");
generate_extern_fn!("binary", call_hypot, "hypot", "nounwind");
generate_extern_fn!("binary", call_nextafter, "nextafter", "nounwind");
/// Invokes the [`ldexp`](https://en.cppreference.com/w/c/numeric/math/ldexp) function.
pub fn call_ldexp<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
arg: FloatValue<'ctx>,
exp: IntValue<'ctx>,
name: Option<&str>,
) -> FloatValue<'ctx> {
const FN_NAME: &str = "ldexp";
let llvm_f64 = ctx.ctx.f64_type();
let llvm_i32 = ctx.ctx.i32_type();
debug_assert_eq!(arg.get_type(), llvm_f64);
debug_assert_eq!(exp.get_type(), llvm_i32);
let extern_fn = ctx.module.get_function(FN_NAME).unwrap_or_else(|| {
let fn_type = llvm_f64.fn_type(&[llvm_f64.into(), llvm_i32.into()], false);
let func = ctx.module.add_function(FN_NAME, fn_type, None);
for attr in ["mustprogress", "nofree", "nounwind", "willreturn"] {
func.add_attribute(
AttributeLoc::Function,
ctx.ctx.create_enum_attribute(Attribute::get_named_enum_kind_id(attr), 0),
);
}
func
});
ctx.builder
.build_call(extern_fn, &[arg.into(), exp.into()], name.unwrap_or_default())
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Macro to generate `np_linalg` and `sp_linalg` functions
/// The function takes as input `NDArray` and returns ()
///
/// Arguments:
/// * `$fn_name:ident`: The identifier of the rust function to be generated
/// * `$extern_fn:literal`: Name of underlying extern function
/// * (2/3/4): Number of `NDArray` that function takes as input
///
/// Note:
/// The operands and resulting `NDArray` are both passed as input to the funcion
/// It is the responsibility of caller to ensure that output `NDArray` is properly allocated on stack
/// The function changes the content of the output `NDArray` in-place
macro_rules! generate_linalg_extern_fn {
($fn_name:ident, $extern_fn:literal, 2) => {
generate_linalg_extern_fn!($fn_name, $extern_fn, mat1, mat2);
};
($fn_name:ident, $extern_fn:literal, 3) => {
generate_linalg_extern_fn!($fn_name, $extern_fn, mat1, mat2, mat3);
};
($fn_name:ident, $extern_fn:literal, 4) => {
generate_linalg_extern_fn!($fn_name, $extern_fn, mat1, mat2, mat3, mat4);
};
($fn_name:ident, $extern_fn:literal $(,$input_matrix:ident)*) => {
#[doc = concat!("Invokes the linalg `", stringify!($extern_fn), " function." )]
pub fn $fn_name<'ctx>(
ctx: &mut CodeGenContext<'ctx, '_>
$(,$input_matrix: BasicValueEnum<'ctx>)*,
name: Option<&str>,
){
const FN_NAME: &str = $extern_fn;
let extern_fn = ctx.module.get_function(FN_NAME).unwrap_or_else(|| {
let fn_type = ctx.ctx.void_type().fn_type(&[$($input_matrix.get_type().into()),*], false);
let func = ctx.module.add_function(FN_NAME, fn_type, None);
for attr in ["mustprogress", "nofree", "nounwind", "willreturn", "writeonly"] {
func.add_attribute(
AttributeLoc::Function,
ctx.ctx.create_enum_attribute(Attribute::get_named_enum_kind_id(attr), 0),
);
}
func
});
ctx.builder.build_call(extern_fn, &[$($input_matrix.into(),)*], name.unwrap_or_default()).unwrap();
}
};
}
generate_linalg_extern_fn!(call_np_linalg_cholesky, "np_linalg_cholesky", 2);
generate_linalg_extern_fn!(call_np_linalg_qr, "np_linalg_qr", 3);
generate_linalg_extern_fn!(call_np_linalg_svd, "np_linalg_svd", 4);
generate_linalg_extern_fn!(call_np_linalg_inv, "np_linalg_inv", 2);
generate_linalg_extern_fn!(call_np_linalg_pinv, "np_linalg_pinv", 2);
generate_linalg_extern_fn!(call_np_linalg_matrix_power, "np_linalg_matrix_power", 3);
generate_linalg_extern_fn!(call_np_linalg_det, "np_linalg_det", 2);
generate_linalg_extern_fn!(call_sp_linalg_lu, "sp_linalg_lu", 3);
generate_linalg_extern_fn!(call_sp_linalg_schur, "sp_linalg_schur", 3);
generate_linalg_extern_fn!(call_sp_linalg_hessenberg, "sp_linalg_hessenberg", 3);

View File

@ -1,56 +1,42 @@
use inkwell::{
context::Context,
types::{BasicTypeEnum, IntType},
values::{BasicValueEnum, IntValue, PointerValue},
};
use nac3parser::ast::{Expr, Stmt, StrRef};
use super::{bool_to_i1, bool_to_i8, expr::*, stmt::*, values::ArraySliceValue, CodeGenContext};
use crate::{ use crate::{
codegen::{expr::*, stmt::*, CodeGenContext},
symbol_resolver::ValueEnum, symbol_resolver::ValueEnum,
toplevel::{DefinitionId, TopLevelDef}, toplevel::{DefinitionId, TopLevelDef},
typecheck::typedef::{FunSignature, Type}, typecheck::typedef::{FunSignature, Type},
}; };
use inkwell::values::{BasicValueEnum, PointerValue};
use nac3parser::ast::{Expr, Stmt, StrRef};
pub trait CodeGenerator { pub trait CodeGenerator {
/// Return the module name for the code generator. /// Return the module name for the code generator.
fn get_name(&self) -> &str; fn get_name(&self) -> &str;
fn get_size_type<'ctx>(&self, ctx: &'ctx Context) -> IntType<'ctx>;
/// Generate function call and returns the function return value. /// Generate function call and returns the function return value.
/// - obj: Optional object for method call. /// - obj: Optional object for method call.
/// - fun: Function signature and definition ID. /// - fun: Function signature and definition ID.
/// - params: Function parameters. Note that this does not include the object even if the /// - params: Function parameters. Note that this does not include the object even if the
/// function is a class method. /// function is a class method.
fn gen_call<'ctx>( fn gen_call<'ctx, 'a>(
&mut self, &mut self,
ctx: &mut CodeGenContext<'ctx, '_>, ctx: &mut CodeGenContext<'ctx, 'a>,
obj: Option<(Type, ValueEnum<'ctx>)>, obj: Option<(Type, ValueEnum<'ctx>)>,
fun: (&FunSignature, DefinitionId), fun: (&FunSignature, DefinitionId),
params: Vec<(Option<StrRef>, ValueEnum<'ctx>)>, params: Vec<(Option<StrRef>, ValueEnum<'ctx>)>,
) -> Result<Option<BasicValueEnum<'ctx>>, String> ) -> Option<BasicValueEnum<'ctx>> {
where
Self: Sized,
{
gen_call(self, ctx, obj, fun, params) gen_call(self, ctx, obj, fun, params)
} }
/// Generate object constructor and returns the constructed object. /// Generate object constructor and returns the constructed object.
/// - signature: Function signature of the constructor. /// - signature: Function signature of the contructor.
/// - def: Class definition for the constructor class. /// - def: Class definition for the constructor class.
/// - params: Function parameters. /// - params: Function parameters.
fn gen_constructor<'ctx>( fn gen_constructor<'ctx, 'a>(
&mut self, &mut self,
ctx: &mut CodeGenContext<'ctx, '_>, ctx: &mut CodeGenContext<'ctx, 'a>,
signature: &FunSignature, signature: &FunSignature,
def: &TopLevelDef, def: &TopLevelDef,
params: Vec<(Option<StrRef>, ValueEnum<'ctx>)>, params: Vec<(Option<StrRef>, ValueEnum<'ctx>)>,
) -> Result<BasicValueEnum<'ctx>, String> ) -> BasicValueEnum<'ctx> {
where
Self: Sized,
{
gen_constructor(self, ctx, signature, def, params) gen_constructor(self, ctx, signature, def, params)
} }
@ -59,236 +45,119 @@ pub trait CodeGenerator {
/// - fun: Function signature, definition ID and the substitution key. /// - fun: Function signature, definition ID and the substitution key.
/// - params: Function parameters. Note that this does not include the object even if the /// - params: Function parameters. Note that this does not include the object even if the
/// function is a class method. /// function is a class method.
///
/// Note that this function should check if the function is generated in another thread (due to /// Note that this function should check if the function is generated in another thread (due to
/// possible race condition), see the default implementation for an example. /// possible race condition), see the default implementation for an example.
fn gen_func_instance<'ctx>( fn gen_func_instance<'ctx, 'a>(
&mut self, &mut self,
ctx: &mut CodeGenContext<'ctx, '_>, ctx: &mut CodeGenContext<'ctx, 'a>,
obj: Option<(Type, ValueEnum<'ctx>)>, obj: Option<(Type, ValueEnum<'ctx>)>,
fun: (&FunSignature, &mut TopLevelDef, String), fun: (&FunSignature, &mut TopLevelDef, String),
id: usize, id: usize,
) -> Result<String, String> { ) -> String {
gen_func_instance(ctx, &obj, fun, id) gen_func_instance(ctx, obj, fun, id)
} }
/// Generate the code for an expression. /// Generate the code for an expression.
fn gen_expr<'ctx>( fn gen_expr<'ctx, 'a>(
&mut self, &mut self,
ctx: &mut CodeGenContext<'ctx, '_>, ctx: &mut CodeGenContext<'ctx, 'a>,
expr: &Expr<Option<Type>>, expr: &Expr<Option<Type>>,
) -> Result<Option<ValueEnum<'ctx>>, String> ) -> Option<ValueEnum<'ctx>> {
where
Self: Sized,
{
gen_expr(self, ctx, expr) gen_expr(self, ctx, expr)
} }
/// Allocate memory for a variable and return a pointer pointing to it. /// Allocate memory for a variable and return a pointer pointing to it.
/// The default implementation places the allocations at the start of the function. /// The default implementation places the allocations at the start of the function.
fn gen_var_alloc<'ctx>( fn gen_var_alloc<'ctx, 'a>(
&mut self, &mut self,
ctx: &mut CodeGenContext<'ctx, '_>, ctx: &mut CodeGenContext<'ctx, 'a>,
ty: BasicTypeEnum<'ctx>, ty: Type,
name: Option<&str>, ) -> PointerValue<'ctx> {
) -> Result<PointerValue<'ctx>, String> { gen_var(ctx, ty)
gen_var(ctx, ty, name)
}
/// Allocate memory for a variable and return a pointer pointing to it.
/// The default implementation places the allocations at the start of the function.
fn gen_array_var_alloc<'ctx>(
&mut self,
ctx: &mut CodeGenContext<'ctx, '_>,
ty: BasicTypeEnum<'ctx>,
size: IntValue<'ctx>,
name: Option<&'ctx str>,
) -> Result<ArraySliceValue<'ctx>, String> {
gen_array_var(ctx, ty, size, name)
} }
/// Return a pointer pointing to the target of the expression. /// Return a pointer pointing to the target of the expression.
fn gen_store_target<'ctx>( fn gen_store_target<'ctx, 'a>(
&mut self, &mut self,
ctx: &mut CodeGenContext<'ctx, '_>, ctx: &mut CodeGenContext<'ctx, 'a>,
pattern: &Expr<Option<Type>>, pattern: &Expr<Option<Type>>,
name: Option<&str>, ) -> PointerValue<'ctx> {
) -> Result<Option<PointerValue<'ctx>>, String> gen_store_target(self, ctx, pattern)
where
Self: Sized,
{
gen_store_target(self, ctx, pattern, name)
} }
/// Generate code for an assignment expression. /// Generate code for an assignment expression.
fn gen_assign<'ctx>( fn gen_assign<'ctx, 'a>(
&mut self, &mut self,
ctx: &mut CodeGenContext<'ctx, '_>, ctx: &mut CodeGenContext<'ctx, 'a>,
target: &Expr<Option<Type>>, target: &Expr<Option<Type>>,
value: ValueEnum<'ctx>, value: ValueEnum<'ctx>,
value_ty: Type, ) {
) -> Result<(), String> gen_assign(self, ctx, target, value)
where
Self: Sized,
{
gen_assign(self, ctx, target, value, value_ty)
}
/// Generate code for an assignment expression where LHS is a `"target_list"`.
///
/// See <https://docs.python.org/3/reference/simple_stmts.html#assignment-statements>.
fn gen_assign_target_list<'ctx>(
&mut self,
ctx: &mut CodeGenContext<'ctx, '_>,
targets: &Vec<Expr<Option<Type>>>,
value: ValueEnum<'ctx>,
value_ty: Type,
) -> Result<(), String>
where
Self: Sized,
{
gen_assign_target_list(self, ctx, targets, value, value_ty)
}
/// Generate code for an item assignment.
///
/// i.e., `target[key] = value`
fn gen_setitem<'ctx>(
&mut self,
ctx: &mut CodeGenContext<'ctx, '_>,
target: &Expr<Option<Type>>,
key: &Expr<Option<Type>>,
value: ValueEnum<'ctx>,
value_ty: Type,
) -> Result<(), String>
where
Self: Sized,
{
gen_setitem(self, ctx, target, key, value, value_ty)
} }
/// Generate code for a while expression. /// Generate code for a while expression.
/// Return true if the while loop must early return /// Return true if the while loop must early return
fn gen_while( fn gen_while<'ctx, 'a>(
&mut self, &mut self,
ctx: &mut CodeGenContext<'_, '_>, ctx: &mut CodeGenContext<'ctx, 'a>,
stmt: &Stmt<Option<Type>>, stmt: &Stmt<Option<Type>>,
) -> Result<(), String> ) -> bool {
where gen_while(self, ctx, stmt);
Self: Sized, false
{
gen_while(self, ctx, stmt)
} }
/// Generate code for a for expression. /// Generate code for a while expression.
/// Return true if the for loop must early return /// Return true if the while loop must early return
fn gen_for( fn gen_for<'ctx, 'a>(
&mut self, &mut self,
ctx: &mut CodeGenContext<'_, '_>, ctx: &mut CodeGenContext<'ctx, 'a>,
stmt: &Stmt<Option<Type>>, stmt: &Stmt<Option<Type>>,
) -> Result<(), String> ) -> bool {
where gen_for(self, ctx, stmt);
Self: Sized, false
{
gen_for(self, ctx, stmt)
} }
/// Generate code for an if expression. /// Generate code for an if expression.
/// Return true if the statement must early return /// Return true if the statement must early return
fn gen_if( fn gen_if<'ctx, 'a>(
&mut self, &mut self,
ctx: &mut CodeGenContext<'_, '_>, ctx: &mut CodeGenContext<'ctx, 'a>,
stmt: &Stmt<Option<Type>>, stmt: &Stmt<Option<Type>>,
) -> Result<(), String> ) -> bool {
where
Self: Sized,
{
gen_if(self, ctx, stmt) gen_if(self, ctx, stmt)
} }
fn gen_with( fn gen_with<'ctx, 'a>(
&mut self, &mut self,
ctx: &mut CodeGenContext<'_, '_>, ctx: &mut CodeGenContext<'ctx, 'a>,
stmt: &Stmt<Option<Type>>, stmt: &Stmt<Option<Type>>,
) -> Result<(), String> ) -> bool {
where
Self: Sized,
{
gen_with(self, ctx, stmt) gen_with(self, ctx, stmt)
} }
/// Generate code for a statement /// Generate code for a statement
///
/// Return true if the statement must early return /// Return true if the statement must early return
fn gen_stmt( fn gen_stmt<'ctx, 'a>(
&mut self, &mut self,
ctx: &mut CodeGenContext<'_, '_>, ctx: &mut CodeGenContext<'ctx, 'a>,
stmt: &Stmt<Option<Type>>, stmt: &Stmt<Option<Type>>,
) -> Result<(), String> ) -> bool {
where
Self: Sized,
{
gen_stmt(self, ctx, stmt) gen_stmt(self, ctx, stmt)
} }
/// Generates code for a block statement.
fn gen_block<'a, I: Iterator<Item = &'a Stmt<Option<Type>>>>(
&mut self,
ctx: &mut CodeGenContext<'_, '_>,
stmts: I,
) -> Result<(), String>
where
Self: Sized,
{
gen_block(self, ctx, stmts)
}
/// See [`bool_to_i1`].
fn bool_to_i1<'ctx>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
bool_value: IntValue<'ctx>,
) -> IntValue<'ctx> {
bool_to_i1(&ctx.builder, bool_value)
}
/// See [`bool_to_i8`].
fn bool_to_i8<'ctx>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
bool_value: IntValue<'ctx>,
) -> IntValue<'ctx> {
bool_to_i8(&ctx.builder, ctx.ctx, bool_value)
}
} }
pub struct DefaultCodeGenerator { pub struct DefaultCodeGenerator {
name: String, name: String,
size_t: u32,
} }
impl DefaultCodeGenerator { impl DefaultCodeGenerator {
#[must_use] pub fn new(name: String) -> DefaultCodeGenerator {
pub fn new(name: String, size_t: u32) -> DefaultCodeGenerator { DefaultCodeGenerator { name }
assert!(matches!(size_t, 32 | 64));
DefaultCodeGenerator { name, size_t }
} }
} }
impl CodeGenerator for DefaultCodeGenerator { impl CodeGenerator for DefaultCodeGenerator {
/// Returns the name for this [`CodeGenerator`].
fn get_name(&self) -> &str { fn get_name(&self) -> &str {
&self.name &self.name
} }
/// Returns an LLVM integer type representing `size_t`.
fn get_size_type<'ctx>(&self, ctx: &'ctx Context) -> IntType<'ctx> {
// it should be unsigned, but we don't really need unsigned and this could save us from
// having to do a bit cast...
if self.size_t == 32 {
ctx.i32_type()
} else {
ctx.i64_type()
}
}
} }

View File

@ -1,162 +0,0 @@
use inkwell::{
types::BasicTypeEnum,
values::{BasicValueEnum, CallSiteValue, IntValue},
AddressSpace, IntPredicate,
};
use itertools::Either;
use super::calculate_len_for_slice_range;
use crate::codegen::{
macros::codegen_unreachable,
values::{ArrayLikeValue, ListValue},
CodeGenContext, CodeGenerator,
};
/// This function handles 'end' **inclusively**.
/// Order of tuples `assign_idx` and `value_idx` is ('start', 'end', 'step').
/// Negative index should be handled before entering this function
pub fn list_slice_assignment<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ty: BasicTypeEnum<'ctx>,
dest_arr: ListValue<'ctx>,
dest_idx: (IntValue<'ctx>, IntValue<'ctx>, IntValue<'ctx>),
src_arr: ListValue<'ctx>,
src_idx: (IntValue<'ctx>, IntValue<'ctx>, IntValue<'ctx>),
) {
let size_ty = generator.get_size_type(ctx.ctx);
let int8_ptr = ctx.ctx.i8_type().ptr_type(AddressSpace::default());
let int32 = ctx.ctx.i32_type();
let (fun_symbol, elem_ptr_type) = ("__nac3_list_slice_assign_var_size", int8_ptr);
let slice_assign_fun = {
let ty_vec = vec![
int32.into(), // dest start idx
int32.into(), // dest end idx
int32.into(), // dest step
elem_ptr_type.into(), // dest arr ptr
int32.into(), // dest arr len
int32.into(), // src start idx
int32.into(), // src end idx
int32.into(), // src step
elem_ptr_type.into(), // src arr ptr
int32.into(), // src arr len
int32.into(), // size
];
ctx.module.get_function(fun_symbol).unwrap_or_else(|| {
let fn_t = int32.fn_type(ty_vec.as_slice(), false);
ctx.module.add_function(fun_symbol, fn_t, None)
})
};
let zero = int32.const_zero();
let one = int32.const_int(1, false);
let dest_arr_ptr = dest_arr.data().base_ptr(ctx, generator);
let dest_arr_ptr =
ctx.builder.build_pointer_cast(dest_arr_ptr, elem_ptr_type, "dest_arr_ptr_cast").unwrap();
let dest_len = dest_arr.load_size(ctx, Some("dest.len"));
let dest_len = ctx.builder.build_int_truncate_or_bit_cast(dest_len, int32, "srclen32").unwrap();
let src_arr_ptr = src_arr.data().base_ptr(ctx, generator);
let src_arr_ptr =
ctx.builder.build_pointer_cast(src_arr_ptr, elem_ptr_type, "src_arr_ptr_cast").unwrap();
let src_len = src_arr.load_size(ctx, Some("src.len"));
let src_len = ctx.builder.build_int_truncate_or_bit_cast(src_len, int32, "srclen32").unwrap();
// index in bound and positive should be done
// assert if dest.step == 1 then len(src) <= len(dest) else len(src) == len(dest), and
// throw exception if not satisfied
let src_end = ctx
.builder
.build_select(
ctx.builder.build_int_compare(IntPredicate::SLT, src_idx.2, zero, "is_neg").unwrap(),
ctx.builder.build_int_sub(src_idx.1, one, "e_min_one").unwrap(),
ctx.builder.build_int_add(src_idx.1, one, "e_add_one").unwrap(),
"final_e",
)
.map(BasicValueEnum::into_int_value)
.unwrap();
let dest_end = ctx
.builder
.build_select(
ctx.builder.build_int_compare(IntPredicate::SLT, dest_idx.2, zero, "is_neg").unwrap(),
ctx.builder.build_int_sub(dest_idx.1, one, "e_min_one").unwrap(),
ctx.builder.build_int_add(dest_idx.1, one, "e_add_one").unwrap(),
"final_e",
)
.map(BasicValueEnum::into_int_value)
.unwrap();
let src_slice_len =
calculate_len_for_slice_range(generator, ctx, src_idx.0, src_end, src_idx.2);
let dest_slice_len =
calculate_len_for_slice_range(generator, ctx, dest_idx.0, dest_end, dest_idx.2);
let src_eq_dest = ctx
.builder
.build_int_compare(IntPredicate::EQ, src_slice_len, dest_slice_len, "slice_src_eq_dest")
.unwrap();
let src_slt_dest = ctx
.builder
.build_int_compare(IntPredicate::SLT, src_slice_len, dest_slice_len, "slice_src_slt_dest")
.unwrap();
let dest_step_eq_one = ctx
.builder
.build_int_compare(
IntPredicate::EQ,
dest_idx.2,
dest_idx.2.get_type().const_int(1, false),
"slice_dest_step_eq_one",
)
.unwrap();
let cond_1 = ctx.builder.build_and(dest_step_eq_one, src_slt_dest, "slice_cond_1").unwrap();
let cond = ctx.builder.build_or(src_eq_dest, cond_1, "slice_cond").unwrap();
ctx.make_assert(
generator,
cond,
"0:ValueError",
"attempt to assign sequence of size {0} to slice of size {1} with step size {2}",
[Some(src_slice_len), Some(dest_slice_len), Some(dest_idx.2)],
ctx.current_loc,
);
let new_len = {
let args = vec![
dest_idx.0.into(), // dest start idx
dest_idx.1.into(), // dest end idx
dest_idx.2.into(), // dest step
dest_arr_ptr.into(), // dest arr ptr
dest_len.into(), // dest arr len
src_idx.0.into(), // src start idx
src_idx.1.into(), // src end idx
src_idx.2.into(), // src step
src_arr_ptr.into(), // src arr ptr
src_len.into(), // src arr len
{
let s = match ty {
BasicTypeEnum::FloatType(t) => t.size_of(),
BasicTypeEnum::IntType(t) => t.size_of(),
BasicTypeEnum::PointerType(t) => t.size_of(),
BasicTypeEnum::StructType(t) => t.size_of().unwrap(),
_ => codegen_unreachable!(ctx),
};
ctx.builder.build_int_truncate_or_bit_cast(s, int32, "size").unwrap()
}
.into(),
];
ctx.builder
.build_call(slice_assign_fun, args.as_slice(), "slice_assign")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap()
};
// update length
let need_update =
ctx.builder.build_int_compare(IntPredicate::NE, new_len, dest_len, "need_update").unwrap();
let current = ctx.builder.get_insert_block().unwrap().get_parent().unwrap();
let update_bb = ctx.ctx.append_basic_block(current, "update");
let cont_bb = ctx.ctx.append_basic_block(current, "cont");
ctx.builder.build_conditional_branch(need_update, update_bb, cont_bb).unwrap();
ctx.builder.position_at_end(update_bb);
let new_len = ctx.builder.build_int_z_extend_or_bit_cast(new_len, size_ty, "new_len").unwrap();
dest_arr.store_size(ctx, generator, new_len);
ctx.builder.build_unconditional_branch(cont_bb).unwrap();
ctx.builder.position_at_end(cont_bb);
}

View File

@ -1,152 +0,0 @@
use inkwell::{
values::{BasicValueEnum, CallSiteValue, FloatValue, IntValue},
IntPredicate,
};
use itertools::Either;
use crate::codegen::{
macros::codegen_unreachable,
{CodeGenContext, CodeGenerator},
};
// repeated squaring method adapted from GNU Scientific Library:
// https://git.savannah.gnu.org/cgit/gsl.git/tree/sys/pow_int.c
pub fn integer_power<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
base: IntValue<'ctx>,
exp: IntValue<'ctx>,
signed: bool,
) -> IntValue<'ctx> {
let symbol = match (base.get_type().get_bit_width(), exp.get_type().get_bit_width(), signed) {
(32, 32, true) => "__nac3_int_exp_int32_t",
(64, 64, true) => "__nac3_int_exp_int64_t",
(32, 32, false) => "__nac3_int_exp_uint32_t",
(64, 64, false) => "__nac3_int_exp_uint64_t",
_ => codegen_unreachable!(ctx),
};
let base_type = base.get_type();
let pow_fun = ctx.module.get_function(symbol).unwrap_or_else(|| {
let fn_type = base_type.fn_type(&[base_type.into(), base_type.into()], false);
ctx.module.add_function(symbol, fn_type, None)
});
// throw exception when exp < 0
let ge_zero = ctx
.builder
.build_int_compare(
IntPredicate::SGE,
exp,
exp.get_type().const_zero(),
"assert_int_pow_ge_0",
)
.unwrap();
ctx.make_assert(
generator,
ge_zero,
"0:ValueError",
"integer power must be positive or zero",
[None, None, None],
ctx.current_loc,
);
ctx.builder
.build_call(pow_fun, &[base.into(), exp.into()], "call_int_pow")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Generates a call to `isinf` in IR. Returns an `i1` representing the result.
pub fn call_isinf<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
v: FloatValue<'ctx>,
) -> IntValue<'ctx> {
let intrinsic_fn = ctx.module.get_function("__nac3_isinf").unwrap_or_else(|| {
let fn_type = ctx.ctx.i32_type().fn_type(&[ctx.ctx.f64_type().into()], false);
ctx.module.add_function("__nac3_isinf", fn_type, None)
});
let ret = ctx
.builder
.build_call(intrinsic_fn, &[v.into()], "isinf")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap();
generator.bool_to_i1(ctx, ret)
}
/// Generates a call to `isnan` in IR. Returns an `i1` representing the result.
pub fn call_isnan<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
v: FloatValue<'ctx>,
) -> IntValue<'ctx> {
let intrinsic_fn = ctx.module.get_function("__nac3_isnan").unwrap_or_else(|| {
let fn_type = ctx.ctx.i32_type().fn_type(&[ctx.ctx.f64_type().into()], false);
ctx.module.add_function("__nac3_isnan", fn_type, None)
});
let ret = ctx
.builder
.build_call(intrinsic_fn, &[v.into()], "isnan")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap();
generator.bool_to_i1(ctx, ret)
}
/// Generates a call to `gamma` in IR. Returns an `f64` representing the result.
pub fn call_gamma<'ctx>(ctx: &CodeGenContext<'ctx, '_>, v: FloatValue<'ctx>) -> FloatValue<'ctx> {
let llvm_f64 = ctx.ctx.f64_type();
let intrinsic_fn = ctx.module.get_function("__nac3_gamma").unwrap_or_else(|| {
let fn_type = llvm_f64.fn_type(&[llvm_f64.into()], false);
ctx.module.add_function("__nac3_gamma", fn_type, None)
});
ctx.builder
.build_call(intrinsic_fn, &[v.into()], "gamma")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Generates a call to `gammaln` in IR. Returns an `f64` representing the result.
pub fn call_gammaln<'ctx>(ctx: &CodeGenContext<'ctx, '_>, v: FloatValue<'ctx>) -> FloatValue<'ctx> {
let llvm_f64 = ctx.ctx.f64_type();
let intrinsic_fn = ctx.module.get_function("__nac3_gammaln").unwrap_or_else(|| {
let fn_type = llvm_f64.fn_type(&[llvm_f64.into()], false);
ctx.module.add_function("__nac3_gammaln", fn_type, None)
});
ctx.builder
.build_call(intrinsic_fn, &[v.into()], "gammaln")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Generates a call to `j0` in IR. Returns an `f64` representing the result.
pub fn call_j0<'ctx>(ctx: &CodeGenContext<'ctx, '_>, v: FloatValue<'ctx>) -> FloatValue<'ctx> {
let llvm_f64 = ctx.ctx.f64_type();
let intrinsic_fn = ctx.module.get_function("__nac3_j0").unwrap_or_else(|| {
let fn_type = llvm_f64.fn_type(&[llvm_f64.into()], false);
ctx.module.add_function("__nac3_j0", fn_type, None)
});
ctx.builder
.build_call(intrinsic_fn, &[v.into()], "j0")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}

View File

@ -1,227 +0,0 @@
use inkwell::{
attributes::{Attribute, AttributeLoc},
context::Context,
memory_buffer::MemoryBuffer,
module::Module,
values::{BasicValue, BasicValueEnum, IntValue},
IntPredicate,
};
use nac3parser::ast::Expr;
use super::{CodeGenContext, CodeGenerator};
use crate::{symbol_resolver::SymbolResolver, typecheck::typedef::Type};
pub use list::*;
pub use math::*;
pub use ndarray::*;
pub use slice::*;
mod list;
mod math;
mod ndarray;
mod slice;
#[must_use]
pub fn load_irrt<'ctx>(ctx: &'ctx Context, symbol_resolver: &dyn SymbolResolver) -> Module<'ctx> {
let bitcode_buf = MemoryBuffer::create_from_memory_range(
include_bytes!(concat!(env!("OUT_DIR"), "/irrt.bc")),
"irrt_bitcode_buffer",
);
let irrt_mod = Module::parse_bitcode_from_buffer(&bitcode_buf, ctx).unwrap();
let inline_attr = Attribute::get_named_enum_kind_id("alwaysinline");
for symbol in &[
"__nac3_int_exp_int32_t",
"__nac3_int_exp_int64_t",
"__nac3_range_slice_len",
"__nac3_slice_index_bound",
] {
let function = irrt_mod.get_function(symbol).unwrap();
function.add_attribute(AttributeLoc::Function, ctx.create_enum_attribute(inline_attr, 0));
}
// Initialize all global `EXN_*` exception IDs in IRRT with the [`SymbolResolver`].
let exn_id_type = ctx.i32_type();
let errors = &[
("EXN_INDEX_ERROR", "0:IndexError"),
("EXN_VALUE_ERROR", "0:ValueError"),
("EXN_ASSERTION_ERROR", "0:AssertionError"),
("EXN_TYPE_ERROR", "0:TypeError"),
];
for (irrt_name, symbol_name) in errors {
let exn_id = symbol_resolver.get_string_id(symbol_name);
let exn_id = exn_id_type.const_int(exn_id as u64, false).as_basic_value_enum();
let global = irrt_mod.get_global(irrt_name).unwrap_or_else(|| {
panic!("Exception symbol name '{irrt_name}' should exist in the IRRT LLVM module")
});
global.set_initializer(&exn_id);
}
irrt_mod
}
/// NOTE: the output value of the end index of this function should be compared ***inclusively***,
/// because python allows `a[2::-1]`, whose semantic is `[a[2], a[1], a[0]]`, which is equivalent to
/// NO numeric slice in python.
///
/// equivalent code:
/// ```pseudo_code
/// match (start, end, step):
/// case (s, e, None | Some(step)) if step > 0:
/// return (
/// match s:
/// case None:
/// 0
/// case Some(s):
/// handle_in_bound(s)
/// ,match e:
/// case None:
/// length - 1
/// case Some(e):
/// handle_in_bound(e) - 1
/// ,step == None ? 1 : step
/// )
/// case (s, e, Some(step)) if step < 0:
/// return (
/// match s:
/// case None:
/// length - 1
/// case Some(s):
/// s = handle_in_bound(s)
/// if s == length:
/// s - 1
/// else:
/// s
/// ,match e:
/// case None:
/// 0
/// case Some(e):
/// handle_in_bound(e) + 1
/// ,step
/// )
/// ```
pub fn handle_slice_indices<'ctx, G: CodeGenerator>(
start: &Option<Box<Expr<Option<Type>>>>,
end: &Option<Box<Expr<Option<Type>>>>,
step: &Option<Box<Expr<Option<Type>>>>,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
length: IntValue<'ctx>,
) -> Result<Option<(IntValue<'ctx>, IntValue<'ctx>, IntValue<'ctx>)>, String> {
let int32 = ctx.ctx.i32_type();
let zero = int32.const_zero();
let one = int32.const_int(1, false);
let length = ctx.builder.build_int_truncate_or_bit_cast(length, int32, "leni32").unwrap();
Ok(Some(match (start, end, step) {
(s, e, None) => (
if let Some(s) = s.as_ref() {
match handle_slice_index_bound(s, ctx, generator, length)? {
Some(v) => v,
None => return Ok(None),
}
} else {
int32.const_zero()
},
{
let e = if let Some(s) = e.as_ref() {
match handle_slice_index_bound(s, ctx, generator, length)? {
Some(v) => v,
None => return Ok(None),
}
} else {
length
};
ctx.builder.build_int_sub(e, one, "final_end").unwrap()
},
one,
),
(s, e, Some(step)) => {
let step = if let Some(v) = generator.gen_expr(ctx, step)? {
v.to_basic_value_enum(ctx, generator, ctx.primitives.int32)?.into_int_value()
} else {
return Ok(None);
};
// assert step != 0, throw exception if not
let not_zero = ctx
.builder
.build_int_compare(
IntPredicate::NE,
step,
step.get_type().const_zero(),
"range_step_ne",
)
.unwrap();
ctx.make_assert(
generator,
not_zero,
"0:ValueError",
"slice step cannot be zero",
[None, None, None],
ctx.current_loc,
);
let len_id = ctx.builder.build_int_sub(length, one, "lenmin1").unwrap();
let neg = ctx
.builder
.build_int_compare(IntPredicate::SLT, step, zero, "step_is_neg")
.unwrap();
(
match s {
Some(s) => {
let Some(s) = handle_slice_index_bound(s, ctx, generator, length)? else {
return Ok(None);
};
ctx.builder
.build_select(
ctx.builder
.build_and(
ctx.builder
.build_int_compare(
IntPredicate::EQ,
s,
length,
"s_eq_len",
)
.unwrap(),
neg,
"should_minus_one",
)
.unwrap(),
ctx.builder.build_int_sub(s, one, "s_min").unwrap(),
s,
"final_start",
)
.map(BasicValueEnum::into_int_value)
.unwrap()
}
None => ctx
.builder
.build_select(neg, len_id, zero, "stt")
.map(BasicValueEnum::into_int_value)
.unwrap(),
},
match e {
Some(e) => {
let Some(e) = handle_slice_index_bound(e, ctx, generator, length)? else {
return Ok(None);
};
ctx.builder
.build_select(
neg,
ctx.builder.build_int_add(e, one, "end_add_one").unwrap(),
ctx.builder.build_int_sub(e, one, "end_sub_one").unwrap(),
"final_end",
)
.map(BasicValueEnum::into_int_value)
.unwrap()
}
None => ctx
.builder
.build_select(neg, zero, len_id, "end")
.map(BasicValueEnum::into_int_value)
.unwrap(),
},
step,
)
}
}))
}

View File

@ -1,384 +0,0 @@
use inkwell::{
types::IntType,
values::{BasicValueEnum, CallSiteValue, IntValue},
AddressSpace, IntPredicate,
};
use itertools::Either;
use crate::codegen::{
llvm_intrinsics,
macros::codegen_unreachable,
stmt::gen_for_callback_incrementing,
values::{
ArrayLikeIndexer, ArrayLikeValue, ArraySliceValue, NDArrayValue, TypedArrayLikeAccessor,
TypedArrayLikeAdapter, UntypedArrayLikeAccessor,
},
CodeGenContext, CodeGenerator,
};
/// Generates a call to `__nac3_ndarray_calc_size`. Returns an [`IntValue`] representing the
/// calculated total size.
///
/// * `dims` - An [`ArrayLikeIndexer`] containing the size of each dimension.
/// * `range` - The dimension index to begin and end (exclusively) calculating the dimensions for,
/// or [`None`] if starting from the first dimension and ending at the last dimension
/// respectively.
pub fn call_ndarray_calc_size<'ctx, G, Dims>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
dims: &Dims,
(begin, end): (Option<IntValue<'ctx>>, Option<IntValue<'ctx>>),
) -> IntValue<'ctx>
where
G: CodeGenerator + ?Sized,
Dims: ArrayLikeIndexer<'ctx>,
{
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
let ndarray_calc_size_fn_name = match llvm_usize.get_bit_width() {
32 => "__nac3_ndarray_calc_size",
64 => "__nac3_ndarray_calc_size64",
bw => codegen_unreachable!(ctx, "Unsupported size type bit width: {}", bw),
};
let ndarray_calc_size_fn_t = llvm_usize.fn_type(
&[llvm_pusize.into(), llvm_usize.into(), llvm_usize.into(), llvm_usize.into()],
false,
);
let ndarray_calc_size_fn =
ctx.module.get_function(ndarray_calc_size_fn_name).unwrap_or_else(|| {
ctx.module.add_function(ndarray_calc_size_fn_name, ndarray_calc_size_fn_t, None)
});
let begin = begin.unwrap_or_else(|| llvm_usize.const_zero());
let end = end.unwrap_or_else(|| dims.size(ctx, generator));
ctx.builder
.build_call(
ndarray_calc_size_fn,
&[
dims.base_ptr(ctx, generator).into(),
dims.size(ctx, generator).into(),
begin.into(),
end.into(),
],
"",
)
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Generates a call to `__nac3_ndarray_calc_nd_indices`. Returns a [`TypeArrayLikeAdpater`]
/// containing `i32` indices of the flattened index.
///
/// * `index` - The index to compute the multidimensional index for.
/// * `ndarray` - LLVM pointer to the `NDArray`. This value must be the LLVM representation of an
/// `NDArray`.
pub fn call_ndarray_calc_nd_indices<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &mut CodeGenContext<'ctx, '_>,
index: IntValue<'ctx>,
ndarray: NDArrayValue<'ctx>,
) -> TypedArrayLikeAdapter<'ctx, IntValue<'ctx>> {
let llvm_void = ctx.ctx.void_type();
let llvm_i32 = ctx.ctx.i32_type();
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_pi32 = llvm_i32.ptr_type(AddressSpace::default());
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
let ndarray_calc_nd_indices_fn_name = match llvm_usize.get_bit_width() {
32 => "__nac3_ndarray_calc_nd_indices",
64 => "__nac3_ndarray_calc_nd_indices64",
bw => codegen_unreachable!(ctx, "Unsupported size type bit width: {}", bw),
};
let ndarray_calc_nd_indices_fn =
ctx.module.get_function(ndarray_calc_nd_indices_fn_name).unwrap_or_else(|| {
let fn_type = llvm_void.fn_type(
&[llvm_usize.into(), llvm_pusize.into(), llvm_usize.into(), llvm_pi32.into()],
false,
);
ctx.module.add_function(ndarray_calc_nd_indices_fn_name, fn_type, None)
});
let ndarray_num_dims = ndarray.load_ndims(ctx);
let ndarray_dims = ndarray.shape();
let indices = ctx.builder.build_array_alloca(llvm_i32, ndarray_num_dims, "").unwrap();
ctx.builder
.build_call(
ndarray_calc_nd_indices_fn,
&[
index.into(),
ndarray_dims.base_ptr(ctx, generator).into(),
ndarray_num_dims.into(),
indices.into(),
],
"",
)
.unwrap();
TypedArrayLikeAdapter::from(
ArraySliceValue::from_ptr_val(indices, ndarray_num_dims, None),
Box::new(|_, v| v.into_int_value()),
Box::new(|_, v| v.into()),
)
}
fn call_ndarray_flatten_index_impl<'ctx, G, Indices>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
ndarray: NDArrayValue<'ctx>,
indices: &Indices,
) -> IntValue<'ctx>
where
G: CodeGenerator + ?Sized,
Indices: ArrayLikeIndexer<'ctx>,
{
let llvm_i32 = ctx.ctx.i32_type();
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_pi32 = llvm_i32.ptr_type(AddressSpace::default());
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
debug_assert_eq!(
IntType::try_from(indices.element_type(ctx, generator))
.map(IntType::get_bit_width)
.unwrap_or_default(),
llvm_i32.get_bit_width(),
"Expected i32 value for argument `indices` to `call_ndarray_flatten_index_impl`"
);
debug_assert_eq!(
indices.size(ctx, generator).get_type().get_bit_width(),
llvm_usize.get_bit_width(),
"Expected usize integer value for argument `indices_size` to `call_ndarray_flatten_index_impl`"
);
let ndarray_flatten_index_fn_name = match llvm_usize.get_bit_width() {
32 => "__nac3_ndarray_flatten_index",
64 => "__nac3_ndarray_flatten_index64",
bw => codegen_unreachable!(ctx, "Unsupported size type bit width: {}", bw),
};
let ndarray_flatten_index_fn =
ctx.module.get_function(ndarray_flatten_index_fn_name).unwrap_or_else(|| {
let fn_type = llvm_usize.fn_type(
&[llvm_pusize.into(), llvm_usize.into(), llvm_pi32.into(), llvm_usize.into()],
false,
);
ctx.module.add_function(ndarray_flatten_index_fn_name, fn_type, None)
});
let ndarray_num_dims = ndarray.load_ndims(ctx);
let ndarray_dims = ndarray.shape();
let index = ctx
.builder
.build_call(
ndarray_flatten_index_fn,
&[
ndarray_dims.base_ptr(ctx, generator).into(),
ndarray_num_dims.into(),
indices.base_ptr(ctx, generator).into(),
indices.size(ctx, generator).into(),
],
"",
)
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap();
index
}
/// Generates a call to `__nac3_ndarray_flatten_index`. Returns the flattened index for the
/// multidimensional index.
///
/// * `ndarray` - LLVM pointer to the `NDArray`. This value must be the LLVM representation of an
/// `NDArray`.
/// * `indices` - The multidimensional index to compute the flattened index for.
pub fn call_ndarray_flatten_index<'ctx, G, Index>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndarray: NDArrayValue<'ctx>,
indices: &Index,
) -> IntValue<'ctx>
where
G: CodeGenerator + ?Sized,
Index: ArrayLikeIndexer<'ctx>,
{
call_ndarray_flatten_index_impl(generator, ctx, ndarray, indices)
}
/// Generates a call to `__nac3_ndarray_calc_broadcast`. Returns a tuple containing the number of
/// dimension and size of each dimension of the resultant `ndarray`.
pub fn call_ndarray_calc_broadcast<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
lhs: NDArrayValue<'ctx>,
rhs: NDArrayValue<'ctx>,
) -> TypedArrayLikeAdapter<'ctx, IntValue<'ctx>> {
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
let ndarray_calc_broadcast_fn_name = match llvm_usize.get_bit_width() {
32 => "__nac3_ndarray_calc_broadcast",
64 => "__nac3_ndarray_calc_broadcast64",
bw => codegen_unreachable!(ctx, "Unsupported size type bit width: {}", bw),
};
let ndarray_calc_broadcast_fn =
ctx.module.get_function(ndarray_calc_broadcast_fn_name).unwrap_or_else(|| {
let fn_type = llvm_usize.fn_type(
&[
llvm_pusize.into(),
llvm_usize.into(),
llvm_pusize.into(),
llvm_usize.into(),
llvm_pusize.into(),
],
false,
);
ctx.module.add_function(ndarray_calc_broadcast_fn_name, fn_type, None)
});
let lhs_ndims = lhs.load_ndims(ctx);
let rhs_ndims = rhs.load_ndims(ctx);
let min_ndims = llvm_intrinsics::call_int_umin(ctx, lhs_ndims, rhs_ndims, None);
gen_for_callback_incrementing(
generator,
ctx,
None,
llvm_usize.const_zero(),
(min_ndims, false),
|generator, ctx, _, idx| {
let idx = ctx.builder.build_int_sub(min_ndims, idx, "").unwrap();
let (lhs_dim_sz, rhs_dim_sz) = unsafe {
(
lhs.shape().get_typed_unchecked(ctx, generator, &idx, None),
rhs.shape().get_typed_unchecked(ctx, generator, &idx, None),
)
};
let llvm_usize_const_one = llvm_usize.const_int(1, false);
let lhs_eqz = ctx
.builder
.build_int_compare(IntPredicate::EQ, lhs_dim_sz, llvm_usize_const_one, "")
.unwrap();
let rhs_eqz = ctx
.builder
.build_int_compare(IntPredicate::EQ, rhs_dim_sz, llvm_usize_const_one, "")
.unwrap();
let lhs_or_rhs_eqz = ctx.builder.build_or(lhs_eqz, rhs_eqz, "").unwrap();
let lhs_eq_rhs = ctx
.builder
.build_int_compare(IntPredicate::EQ, lhs_dim_sz, rhs_dim_sz, "")
.unwrap();
let is_compatible = ctx.builder.build_or(lhs_or_rhs_eqz, lhs_eq_rhs, "").unwrap();
ctx.make_assert(
generator,
is_compatible,
"0:ValueError",
"operands could not be broadcast together",
[None, None, None],
ctx.current_loc,
);
Ok(())
},
llvm_usize.const_int(1, false),
)
.unwrap();
let max_ndims = llvm_intrinsics::call_int_umax(ctx, lhs_ndims, rhs_ndims, None);
let lhs_dims = lhs.shape().base_ptr(ctx, generator);
let lhs_ndims = lhs.load_ndims(ctx);
let rhs_dims = rhs.shape().base_ptr(ctx, generator);
let rhs_ndims = rhs.load_ndims(ctx);
let out_dims = ctx.builder.build_array_alloca(llvm_usize, max_ndims, "").unwrap();
let out_dims = ArraySliceValue::from_ptr_val(out_dims, max_ndims, None);
ctx.builder
.build_call(
ndarray_calc_broadcast_fn,
&[
lhs_dims.into(),
lhs_ndims.into(),
rhs_dims.into(),
rhs_ndims.into(),
out_dims.base_ptr(ctx, generator).into(),
],
"",
)
.unwrap();
TypedArrayLikeAdapter::from(
out_dims,
Box::new(|_, v| v.into_int_value()),
Box::new(|_, v| v.into()),
)
}
/// Generates a call to `__nac3_ndarray_calc_broadcast_idx`. Returns an [`ArrayAllocaValue`]
/// containing the indices used for accessing `array` corresponding to the index of the broadcasted
/// array `broadcast_idx`.
pub fn call_ndarray_calc_broadcast_index<
'ctx,
G: CodeGenerator + ?Sized,
BroadcastIdx: UntypedArrayLikeAccessor<'ctx>,
>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
array: NDArrayValue<'ctx>,
broadcast_idx: &BroadcastIdx,
) -> TypedArrayLikeAdapter<'ctx, IntValue<'ctx>> {
let llvm_i32 = ctx.ctx.i32_type();
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_pi32 = llvm_i32.ptr_type(AddressSpace::default());
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
let ndarray_calc_broadcast_fn_name = match llvm_usize.get_bit_width() {
32 => "__nac3_ndarray_calc_broadcast_idx",
64 => "__nac3_ndarray_calc_broadcast_idx64",
bw => codegen_unreachable!(ctx, "Unsupported size type bit width: {}", bw),
};
let ndarray_calc_broadcast_fn =
ctx.module.get_function(ndarray_calc_broadcast_fn_name).unwrap_or_else(|| {
let fn_type = llvm_usize.fn_type(
&[llvm_pusize.into(), llvm_usize.into(), llvm_pi32.into(), llvm_pi32.into()],
false,
);
ctx.module.add_function(ndarray_calc_broadcast_fn_name, fn_type, None)
});
let broadcast_size = broadcast_idx.size(ctx, generator);
let out_idx = ctx.builder.build_array_alloca(llvm_i32, broadcast_size, "").unwrap();
let array_dims = array.shape().base_ptr(ctx, generator);
let array_ndims = array.load_ndims(ctx);
let broadcast_idx_ptr = unsafe {
broadcast_idx.ptr_offset_unchecked(ctx, generator, &llvm_usize.const_zero(), None)
};
ctx.builder
.build_call(
ndarray_calc_broadcast_fn,
&[array_dims.into(), array_ndims.into(), broadcast_idx_ptr.into(), out_idx.into()],
"",
)
.unwrap();
TypedArrayLikeAdapter::from(
ArraySliceValue::from_ptr_val(out_idx, broadcast_size, None),
Box::new(|_, v| v.into_int_value()),
Box::new(|_, v| v.into()),
)
}

View File

@ -1,76 +0,0 @@
use inkwell::{
values::{BasicValueEnum, CallSiteValue, IntValue},
IntPredicate,
};
use itertools::Either;
use nac3parser::ast::Expr;
use crate::{
codegen::{CodeGenContext, CodeGenerator},
typecheck::typedef::Type,
};
/// this function allows index out of range, since python
/// allows index out of range in slice (`a = [1,2,3]; a[1:10] == [2,3]`).
pub fn handle_slice_index_bound<'ctx, G: CodeGenerator>(
i: &Expr<Option<Type>>,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
length: IntValue<'ctx>,
) -> Result<Option<IntValue<'ctx>>, String> {
const SYMBOL: &str = "__nac3_slice_index_bound";
let func = ctx.module.get_function(SYMBOL).unwrap_or_else(|| {
let i32_t = ctx.ctx.i32_type();
let fn_t = i32_t.fn_type(&[i32_t.into(), i32_t.into()], false);
ctx.module.add_function(SYMBOL, fn_t, None)
});
let i = if let Some(v) = generator.gen_expr(ctx, i)? {
v.to_basic_value_enum(ctx, generator, i.custom.unwrap())?
} else {
return Ok(None);
};
Ok(Some(
ctx.builder
.build_call(func, &[i.into(), length.into()], "bounded_ind")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap(),
))
}
pub fn calculate_len_for_slice_range<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
start: IntValue<'ctx>,
end: IntValue<'ctx>,
step: IntValue<'ctx>,
) -> IntValue<'ctx> {
const SYMBOL: &str = "__nac3_range_slice_len";
let len_func = ctx.module.get_function(SYMBOL).unwrap_or_else(|| {
let i32_t = ctx.ctx.i32_type();
let fn_t = i32_t.fn_type(&[i32_t.into(), i32_t.into(), i32_t.into()], false);
ctx.module.add_function(SYMBOL, fn_t, None)
});
// assert step != 0, throw exception if not
let not_zero = ctx
.builder
.build_int_compare(IntPredicate::NE, step, step.get_type().const_zero(), "range_step_ne")
.unwrap();
ctx.make_assert(
generator,
not_zero,
"0:ValueError",
"step must not be zero",
[None, None, None],
ctx.current_loc,
);
ctx.builder
.build_call(len_func, &[start.into(), end.into(), step.into()], "calc_len")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap()
}

View File

@ -1,345 +0,0 @@
use inkwell::{
context::Context,
intrinsics::Intrinsic,
types::{AnyTypeEnum::IntType, FloatType},
values::{BasicValueEnum, CallSiteValue, FloatValue, IntValue, PointerValue},
AddressSpace,
};
use itertools::Either;
use super::CodeGenContext;
/// Returns the string representation for the floating-point type `ft` when used in intrinsic
/// functions.
fn get_float_intrinsic_repr(ctx: &Context, ft: FloatType) -> &'static str {
// Standard LLVM floating-point types
if ft == ctx.f16_type() {
return "f16";
}
if ft == ctx.f32_type() {
return "f32";
}
if ft == ctx.f64_type() {
return "f64";
}
if ft == ctx.f128_type() {
return "f128";
}
// Non-standard floating-point types
if ft == ctx.x86_f80_type() {
return "f80";
}
if ft == ctx.ppc_f128_type() {
return "ppcf128";
}
unreachable!()
}
/// Invokes the [`llvm.va_start`](https://llvm.org/docs/LangRef.html#llvm-va-start-intrinsic)
/// intrinsic.
pub fn call_va_start<'ctx>(ctx: &CodeGenContext<'ctx, '_>, arglist: PointerValue<'ctx>) {
const FN_NAME: &str = "llvm.va_start";
let intrinsic_fn = ctx.module.get_function(FN_NAME).unwrap_or_else(|| {
let llvm_void = ctx.ctx.void_type();
let llvm_i8 = ctx.ctx.i8_type();
let llvm_p0i8 = llvm_i8.ptr_type(AddressSpace::default());
let fn_type = llvm_void.fn_type(&[llvm_p0i8.into()], false);
ctx.module.add_function(FN_NAME, fn_type, None)
});
ctx.builder.build_call(intrinsic_fn, &[arglist.into()], "").unwrap();
}
/// Invokes the [`llvm.va_start`](https://llvm.org/docs/LangRef.html#llvm-va-start-intrinsic)
/// intrinsic.
pub fn call_va_end<'ctx>(ctx: &CodeGenContext<'ctx, '_>, arglist: PointerValue<'ctx>) {
const FN_NAME: &str = "llvm.va_end";
let intrinsic_fn = ctx.module.get_function(FN_NAME).unwrap_or_else(|| {
let llvm_void = ctx.ctx.void_type();
let llvm_i8 = ctx.ctx.i8_type();
let llvm_p0i8 = llvm_i8.ptr_type(AddressSpace::default());
let fn_type = llvm_void.fn_type(&[llvm_p0i8.into()], false);
ctx.module.add_function(FN_NAME, fn_type, None)
});
ctx.builder.build_call(intrinsic_fn, &[arglist.into()], "").unwrap();
}
/// Invokes the [`llvm.stacksave`](https://llvm.org/docs/LangRef.html#llvm-stacksave-intrinsic)
/// intrinsic.
pub fn call_stacksave<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
name: Option<&str>,
) -> PointerValue<'ctx> {
const FN_NAME: &str = "llvm.stacksave";
let intrinsic_fn = Intrinsic::find(FN_NAME)
.and_then(|intrinsic| intrinsic.get_declaration(&ctx.module, &[]))
.unwrap();
ctx.builder
.build_call(intrinsic_fn, &[], name.unwrap_or_default())
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_pointer_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Invokes the
/// [`llvm.stackrestore`](https://llvm.org/docs/LangRef.html#llvm-stackrestore-intrinsic) intrinsic.
///
/// - `ptr`: The pointer storing the address to restore the stack to.
pub fn call_stackrestore<'ctx>(ctx: &CodeGenContext<'ctx, '_>, ptr: PointerValue<'ctx>) {
const FN_NAME: &str = "llvm.stackrestore";
/*
SEE https://github.com/TheDan64/inkwell/issues/496
We want `llvm.stackrestore`, but the following would generate `llvm.stackrestore.p0i8`.
```ignore
let intrinsic_fn = Intrinsic::find(FN_NAME)
.and_then(|intrinsic| intrinsic.get_declaration(&ctx.module, &[llvm_p0i8.into()]))
.unwrap();
```
Temp workaround by manually declaring the intrinsic with the correct function name instead.
*/
let intrinsic_fn = ctx.module.get_function(FN_NAME).unwrap_or_else(|| {
let llvm_void = ctx.ctx.void_type();
let llvm_i8 = ctx.ctx.i8_type();
let llvm_p0i8 = llvm_i8.ptr_type(AddressSpace::default());
let fn_type = llvm_void.fn_type(&[llvm_p0i8.into()], false);
ctx.module.add_function(FN_NAME, fn_type, None)
});
ctx.builder.build_call(intrinsic_fn, &[ptr.into()], "").unwrap();
}
/// Invokes the [`llvm.memcpy`](https://llvm.org/docs/LangRef.html#llvm-memcpy-intrinsic) intrinsic.
///
/// * `dest` - The pointer to the destination. Must be a pointer to an integer type.
/// * `src` - The pointer to the source. Must be a pointer to an integer type.
/// * `len` - The number of bytes to copy.
/// * `is_volatile` - Whether the `memcpy` operation should be `volatile`.
pub fn call_memcpy<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
dest: PointerValue<'ctx>,
src: PointerValue<'ctx>,
len: IntValue<'ctx>,
is_volatile: IntValue<'ctx>,
) {
const FN_NAME: &str = "llvm.memcpy";
debug_assert!(dest.get_type().get_element_type().is_int_type());
debug_assert!(src.get_type().get_element_type().is_int_type());
debug_assert_eq!(
dest.get_type().get_element_type().into_int_type().get_bit_width(),
src.get_type().get_element_type().into_int_type().get_bit_width(),
);
debug_assert!(matches!(len.get_type().get_bit_width(), 32 | 64));
debug_assert_eq!(is_volatile.get_type().get_bit_width(), 1);
let llvm_dest_t = dest.get_type();
let llvm_src_t = src.get_type();
let llvm_len_t = len.get_type();
let intrinsic_fn = Intrinsic::find(FN_NAME)
.and_then(|intrinsic| {
intrinsic.get_declaration(
&ctx.module,
&[llvm_dest_t.into(), llvm_src_t.into(), llvm_len_t.into()],
)
})
.unwrap();
ctx.builder
.build_call(intrinsic_fn, &[dest.into(), src.into(), len.into(), is_volatile.into()], "")
.unwrap();
}
/// Invokes the `llvm.memcpy` intrinsic.
///
/// Unlike [`call_memcpy`], this function accepts any type of pointer value. If `dest` or `src` is
/// not a pointer to an integer, the pointer(s) will be cast to `i8*` before invoking `memcpy`.
pub fn call_memcpy_generic<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
dest: PointerValue<'ctx>,
src: PointerValue<'ctx>,
len: IntValue<'ctx>,
is_volatile: IntValue<'ctx>,
) {
let llvm_i8 = ctx.ctx.i8_type();
let llvm_p0i8 = llvm_i8.ptr_type(AddressSpace::default());
let dest_elem_t = dest.get_type().get_element_type();
let src_elem_t = src.get_type().get_element_type();
let dest = if matches!(dest_elem_t, IntType(t) if t.get_bit_width() == 8) {
dest
} else {
ctx.builder
.build_bit_cast(dest, llvm_p0i8, "")
.map(BasicValueEnum::into_pointer_value)
.unwrap()
};
let src = if matches!(src_elem_t, IntType(t) if t.get_bit_width() == 8) {
src
} else {
ctx.builder
.build_bit_cast(src, llvm_p0i8, "")
.map(BasicValueEnum::into_pointer_value)
.unwrap()
};
call_memcpy(ctx, dest, src, len, is_volatile);
}
/// Macro to find and generate build call for llvm intrinsic (body of llvm intrinsic function)
///
/// Arguments:
/// * `$ctx:ident`: Reference to the current Code Generation Context
/// * `$name:ident`: Optional name to be assigned to the llvm build call (Option<&str>)
/// * `$llvm_name:literal`: Name of underlying llvm intrinsic function
/// * `$map_fn:ident`: Mapping function to be applied on `BasicValue` (`BasicValue` -> Function Return Type).
/// Use `BasicValueEnum::into_int_value` for Integer return type and
/// `BasicValueEnum::into_float_value` for Float return type
/// * `$llvm_ty:ident`: Type of first operand
/// * `,($val:ident)*`: Comma separated list of operands
macro_rules! generate_llvm_intrinsic_fn_body {
($ctx:ident, $name:ident, $llvm_name:literal, $map_fn:expr, $llvm_ty:ident $(,$val:ident)*) => {{
const FN_NAME: &str = concat!("llvm.", $llvm_name);
let intrinsic_fn = Intrinsic::find(FN_NAME).and_then(|intrinsic| intrinsic.get_declaration(&$ctx.module, &[$llvm_ty.into()])).unwrap();
$ctx.builder.build_call(intrinsic_fn, &[$($val.into()),*], $name.unwrap_or_default()).map(CallSiteValue::try_as_basic_value).map(|v| v.map_left($map_fn)).map(Either::unwrap_left).unwrap()
}};
}
/// Macro to generate the llvm intrinsic function using [`generate_llvm_intrinsic_fn_body`].
///
/// Arguments:
/// * `float/int`: Indicates the return and argument type of the function
/// * `$fn_name:ident`: The identifier of the rust function to be generated
/// * `$llvm_name:literal`: Name of underlying llvm intrinsic function.
/// Omit "llvm." prefix from the function name i.e. use "ceil" instead of "llvm.ceil"
/// * `$val:ident`: The operand for unary operations
/// * `$val1:ident`, `$val2:ident`: The operands for binary operations
macro_rules! generate_llvm_intrinsic_fn {
("float", $fn_name:ident, $llvm_name:literal, $val:ident) => {
#[doc = concat!("Invokes the [`", stringify!($llvm_name), "`](https://llvm.org/docs/LangRef.html#llvm-", stringify!($llvm_name), "-intrinsic) intrinsic." )]
pub fn $fn_name<'ctx> (
ctx: &CodeGenContext<'ctx, '_>,
$val: FloatValue<'ctx>,
name: Option<&str>,
) -> FloatValue<'ctx> {
let llvm_ty = $val.get_type();
generate_llvm_intrinsic_fn_body!(ctx, name, $llvm_name, BasicValueEnum::into_float_value, llvm_ty, $val)
}
};
("float", $fn_name:ident, $llvm_name:literal, $val1:ident, $val2:ident) => {
#[doc = concat!("Invokes the [`", stringify!($llvm_name), "`](https://llvm.org/docs/LangRef.html#llvm-", stringify!($llvm_name), "-intrinsic) intrinsic." )]
pub fn $fn_name<'ctx> (
ctx: &CodeGenContext<'ctx, '_>,
$val1: FloatValue<'ctx>,
$val2: FloatValue<'ctx>,
name: Option<&str>,
) -> FloatValue<'ctx> {
debug_assert_eq!($val1.get_type(), $val2.get_type());
let llvm_ty = $val1.get_type();
generate_llvm_intrinsic_fn_body!(ctx, name, $llvm_name, BasicValueEnum::into_float_value, llvm_ty, $val1, $val2)
}
};
("int", $fn_name:ident, $llvm_name:literal, $val1:ident, $val2:ident) => {
#[doc = concat!("Invokes the [`", stringify!($llvm_name), "`](https://llvm.org/docs/LangRef.html#llvm-", stringify!($llvm_name), "-intrinsic) intrinsic." )]
pub fn $fn_name<'ctx> (
ctx: &CodeGenContext<'ctx, '_>,
$val1: IntValue<'ctx>,
$val2: IntValue<'ctx>,
name: Option<&str>,
) -> IntValue<'ctx> {
debug_assert_eq!($val1.get_type().get_bit_width(), $val2.get_type().get_bit_width());
let llvm_ty = $val1.get_type();
generate_llvm_intrinsic_fn_body!(ctx, name, $llvm_name, BasicValueEnum::into_int_value, llvm_ty, $val1, $val2)
}
};
}
/// Invokes the [`llvm.abs`](https://llvm.org/docs/LangRef.html#llvm-abs-intrinsic) intrinsic.
///
/// * `src` - The value for which the absolute value is to be returned.
/// * `is_int_min_poison` - Whether `poison` is to be returned if `src` is `INT_MIN`.
pub fn call_int_abs<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
src: IntValue<'ctx>,
is_int_min_poison: IntValue<'ctx>,
name: Option<&str>,
) -> IntValue<'ctx> {
debug_assert_eq!(is_int_min_poison.get_type().get_bit_width(), 1);
debug_assert!(is_int_min_poison.is_const());
let src_type = src.get_type();
generate_llvm_intrinsic_fn_body!(
ctx,
name,
"abs",
BasicValueEnum::into_int_value,
src_type,
src,
is_int_min_poison
)
}
generate_llvm_intrinsic_fn!("int", call_int_smax, "smax", a, b);
generate_llvm_intrinsic_fn!("int", call_int_smin, "smin", a, b);
generate_llvm_intrinsic_fn!("int", call_int_umax, "umax", a, b);
generate_llvm_intrinsic_fn!("int", call_int_umin, "umin", a, b);
generate_llvm_intrinsic_fn!("int", call_expect, "expect", val, expected_val);
generate_llvm_intrinsic_fn!("float", call_float_sqrt, "sqrt", val);
generate_llvm_intrinsic_fn!("float", call_float_sin, "sin", val);
generate_llvm_intrinsic_fn!("float", call_float_cos, "cos", val);
generate_llvm_intrinsic_fn!("float", call_float_pow, "pow", val, power);
generate_llvm_intrinsic_fn!("float", call_float_exp, "exp", val);
generate_llvm_intrinsic_fn!("float", call_float_exp2, "exp2", val);
generate_llvm_intrinsic_fn!("float", call_float_log, "log", val);
generate_llvm_intrinsic_fn!("float", call_float_log10, "log10", val);
generate_llvm_intrinsic_fn!("float", call_float_log2, "log2", val);
generate_llvm_intrinsic_fn!("float", call_float_fabs, "fabs", src);
generate_llvm_intrinsic_fn!("float", call_float_minnum, "minnum", val, power);
generate_llvm_intrinsic_fn!("float", call_float_maxnum, "maxnum", val, power);
generate_llvm_intrinsic_fn!("float", call_float_copysign, "copysign", mag, sgn);
generate_llvm_intrinsic_fn!("float", call_float_floor, "floor", val);
generate_llvm_intrinsic_fn!("float", call_float_ceil, "ceil", val);
generate_llvm_intrinsic_fn!("float", call_float_round, "round", val);
generate_llvm_intrinsic_fn!("float", call_float_rint, "rint", val);
/// Invokes the [`llvm.powi`](https://llvm.org/docs/LangRef.html#llvm-powi-intrinsic) intrinsic.
pub fn call_float_powi<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
val: FloatValue<'ctx>,
power: IntValue<'ctx>,
name: Option<&str>,
) -> FloatValue<'ctx> {
const FN_NAME: &str = "llvm.powi";
let llvm_val_t = val.get_type();
let llvm_power_t = power.get_type();
let intrinsic_fn = Intrinsic::find(FN_NAME)
.and_then(|intrinsic| {
intrinsic.get_declaration(&ctx.module, &[llvm_val_t.into(), llvm_power_t.into()])
})
.unwrap();
ctx.builder
.build_call(intrinsic_fn, &[val.into(), power.into()], name.unwrap_or_default())
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -1,37 +1,27 @@
use std::{ use crate::{
collections::{HashMap, HashSet}, codegen::{
sync::Arc, concrete_type::ConcreteTypeStore, CodeGenContext, CodeGenTask, DefaultCodeGenerator,
WithCall, WorkerRegistry,
},
location::Location,
symbol_resolver::{SymbolResolver, ValueEnum},
toplevel::{
composer::TopLevelComposer, DefinitionId, FunInstance, TopLevelContext, TopLevelDef,
},
typecheck::{
type_inferencer::{FunctionData, Inferencer, PrimitiveStore},
typedef::{FunSignature, FuncArg, Type, TypeEnum, Unifier},
},
}; };
use indexmap::IndexMap;
use indoc::indoc; use indoc::indoc;
use inkwell::{
targets::{InitializationConfig, Target},
OptimizationLevel,
};
use nac3parser::{ use nac3parser::{
ast::{fold::Fold, FileName, StrRef}, ast::{fold::Fold, StrRef},
parser::parse_program, parser::parse_program,
}; };
use parking_lot::RwLock; use parking_lot::RwLock;
use std::cell::RefCell;
use super::{ use std::collections::{HashMap, HashSet};
concrete_type::ConcreteTypeStore, use std::sync::Arc;
types::{ListType, NDArrayType, ProxyType, RangeType},
CodeGenContext, CodeGenLLVMOptions, CodeGenTargetMachineOptions, CodeGenTask, CodeGenerator,
DefaultCodeGenerator, WithCall, WorkerRegistry,
};
use crate::{
symbol_resolver::{SymbolResolver, ValueEnum},
toplevel::{
composer::{ComposerConfig, TopLevelComposer},
DefinitionId, FunInstance, TopLevelContext, TopLevelDef,
},
typecheck::{
type_inferencer::{FunctionData, IdentifierInfo, Inferencer, PrimitiveStore},
typedef::{FunSignature, FuncArg, Type, TypeEnum, Unifier, VarMap},
},
};
struct Resolver { struct Resolver {
id_to_type: HashMap<StrRef, Type>, id_to_type: HashMap<StrRef, Type>,
@ -46,10 +36,7 @@ impl Resolver {
} }
impl SymbolResolver for Resolver { impl SymbolResolver for Resolver {
fn get_default_param_value( fn get_default_param_value(&self, _: &nac3parser::ast::Expr) -> Option<crate::symbol_resolver::SymbolValue> {
&self,
_: &nac3parser::ast::Expr,
) -> Option<crate::symbol_resolver::SymbolValue> {
unimplemented!() unimplemented!()
} }
@ -59,33 +46,24 @@ impl SymbolResolver for Resolver {
_: &[Arc<RwLock<TopLevelDef>>], _: &[Arc<RwLock<TopLevelDef>>],
_: &PrimitiveStore, _: &PrimitiveStore,
str: StrRef, str: StrRef,
) -> Result<Type, String> { ) -> Option<Type> {
self.id_to_type.get(&str).copied().ok_or_else(|| format!("cannot find symbol `{str}`")) self.id_to_type.get(&str).cloned()
} }
fn get_symbol_value<'ctx>( fn get_symbol_value<'ctx, 'a>(
&self, &self,
_: StrRef, _: StrRef,
_: &mut CodeGenContext<'ctx, '_>, _: &mut CodeGenContext<'ctx, 'a>,
_: &mut dyn CodeGenerator,
) -> Option<ValueEnum<'ctx>> { ) -> Option<ValueEnum<'ctx>> {
unimplemented!() unimplemented!()
} }
fn get_identifier_def(&self, id: StrRef) -> Result<DefinitionId, HashSet<String>> { fn get_symbol_location(&self, _: StrRef) -> Option<Location> {
self.id_to_def
.read()
.get(&id)
.copied()
.ok_or_else(|| HashSet::from([format!("cannot find symbol `{id}`")]))
}
fn get_string_id(&self, _: &str) -> i32 {
unimplemented!() unimplemented!()
} }
fn get_exception_id(&self, _tyid: usize) -> usize { fn get_identifier_def(&self, id: StrRef) -> Option<DefinitionId> {
unimplemented!() self.id_to_def.read().get(&id).cloned()
} }
} }
@ -96,9 +74,9 @@ fn test_primitives() {
d = a if c == 1 else 0 d = a if c == 1 else 0
return d return d
"}; "};
let statements = parse_program(source, FileName::default()).unwrap(); let statements = parse_program(source).unwrap();
let composer = TopLevelComposer::new(Vec::new(), Vec::new(), ComposerConfig::default(), 32).0; let composer: TopLevelComposer = Default::default();
let mut unifier = composer.unifier.clone(); let mut unifier = composer.unifier.clone();
let primitives = composer.primitives_ty; let primitives = composer.primitives_ty;
let top_level = Arc::new(composer.make_top_level_context()); let top_level = Arc::new(composer.make_top_level_context());
@ -107,27 +85,17 @@ fn test_primitives() {
let resolver = Arc::new(Resolver { let resolver = Arc::new(Resolver {
id_to_type: HashMap::new(), id_to_type: HashMap::new(),
id_to_def: RwLock::new(HashMap::new()), id_to_def: RwLock::new(HashMap::new()),
class_names: HashMap::default(), class_names: Default::default(),
}) as Arc<dyn SymbolResolver + Send + Sync>; }) as Arc<dyn SymbolResolver + Send + Sync>;
let threads = vec![DefaultCodeGenerator::new("test".into(), 32).into()]; let threads = vec![DefaultCodeGenerator::new("test".into()).into()];
let signature = FunSignature { let signature = FunSignature {
args: vec![ args: vec![
FuncArg { FuncArg { name: "a".into(), ty: primitives.int32, default_value: None },
name: "a".into(), FuncArg { name: "b".into(), ty: primitives.int32, default_value: None },
ty: primitives.int32,
default_value: None,
is_vararg: false,
},
FuncArg {
name: "b".into(),
ty: primitives.int32,
default_value: None,
is_vararg: false,
},
], ],
ret: primitives.int32, ret: primitives.int32,
vars: VarMap::new(), vars: HashMap::new(),
}; };
let mut store = ConcreteTypeStore::new(); let mut store = ConcreteTypeStore::new();
@ -142,18 +110,16 @@ fn test_primitives() {
}; };
let mut virtual_checks = Vec::new(); let mut virtual_checks = Vec::new();
let mut calls = HashMap::new(); let mut calls = HashMap::new();
let mut identifiers: HashMap<_, _> = let mut identifiers: HashSet<_> = ["a".into(), "b".into()].iter().cloned().collect();
["a".into(), "b".into()].map(|id| (id, IdentifierInfo::default())).into();
let mut inferencer = Inferencer { let mut inferencer = Inferencer {
top_level: &top_level, top_level: &top_level,
function_data: &mut function_data, function_data: &mut function_data,
unifier: &mut unifier, unifier: &mut unifier,
variable_mapping: HashMap::default(), variable_mapping: Default::default(),
primitives: &primitives, primitives: &primitives,
virtual_checks: &mut virtual_checks, virtual_checks: &mut virtual_checks,
calls: &mut calls, calls: &mut calls,
defined_identifiers: identifiers.clone(), defined_identifiers: identifiers.clone(),
in_handler: false,
}; };
inferencer.variable_mapping.insert("a".into(), inferencer.primitives.int32); inferencer.variable_mapping.insert("a".into(), inferencer.primitives.int32);
inferencer.variable_mapping.insert("b".into(), inferencer.primitives.int32); inferencer.variable_mapping.insert("b".into(), inferencer.primitives.int32);
@ -172,7 +138,7 @@ fn test_primitives() {
}); });
let task = CodeGenTask { let task = CodeGenTask {
subst: Vec::default(), subst: Default::default(),
symbol_name: "testing".into(), symbol_name: "testing".into(),
body: Arc::new(statements), body: Arc::new(statements),
unifier_index: 0, unifier_index: 0,
@ -204,48 +170,19 @@ fn test_primitives() {
let expected = indoc! {" let expected = indoc! {"
; ModuleID = 'test' ; ModuleID = 'test'
source_filename = \"test\" source_filename = \"test\"
target datalayout = \"e-m:e-p270:32:32-p271:32:32-p272:64:64-i64:64-f80:128-n8:16:32:64-S128\"
target triple = \"x86_64-unknown-linux-gnu\"
; Function Attrs: mustprogress nofree norecurse nosync nounwind readnone willreturn define i32 @testing(i32 %0, i32 %1) {
define i32 @testing(i32 %0, i32 %1) local_unnamed_addr #0 !dbg !4 {
init: init:
%add = add i32 %1, %0, !dbg !9 %add = add i32 %0, %1
%cmp = icmp eq i32 %add, 1, !dbg !10 %cmp = icmp eq i32 %add, 1
%. = select i1 %cmp, i32 %0, i32 0, !dbg !11 %ifexpr = select i1 %cmp, i32 %0, i32 0
ret i32 %., !dbg !12 ret i32 %ifexpr
} }
attributes #0 = { mustprogress nofree norecurse nosync nounwind readnone willreturn }
!llvm.module.flags = !{!0, !1}
!llvm.dbg.cu = !{!2}
!0 = !{i32 2, !\"Debug Info Version\", i32 3}
!1 = !{i32 2, !\"Dwarf Version\", i32 4}
!2 = distinct !DICompileUnit(language: DW_LANG_Python, file: !3, producer: \"NAC3\", isOptimized: true, runtimeVersion: 0, emissionKind: FullDebug)
!3 = !DIFile(filename: \"unknown\", directory: \"\")
!4 = distinct !DISubprogram(name: \"testing\", linkageName: \"testing\", scope: null, file: !3, line: 1, type: !5, scopeLine: 1, flags: DIFlagPublic, spFlags: DISPFlagDefinition | DISPFlagOptimized, unit: !2, retainedNodes: !8)
!5 = !DISubroutineType(flags: DIFlagPublic, types: !6)
!6 = !{!7}
!7 = !DIBasicType(name: \"_\", flags: DIFlagPublic)
!8 = !{}
!9 = !DILocation(line: 1, column: 9, scope: !4)
!10 = !DILocation(line: 2, column: 15, scope: !4)
!11 = !DILocation(line: 0, scope: !4)
!12 = !DILocation(line: 3, column: 8, scope: !4)
"} "}
.trim(); .trim();
assert_eq!(expected, module.print_to_string().to_str().unwrap().trim()); assert_eq!(expected, module.print_to_string().to_str().unwrap().trim());
}))); })));
let (registry, handles) = WorkerRegistry::create_workers(threads, top_level, f);
Target::initialize_all(&InitializationConfig::default());
let llvm_options = CodeGenLLVMOptions {
opt_level: OptimizationLevel::Default,
target: CodeGenTargetMachineOptions::from_host_triple(),
};
let (registry, handles) = WorkerRegistry::create_workers(threads, top_level, &llvm_options, &f);
registry.add_task(task); registry.add_task(task);
registry.wait_tasks_complete(handles); registry.wait_tasks_complete(handles);
} }
@ -256,30 +193,25 @@ fn test_simple_call() {
a = foo(a) a = foo(a)
return a * 2 return a * 2
"}; "};
let statements_1 = parse_program(source_1, FileName::default()).unwrap(); let statements_1 = parse_program(source_1).unwrap();
let source_2 = indoc! { " let source_2 = indoc! { "
return a + 1 return a + 1
"}; "};
let statements_2 = parse_program(source_2, FileName::default()).unwrap(); let statements_2 = parse_program(source_2).unwrap();
let composer = TopLevelComposer::new(Vec::new(), Vec::new(), ComposerConfig::default(), 32).0; let composer: TopLevelComposer = Default::default();
let mut unifier = composer.unifier.clone(); let mut unifier = composer.unifier.clone();
let primitives = composer.primitives_ty; let primitives = composer.primitives_ty;
let top_level = Arc::new(composer.make_top_level_context()); let top_level = Arc::new(composer.make_top_level_context());
unifier.top_level = Some(top_level.clone()); unifier.top_level = Some(top_level.clone());
let signature = FunSignature { let signature = FunSignature {
args: vec![FuncArg { args: vec![FuncArg { name: "a".into(), ty: primitives.int32, default_value: None }],
name: "a".into(),
ty: primitives.int32,
default_value: None,
is_vararg: false,
}],
ret: primitives.int32, ret: primitives.int32,
vars: VarMap::new(), vars: HashMap::new(),
}; };
let fun_ty = unifier.add_ty(TypeEnum::TFunc(signature.clone())); let fun_ty = unifier.add_ty(TypeEnum::TFunc(RefCell::new(signature.clone())));
let mut store = ConcreteTypeStore::new(); let mut store = ConcreteTypeStore::new();
let mut cache = HashMap::new(); let mut cache = HashMap::new();
let signature = store.from_signature(&mut unifier, &primitives, &signature, &mut cache); let signature = store.from_signature(&mut unifier, &primitives, &signature, &mut cache);
@ -295,13 +227,12 @@ fn test_simple_call() {
instance_to_symbol: HashMap::new(), instance_to_symbol: HashMap::new(),
resolver: None, resolver: None,
codegen_callback: None, codegen_callback: None,
loc: None,
}))); })));
let resolver = Resolver { let resolver = Resolver {
id_to_type: HashMap::new(), id_to_type: HashMap::new(),
id_to_def: RwLock::new(HashMap::new()), id_to_def: RwLock::new(HashMap::new()),
class_names: HashMap::default(), class_names: Default::default(),
}; };
resolver.add_id_def("foo".into(), DefinitionId(foo_id)); resolver.add_id_def("foo".into(), DefinitionId(foo_id));
let resolver = Arc::new(resolver) as Arc<dyn SymbolResolver + Send + Sync>; let resolver = Arc::new(resolver) as Arc<dyn SymbolResolver + Send + Sync>;
@ -314,7 +245,7 @@ fn test_simple_call() {
unreachable!() unreachable!()
} }
let threads = vec![DefaultCodeGenerator::new("test".into(), 32).into()]; let threads = vec![DefaultCodeGenerator::new("test".into()).into()];
let mut function_data = FunctionData { let mut function_data = FunctionData {
resolver: resolver.clone(), resolver: resolver.clone(),
bound_variables: Vec::new(), bound_variables: Vec::new(),
@ -322,18 +253,16 @@ fn test_simple_call() {
}; };
let mut virtual_checks = Vec::new(); let mut virtual_checks = Vec::new();
let mut calls = HashMap::new(); let mut calls = HashMap::new();
let mut identifiers: HashMap<_, _> = let mut identifiers: HashSet<_> = ["a".into(), "foo".into()].iter().cloned().collect();
["a".into(), "foo".into()].map(|id| (id, IdentifierInfo::default())).into();
let mut inferencer = Inferencer { let mut inferencer = Inferencer {
top_level: &top_level, top_level: &top_level,
function_data: &mut function_data, function_data: &mut function_data,
unifier: &mut unifier, unifier: &mut unifier,
variable_mapping: HashMap::default(), variable_mapping: Default::default(),
primitives: &primitives, primitives: &primitives,
virtual_checks: &mut virtual_checks, virtual_checks: &mut virtual_checks,
calls: &mut calls, calls: &mut calls,
defined_identifiers: identifiers.clone(), defined_identifiers: identifiers.clone(),
in_handler: false,
}; };
inferencer.variable_mapping.insert("a".into(), inferencer.primitives.int32); inferencer.variable_mapping.insert("a".into(), inferencer.primitives.int32);
inferencer.variable_mapping.insert("foo".into(), fun_ty); inferencer.variable_mapping.insert("foo".into(), fun_ty);
@ -357,11 +286,11 @@ fn test_simple_call() {
&mut *top_level.definitions.read()[foo_id].write() &mut *top_level.definitions.read()[foo_id].write()
{ {
instance_to_stmt.insert( instance_to_stmt.insert(
String::new(), "".to_string(),
FunInstance { FunInstance {
body: Arc::new(statements_2), body: Arc::new(statements_2),
calls: Arc::new(inferencer.calls.clone()), calls: Arc::new(inferencer.calls.clone()),
subst: IndexMap::default(), subst: Default::default(),
unifier_id: 0, unifier_id: 0,
}, },
); );
@ -377,7 +306,7 @@ fn test_simple_call() {
}); });
let task = CodeGenTask { let task = CodeGenTask {
subst: Vec::default(), subst: Default::default(),
symbol_name: "testing".to_string(), symbol_name: "testing".to_string(),
body: Arc::new(statements_1), body: Arc::new(statements_1),
calls: Arc::new(calls1), calls: Arc::new(calls1),
@ -391,86 +320,24 @@ fn test_simple_call() {
let expected = indoc! {" let expected = indoc! {"
; ModuleID = 'test' ; ModuleID = 'test'
source_filename = \"test\" source_filename = \"test\"
target datalayout = \"e-m:e-p270:32:32-p271:32:32-p272:64:64-i64:64-f80:128-n8:16:32:64-S128\"
target triple = \"x86_64-unknown-linux-gnu\"
; Function Attrs: mustprogress nofree norecurse nosync nounwind readnone willreturn define i32 @testing(i32 %0) {
define i32 @testing(i32 %0) local_unnamed_addr #0 !dbg !5 {
init: init:
%add.i = shl i32 %0, 1, !dbg !10 %call = call i32 @foo.0(i32 %0)
%mul = add i32 %add.i, 2, !dbg !10 %mul = mul i32 %call, 2
ret i32 %mul, !dbg !10 ret i32 %mul
} }
; Function Attrs: mustprogress nofree norecurse nosync nounwind readnone willreturn define i32 @foo.0(i32 %0) {
define i32 @foo.0(i32 %0) local_unnamed_addr #0 !dbg !11 {
init: init:
%add = add i32 %0, 1, !dbg !12 %add = add i32 %0, 1
ret i32 %add, !dbg !12 ret i32 %add
} }
attributes #0 = { mustprogress nofree norecurse nosync nounwind readnone willreturn }
!llvm.module.flags = !{!0, !1}
!llvm.dbg.cu = !{!2, !4}
!0 = !{i32 2, !\"Debug Info Version\", i32 3}
!1 = !{i32 2, !\"Dwarf Version\", i32 4}
!2 = distinct !DICompileUnit(language: DW_LANG_Python, file: !3, producer: \"NAC3\", isOptimized: true, runtimeVersion: 0, emissionKind: FullDebug)
!3 = !DIFile(filename: \"unknown\", directory: \"\")
!4 = distinct !DICompileUnit(language: DW_LANG_Python, file: !3, producer: \"NAC3\", isOptimized: true, runtimeVersion: 0, emissionKind: FullDebug)
!5 = distinct !DISubprogram(name: \"testing\", linkageName: \"testing\", scope: null, file: !3, line: 1, type: !6, scopeLine: 1, flags: DIFlagPublic, spFlags: DISPFlagDefinition | DISPFlagOptimized, unit: !2, retainedNodes: !9)
!6 = !DISubroutineType(flags: DIFlagPublic, types: !7)
!7 = !{!8}
!8 = !DIBasicType(name: \"_\", flags: DIFlagPublic)
!9 = !{}
!10 = !DILocation(line: 2, column: 12, scope: !5)
!11 = distinct !DISubprogram(name: \"foo.0\", linkageName: \"foo.0\", scope: null, file: !3, line: 1, type: !6, scopeLine: 1, flags: DIFlagPublic, spFlags: DISPFlagDefinition | DISPFlagOptimized, unit: !4, retainedNodes: !9)
!12 = !DILocation(line: 1, column: 12, scope: !11)
"} "}
.trim(); .trim();
assert_eq!(expected, module.print_to_string().to_str().unwrap().trim()); assert_eq!(expected, module.print_to_string().to_str().unwrap().trim());
}))); })));
let (registry, handles) = WorkerRegistry::create_workers(threads, top_level, f);
Target::initialize_all(&InitializationConfig::default());
let llvm_options = CodeGenLLVMOptions {
opt_level: OptimizationLevel::Default,
target: CodeGenTargetMachineOptions::from_host_triple(),
};
let (registry, handles) = WorkerRegistry::create_workers(threads, top_level, &llvm_options, &f);
registry.add_task(task); registry.add_task(task);
registry.wait_tasks_complete(handles); registry.wait_tasks_complete(handles);
} }
#[test]
fn test_classes_list_type_new() {
let ctx = inkwell::context::Context::create();
let generator = DefaultCodeGenerator::new(String::new(), 64);
let llvm_i32 = ctx.i32_type();
let llvm_usize = generator.get_size_type(&ctx);
let llvm_list = ListType::new(&generator, &ctx, llvm_i32.into());
assert!(ListType::is_representable(llvm_list.as_base_type(), llvm_usize).is_ok());
}
#[test]
fn test_classes_range_type_new() {
let ctx = inkwell::context::Context::create();
let llvm_range = RangeType::new(&ctx);
assert!(RangeType::is_representable(llvm_range.as_base_type()).is_ok());
}
#[test]
fn test_classes_ndarray_type_new() {
let ctx = inkwell::context::Context::create();
let generator = DefaultCodeGenerator::new(String::new(), 64);
let llvm_i32 = ctx.i32_type();
let llvm_usize = generator.get_size_type(&ctx);
let llvm_ndarray = NDArrayType::new(&generator, &ctx, llvm_i32.into());
assert!(NDArrayType::is_representable(llvm_ndarray.as_base_type(), llvm_usize).is_ok());
}

View File

@ -1,192 +0,0 @@
use inkwell::{
context::Context,
types::{AnyTypeEnum, BasicType, BasicTypeEnum, IntType, PointerType},
values::IntValue,
AddressSpace,
};
use super::ProxyType;
use crate::codegen::{
values::{ArraySliceValue, ListValue, ProxyValue},
CodeGenContext, CodeGenerator,
};
/// Proxy type for a `list` type in LLVM.
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
pub struct ListType<'ctx> {
ty: PointerType<'ctx>,
llvm_usize: IntType<'ctx>,
}
impl<'ctx> ListType<'ctx> {
/// Checks whether `llvm_ty` represents a `list` type, returning [Err] if it does not.
pub fn is_representable(
llvm_ty: PointerType<'ctx>,
llvm_usize: IntType<'ctx>,
) -> Result<(), String> {
let llvm_list_ty = llvm_ty.get_element_type();
let AnyTypeEnum::StructType(llvm_list_ty) = llvm_list_ty else {
return Err(format!("Expected struct type for `list` type, got {llvm_list_ty}"));
};
if llvm_list_ty.count_fields() != 2 {
return Err(format!(
"Expected 2 fields in `list`, got {}",
llvm_list_ty.count_fields()
));
}
let list_size_ty = llvm_list_ty.get_field_type_at_index(0).unwrap();
let Ok(_) = PointerType::try_from(list_size_ty) else {
return Err(format!("Expected pointer type for `list.0`, got {list_size_ty}"));
};
let list_data_ty = llvm_list_ty.get_field_type_at_index(1).unwrap();
let Ok(list_data_ty) = IntType::try_from(list_data_ty) else {
return Err(format!("Expected int type for `list.1`, got {list_data_ty}"));
};
if list_data_ty.get_bit_width() != llvm_usize.get_bit_width() {
return Err(format!(
"Expected {}-bit int type for `list.1`, got {}-bit int",
llvm_usize.get_bit_width(),
list_data_ty.get_bit_width()
));
}
Ok(())
}
/// Creates an LLVM type corresponding to the expected structure of a `List`.
#[must_use]
fn llvm_type(
ctx: &'ctx Context,
element_type: BasicTypeEnum<'ctx>,
llvm_usize: IntType<'ctx>,
) -> PointerType<'ctx> {
// struct List { data: T*, size: size_t }
let field_tys = [element_type.ptr_type(AddressSpace::default()).into(), llvm_usize.into()];
ctx.struct_type(&field_tys, false).ptr_type(AddressSpace::default())
}
/// Creates an instance of [`ListType`].
#[must_use]
pub fn new<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
element_type: BasicTypeEnum<'ctx>,
) -> Self {
let llvm_usize = generator.get_size_type(ctx);
let llvm_list = Self::llvm_type(ctx, element_type, llvm_usize);
ListType::from_type(llvm_list, llvm_usize)
}
/// Creates an [`ListType`] from a [`PointerType`].
#[must_use]
pub fn from_type(ptr_ty: PointerType<'ctx>, llvm_usize: IntType<'ctx>) -> Self {
debug_assert!(Self::is_representable(ptr_ty, llvm_usize).is_ok());
ListType { ty: ptr_ty, llvm_usize }
}
/// Returns the type of the `size` field of this `list` type.
#[must_use]
pub fn size_type(&self) -> IntType<'ctx> {
self.as_base_type()
.get_element_type()
.into_struct_type()
.get_field_type_at_index(1)
.map(BasicTypeEnum::into_int_type)
.unwrap()
}
/// Returns the element type of this `list` type.
#[must_use]
pub fn element_type(&self) -> AnyTypeEnum<'ctx> {
self.as_base_type()
.get_element_type()
.into_struct_type()
.get_field_type_at_index(0)
.map(BasicTypeEnum::into_pointer_type)
.map(PointerType::get_element_type)
.unwrap()
}
}
impl<'ctx> ProxyType<'ctx> for ListType<'ctx> {
type Base = PointerType<'ctx>;
type Value = ListValue<'ctx>;
fn is_type<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
llvm_ty: impl BasicType<'ctx>,
) -> Result<(), String> {
if let BasicTypeEnum::PointerType(ty) = llvm_ty.as_basic_type_enum() {
<Self as ProxyType<'ctx>>::is_representable(generator, ctx, ty)
} else {
Err(format!("Expected pointer type, got {llvm_ty:?}"))
}
}
fn is_representable<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
llvm_ty: Self::Base,
) -> Result<(), String> {
Self::is_representable(llvm_ty, generator.get_size_type(ctx))
}
fn new_value<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>,
) -> Self::Value {
self.map_value(
generator
.gen_var_alloc(
ctx,
self.as_base_type().get_element_type().into_struct_type().into(),
name,
)
.unwrap(),
name,
)
}
fn new_array_value<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
size: IntValue<'ctx>,
name: Option<&'ctx str>,
) -> ArraySliceValue<'ctx> {
generator
.gen_array_var_alloc(
ctx,
self.as_base_type().get_element_type().into_struct_type().into(),
size,
name,
)
.unwrap()
}
fn map_value(
&self,
value: <Self::Value as ProxyValue<'ctx>>::Base,
name: Option<&'ctx str>,
) -> Self::Value {
Self::Value::from_pointer_value(value, self.llvm_usize, name)
}
fn as_base_type(&self) -> Self::Base {
self.ty
}
}
impl<'ctx> From<ListType<'ctx>> for PointerType<'ctx> {
fn from(value: ListType<'ctx>) -> Self {
value.as_base_type()
}
}

View File

@ -1,64 +0,0 @@
use inkwell::{context::Context, types::BasicType, values::IntValue};
use super::{
values::{ArraySliceValue, ProxyValue},
{CodeGenContext, CodeGenerator},
};
pub use list::*;
pub use ndarray::*;
pub use range::*;
mod list;
mod ndarray;
mod range;
pub mod structure;
/// A LLVM type that is used to represent a corresponding type in NAC3.
pub trait ProxyType<'ctx>: Into<Self::Base> {
/// The LLVM type of which values of this type possess. This is usually a
/// [LLVM pointer type][PointerType] for any non-primitive types.
type Base: BasicType<'ctx>;
/// The type of values represented by this type.
type Value: ProxyValue<'ctx, Type = Self>;
fn is_type<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
llvm_ty: impl BasicType<'ctx>,
) -> Result<(), String>;
/// Checks whether `llvm_ty` can be represented by this [`ProxyType`].
fn is_representable<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
llvm_ty: Self::Base,
) -> Result<(), String>;
/// Creates a new value of this type.
fn new_value<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>,
) -> Self::Value;
/// Creates a new array value of this type.
fn new_array_value<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
size: IntValue<'ctx>,
name: Option<&'ctx str>,
) -> ArraySliceValue<'ctx>;
/// Converts an existing value into a [`ProxyValue`] of this type.
fn map_value(
&self,
value: <Self::Value as ProxyValue<'ctx>>::Base,
name: Option<&'ctx str>,
) -> Self::Value;
/// Returns the [base type][Self::Base] of this proxy.
fn as_base_type(&self) -> Self::Base;
}

View File

@ -1,258 +0,0 @@
use inkwell::{
context::Context,
types::{AnyTypeEnum, BasicType, BasicTypeEnum, IntType, PointerType},
values::{IntValue, PointerValue},
AddressSpace,
};
use itertools::Itertools;
use nac3core_derive::StructFields;
use super::{
structure::{StructField, StructFields},
ProxyType,
};
use crate::codegen::{
values::{ArraySliceValue, NDArrayValue, ProxyValue},
{CodeGenContext, CodeGenerator},
};
/// Proxy type for a `ndarray` type in LLVM.
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
pub struct NDArrayType<'ctx> {
ty: PointerType<'ctx>,
dtype: BasicTypeEnum<'ctx>,
llvm_usize: IntType<'ctx>,
}
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
pub struct NDArrayStructFields<'ctx> {
#[value_type(usize)]
pub ndims: StructField<'ctx, IntValue<'ctx>>,
#[value_type(usize.ptr_type(AddressSpace::default()))]
pub shape: StructField<'ctx, PointerValue<'ctx>>,
#[value_type(i8_type().ptr_type(AddressSpace::default()))]
pub data: StructField<'ctx, PointerValue<'ctx>>,
}
impl<'ctx> NDArrayType<'ctx> {
/// Checks whether `llvm_ty` represents a `ndarray` type, returning [Err] if it does not.
pub fn is_representable(
llvm_ty: PointerType<'ctx>,
llvm_usize: IntType<'ctx>,
) -> Result<(), String> {
let llvm_ndarray_ty = llvm_ty.get_element_type();
let AnyTypeEnum::StructType(llvm_ndarray_ty) = llvm_ndarray_ty else {
return Err(format!("Expected struct type for `NDArray` type, got {llvm_ndarray_ty}"));
};
if llvm_ndarray_ty.count_fields() != 3 {
return Err(format!(
"Expected 3 fields in `NDArray`, got {}",
llvm_ndarray_ty.count_fields()
));
}
let ndarray_ndims_ty = llvm_ndarray_ty.get_field_type_at_index(0).unwrap();
let Ok(ndarray_ndims_ty) = IntType::try_from(ndarray_ndims_ty) else {
return Err(format!("Expected int type for `ndarray.0`, got {ndarray_ndims_ty}"));
};
if ndarray_ndims_ty.get_bit_width() != llvm_usize.get_bit_width() {
return Err(format!(
"Expected {}-bit int type for `ndarray.0`, got {}-bit int",
llvm_usize.get_bit_width(),
ndarray_ndims_ty.get_bit_width()
));
}
let ndarray_dims_ty = llvm_ndarray_ty.get_field_type_at_index(1).unwrap();
let Ok(ndarray_pdims) = PointerType::try_from(ndarray_dims_ty) else {
return Err(format!("Expected pointer type for `ndarray.1`, got {ndarray_dims_ty}"));
};
let ndarray_dims = ndarray_pdims.get_element_type();
let Ok(ndarray_dims) = IntType::try_from(ndarray_dims) else {
return Err(format!(
"Expected pointer-to-int type for `ndarray.1`, got pointer-to-{ndarray_dims}"
));
};
if ndarray_dims.get_bit_width() != llvm_usize.get_bit_width() {
return Err(format!(
"Expected pointer-to-{}-bit int type for `ndarray.1`, got pointer-to-{}-bit int",
llvm_usize.get_bit_width(),
ndarray_dims.get_bit_width()
));
}
let ndarray_data_ty = llvm_ndarray_ty.get_field_type_at_index(2).unwrap();
let Ok(ndarray_pdata) = PointerType::try_from(ndarray_data_ty) else {
return Err(format!("Expected pointer type for `ndarray.2`, got {ndarray_data_ty}"));
};
let ndarray_data = ndarray_pdata.get_element_type();
let Ok(ndarray_data) = IntType::try_from(ndarray_data) else {
return Err(format!(
"Expected pointer-to-int type for `ndarray.2`, got pointer-to-{ndarray_data}"
));
};
if ndarray_data.get_bit_width() != 8 {
return Err(format!(
"Expected pointer-to-8-bit int type for `ndarray.1`, got pointer-to-{}-bit int",
ndarray_data.get_bit_width()
));
}
Ok(())
}
// TODO: Move this into e.g. StructProxyType
#[must_use]
fn fields(ctx: &'ctx Context, llvm_usize: IntType<'ctx>) -> NDArrayStructFields<'ctx> {
NDArrayStructFields::new(ctx, llvm_usize)
}
// TODO: Move this into e.g. StructProxyType
#[must_use]
pub fn get_fields(
&self,
ctx: &'ctx Context,
llvm_usize: IntType<'ctx>,
) -> NDArrayStructFields<'ctx> {
Self::fields(ctx, llvm_usize)
}
/// Creates an LLVM type corresponding to the expected structure of an `NDArray`.
#[must_use]
fn llvm_type(ctx: &'ctx Context, llvm_usize: IntType<'ctx>) -> PointerType<'ctx> {
// struct NDArray { num_dims: size_t, dims: size_t*, data: i8* }
//
// * data : Pointer to an array containing the array data
// * itemsize: The size of each NDArray elements in bytes
// * ndims : Number of dimensions in the array
// * shape : Pointer to an array containing the shape of the NDArray
// * strides : Pointer to an array indicating the number of bytes between each element at a dimension
let field_tys =
Self::fields(ctx, llvm_usize).into_iter().map(|field| field.1).collect_vec();
ctx.struct_type(&field_tys, false).ptr_type(AddressSpace::default())
}
/// Creates an instance of [`NDArrayType`].
#[must_use]
pub fn new<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
dtype: BasicTypeEnum<'ctx>,
) -> Self {
let llvm_usize = generator.get_size_type(ctx);
let llvm_ndarray = Self::llvm_type(ctx, llvm_usize);
NDArrayType { ty: llvm_ndarray, dtype, llvm_usize }
}
/// Creates an [`NDArrayType`] from a [`PointerType`] representing an `NDArray`.
#[must_use]
pub fn from_type(
ptr_ty: PointerType<'ctx>,
dtype: BasicTypeEnum<'ctx>,
llvm_usize: IntType<'ctx>,
) -> Self {
debug_assert!(Self::is_representable(ptr_ty, llvm_usize).is_ok());
NDArrayType { ty: ptr_ty, dtype, llvm_usize }
}
/// Returns the type of the `size` field of this `ndarray` type.
#[must_use]
pub fn size_type(&self) -> IntType<'ctx> {
self.as_base_type()
.get_element_type()
.into_struct_type()
.get_field_type_at_index(0)
.map(BasicTypeEnum::into_int_type)
.unwrap()
}
/// Returns the element type of this `ndarray` type.
#[must_use]
pub fn element_type(&self) -> BasicTypeEnum<'ctx> {
self.dtype
}
}
impl<'ctx> ProxyType<'ctx> for NDArrayType<'ctx> {
type Base = PointerType<'ctx>;
type Value = NDArrayValue<'ctx>;
fn is_type<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
llvm_ty: impl BasicType<'ctx>,
) -> Result<(), String> {
if let BasicTypeEnum::PointerType(ty) = llvm_ty.as_basic_type_enum() {
<Self as ProxyType<'ctx>>::is_representable(generator, ctx, ty)
} else {
Err(format!("Expected pointer type, got {llvm_ty:?}"))
}
}
fn is_representable<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
llvm_ty: Self::Base,
) -> Result<(), String> {
Self::is_representable(llvm_ty, generator.get_size_type(ctx))
}
fn new_value<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>,
) -> Self::Value {
self.map_value(
generator
.gen_var_alloc(
ctx,
self.as_base_type().get_element_type().into_struct_type().into(),
name,
)
.unwrap(),
name,
)
}
fn new_array_value<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
size: IntValue<'ctx>,
name: Option<&'ctx str>,
) -> ArraySliceValue<'ctx> {
generator
.gen_array_var_alloc(
ctx,
self.as_base_type().get_element_type().into_struct_type().into(),
size,
name,
)
.unwrap()
}
fn map_value(
&self,
value: <Self::Value as ProxyValue<'ctx>>::Base,
name: Option<&'ctx str>,
) -> Self::Value {
debug_assert_eq!(value.get_type(), self.as_base_type());
NDArrayValue::from_pointer_value(value, self.dtype, self.llvm_usize, name)
}
fn as_base_type(&self) -> Self::Base {
self.ty
}
}
impl<'ctx> From<NDArrayType<'ctx>> for PointerType<'ctx> {
fn from(value: NDArrayType<'ctx>) -> Self {
value.as_base_type()
}
}

View File

@ -1,159 +0,0 @@
use inkwell::{
context::Context,
types::{AnyTypeEnum, BasicType, BasicTypeEnum, IntType, PointerType},
values::IntValue,
AddressSpace,
};
use super::ProxyType;
use crate::codegen::{
values::{ArraySliceValue, ProxyValue, RangeValue},
{CodeGenContext, CodeGenerator},
};
/// Proxy type for a `range` type in LLVM.
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
pub struct RangeType<'ctx> {
ty: PointerType<'ctx>,
}
impl<'ctx> RangeType<'ctx> {
/// Checks whether `llvm_ty` represents a `range` type, returning [Err] if it does not.
pub fn is_representable(llvm_ty: PointerType<'ctx>) -> Result<(), String> {
let llvm_range_ty = llvm_ty.get_element_type();
let AnyTypeEnum::ArrayType(llvm_range_ty) = llvm_range_ty else {
return Err(format!("Expected array type for `range` type, got {llvm_range_ty}"));
};
if llvm_range_ty.len() != 3 {
return Err(format!(
"Expected 3 elements for `range` type, got {}",
llvm_range_ty.len()
));
}
let llvm_range_elem_ty = llvm_range_ty.get_element_type();
let Ok(llvm_range_elem_ty) = IntType::try_from(llvm_range_elem_ty) else {
return Err(format!(
"Expected int type for `range` element type, got {llvm_range_elem_ty}"
));
};
if llvm_range_elem_ty.get_bit_width() != 32 {
return Err(format!(
"Expected 32-bit int type for `range` element type, got {}",
llvm_range_elem_ty.get_bit_width()
));
}
Ok(())
}
/// Creates an LLVM type corresponding to the expected structure of a `Range`.
#[must_use]
fn llvm_type(ctx: &'ctx Context) -> PointerType<'ctx> {
// typedef int32_t Range[3];
let llvm_i32 = ctx.i32_type();
llvm_i32.array_type(3).ptr_type(AddressSpace::default())
}
/// Creates an instance of [`RangeType`].
#[must_use]
pub fn new(ctx: &'ctx Context) -> Self {
let llvm_range = Self::llvm_type(ctx);
RangeType::from_type(llvm_range)
}
/// Creates an [`RangeType`] from a [`PointerType`].
#[must_use]
pub fn from_type(ptr_ty: PointerType<'ctx>) -> Self {
debug_assert!(Self::is_representable(ptr_ty).is_ok());
RangeType { ty: ptr_ty }
}
/// Returns the type of all fields of this `range` type.
#[must_use]
pub fn value_type(&self) -> IntType<'ctx> {
self.as_base_type().get_element_type().into_array_type().get_element_type().into_int_type()
}
}
impl<'ctx> ProxyType<'ctx> for RangeType<'ctx> {
type Base = PointerType<'ctx>;
type Value = RangeValue<'ctx>;
fn is_type<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
llvm_ty: impl BasicType<'ctx>,
) -> Result<(), String> {
if let BasicTypeEnum::PointerType(ty) = llvm_ty.as_basic_type_enum() {
<Self as ProxyType<'ctx>>::is_representable(generator, ctx, ty)
} else {
Err(format!("Expected pointer type, got {llvm_ty:?}"))
}
}
fn is_representable<G: CodeGenerator + ?Sized>(
_: &G,
_: &'ctx Context,
llvm_ty: Self::Base,
) -> Result<(), String> {
Self::is_representable(llvm_ty)
}
fn new_value<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>,
) -> Self::Value {
self.map_value(
generator
.gen_var_alloc(
ctx,
self.as_base_type().get_element_type().into_struct_type().into(),
name,
)
.unwrap(),
name,
)
}
fn new_array_value<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
size: IntValue<'ctx>,
name: Option<&'ctx str>,
) -> ArraySliceValue<'ctx> {
generator
.gen_array_var_alloc(
ctx,
self.as_base_type().get_element_type().into_struct_type().into(),
size,
name,
)
.unwrap()
}
fn map_value(
&self,
value: <Self::Value as ProxyValue<'ctx>>::Base,
name: Option<&'ctx str>,
) -> Self::Value {
debug_assert_eq!(value.get_type(), self.as_base_type());
RangeValue::from_pointer_value(value, name)
}
fn as_base_type(&self) -> Self::Base {
self.ty
}
}
impl<'ctx> From<RangeType<'ctx>> for PointerType<'ctx> {
fn from(value: RangeType<'ctx>) -> Self {
value.as_base_type()
}
}

View File

@ -1,203 +0,0 @@
use std::marker::PhantomData;
use inkwell::{
context::AsContextRef,
types::{BasicTypeEnum, IntType},
values::{BasicValue, BasicValueEnum, IntValue, PointerValue, StructValue},
};
use crate::codegen::CodeGenContext;
/// Trait indicating that the structure is a field-wise representation of an LLVM structure.
///
/// # Usage
///
/// For example, for a simple C-slice LLVM structure:
///
/// ```ignore
/// struct CSliceFields<'ctx> {
/// ptr: StructField<'ctx, PointerValue<'ctx>>,
/// len: StructField<'ctx, IntValue<'ctx>>
/// }
/// ```
pub trait StructFields<'ctx>: Eq + Copy {
/// Creates an instance of [`StructFields`] using the given `ctx` and `size_t` types.
fn new(ctx: impl AsContextRef<'ctx>, llvm_usize: IntType<'ctx>) -> Self;
/// Returns a [`Vec`] that contains the fields of the structure in the order as they appear in
/// the type definition.
#[must_use]
fn to_vec(&self) -> Vec<(&'static str, BasicTypeEnum<'ctx>)>;
/// Returns a [`Iterator`] that contains the fields of the structure in the order as they appear
/// in the type definition.
#[must_use]
fn iter(&self) -> impl Iterator<Item = (&'static str, BasicTypeEnum<'ctx>)> {
self.to_vec().into_iter()
}
/// Returns a [`Vec`] that contains the fields of the structure in the order as they appear in
/// the type definition.
#[must_use]
fn into_vec(self) -> Vec<(&'static str, BasicTypeEnum<'ctx>)>
where
Self: Sized,
{
self.to_vec()
}
/// Returns a [`Iterator`] that contains the fields of the structure in the order as they appear
/// in the type definition.
#[must_use]
fn into_iter(self) -> impl Iterator<Item = (&'static str, BasicTypeEnum<'ctx>)>
where
Self: Sized,
{
self.into_vec().into_iter()
}
}
/// A single field of an LLVM structure.
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
pub struct StructField<'ctx, Value>
where
Value: BasicValue<'ctx> + TryFrom<BasicValueEnum<'ctx>, Error = ()>,
{
/// The index of this field within the structure.
index: u32,
/// The name of this field.
name: &'static str,
/// The type of this field.
ty: BasicTypeEnum<'ctx>,
/// Instance of [`PhantomData`] containing [`Value`], used to implement automatic downcasts.
_value_ty: PhantomData<Value>,
}
impl<'ctx, Value> StructField<'ctx, Value>
where
Value: BasicValue<'ctx> + TryFrom<BasicValueEnum<'ctx>, Error = ()>,
{
/// Creates an instance of [`StructField`].
///
/// * `idx_counter` - The instance of [`FieldIndexCounter`] used to track the current field
/// index.
/// * `name` - Name of the field.
/// * `ty` - The type of this field.
pub fn create(
idx_counter: &mut FieldIndexCounter,
name: &'static str,
ty: impl Into<BasicTypeEnum<'ctx>>,
) -> Self {
StructField { index: idx_counter.increment(), name, ty: ty.into(), _value_ty: PhantomData }
}
/// Creates an instance of [`StructField`] with a given index.
///
/// * `index` - The index of this field within its enclosing structure.
/// * `name` - Name of the field.
/// * `ty` - The type of this field.
pub fn create_at(index: u32, name: &'static str, ty: impl Into<BasicTypeEnum<'ctx>>) -> Self {
StructField { index, name, ty: ty.into(), _value_ty: PhantomData }
}
/// Creates a pointer to this field in an arbitrary structure by performing a `getelementptr i32
/// {idx...}, i32 {self.index}`.
pub fn ptr_by_array_gep(
&self,
ctx: &CodeGenContext<'ctx, '_>,
pobj: PointerValue<'ctx>,
idx: &[IntValue<'ctx>],
) -> PointerValue<'ctx> {
unsafe {
ctx.builder.build_in_bounds_gep(
pobj,
&[idx, &[ctx.ctx.i32_type().const_int(u64::from(self.index), false)]].concat(),
"",
)
}
.unwrap()
}
/// Creates a pointer to this field in an arbitrary structure by performing the equivalent of
/// `getelementptr i32 0, i32 {self.index}`.
pub fn ptr_by_gep(
&self,
ctx: &CodeGenContext<'ctx, '_>,
pobj: PointerValue<'ctx>,
obj_name: Option<&'ctx str>,
) -> PointerValue<'ctx> {
ctx.builder
.build_struct_gep(
pobj,
self.index,
&obj_name.map(|name| format!("{name}.{}.addr", self.name)).unwrap_or_default(),
)
.unwrap()
}
/// Gets the value of this field for a given `obj`.
#[must_use]
pub fn get_from_value(&self, obj: StructValue<'ctx>) -> Value {
obj.get_field_at_index(self.index).and_then(|value| Value::try_from(value).ok()).unwrap()
}
/// Sets the value of this field for a given `obj`.
pub fn set_from_value(&self, obj: StructValue<'ctx>, value: Value) {
obj.set_field_at_index(self.index, value);
}
/// Gets the value of this field for a pointer-to-structure.
pub fn get(
&self,
ctx: &CodeGenContext<'ctx, '_>,
pobj: PointerValue<'ctx>,
obj_name: Option<&'ctx str>,
) -> Value {
ctx.builder
.build_load(
self.ptr_by_gep(ctx, pobj, obj_name),
&obj_name.map(|name| format!("{name}.{}", self.name)).unwrap_or_default(),
)
.map_err(|_| ())
.and_then(|value| Value::try_from(value))
.unwrap()
}
/// Sets the value of this field for a pointer-to-structure.
pub fn set(
&self,
ctx: &CodeGenContext<'ctx, '_>,
pobj: PointerValue<'ctx>,
value: Value,
obj_name: Option<&'ctx str>,
) {
ctx.builder.build_store(self.ptr_by_gep(ctx, pobj, obj_name), value).unwrap();
}
}
impl<'ctx, Value> From<StructField<'ctx, Value>> for (&'static str, BasicTypeEnum<'ctx>)
where
Value: BasicValue<'ctx> + TryFrom<BasicValueEnum<'ctx>, Error = ()>,
{
fn from(value: StructField<'ctx, Value>) -> Self {
(value.name, value.ty)
}
}
/// A counter that tracks the next index of a field using a monotonically increasing counter.
#[derive(Default, Debug, PartialEq, Eq, Clone, Copy)]
pub struct FieldIndexCounter(u32);
impl FieldIndexCounter {
/// Increments the number stored by this counter, returning the previous value.
///
/// Functionally equivalent to `i++` in C-based languages.
pub fn increment(&mut self) -> u32 {
let v = self.0;
self.0 += 1;
v
}
}

View File

@ -1,426 +0,0 @@
use inkwell::{
types::AnyTypeEnum,
values::{BasicValueEnum, IntValue, PointerValue},
IntPredicate,
};
use crate::codegen::{CodeGenContext, CodeGenerator};
/// An LLVM value that is array-like, i.e. it contains a contiguous, sequenced collection of
/// elements.
pub trait ArrayLikeValue<'ctx> {
/// Returns the element type of this array-like value.
fn element_type<G: CodeGenerator + ?Sized>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
generator: &G,
) -> AnyTypeEnum<'ctx>;
/// Returns the base pointer to the array.
fn base_ptr<G: CodeGenerator + ?Sized>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
generator: &G,
) -> PointerValue<'ctx>;
/// Returns the size of this array-like value.
fn size<G: CodeGenerator + ?Sized>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
generator: &G,
) -> IntValue<'ctx>;
/// Returns a [`ArraySliceValue`] representing this value.
fn as_slice_value<G: CodeGenerator + ?Sized>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
generator: &G,
) -> ArraySliceValue<'ctx> {
ArraySliceValue::from_ptr_val(
self.base_ptr(ctx, generator),
self.size(ctx, generator),
None,
)
}
}
/// An array-like value that can be indexed by memory offset.
pub trait ArrayLikeIndexer<'ctx, Index = IntValue<'ctx>>: ArrayLikeValue<'ctx> {
/// # Safety
///
/// This function should be called with a valid index.
unsafe fn ptr_offset_unchecked<G: CodeGenerator + ?Sized>(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
idx: &Index,
name: Option<&str>,
) -> PointerValue<'ctx>;
/// Returns the pointer to the data at the `idx`-th index.
fn ptr_offset<G: CodeGenerator + ?Sized>(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
idx: &Index,
name: Option<&str>,
) -> PointerValue<'ctx>;
}
/// An array-like value that can have its array elements accessed as a [`BasicValueEnum`].
pub trait UntypedArrayLikeAccessor<'ctx, Index = IntValue<'ctx>>:
ArrayLikeIndexer<'ctx, Index>
{
/// # Safety
///
/// This function should be called with a valid index.
unsafe fn get_unchecked<G: CodeGenerator + ?Sized>(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
idx: &Index,
name: Option<&str>,
) -> BasicValueEnum<'ctx> {
let ptr = unsafe { self.ptr_offset_unchecked(ctx, generator, idx, name) };
ctx.builder.build_load(ptr, name.unwrap_or_default()).unwrap()
}
/// Returns the data at the `idx`-th index.
fn get<G: CodeGenerator + ?Sized>(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
idx: &Index,
name: Option<&str>,
) -> BasicValueEnum<'ctx> {
let ptr = self.ptr_offset(ctx, generator, idx, name);
ctx.builder.build_load(ptr, name.unwrap_or_default()).unwrap()
}
}
/// An array-like value that can have its array elements mutated as a [`BasicValueEnum`].
pub trait UntypedArrayLikeMutator<'ctx, Index = IntValue<'ctx>>:
ArrayLikeIndexer<'ctx, Index>
{
/// # Safety
///
/// This function should be called with a valid index.
unsafe fn set_unchecked<G: CodeGenerator + ?Sized>(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
idx: &Index,
value: BasicValueEnum<'ctx>,
) {
let ptr = unsafe { self.ptr_offset_unchecked(ctx, generator, idx, None) };
ctx.builder.build_store(ptr, value).unwrap();
}
/// Sets the data at the `idx`-th index.
fn set<G: CodeGenerator + ?Sized>(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
idx: &Index,
value: BasicValueEnum<'ctx>,
) {
let ptr = self.ptr_offset(ctx, generator, idx, None);
ctx.builder.build_store(ptr, value).unwrap();
}
}
/// An array-like value that can have its array elements accessed as an arbitrary type `T`.
pub trait TypedArrayLikeAccessor<'ctx, T, Index = IntValue<'ctx>>:
UntypedArrayLikeAccessor<'ctx, Index>
{
/// Casts an element from [`BasicValueEnum`] into `T`.
fn downcast_to_type(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
value: BasicValueEnum<'ctx>,
) -> T;
/// # Safety
///
/// This function should be called with a valid index.
unsafe fn get_typed_unchecked<G: CodeGenerator + ?Sized>(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
idx: &Index,
name: Option<&str>,
) -> T {
let value = unsafe { self.get_unchecked(ctx, generator, idx, name) };
self.downcast_to_type(ctx, value)
}
/// Returns the data at the `idx`-th index.
fn get_typed<G: CodeGenerator + ?Sized>(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
idx: &Index,
name: Option<&str>,
) -> T {
let value = self.get(ctx, generator, idx, name);
self.downcast_to_type(ctx, value)
}
}
/// An array-like value that can have its array elements mutated as an arbitrary type `T`.
pub trait TypedArrayLikeMutator<'ctx, T, Index = IntValue<'ctx>>:
UntypedArrayLikeMutator<'ctx, Index>
{
/// Casts an element from T into [`BasicValueEnum`].
fn upcast_from_type(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
value: T,
) -> BasicValueEnum<'ctx>;
/// # Safety
///
/// This function should be called with a valid index.
unsafe fn set_typed_unchecked<G: CodeGenerator + ?Sized>(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
idx: &Index,
value: T,
) {
let value = self.upcast_from_type(ctx, value);
unsafe { self.set_unchecked(ctx, generator, idx, value) }
}
/// Sets the data at the `idx`-th index.
fn set_typed<G: CodeGenerator + ?Sized>(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
idx: &Index,
value: T,
) {
let value = self.upcast_from_type(ctx, value);
self.set(ctx, generator, idx, value);
}
}
/// Type alias for a function that casts a [`BasicValueEnum`] into a `T`.
type ValueDowncastFn<'ctx, T> =
Box<dyn Fn(&mut CodeGenContext<'ctx, '_>, BasicValueEnum<'ctx>) -> T>;
/// Type alias for a function that casts a `T` into a [`BasicValueEnum`].
type ValueUpcastFn<'ctx, T> = Box<dyn Fn(&mut CodeGenContext<'ctx, '_>, T) -> BasicValueEnum<'ctx>>;
/// An adapter for constraining untyped array values as typed values.
pub struct TypedArrayLikeAdapter<'ctx, T, Adapted: ArrayLikeValue<'ctx> = ArraySliceValue<'ctx>> {
adapted: Adapted,
downcast_fn: ValueDowncastFn<'ctx, T>,
upcast_fn: ValueUpcastFn<'ctx, T>,
}
impl<'ctx, T, Adapted> TypedArrayLikeAdapter<'ctx, T, Adapted>
where
Adapted: ArrayLikeValue<'ctx>,
{
/// Creates a [`TypedArrayLikeAdapter`].
///
/// * `adapted` - The value to be adapted.
/// * `downcast_fn` - The function converting a [`BasicValueEnum`] into a `T`.
/// * `upcast_fn` - The function converting a T into a [`BasicValueEnum`].
pub fn from(
adapted: Adapted,
downcast_fn: ValueDowncastFn<'ctx, T>,
upcast_fn: ValueUpcastFn<'ctx, T>,
) -> Self {
TypedArrayLikeAdapter { adapted, downcast_fn, upcast_fn }
}
}
impl<'ctx, T, Adapted> ArrayLikeValue<'ctx> for TypedArrayLikeAdapter<'ctx, T, Adapted>
where
Adapted: ArrayLikeValue<'ctx>,
{
fn element_type<G: CodeGenerator + ?Sized>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
generator: &G,
) -> AnyTypeEnum<'ctx> {
self.adapted.element_type(ctx, generator)
}
fn base_ptr<G: CodeGenerator + ?Sized>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
generator: &G,
) -> PointerValue<'ctx> {
self.adapted.base_ptr(ctx, generator)
}
fn size<G: CodeGenerator + ?Sized>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
generator: &G,
) -> IntValue<'ctx> {
self.adapted.size(ctx, generator)
}
}
impl<'ctx, T, Index, Adapted> ArrayLikeIndexer<'ctx, Index>
for TypedArrayLikeAdapter<'ctx, T, Adapted>
where
Adapted: ArrayLikeIndexer<'ctx, Index>,
{
unsafe fn ptr_offset_unchecked<G: CodeGenerator + ?Sized>(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
idx: &Index,
name: Option<&str>,
) -> PointerValue<'ctx> {
unsafe { self.adapted.ptr_offset_unchecked(ctx, generator, idx, name) }
}
fn ptr_offset<G: CodeGenerator + ?Sized>(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
idx: &Index,
name: Option<&str>,
) -> PointerValue<'ctx> {
self.adapted.ptr_offset(ctx, generator, idx, name)
}
}
impl<'ctx, T, Index, Adapted> UntypedArrayLikeAccessor<'ctx, Index>
for TypedArrayLikeAdapter<'ctx, T, Adapted>
where
Adapted: UntypedArrayLikeAccessor<'ctx, Index>,
{
}
impl<'ctx, T, Index, Adapted> UntypedArrayLikeMutator<'ctx, Index>
for TypedArrayLikeAdapter<'ctx, T, Adapted>
where
Adapted: UntypedArrayLikeMutator<'ctx, Index>,
{
}
impl<'ctx, T, Index, Adapted> TypedArrayLikeAccessor<'ctx, T, Index>
for TypedArrayLikeAdapter<'ctx, T, Adapted>
where
Adapted: UntypedArrayLikeAccessor<'ctx, Index>,
{
fn downcast_to_type(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
value: BasicValueEnum<'ctx>,
) -> T {
(self.downcast_fn)(ctx, value)
}
}
impl<'ctx, T, Index, Adapted> TypedArrayLikeMutator<'ctx, T, Index>
for TypedArrayLikeAdapter<'ctx, T, Adapted>
where
Adapted: UntypedArrayLikeMutator<'ctx, Index>,
{
fn upcast_from_type(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
value: T,
) -> BasicValueEnum<'ctx> {
(self.upcast_fn)(ctx, value)
}
}
/// An LLVM value representing an array slice, consisting of a pointer to the data and the size of
/// the slice.
#[derive(Copy, Clone)]
pub struct ArraySliceValue<'ctx>(PointerValue<'ctx>, IntValue<'ctx>, Option<&'ctx str>);
impl<'ctx> ArraySliceValue<'ctx> {
/// Creates an [`ArraySliceValue`] from a [`PointerValue`] and its size.
#[must_use]
pub fn from_ptr_val(
ptr: PointerValue<'ctx>,
size: IntValue<'ctx>,
name: Option<&'ctx str>,
) -> Self {
ArraySliceValue(ptr, size, name)
}
}
impl<'ctx> From<ArraySliceValue<'ctx>> for PointerValue<'ctx> {
fn from(value: ArraySliceValue<'ctx>) -> Self {
value.0
}
}
impl<'ctx> ArrayLikeValue<'ctx> for ArraySliceValue<'ctx> {
fn element_type<G: CodeGenerator + ?Sized>(
&self,
_: &CodeGenContext<'ctx, '_>,
_: &G,
) -> AnyTypeEnum<'ctx> {
self.0.get_type().get_element_type()
}
fn base_ptr<G: CodeGenerator + ?Sized>(
&self,
_: &CodeGenContext<'ctx, '_>,
_: &G,
) -> PointerValue<'ctx> {
self.0
}
fn size<G: CodeGenerator + ?Sized>(
&self,
_: &CodeGenContext<'ctx, '_>,
_: &G,
) -> IntValue<'ctx> {
self.1
}
}
impl<'ctx> ArrayLikeIndexer<'ctx> for ArraySliceValue<'ctx> {
unsafe fn ptr_offset_unchecked<G: CodeGenerator + ?Sized>(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
idx: &IntValue<'ctx>,
name: Option<&str>,
) -> PointerValue<'ctx> {
let var_name = name.map(|v| format!("{v}.addr")).unwrap_or_default();
unsafe {
ctx.builder
.build_in_bounds_gep(self.base_ptr(ctx, generator), &[*idx], var_name.as_str())
.unwrap()
}
}
fn ptr_offset<G: CodeGenerator + ?Sized>(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
idx: &IntValue<'ctx>,
name: Option<&str>,
) -> PointerValue<'ctx> {
debug_assert_eq!(idx.get_type(), generator.get_size_type(ctx.ctx));
let size = self.size(ctx, generator);
let in_range = ctx.builder.build_int_compare(IntPredicate::ULT, *idx, size, "").unwrap();
ctx.make_assert(
generator,
in_range,
"0:IndexError",
"list index out of range",
[None, None, None],
ctx.current_loc,
);
unsafe { self.ptr_offset_unchecked(ctx, generator, idx, name) }
}
}
impl<'ctx> UntypedArrayLikeAccessor<'ctx> for ArraySliceValue<'ctx> {}
impl<'ctx> UntypedArrayLikeMutator<'ctx> for ArraySliceValue<'ctx> {}

View File

@ -1,241 +0,0 @@
use inkwell::{
types::{AnyTypeEnum, BasicType, BasicTypeEnum, IntType},
values::{BasicValueEnum, IntValue, PointerValue},
AddressSpace, IntPredicate,
};
use super::{
ArrayLikeIndexer, ArrayLikeValue, ProxyValue, UntypedArrayLikeAccessor, UntypedArrayLikeMutator,
};
use crate::codegen::{
types::ListType,
{CodeGenContext, CodeGenerator},
};
/// Proxy type for accessing a `list` value in LLVM.
#[derive(Copy, Clone)]
pub struct ListValue<'ctx> {
value: PointerValue<'ctx>,
llvm_usize: IntType<'ctx>,
name: Option<&'ctx str>,
}
impl<'ctx> ListValue<'ctx> {
/// Checks whether `value` is an instance of `list`, returning [Err] if `value` is not an
/// instance.
pub fn is_representable(
value: PointerValue<'ctx>,
llvm_usize: IntType<'ctx>,
) -> Result<(), String> {
ListType::is_representable(value.get_type(), llvm_usize)
}
/// Creates an [`ListValue`] from a [`PointerValue`].
#[must_use]
pub fn from_pointer_value(
ptr: PointerValue<'ctx>,
llvm_usize: IntType<'ctx>,
name: Option<&'ctx str>,
) -> Self {
debug_assert!(Self::is_representable(ptr, llvm_usize).is_ok());
ListValue { value: ptr, llvm_usize, name }
}
/// Returns the double-indirection pointer to the `data` array, as if by calling `getelementptr`
/// on the field.
fn pptr_to_data(&self, ctx: &CodeGenContext<'ctx, '_>) -> PointerValue<'ctx> {
let llvm_i32 = ctx.ctx.i32_type();
let var_name = self.name.map(|v| format!("{v}.data.addr")).unwrap_or_default();
unsafe {
ctx.builder
.build_in_bounds_gep(
self.as_base_value(),
&[llvm_i32.const_zero(), llvm_i32.const_zero()],
var_name.as_str(),
)
.unwrap()
}
}
/// Returns the pointer to the field storing the size of this `list`.
fn ptr_to_size(&self, ctx: &CodeGenContext<'ctx, '_>) -> PointerValue<'ctx> {
let llvm_i32 = ctx.ctx.i32_type();
let var_name = self.name.map(|v| format!("{v}.size.addr")).unwrap_or_default();
unsafe {
ctx.builder
.build_in_bounds_gep(
self.as_base_value(),
&[llvm_i32.const_zero(), llvm_i32.const_int(1, true)],
var_name.as_str(),
)
.unwrap()
}
}
/// Stores the array of data elements `data` into this instance.
fn store_data(&self, ctx: &CodeGenContext<'ctx, '_>, data: PointerValue<'ctx>) {
ctx.builder.build_store(self.pptr_to_data(ctx), data).unwrap();
}
/// Convenience method for creating a new array storing data elements with the given element
/// type `elem_ty` and `size`.
///
/// If `size` is [None], the size stored in the field of this instance is used instead.
pub fn create_data(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
elem_ty: BasicTypeEnum<'ctx>,
size: Option<IntValue<'ctx>>,
) {
let size = size.unwrap_or_else(|| self.load_size(ctx, None));
let data = ctx
.builder
.build_select(
ctx.builder
.build_int_compare(IntPredicate::NE, size, self.llvm_usize.const_zero(), "")
.unwrap(),
ctx.builder.build_array_alloca(elem_ty, size, "").unwrap(),
elem_ty.ptr_type(AddressSpace::default()).const_zero(),
"",
)
.map(BasicValueEnum::into_pointer_value)
.unwrap();
self.store_data(ctx, data);
}
/// Returns the double-indirection pointer to the `data` array, as if by calling `getelementptr`
/// on the field.
#[must_use]
pub fn data(&self) -> ListDataProxy<'ctx, '_> {
ListDataProxy(self)
}
/// Stores the `size` of this `list` into this instance.
pub fn store_size<G: CodeGenerator + ?Sized>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
generator: &G,
size: IntValue<'ctx>,
) {
debug_assert_eq!(size.get_type(), generator.get_size_type(ctx.ctx));
let psize = self.ptr_to_size(ctx);
ctx.builder.build_store(psize, size).unwrap();
}
/// Returns the size of this `list` as a value.
pub fn load_size(&self, ctx: &CodeGenContext<'ctx, '_>, name: Option<&str>) -> IntValue<'ctx> {
let psize = self.ptr_to_size(ctx);
let var_name = name
.map(ToString::to_string)
.or_else(|| self.name.map(|v| format!("{v}.size")))
.unwrap_or_default();
ctx.builder
.build_load(psize, var_name.as_str())
.map(BasicValueEnum::into_int_value)
.unwrap()
}
}
impl<'ctx> ProxyValue<'ctx> for ListValue<'ctx> {
type Base = PointerValue<'ctx>;
type Type = ListType<'ctx>;
fn get_type(&self) -> Self::Type {
ListType::from_type(self.as_base_value().get_type(), self.llvm_usize)
}
fn as_base_value(&self) -> Self::Base {
self.value
}
}
impl<'ctx> From<ListValue<'ctx>> for PointerValue<'ctx> {
fn from(value: ListValue<'ctx>) -> Self {
value.as_base_value()
}
}
/// Proxy type for accessing the `data` array of an `list` instance in LLVM.
#[derive(Copy, Clone)]
pub struct ListDataProxy<'ctx, 'a>(&'a ListValue<'ctx>);
impl<'ctx> ArrayLikeValue<'ctx> for ListDataProxy<'ctx, '_> {
fn element_type<G: CodeGenerator + ?Sized>(
&self,
_: &CodeGenContext<'ctx, '_>,
_: &G,
) -> AnyTypeEnum<'ctx> {
self.0.value.get_type().get_element_type()
}
fn base_ptr<G: CodeGenerator + ?Sized>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
_: &G,
) -> PointerValue<'ctx> {
let var_name = self.0.name.map(|v| format!("{v}.data")).unwrap_or_default();
ctx.builder
.build_load(self.0.pptr_to_data(ctx), var_name.as_str())
.map(BasicValueEnum::into_pointer_value)
.unwrap()
}
fn size<G: CodeGenerator + ?Sized>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
_: &G,
) -> IntValue<'ctx> {
self.0.load_size(ctx, None)
}
}
impl<'ctx> ArrayLikeIndexer<'ctx> for ListDataProxy<'ctx, '_> {
unsafe fn ptr_offset_unchecked<G: CodeGenerator + ?Sized>(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
idx: &IntValue<'ctx>,
name: Option<&str>,
) -> PointerValue<'ctx> {
let var_name = name.map(|v| format!("{v}.addr")).unwrap_or_default();
unsafe {
ctx.builder
.build_in_bounds_gep(self.base_ptr(ctx, generator), &[*idx], var_name.as_str())
.unwrap()
}
}
fn ptr_offset<G: CodeGenerator + ?Sized>(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
idx: &IntValue<'ctx>,
name: Option<&str>,
) -> PointerValue<'ctx> {
debug_assert_eq!(idx.get_type(), generator.get_size_type(ctx.ctx));
let size = self.size(ctx, generator);
let in_range = ctx.builder.build_int_compare(IntPredicate::ULT, *idx, size, "").unwrap();
ctx.make_assert(
generator,
in_range,
"0:IndexError",
"list index out of range",
[None, None, None],
ctx.current_loc,
);
unsafe { self.ptr_offset_unchecked(ctx, generator, idx, name) }
}
}
impl<'ctx> UntypedArrayLikeAccessor<'ctx> for ListDataProxy<'ctx, '_> {}
impl<'ctx> UntypedArrayLikeMutator<'ctx> for ListDataProxy<'ctx, '_> {}

View File

@ -1,47 +0,0 @@
use inkwell::{context::Context, values::BasicValue};
use super::types::ProxyType;
use crate::codegen::CodeGenerator;
pub use array::*;
pub use list::*;
pub use ndarray::*;
pub use range::*;
mod array;
mod list;
mod ndarray;
mod range;
/// A LLVM type that is used to represent a non-primitive value in NAC3.
pub trait ProxyValue<'ctx>: Into<Self::Base> {
/// The type of LLVM values represented by this instance. This is usually the
/// [LLVM pointer type][PointerValue].
type Base: BasicValue<'ctx>;
/// The type of this value.
type Type: ProxyType<'ctx, Value = Self>;
/// Checks whether `value` can be represented by this [`ProxyValue`].
fn is_instance<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
value: impl BasicValue<'ctx>,
) -> Result<(), String> {
Self::Type::is_type(generator, ctx, value.as_basic_value_enum().get_type())
}
/// Checks whether `value` can be represented by this [`ProxyValue`].
fn is_representable<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
value: Self::Base,
) -> Result<(), String> {
Self::is_instance(generator, ctx, value.as_basic_value_enum())
}
/// Returns the [type][ProxyType] of this value.
fn get_type(&self) -> Self::Type;
/// Returns the [base value][Self::Base] of this proxy.
fn as_base_value(&self) -> Self::Base;
}

View File

@ -1,523 +0,0 @@
use inkwell::{
types::{AnyType, AnyTypeEnum, BasicType, BasicTypeEnum, IntType},
values::{BasicValueEnum, IntValue, PointerValue},
AddressSpace, IntPredicate,
};
use super::{
ArrayLikeIndexer, ArrayLikeValue, ProxyValue, TypedArrayLikeAccessor, TypedArrayLikeMutator,
UntypedArrayLikeAccessor, UntypedArrayLikeMutator,
};
use crate::codegen::{
irrt::{call_ndarray_calc_size, call_ndarray_flatten_index},
llvm_intrinsics::call_int_umin,
stmt::gen_for_callback_incrementing,
types::NDArrayType,
CodeGenContext, CodeGenerator,
};
/// Proxy type for accessing an `NDArray` value in LLVM.
#[derive(Copy, Clone)]
pub struct NDArrayValue<'ctx> {
value: PointerValue<'ctx>,
dtype: BasicTypeEnum<'ctx>,
llvm_usize: IntType<'ctx>,
name: Option<&'ctx str>,
}
impl<'ctx> NDArrayValue<'ctx> {
/// Checks whether `value` is an instance of `NDArray`, returning [Err] if `value` is not an
/// instance.
pub fn is_representable(
value: PointerValue<'ctx>,
llvm_usize: IntType<'ctx>,
) -> Result<(), String> {
NDArrayType::is_representable(value.get_type(), llvm_usize)
}
/// Creates an [`NDArrayValue`] from a [`PointerValue`].
#[must_use]
pub fn from_pointer_value(
ptr: PointerValue<'ctx>,
dtype: BasicTypeEnum<'ctx>,
llvm_usize: IntType<'ctx>,
name: Option<&'ctx str>,
) -> Self {
debug_assert!(Self::is_representable(ptr, llvm_usize).is_ok());
NDArrayValue { value: ptr, dtype, llvm_usize, name }
}
/// Returns the pointer to the field storing the number of dimensions of this `NDArray`.
fn ptr_to_ndims(&self, ctx: &CodeGenContext<'ctx, '_>) -> PointerValue<'ctx> {
self.get_type()
.get_fields(ctx.ctx, self.llvm_usize)
.ndims
.ptr_by_gep(ctx, self.value, self.name)
}
/// Stores the number of dimensions `ndims` into this instance.
pub fn store_ndims<G: CodeGenerator + ?Sized>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
generator: &G,
ndims: IntValue<'ctx>,
) {
debug_assert_eq!(ndims.get_type(), generator.get_size_type(ctx.ctx));
let pndims = self.ptr_to_ndims(ctx);
ctx.builder.build_store(pndims, ndims).unwrap();
}
/// Returns the number of dimensions of this `NDArray` as a value.
pub fn load_ndims(&self, ctx: &CodeGenContext<'ctx, '_>) -> IntValue<'ctx> {
let pndims = self.ptr_to_ndims(ctx);
ctx.builder.build_load(pndims, "").map(BasicValueEnum::into_int_value).unwrap()
}
/// Returns the double-indirection pointer to the `shape` array, as if by calling
/// `getelementptr` on the field.
fn ptr_to_shape(&self, ctx: &CodeGenContext<'ctx, '_>) -> PointerValue<'ctx> {
self.get_type()
.get_fields(ctx.ctx, self.llvm_usize)
.shape
.ptr_by_gep(ctx, self.value, self.name)
}
/// Stores the array of dimension sizes `dims` into this instance.
fn store_shape(&self, ctx: &CodeGenContext<'ctx, '_>, dims: PointerValue<'ctx>) {
ctx.builder.build_store(self.ptr_to_shape(ctx), dims).unwrap();
}
/// Convenience method for creating a new array storing dimension sizes with the given `size`.
pub fn create_shape(
&self,
ctx: &CodeGenContext<'ctx, '_>,
llvm_usize: IntType<'ctx>,
size: IntValue<'ctx>,
) {
self.store_shape(ctx, ctx.builder.build_array_alloca(llvm_usize, size, "").unwrap());
}
/// Returns a proxy object to the field storing the size of each dimension of this `NDArray`.
#[must_use]
pub fn shape(&self) -> NDArrayShapeProxy<'ctx, '_> {
NDArrayShapeProxy(self)
}
/// Returns the double-indirection pointer to the `data` array, as if by calling `getelementptr`
/// on the field.
pub fn ptr_to_data(&self, ctx: &CodeGenContext<'ctx, '_>) -> PointerValue<'ctx> {
self.get_type()
.get_fields(ctx.ctx, self.llvm_usize)
.data
.ptr_by_gep(ctx, self.value, self.name)
}
/// Stores the array of data elements `data` into this instance.
fn store_data(&self, ctx: &CodeGenContext<'ctx, '_>, data: PointerValue<'ctx>) {
let data = ctx
.builder
.build_bit_cast(data, ctx.ctx.i8_type().ptr_type(AddressSpace::default()), "")
.unwrap();
ctx.builder.build_store(self.ptr_to_data(ctx), data).unwrap();
}
/// Convenience method for creating a new array storing data elements with the given element
/// type `elem_ty` and `size`.
pub fn create_data(
&self,
ctx: &CodeGenContext<'ctx, '_>,
elem_ty: BasicTypeEnum<'ctx>,
size: IntValue<'ctx>,
) {
let itemsize =
ctx.builder.build_int_cast(elem_ty.size_of().unwrap(), size.get_type(), "").unwrap();
let nbytes = ctx.builder.build_int_mul(size, itemsize, "").unwrap();
// TODO: What about alignment?
self.store_data(
ctx,
ctx.builder.build_array_alloca(ctx.ctx.i8_type(), nbytes, "").unwrap(),
);
}
/// Returns a proxy object to the field storing the data of this `NDArray`.
#[must_use]
pub fn data(&self) -> NDArrayDataProxy<'ctx, '_> {
NDArrayDataProxy(self)
}
}
impl<'ctx> ProxyValue<'ctx> for NDArrayValue<'ctx> {
type Base = PointerValue<'ctx>;
type Type = NDArrayType<'ctx>;
fn get_type(&self) -> Self::Type {
NDArrayType::from_type(self.as_base_value().get_type(), self.dtype, self.llvm_usize)
}
fn as_base_value(&self) -> Self::Base {
self.value
}
}
impl<'ctx> From<NDArrayValue<'ctx>> for PointerValue<'ctx> {
fn from(value: NDArrayValue<'ctx>) -> Self {
value.as_base_value()
}
}
/// Proxy type for accessing the `dims` array of an `NDArray` instance in LLVM.
#[derive(Copy, Clone)]
pub struct NDArrayShapeProxy<'ctx, 'a>(&'a NDArrayValue<'ctx>);
impl<'ctx> ArrayLikeValue<'ctx> for NDArrayShapeProxy<'ctx, '_> {
fn element_type<G: CodeGenerator + ?Sized>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
generator: &G,
) -> AnyTypeEnum<'ctx> {
self.0.shape().base_ptr(ctx, generator).get_type().get_element_type()
}
fn base_ptr<G: CodeGenerator + ?Sized>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
_: &G,
) -> PointerValue<'ctx> {
let var_name = self.0.name.map(|v| format!("{v}.data")).unwrap_or_default();
ctx.builder
.build_load(self.0.ptr_to_shape(ctx), var_name.as_str())
.map(BasicValueEnum::into_pointer_value)
.unwrap()
}
fn size<G: CodeGenerator + ?Sized>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
_: &G,
) -> IntValue<'ctx> {
self.0.load_ndims(ctx)
}
}
impl<'ctx> ArrayLikeIndexer<'ctx, IntValue<'ctx>> for NDArrayShapeProxy<'ctx, '_> {
unsafe fn ptr_offset_unchecked<G: CodeGenerator + ?Sized>(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
idx: &IntValue<'ctx>,
name: Option<&str>,
) -> PointerValue<'ctx> {
let var_name = name.map(|v| format!("{v}.addr")).unwrap_or_default();
unsafe {
ctx.builder
.build_in_bounds_gep(self.base_ptr(ctx, generator), &[*idx], var_name.as_str())
.unwrap()
}
}
fn ptr_offset<G: CodeGenerator + ?Sized>(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
idx: &IntValue<'ctx>,
name: Option<&str>,
) -> PointerValue<'ctx> {
let size = self.size(ctx, generator);
let in_range = ctx.builder.build_int_compare(IntPredicate::ULT, *idx, size, "").unwrap();
ctx.make_assert(
generator,
in_range,
"0:IndexError",
"index {0} is out of bounds for axis 0 with size {1}",
[Some(*idx), Some(self.0.load_ndims(ctx)), None],
ctx.current_loc,
);
unsafe { self.ptr_offset_unchecked(ctx, generator, idx, name) }
}
}
impl<'ctx> UntypedArrayLikeAccessor<'ctx, IntValue<'ctx>> for NDArrayShapeProxy<'ctx, '_> {}
impl<'ctx> UntypedArrayLikeMutator<'ctx, IntValue<'ctx>> for NDArrayShapeProxy<'ctx, '_> {}
impl<'ctx> TypedArrayLikeAccessor<'ctx, IntValue<'ctx>> for NDArrayShapeProxy<'ctx, '_> {
fn downcast_to_type(
&self,
_: &mut CodeGenContext<'ctx, '_>,
value: BasicValueEnum<'ctx>,
) -> IntValue<'ctx> {
value.into_int_value()
}
}
impl<'ctx> TypedArrayLikeMutator<'ctx, IntValue<'ctx>> for NDArrayShapeProxy<'ctx, '_> {
fn upcast_from_type(
&self,
_: &mut CodeGenContext<'ctx, '_>,
value: IntValue<'ctx>,
) -> BasicValueEnum<'ctx> {
value.into()
}
}
/// Proxy type for accessing the `data` array of an `NDArray` instance in LLVM.
#[derive(Copy, Clone)]
pub struct NDArrayDataProxy<'ctx, 'a>(&'a NDArrayValue<'ctx>);
impl<'ctx> ArrayLikeValue<'ctx> for NDArrayDataProxy<'ctx, '_> {
fn element_type<G: CodeGenerator + ?Sized>(
&self,
_: &CodeGenContext<'ctx, '_>,
_: &G,
) -> AnyTypeEnum<'ctx> {
self.0.dtype.as_any_type_enum()
}
fn base_ptr<G: CodeGenerator + ?Sized>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
_: &G,
) -> PointerValue<'ctx> {
let var_name = self.0.name.map(|v| format!("{v}.data")).unwrap_or_default();
ctx.builder
.build_load(self.0.ptr_to_data(ctx), var_name.as_str())
.map(BasicValueEnum::into_pointer_value)
.unwrap()
}
fn size<G: CodeGenerator + ?Sized>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
generator: &G,
) -> IntValue<'ctx> {
call_ndarray_calc_size(generator, ctx, &self.as_slice_value(ctx, generator), (None, None))
}
}
impl<'ctx> ArrayLikeIndexer<'ctx> for NDArrayDataProxy<'ctx, '_> {
unsafe fn ptr_offset_unchecked<G: CodeGenerator + ?Sized>(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
idx: &IntValue<'ctx>,
name: Option<&str>,
) -> PointerValue<'ctx> {
let sizeof_elem = ctx
.builder
.build_int_truncate_or_bit_cast(
self.element_type(ctx, generator).size_of().unwrap(),
idx.get_type(),
"",
)
.unwrap();
let idx = ctx.builder.build_int_mul(*idx, sizeof_elem, "").unwrap();
let ptr = unsafe {
ctx.builder
.build_in_bounds_gep(
self.base_ptr(ctx, generator),
&[idx],
name.unwrap_or_default(),
)
.unwrap()
};
// Current implementation is transparent - The returned pointer type is
// already cast into the expected type, allowing for immediately
// load/store.
ctx.builder
.build_pointer_cast(
ptr,
BasicTypeEnum::try_from(self.element_type(ctx, generator))
.unwrap()
.ptr_type(AddressSpace::default()),
"",
)
.unwrap()
}
fn ptr_offset<G: CodeGenerator + ?Sized>(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
idx: &IntValue<'ctx>,
name: Option<&str>,
) -> PointerValue<'ctx> {
let data_sz = self.size(ctx, generator);
let in_range = ctx.builder.build_int_compare(IntPredicate::ULT, *idx, data_sz, "").unwrap();
ctx.make_assert(
generator,
in_range,
"0:IndexError",
"index {0} is out of bounds with size {1}",
[Some(*idx), Some(self.0.load_ndims(ctx)), None],
ctx.current_loc,
);
let ptr = unsafe { self.ptr_offset_unchecked(ctx, generator, idx, name) };
// Current implementation is transparent - The returned pointer type is
// already cast into the expected type, allowing for immediately
// load/store.
ctx.builder
.build_pointer_cast(
ptr,
BasicTypeEnum::try_from(self.element_type(ctx, generator))
.unwrap()
.ptr_type(AddressSpace::default()),
"",
)
.unwrap()
}
}
impl<'ctx> UntypedArrayLikeAccessor<'ctx, IntValue<'ctx>> for NDArrayDataProxy<'ctx, '_> {}
impl<'ctx> UntypedArrayLikeMutator<'ctx, IntValue<'ctx>> for NDArrayDataProxy<'ctx, '_> {}
impl<'ctx, Index: UntypedArrayLikeAccessor<'ctx>> ArrayLikeIndexer<'ctx, Index>
for NDArrayDataProxy<'ctx, '_>
{
unsafe fn ptr_offset_unchecked<G: CodeGenerator + ?Sized>(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
indices: &Index,
name: Option<&str>,
) -> PointerValue<'ctx> {
let llvm_usize = generator.get_size_type(ctx.ctx);
let indices_elem_ty = indices
.ptr_offset(ctx, generator, &llvm_usize.const_zero(), None)
.get_type()
.get_element_type();
let Ok(indices_elem_ty) = IntType::try_from(indices_elem_ty) else {
panic!("Expected list[int32] but got {indices_elem_ty}")
};
assert_eq!(
indices_elem_ty.get_bit_width(),
32,
"Expected list[int32] but got list[int{}]",
indices_elem_ty.get_bit_width()
);
let index = call_ndarray_flatten_index(generator, ctx, *self.0, indices);
let sizeof_elem = ctx
.builder
.build_int_truncate_or_bit_cast(
self.element_type(ctx, generator).size_of().unwrap(),
index.get_type(),
"",
)
.unwrap();
let index = ctx.builder.build_int_mul(index, sizeof_elem, "").unwrap();
let ptr = unsafe {
ctx.builder
.build_in_bounds_gep(
self.base_ptr(ctx, generator),
&[index],
name.unwrap_or_default(),
)
.unwrap()
};
// TODO: Current implementation is transparent
ctx.builder
.build_pointer_cast(
ptr,
BasicTypeEnum::try_from(self.element_type(ctx, generator))
.unwrap()
.ptr_type(AddressSpace::default()),
"",
)
.unwrap()
}
fn ptr_offset<G: CodeGenerator + ?Sized>(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
indices: &Index,
name: Option<&str>,
) -> PointerValue<'ctx> {
let llvm_usize = generator.get_size_type(ctx.ctx);
let indices_size = indices.size(ctx, generator);
let nidx_leq_ndims = ctx
.builder
.build_int_compare(IntPredicate::SLE, indices_size, self.0.load_ndims(ctx), "")
.unwrap();
ctx.make_assert(
generator,
nidx_leq_ndims,
"0:IndexError",
"invalid index to scalar variable",
[None, None, None],
ctx.current_loc,
);
let indices_len = indices.size(ctx, generator);
let ndarray_len = self.0.load_ndims(ctx);
let len = call_int_umin(ctx, indices_len, ndarray_len, None);
gen_for_callback_incrementing(
generator,
ctx,
None,
llvm_usize.const_zero(),
(len, false),
|generator, ctx, _, i| {
let (dim_idx, dim_sz) = unsafe {
(
indices.get_unchecked(ctx, generator, &i, None).into_int_value(),
self.0.shape().get_typed_unchecked(ctx, generator, &i, None),
)
};
let dim_idx = ctx
.builder
.build_int_z_extend_or_bit_cast(dim_idx, dim_sz.get_type(), "")
.unwrap();
let dim_lt =
ctx.builder.build_int_compare(IntPredicate::SLT, dim_idx, dim_sz, "").unwrap();
ctx.make_assert(
generator,
dim_lt,
"0:IndexError",
"index {0} is out of bounds for axis 0 with size {1}",
[Some(dim_idx), Some(dim_sz), None],
ctx.current_loc,
);
Ok(())
},
llvm_usize.const_int(1, false),
)
.unwrap();
let ptr = unsafe { self.ptr_offset_unchecked(ctx, generator, indices, name) };
// TODO: Current implementation is transparent
ctx.builder
.build_pointer_cast(
ptr,
BasicTypeEnum::try_from(self.element_type(ctx, generator))
.unwrap()
.ptr_type(AddressSpace::default()),
"",
)
.unwrap()
}
}
impl<'ctx, Index: UntypedArrayLikeAccessor<'ctx>> UntypedArrayLikeAccessor<'ctx, Index>
for NDArrayDataProxy<'ctx, '_>
{
}
impl<'ctx, Index: UntypedArrayLikeAccessor<'ctx>> UntypedArrayLikeMutator<'ctx, Index>
for NDArrayDataProxy<'ctx, '_>
{
}

View File

@ -1,153 +0,0 @@
use inkwell::values::{BasicValueEnum, IntValue, PointerValue};
use super::ProxyValue;
use crate::codegen::{types::RangeType, CodeGenContext};
/// Proxy type for accessing a `range` value in LLVM.
#[derive(Copy, Clone)]
pub struct RangeValue<'ctx> {
value: PointerValue<'ctx>,
name: Option<&'ctx str>,
}
impl<'ctx> RangeValue<'ctx> {
/// Checks whether `value` is an instance of `range`, returning [Err] if `value` is not an instance.
pub fn is_representable(value: PointerValue<'ctx>) -> Result<(), String> {
RangeType::is_representable(value.get_type())
}
/// Creates an [`RangeValue`] from a [`PointerValue`].
#[must_use]
pub fn from_pointer_value(ptr: PointerValue<'ctx>, name: Option<&'ctx str>) -> Self {
debug_assert!(Self::is_representable(ptr).is_ok());
RangeValue { value: ptr, name }
}
fn ptr_to_start(&self, ctx: &CodeGenContext<'ctx, '_>) -> PointerValue<'ctx> {
let llvm_i32 = ctx.ctx.i32_type();
let var_name = self.name.map(|v| format!("{v}.start.addr")).unwrap_or_default();
unsafe {
ctx.builder
.build_in_bounds_gep(
self.as_base_value(),
&[llvm_i32.const_zero(), llvm_i32.const_int(0, false)],
var_name.as_str(),
)
.unwrap()
}
}
fn ptr_to_end(&self, ctx: &CodeGenContext<'ctx, '_>) -> PointerValue<'ctx> {
let llvm_i32 = ctx.ctx.i32_type();
let var_name = self.name.map(|v| format!("{v}.end.addr")).unwrap_or_default();
unsafe {
ctx.builder
.build_in_bounds_gep(
self.as_base_value(),
&[llvm_i32.const_zero(), llvm_i32.const_int(1, false)],
var_name.as_str(),
)
.unwrap()
}
}
fn ptr_to_step(&self, ctx: &CodeGenContext<'ctx, '_>) -> PointerValue<'ctx> {
let llvm_i32 = ctx.ctx.i32_type();
let var_name = self.name.map(|v| format!("{v}.step.addr")).unwrap_or_default();
unsafe {
ctx.builder
.build_in_bounds_gep(
self.as_base_value(),
&[llvm_i32.const_zero(), llvm_i32.const_int(2, false)],
var_name.as_str(),
)
.unwrap()
}
}
/// Stores the `start` value into this instance.
pub fn store_start(&self, ctx: &CodeGenContext<'ctx, '_>, start: IntValue<'ctx>) {
debug_assert_eq!(start.get_type().get_bit_width(), 32);
let pstart = self.ptr_to_start(ctx);
ctx.builder.build_store(pstart, start).unwrap();
}
/// Returns the `start` value of this `range`.
pub fn load_start(&self, ctx: &CodeGenContext<'ctx, '_>, name: Option<&str>) -> IntValue<'ctx> {
let pstart = self.ptr_to_start(ctx);
let var_name = name
.map(ToString::to_string)
.or_else(|| self.name.map(|v| format!("{v}.start")))
.unwrap_or_default();
ctx.builder
.build_load(pstart, var_name.as_str())
.map(BasicValueEnum::into_int_value)
.unwrap()
}
/// Stores the `end` value into this instance.
pub fn store_end(&self, ctx: &CodeGenContext<'ctx, '_>, end: IntValue<'ctx>) {
debug_assert_eq!(end.get_type().get_bit_width(), 32);
let pend = self.ptr_to_end(ctx);
ctx.builder.build_store(pend, end).unwrap();
}
/// Returns the `end` value of this `range`.
pub fn load_end(&self, ctx: &CodeGenContext<'ctx, '_>, name: Option<&str>) -> IntValue<'ctx> {
let pend = self.ptr_to_end(ctx);
let var_name = name
.map(ToString::to_string)
.or_else(|| self.name.map(|v| format!("{v}.end")))
.unwrap_or_default();
ctx.builder.build_load(pend, var_name.as_str()).map(BasicValueEnum::into_int_value).unwrap()
}
/// Stores the `step` value into this instance.
pub fn store_step(&self, ctx: &CodeGenContext<'ctx, '_>, step: IntValue<'ctx>) {
debug_assert_eq!(step.get_type().get_bit_width(), 32);
let pstep = self.ptr_to_step(ctx);
ctx.builder.build_store(pstep, step).unwrap();
}
/// Returns the `step` value of this `range`.
pub fn load_step(&self, ctx: &CodeGenContext<'ctx, '_>, name: Option<&str>) -> IntValue<'ctx> {
let pstep = self.ptr_to_step(ctx);
let var_name = name
.map(ToString::to_string)
.or_else(|| self.name.map(|v| format!("{v}.step")))
.unwrap_or_default();
ctx.builder
.build_load(pstep, var_name.as_str())
.map(BasicValueEnum::into_int_value)
.unwrap()
}
}
impl<'ctx> ProxyValue<'ctx> for RangeValue<'ctx> {
type Base = PointerValue<'ctx>;
type Type = RangeType<'ctx>;
fn get_type(&self) -> Self::Type {
RangeType::from_type(self.value.get_type())
}
fn as_base_value(&self) -> Self::Base {
self.value
}
}
impl<'ctx> From<RangeValue<'ctx>> for PointerValue<'ctx> {
fn from(value: RangeValue<'ctx>) -> Self {
value.as_base_value()
}
}

View File

@ -1,25 +1,8 @@
#![deny(future_incompatible, let_underscore, nonstandard_style, clippy::all)] #![warn(clippy::all)]
#![warn(clippy::pedantic)] #![allow(dead_code)]
#![allow(
dead_code,
clippy::cast_possible_truncation,
clippy::cast_sign_loss,
clippy::enum_glob_use,
clippy::missing_errors_doc,
clippy::missing_panics_doc,
clippy::module_name_repetitions,
clippy::similar_names,
clippy::too_many_lines,
clippy::wildcard_imports
)]
// users of nac3core need to use the same version of these dependencies, so expose them as nac3core::*
pub use inkwell;
pub use nac3parser;
pub mod codegen; pub mod codegen;
pub mod location;
pub mod symbol_resolver; pub mod symbol_resolver;
pub mod toplevel; pub mod toplevel;
pub mod typecheck; pub mod typecheck;
extern crate self as nac3core;

28
nac3core/src/location.rs Normal file
View File

@ -0,0 +1,28 @@
use nac3parser::ast;
use std::vec::Vec;
#[derive(Clone, Copy, PartialEq)]
pub struct FileID(u32);
#[derive(Clone, Copy, PartialEq)]
pub enum Location {
CodeRange(FileID, ast::Location),
Builtin,
}
#[derive(Default)]
pub struct FileRegistry {
files: Vec<String>,
}
impl FileRegistry {
pub fn add_file(&mut self, path: &str) -> FileID {
let index = self.files.len() as u32;
self.files.push(path.to_owned());
FileID(index)
}
pub fn query_file(&self, id: FileID) -> &str {
&self.files[id.0 as usize]
}
}

View File

@ -1,309 +1,48 @@
use std::{ use std::collections::HashMap;
collections::{HashMap, HashSet}, use std::fmt::Debug;
fmt::{Debug, Display}, use std::{cell::RefCell, sync::Arc};
rc::Rc,
sync::Arc,
};
use inkwell::values::{BasicValueEnum, FloatValue, IntValue, PointerValue, StructValue}; use crate::typecheck::{
use itertools::{chain, izip, Itertools};
use parking_lot::RwLock;
use nac3parser::ast::{Constant, Expr, Location, StrRef};
use crate::{
codegen::{CodeGenContext, CodeGenerator},
toplevel::{type_annotation::TypeAnnotation, DefinitionId, TopLevelDef},
typecheck::{
type_inferencer::PrimitiveStore, type_inferencer::PrimitiveStore,
typedef::{Type, TypeEnum, Unifier, VarMap}, typedef::{Type, Unifier},
},
}; };
use crate::{
codegen::CodeGenContext,
toplevel::{DefinitionId, TopLevelDef},
};
use crate::{location::Location, typecheck::typedef::TypeEnum};
use inkwell::values::{BasicValueEnum, FloatValue, IntValue, PointerValue};
use itertools::{chain, izip};
use nac3parser::ast::{Expr, StrRef};
use parking_lot::RwLock;
#[derive(Clone, PartialEq, Debug)] #[derive(Clone, PartialEq, Debug)]
pub enum SymbolValue { pub enum SymbolValue {
I32(i32), I32(i32),
I64(i64), I64(i64),
U32(u32),
U64(u64),
Str(String),
Double(f64), Double(f64),
Bool(bool), Bool(bool),
Tuple(Vec<SymbolValue>), Tuple(Vec<SymbolValue>),
OptionSome(Box<SymbolValue>),
OptionNone,
}
impl SymbolValue {
/// Creates a [`SymbolValue`] from a [`Constant`].
///
/// * `constant` - The constant to create the value from.
/// * `expected_ty` - The expected type of the [`SymbolValue`].
pub fn from_constant(
constant: &Constant,
expected_ty: Type,
primitives: &PrimitiveStore,
unifier: &mut Unifier,
) -> Result<Self, String> {
match constant {
Constant::None => {
if unifier.unioned(expected_ty, primitives.option) {
Ok(SymbolValue::OptionNone)
} else {
Err(format!("Expected {expected_ty:?}, but got Option"))
}
}
Constant::Bool(b) => {
if unifier.unioned(expected_ty, primitives.bool) {
Ok(SymbolValue::Bool(*b))
} else {
Err(format!("Expected {expected_ty:?}, but got bool"))
}
}
Constant::Str(s) => {
if unifier.unioned(expected_ty, primitives.str) {
Ok(SymbolValue::Str(s.to_string()))
} else {
Err(format!("Expected {expected_ty:?}, but got str"))
}
}
Constant::Int(i) => {
if unifier.unioned(expected_ty, primitives.int32) {
i32::try_from(*i).map(SymbolValue::I32).map_err(|e| e.to_string())
} else if unifier.unioned(expected_ty, primitives.int64) {
i64::try_from(*i).map(SymbolValue::I64).map_err(|e| e.to_string())
} else if unifier.unioned(expected_ty, primitives.uint32) {
u32::try_from(*i).map(SymbolValue::U32).map_err(|e| e.to_string())
} else if unifier.unioned(expected_ty, primitives.uint64) {
u64::try_from(*i).map(SymbolValue::U64).map_err(|e| e.to_string())
} else {
Err(format!("Expected {}, but got int", unifier.stringify(expected_ty)))
}
}
Constant::Tuple(t) => {
let expected_ty = unifier.get_ty(expected_ty);
let TypeEnum::TTuple { ty, is_vararg_ctx } = expected_ty.as_ref() else {
return Err(format!(
"Expected {:?}, but got Tuple",
expected_ty.get_type_name()
));
};
assert!(*is_vararg_ctx || ty.len() == t.len());
let elems = t
.iter()
.zip(ty)
.map(|(constant, ty)| Self::from_constant(constant, *ty, primitives, unifier))
.collect::<Result<Vec<SymbolValue>, _>>()?;
Ok(SymbolValue::Tuple(elems))
}
Constant::Float(f) => {
if unifier.unioned(expected_ty, primitives.float) {
Ok(SymbolValue::Double(*f))
} else {
Err(format!("Expected {expected_ty:?}, but got float"))
}
}
_ => Err(format!("Unsupported value type {constant:?}")),
}
}
/// Creates a [`SymbolValue`] from a [`Constant`], with its type being inferred from the constant value.
///
/// * `constant` - The constant to create the value from.
pub fn from_constant_inferred(constant: &Constant) -> Result<Self, String> {
match constant {
Constant::None => Ok(SymbolValue::OptionNone),
Constant::Bool(b) => Ok(SymbolValue::Bool(*b)),
Constant::Str(s) => Ok(SymbolValue::Str(s.to_string())),
Constant::Int(i) => {
let i = *i;
if i >= 0 {
i32::try_from(i)
.map(SymbolValue::I32)
.or_else(|_| i64::try_from(i).map(SymbolValue::I64))
.map_err(|_| {
format!("Literal cannot be expressed as any integral type: {i}")
})
} else {
u32::try_from(i)
.map(SymbolValue::U32)
.or_else(|_| u64::try_from(i).map(SymbolValue::U64))
.map_err(|_| {
format!("Literal cannot be expressed as any integral type: {i}")
})
}
}
Constant::Tuple(t) => {
let elems = t
.iter()
.map(Self::from_constant_inferred)
.collect::<Result<Vec<SymbolValue>, _>>()?;
Ok(SymbolValue::Tuple(elems))
}
Constant::Float(f) => Ok(SymbolValue::Double(*f)),
_ => Err(format!("Unsupported value type {constant:?}")),
}
}
/// Returns the [`Type`] representing the data type of this value.
pub fn get_type(&self, primitives: &PrimitiveStore, unifier: &mut Unifier) -> Type {
match self {
SymbolValue::I32(_) => primitives.int32,
SymbolValue::I64(_) => primitives.int64,
SymbolValue::U32(_) => primitives.uint32,
SymbolValue::U64(_) => primitives.uint64,
SymbolValue::Str(_) => primitives.str,
SymbolValue::Double(_) => primitives.float,
SymbolValue::Bool(_) => primitives.bool,
SymbolValue::Tuple(vs) => {
let vs_tys = vs.iter().map(|v| v.get_type(primitives, unifier)).collect::<Vec<_>>();
unifier.add_ty(TypeEnum::TTuple { ty: vs_tys, is_vararg_ctx: false })
}
SymbolValue::OptionSome(_) | SymbolValue::OptionNone => primitives.option,
}
}
/// Returns the [`TypeAnnotation`] representing the data type of this value.
pub fn get_type_annotation(
&self,
primitives: &PrimitiveStore,
unifier: &mut Unifier,
) -> TypeAnnotation {
match self {
SymbolValue::Bool(..)
| SymbolValue::Double(..)
| SymbolValue::I32(..)
| SymbolValue::I64(..)
| SymbolValue::U32(..)
| SymbolValue::U64(..)
| SymbolValue::Str(..) => TypeAnnotation::Primitive(self.get_type(primitives, unifier)),
SymbolValue::Tuple(vs) => {
let vs_tys = vs
.iter()
.map(|v| v.get_type_annotation(primitives, unifier))
.collect::<Vec<_>>();
TypeAnnotation::Tuple(vs_tys)
}
SymbolValue::OptionNone => TypeAnnotation::CustomClass {
id: primitives.option.obj_id(unifier).unwrap(),
params: Vec::default(),
},
SymbolValue::OptionSome(v) => {
let ty = v.get_type_annotation(primitives, unifier);
TypeAnnotation::CustomClass {
id: primitives.option.obj_id(unifier).unwrap(),
params: vec![ty],
}
}
}
}
/// Returns the [`TypeEnum`] representing the data type of this value.
pub fn get_type_enum(
&self,
primitives: &PrimitiveStore,
unifier: &mut Unifier,
) -> Rc<TypeEnum> {
let ty = self.get_type(primitives, unifier);
unifier.get_ty(ty)
}
}
impl Display for SymbolValue {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
SymbolValue::I32(i) => write!(f, "{i}"),
SymbolValue::I64(i) => write!(f, "int64({i})"),
SymbolValue::U32(i) => write!(f, "uint32({i})"),
SymbolValue::U64(i) => write!(f, "uint64({i})"),
SymbolValue::Str(s) => write!(f, "\"{s}\""),
SymbolValue::Double(d) => write!(f, "{d}"),
SymbolValue::Bool(b) => {
if *b {
write!(f, "True")
} else {
write!(f, "False")
}
}
SymbolValue::Tuple(t) => {
write!(f, "({})", t.iter().map(|v| format!("{v}")).collect::<Vec<_>>().join(", "))
}
SymbolValue::OptionSome(v) => write!(f, "Some({v})"),
SymbolValue::OptionNone => write!(f, "none"),
}
}
}
impl TryFrom<SymbolValue> for u64 {
type Error = ();
/// Tries to convert a [`SymbolValue`] into a [`u64`], returning [`Err`] if the value is not
/// numeric or if the value cannot be converted into a `u64` without overflow.
fn try_from(value: SymbolValue) -> Result<Self, Self::Error> {
match value {
SymbolValue::I32(v) => u64::try_from(v).map_err(|_| ()),
SymbolValue::I64(v) => u64::try_from(v).map_err(|_| ()),
SymbolValue::U32(v) => Ok(u64::from(v)),
SymbolValue::U64(v) => Ok(v),
_ => Err(()),
}
}
}
impl TryFrom<SymbolValue> for i128 {
type Error = ();
/// Tries to convert a [`SymbolValue`] into a [`i128`], returning [`Err`] if the value is not
/// numeric.
fn try_from(value: SymbolValue) -> Result<Self, Self::Error> {
match value {
SymbolValue::I32(v) => Ok(i128::from(v)),
SymbolValue::I64(v) => Ok(i128::from(v)),
SymbolValue::U32(v) => Ok(i128::from(v)),
SymbolValue::U64(v) => Ok(i128::from(v)),
_ => Err(()),
}
}
} }
pub trait StaticValue { pub trait StaticValue {
/// Returns a unique identifier for this value.
fn get_unique_identifier(&self) -> u64; fn get_unique_identifier(&self) -> u64;
/// Returns the constant object represented by this unique identifier. fn to_basic_value_enum<'ctx, 'a>(
fn get_const_obj<'ctx>(
&self, &self,
ctx: &mut CodeGenContext<'ctx, '_>, ctx: &mut CodeGenContext<'ctx, 'a>,
generator: &mut dyn CodeGenerator,
) -> BasicValueEnum<'ctx>; ) -> BasicValueEnum<'ctx>;
/// Converts this value to a LLVM [`BasicValueEnum`]. fn get_field<'ctx, 'a>(
fn to_basic_value_enum<'ctx>(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut dyn CodeGenerator,
expected_ty: Type,
) -> Result<BasicValueEnum<'ctx>, String>;
/// Returns a field within this value.
fn get_field<'ctx>(
&self, &self,
name: StrRef, name: StrRef,
ctx: &mut CodeGenContext<'ctx, '_>, ctx: &mut CodeGenContext<'ctx, 'a>,
) -> Option<ValueEnum<'ctx>>; ) -> Option<ValueEnum<'ctx>>;
/// Returns a single element of this tuple.
fn get_tuple_element<'ctx>(&self, index: u32) -> Option<ValueEnum<'ctx>>;
} }
#[derive(Clone)] #[derive(Clone)]
pub enum ValueEnum<'ctx> { pub enum ValueEnum<'ctx> {
/// [`ValueEnum`] representing a static value.
Static(Arc<dyn StaticValue + Send + Sync>), Static(Arc<dyn StaticValue + Send + Sync>),
/// [`ValueEnum`] representing a dynamic value.
Dynamic(BasicValueEnum<'ctx>), Dynamic(BasicValueEnum<'ctx>),
} }
@ -331,211 +70,199 @@ impl<'ctx> From<FloatValue<'ctx>> for ValueEnum<'ctx> {
} }
} }
impl<'ctx> From<StructValue<'ctx>> for ValueEnum<'ctx> {
fn from(v: StructValue<'ctx>) -> Self {
ValueEnum::Dynamic(v.into())
}
}
impl<'ctx> ValueEnum<'ctx> { impl<'ctx> ValueEnum<'ctx> {
/// Converts this [`ValueEnum`] to a [`BasicValueEnum`].
pub fn to_basic_value_enum<'a>( pub fn to_basic_value_enum<'a>(
self, self,
ctx: &mut CodeGenContext<'ctx, 'a>, ctx: &mut CodeGenContext<'ctx, 'a>,
generator: &mut dyn CodeGenerator, ) -> BasicValueEnum<'ctx> {
expected_ty: Type,
) -> Result<BasicValueEnum<'ctx>, String> {
match self { match self {
ValueEnum::Static(v) => v.to_basic_value_enum(ctx, generator, expected_ty), ValueEnum::Static(v) => v.to_basic_value_enum(ctx),
ValueEnum::Dynamic(v) => Ok(v), ValueEnum::Dynamic(v) => v,
} }
} }
} }
pub trait SymbolResolver { pub trait SymbolResolver {
/// Get type of type variable identifier or top-level function type, // get type of type variable identifier or top-level function type
fn get_symbol_type( fn get_symbol_type(
&self, &self,
unifier: &mut Unifier, unifier: &mut Unifier,
top_level_defs: &[Arc<RwLock<TopLevelDef>>], top_level_defs: &[Arc<RwLock<TopLevelDef>>],
primitives: &PrimitiveStore, primitives: &PrimitiveStore,
str: StrRef, str: StrRef,
) -> Result<Type, String>; ) -> Option<Type>;
/// Get the top-level definition of identifiers. // get the top-level definition of identifiers
fn get_identifier_def(&self, str: StrRef) -> Result<DefinitionId, HashSet<String>>; fn get_identifier_def(&self, str: StrRef) -> Option<DefinitionId>;
fn get_symbol_value<'ctx>( fn get_symbol_value<'ctx, 'a>(
&self, &self,
str: StrRef, str: StrRef,
ctx: &mut CodeGenContext<'ctx, '_>, ctx: &mut CodeGenContext<'ctx, 'a>,
generator: &mut dyn CodeGenerator,
) -> Option<ValueEnum<'ctx>>; ) -> Option<ValueEnum<'ctx>>;
fn get_default_param_value(&self, expr: &Expr) -> Option<SymbolValue>; fn get_symbol_location(&self, str: StrRef) -> Option<Location>;
fn get_string_id(&self, s: &str) -> i32; fn get_default_param_value(&self, expr: &nac3parser::ast::Expr) -> Option<SymbolValue>;
fn get_exception_id(&self, tyid: usize) -> usize; // handle function call etc.
fn handle_deferred_eval(
&self,
_unifier: &mut Unifier,
_top_level_defs: &[Arc<RwLock<TopLevelDef>>],
_primitives: &PrimitiveStore,
) -> Result<(), String> {
Ok(())
}
} }
thread_local! { thread_local! {
static IDENTIFIER_ID: [StrRef; 11] = [ static IDENTIFIER_ID: [StrRef; 8] = [
"int32".into(), "int32".into(),
"int64".into(), "int64".into(),
"float".into(), "float".into(),
"bool".into(), "bool".into(),
"None".into(),
"virtual".into(), "virtual".into(),
"tuple".into(), "list".into(),
"str".into(), "tuple".into()
"Exception".into(),
"uint32".into(),
"uint64".into(),
"Literal".into(),
]; ];
} }
/// Converts a type annotation into a [Type]. // convert type annotation into type
pub fn parse_type_annotation<T>( pub fn parse_type_annotation<T>(
resolver: &dyn SymbolResolver, resolver: &dyn SymbolResolver,
top_level_defs: &[Arc<RwLock<TopLevelDef>>], top_level_defs: &[Arc<RwLock<TopLevelDef>>],
unifier: &mut Unifier, unifier: &mut Unifier,
primitives: &PrimitiveStore, primitives: &PrimitiveStore,
expr: &Expr<T>, expr: &Expr<T>,
) -> Result<Type, HashSet<String>> { ) -> Result<Type, String> {
use nac3parser::ast::ExprKind::*; use nac3parser::ast::ExprKind::*;
let ids = IDENTIFIER_ID.with(|ids| *ids); let ids = IDENTIFIER_ID.with(|ids| *ids);
let int32_id = ids[0]; let int32_id = ids[0];
let int64_id = ids[1]; let int64_id = ids[1];
let float_id = ids[2]; let float_id = ids[2];
let bool_id = ids[3]; let bool_id = ids[3];
let virtual_id = ids[4]; let none_id = ids[4];
let tuple_id = ids[5]; let virtual_id = ids[5];
let str_id = ids[6]; let list_id = ids[6];
let exn_id = ids[7]; let tuple_id = ids[7];
let uint32_id = ids[8];
let uint64_id = ids[9];
let literal_id = ids[10];
let name_handling = |id: &StrRef, loc: Location, unifier: &mut Unifier| { match &expr.node {
Name { id, .. } => {
if *id == int32_id { if *id == int32_id {
Ok(primitives.int32) Ok(primitives.int32)
} else if *id == int64_id { } else if *id == int64_id {
Ok(primitives.int64) Ok(primitives.int64)
} else if *id == uint32_id {
Ok(primitives.uint32)
} else if *id == uint64_id {
Ok(primitives.uint64)
} else if *id == float_id { } else if *id == float_id {
Ok(primitives.float) Ok(primitives.float)
} else if *id == bool_id { } else if *id == bool_id {
Ok(primitives.bool) Ok(primitives.bool)
} else if *id == str_id { } else if *id == none_id {
Ok(primitives.str) Ok(primitives.none)
} else if *id == exn_id {
Ok(primitives.exception)
} else { } else {
let obj_id = resolver.get_identifier_def(*id); let obj_id = resolver.get_identifier_def(*id);
if let Ok(obj_id) = obj_id { if let Some(obj_id) = obj_id {
let def = top_level_defs[obj_id.0].read(); let def = top_level_defs[obj_id.0].read();
if let TopLevelDef::Class { fields, methods, type_vars, .. } = &*def { if let TopLevelDef::Class { fields, methods, type_vars, .. } = &*def {
if !type_vars.is_empty() { if !type_vars.is_empty() {
return Err(HashSet::from([format!( return Err(format!(
"Unexpected number of type parameters: expected {} but got 0", "Unexpected number of type parameters: expected {} but got 0",
type_vars.len() type_vars.len()
)])); ));
} }
let fields = chain( let fields = RefCell::new(
chain(
fields.iter().map(|(k, v, m)| (*k, (*v, *m))), fields.iter().map(|(k, v, m)| (*k, (*v, *m))),
methods.iter().map(|(k, v, _)| (*k, (*v, false))), methods.iter().map(|(k, v, _)| (*k, (*v, false))),
) )
.collect(); .collect(),
Ok(unifier.add_ty(TypeEnum::TObj { obj_id, fields, params: VarMap::default() })) );
Ok(unifier.add_ty(TypeEnum::TObj {
obj_id,
fields,
params: Default::default(),
}))
} else { } else {
Err(HashSet::from([format!("Cannot use function name as type at {loc}")])) Err("Cannot use function name as type".into())
} }
} else { } else {
let ty = // it could be a type variable
resolver.get_symbol_type(unifier, top_level_defs, primitives, *id).map_err( let ty = resolver
|e| HashSet::from([format!("Unknown type annotation at {loc}: {e}")]), .get_symbol_type(unifier, top_level_defs, primitives, *id)
)?; .ok_or_else(|| "unknown type variable name".to_owned())?;
if let TypeEnum::TVar { .. } = &*unifier.get_ty(ty) { if let TypeEnum::TVar { .. } = &*unifier.get_ty(ty) {
Ok(ty) Ok(ty)
} else { } else {
Err(HashSet::from([format!("Unknown type annotation {id} at {loc}")])) Err(format!("Unknown type annotation {}", id))
} }
} }
} }
}; }
Subscript { value, slice, .. } => {
let subscript_name_handle = |id: &StrRef, slice: &Expr<T>, unifier: &mut Unifier| { if let Name { id, .. } = &value.node {
if *id == virtual_id { if *id == virtual_id {
let ty = parse_type_annotation(resolver, top_level_defs, unifier, primitives, slice)?; let ty = parse_type_annotation(
resolver,
top_level_defs,
unifier,
primitives,
slice,
)?;
Ok(unifier.add_ty(TypeEnum::TVirtual { ty })) Ok(unifier.add_ty(TypeEnum::TVirtual { ty }))
} else if *id == list_id {
let ty = parse_type_annotation(
resolver,
top_level_defs,
unifier,
primitives,
slice,
)?;
Ok(unifier.add_ty(TypeEnum::TList { ty }))
} else if *id == tuple_id { } else if *id == tuple_id {
if let Tuple { elts, .. } = &slice.node { if let Tuple { elts, .. } = &slice.node {
let ty = elts let ty = elts
.iter() .iter()
.map(|elt| { .map(|elt| {
parse_type_annotation(resolver, top_level_defs, unifier, primitives, elt) parse_type_annotation(
resolver,
top_level_defs,
unifier,
primitives,
elt,
)
}) })
.collect::<Result<Vec<_>, _>>()?; .collect::<Result<Vec<_>, _>>()?;
Ok(unifier.add_ty(TypeEnum::TTuple { ty, is_vararg_ctx: false })) Ok(unifier.add_ty(TypeEnum::TTuple { ty }))
} else { } else {
Err(HashSet::from(["Expected multiple elements for tuple".into()])) Err("Expected multiple elements for tuple".into())
} }
} else if *id == literal_id {
let mut parse_literal = |elt: &Expr<T>| {
let ty = parse_type_annotation(resolver, top_level_defs, unifier, primitives, elt)?;
let ty_enum = &*unifier.get_ty_immutable(ty);
match ty_enum {
TypeEnum::TLiteral { values, .. } => Ok(values.clone()),
_ => Err(HashSet::from([format!(
"Expected literal in type argument for Literal at {}",
elt.location
)])),
}
};
let values = if let Tuple { elts, .. } = &slice.node {
elts.iter().map(&mut parse_literal).collect::<Result<Vec<_>, _>>()?
} else {
vec![parse_literal(slice)?]
}
.into_iter()
.flatten()
.collect_vec();
Ok(unifier.get_fresh_literal(values, Some(slice.location)))
} else { } else {
let types = if let Tuple { elts, .. } = &slice.node { let types = if let Tuple { elts, .. } = &slice.node {
elts.iter() elts.iter()
.map(|v| { .map(|v| {
parse_type_annotation(resolver, top_level_defs, unifier, primitives, v) parse_type_annotation(
resolver,
top_level_defs,
unifier,
primitives,
v,
)
}) })
.collect::<Result<Vec<_>, _>>()? .collect::<Result<Vec<_>, _>>()?
} else { } else {
vec![parse_type_annotation(resolver, top_level_defs, unifier, primitives, slice)?] vec![parse_type_annotation(
resolver,
top_level_defs,
unifier,
primitives,
slice,
)?]
}; };
let obj_id = resolver.get_identifier_def(*id)?; let obj_id = resolver
.get_identifier_def(*id)
.ok_or_else(|| format!("Unknown type annotation {}", id))?;
let def = top_level_defs[obj_id.0].read(); let def = top_level_defs[obj_id.0].read();
if let TopLevelDef::Class { fields, methods, type_vars, .. } = &*def { if let TopLevelDef::Class { fields, methods, type_vars, .. } = &*def {
if types.len() != type_vars.len() { if types.len() != type_vars.len() {
return Err(HashSet::from([format!( return Err(format!(
"Unexpected number of type parameters: expected {} but got {}", "Unexpected number of type parameters: expected {} but got {}",
type_vars.len(), type_vars.len(),
types.len() types.len()
)])); ));
} }
let mut subst = VarMap::new(); let mut subst = HashMap::new();
for (var, ty) in izip!(type_vars.iter(), types.iter()) { for (var, ty) in izip!(type_vars.iter(), types.iter()) {
let id = if let TypeEnum::TVar { id, .. } = &*unifier.get_ty(*var) { let id = if let TypeEnum::TVar { id, .. } = &*unifier.get_ty(*var) {
*id *id
@ -555,26 +282,20 @@ pub fn parse_type_annotation<T>(
let ty = unifier.subst(*ty, &subst).unwrap_or(*ty); let ty = unifier.subst(*ty, &subst).unwrap_or(*ty);
(*attr, (ty, false)) (*attr, (ty, false))
})); }));
Ok(unifier.add_ty(TypeEnum::TObj { obj_id, fields, params: subst })) Ok(unifier.add_ty(TypeEnum::TObj {
obj_id,
fields: fields.into(),
params: subst.into(),
}))
} else { } else {
Err(HashSet::from(["Cannot use function name as type".into()])) Err("Cannot use function name as type".into())
} }
} }
};
match &expr.node {
Name { id, .. } => name_handling(id, expr.location, unifier),
Subscript { value, slice, .. } => {
if let Name { id, .. } = &value.node {
subscript_name_handle(id, slice, unifier)
} else { } else {
Err(HashSet::from([format!("unsupported type expression at {}", expr.location)])) Err("unsupported type expression".into())
} }
} }
Constant { value, .. } => SymbolValue::from_constant_inferred(value) _ => Err("unsupported type expression".into()),
.map(|v| unifier.get_fresh_literal(vec![v], Some(expr.location)))
.map_err(|err| HashSet::from([err])),
_ => Err(HashSet::from([format!("unsupported type expression at {}", expr.location)])),
} }
} }
@ -585,29 +306,9 @@ impl dyn SymbolResolver + Send + Sync {
unifier: &mut Unifier, unifier: &mut Unifier,
primitives: &PrimitiveStore, primitives: &PrimitiveStore,
expr: &Expr<T>, expr: &Expr<T>,
) -> Result<Type, HashSet<String>> { ) -> Result<Type, String> {
parse_type_annotation(self, top_level_defs, unifier, primitives, expr) parse_type_annotation(self, top_level_defs, unifier, primitives, expr)
} }
pub fn get_type_name(
&self,
top_level_defs: &[Arc<RwLock<TopLevelDef>>],
unifier: &mut Unifier,
ty: Type,
) -> String {
unifier.internal_stringify(
ty,
&mut |id| {
let TopLevelDef::Class { name, .. } = &*top_level_defs[id].read() else {
unreachable!("expected class definition")
};
name.to_string()
},
&mut |id| format!("typevar{id}"),
&mut None,
)
}
} }
impl Debug for dyn SymbolResolver + Send + Sync { impl Debug for dyn SymbolResolver + Send + Sync {

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -3,76 +3,61 @@ use std::{
collections::{HashMap, HashSet}, collections::{HashMap, HashSet},
fmt::Debug, fmt::Debug,
iter::FromIterator, iter::FromIterator,
ops::{Deref, DerefMut},
sync::Arc, sync::Arc,
}; };
use inkwell::values::BasicValueEnum; use super::codegen::CodeGenContext;
use itertools::Itertools; use super::typecheck::type_inferencer::PrimitiveStore;
use parking_lot::RwLock; use super::typecheck::typedef::{FunSignature, FuncArg, SharedUnifier, Type, TypeEnum, Unifier};
use nac3parser::ast::{self, Expr, Location, Stmt, StrRef};
use crate::{ use crate::{
codegen::{CodeGenContext, CodeGenerator}, symbol_resolver::SymbolResolver,
symbol_resolver::{SymbolResolver, ValueEnum}, typecheck::{type_inferencer::CodeLocation, typedef::CallId},
typecheck::{
type_inferencer::{CodeLocation, PrimitiveStore},
typedef::{
CallId, FunSignature, FuncArg, SharedUnifier, Type, TypeEnum, TypeVarId, Unifier,
VarMap,
},
},
}; };
use composer::*; use itertools::{izip, Itertools};
use type_annotation::*; use parking_lot::RwLock;
use nac3parser::ast::{self, Stmt, StrRef};
pub mod builtins; use inkwell::values::BasicValueEnum;
pub mod composer;
pub mod helper;
pub mod numpy;
#[cfg(test)]
mod test;
pub mod type_annotation;
#[derive(PartialEq, Eq, PartialOrd, Ord, Clone, Copy, Hash, Debug)] #[derive(PartialEq, Eq, PartialOrd, Ord, Clone, Copy, Hash, Debug)]
pub struct DefinitionId(pub usize); pub struct DefinitionId(pub usize);
type GenCallCallback = dyn for<'ctx, 'a> Fn( pub mod composer;
pub mod helper;
mod type_annotation;
use composer::*;
use type_annotation::*;
#[cfg(test)]
mod test;
type GenCallCallback = Box<
dyn for<'ctx, 'a> Fn(
&mut CodeGenContext<'ctx, 'a>, &mut CodeGenContext<'ctx, 'a>,
Option<(Type, ValueEnum<'ctx>)>, Option<(Type, BasicValueEnum)>,
(&FunSignature, DefinitionId), (&FunSignature, DefinitionId),
Vec<(Option<StrRef>, ValueEnum<'ctx>)>, Vec<(Option<StrRef>, BasicValueEnum<'ctx>)>,
&mut dyn CodeGenerator, ) -> Option<BasicValueEnum<'ctx>>
) -> Result<Option<BasicValueEnum<'ctx>>, String>
+ Send + Send
+ Sync; + Sync,
>;
pub struct GenCall { pub struct GenCall {
fp: Box<GenCallCallback>, fp: GenCallCallback,
} }
impl GenCall { impl GenCall {
#[must_use] pub fn new(fp: GenCallCallback) -> GenCall {
pub fn new(fp: Box<GenCallCallback>) -> GenCall {
GenCall { fp } GenCall { fp }
} }
/// Creates a dummy instance of [`GenCall`], which invokes [`unreachable!()`] with the given pub fn run<'ctx, 'a>(
/// `reason`.
#[must_use]
pub fn create_dummy(reason: String) -> GenCall {
Self::new(Box::new(move |_, _, _, _, _| unreachable!("{reason}")))
}
pub fn run<'ctx>(
&self, &self,
ctx: &mut CodeGenContext<'ctx, '_>, ctx: &mut CodeGenContext<'ctx, 'a>,
obj: Option<(Type, ValueEnum<'ctx>)>, obj: Option<(Type, BasicValueEnum<'ctx>)>,
fun: (&FunSignature, DefinitionId), fun: (&FunSignature, DefinitionId),
args: Vec<(Option<StrRef>, ValueEnum<'ctx>)>, args: Vec<(Option<StrRef>, BasicValueEnum<'ctx>)>,
generator: &mut dyn CodeGenerator, ) -> Option<BasicValueEnum<'ctx>> {
) -> Result<Option<BasicValueEnum<'ctx>>, String> { (self.fp)(ctx, obj, fun, args)
(self.fp)(ctx, obj, fun, args, generator)
} }
} }
@ -86,86 +71,55 @@ impl Debug for GenCall {
pub struct FunInstance { pub struct FunInstance {
pub body: Arc<Vec<Stmt<Option<Type>>>>, pub body: Arc<Vec<Stmt<Option<Type>>>>,
pub calls: Arc<HashMap<CodeLocation, CallId>>, pub calls: Arc<HashMap<CodeLocation, CallId>>,
pub subst: VarMap, pub subst: HashMap<u32, Type>,
pub unifier_id: usize, pub unifier_id: usize,
} }
#[derive(Debug, Clone)] #[derive(Debug, Clone)]
pub enum TopLevelDef { pub enum TopLevelDef {
Class { Class {
/// Name for error messages and symbols. // name for error messages and symbols
name: StrRef, name: StrRef,
/// Object ID used for [`TypeEnum`]. // object ID used for TypeEnum
object_id: DefinitionId, object_id: DefinitionId,
/// type variables bounded to the class. /// type variables bounded to the class.
type_vars: Vec<Type>, type_vars: Vec<Type>,
/// Class fields. // class fields
/// // name, type, is mutable
/// Name and type is mutable.
fields: Vec<(StrRef, Type, bool)>, fields: Vec<(StrRef, Type, bool)>,
/// Class Attributes. // class methods, pointing to the corresponding function definition.
///
/// Name, type, value.
attributes: Vec<(StrRef, Type, ast::Constant)>,
/// Class methods, pointing to the corresponding function definition.
methods: Vec<(StrRef, Type, DefinitionId)>, methods: Vec<(StrRef, Type, DefinitionId)>,
/// Ancestor classes, including itself. // ancestor classes, including itself.
ancestors: Vec<TypeAnnotation>, ancestors: Vec<TypeAnnotation>,
/// Symbol resolver of the module defined the class; [None] if it is built-in type. // symbol resolver of the module defined the class, none if it is built-in type
resolver: Option<Arc<dyn SymbolResolver + Send + Sync>>, resolver: Option<Arc<dyn SymbolResolver + Send + Sync>>,
/// Constructor type. // constructor type
constructor: Option<Type>, constructor: Option<Type>,
/// Definition location.
loc: Option<Location>,
}, },
Function { Function {
/// Prefix for symbol, should be unique globally. // prefix for symbol, should be unique globally
name: String, name: String,
/// Simple name, the same as in method/function definition. // simple name, the same as in method/function definition
simple_name: StrRef, simple_name: StrRef,
/// Function signature. // function signature.
signature: Type, signature: Type,
/// Instantiated type variable IDs. // instantiated type variable IDs
var_id: Vec<TypeVarId>, var_id: Vec<u32>,
/// Function instance to symbol mapping /// Function instance to symbol mapping
/// /// Key: string representation of type variable values, sorted by variable ID in ascending
/// * Key: String representation of type variable values, sorted by variable ID in ascending
/// order, including type variables associated with the class. /// order, including type variables associated with the class.
/// * Value: Function symbol name. /// Value: function symbol name.
instance_to_symbol: HashMap<String, String>, instance_to_symbol: HashMap<String, String>,
/// Function instances to annotated AST mapping /// Function instances to annotated AST mapping
/// /// Key: string representation of type variable values, sorted by variable ID in ascending
/// * Key: String representation of type variable values, sorted by variable ID in ascending
/// order, including type variables associated with the class. Excluding rigid type /// order, including type variables associated with the class. Excluding rigid type
/// variables. /// variables.
/// /// rigid type variables that would be substituted when the function is instantiated.
/// Rigid type variables that would be substituted when the function is instantiated.
instance_to_stmt: HashMap<String, FunInstance>, instance_to_stmt: HashMap<String, FunInstance>,
/// Symbol resolver of the module defined the class. // symbol resolver of the module defined the class
resolver: Option<Arc<dyn SymbolResolver + Send + Sync>>, resolver: Option<Arc<dyn SymbolResolver + Send + Sync>>,
/// Custom code generation callback. // custom codegen callback
codegen_callback: Option<Arc<GenCall>>, codegen_callback: Option<Arc<GenCall>>
/// Definition location.
loc: Option<Location>,
},
Variable {
/// Qualified name of the global variable, should be unique globally.
name: String,
/// Simple name, the same as in method/function definition.
simple_name: StrRef,
/// Type of the global variable.
ty: Type,
/// The declared type of the global variable, or [`None`] if no type annotation is provided.
ty_decl: Option<Expr>,
/// Symbol resolver of the module defined the class.
resolver: Option<Arc<dyn SymbolResolver + Send + Sync>>,
/// Definition location.
loc: Option<Location>,
}, },
} }

View File

@ -1,84 +0,0 @@
use itertools::Itertools;
use super::helper::PrimDef;
use crate::typecheck::{
type_inferencer::PrimitiveStore,
typedef::{Type, TypeEnum, TypeVarId, Unifier, VarMap},
};
/// Creates a `ndarray` [`Type`] with the given type arguments.
///
/// * `dtype` - The element type of the `ndarray`, or [`None`] if the type variable is not
/// specialized.
/// * `ndims` - The number of dimensions of the `ndarray`, or [`None`] if the type variable is not
/// specialized.
pub fn make_ndarray_ty(
unifier: &mut Unifier,
primitives: &PrimitiveStore,
dtype: Option<Type>,
ndims: Option<Type>,
) -> Type {
subst_ndarray_tvars(unifier, primitives.ndarray, dtype, ndims)
}
/// Substitutes type variables in `ndarray`.
///
/// * `dtype` - The element type of the `ndarray`, or [`None`] if the type variable is not
/// specialized.
/// * `ndims` - The number of dimensions of the `ndarray`, or [`None`] if the type variable is not
/// specialized.
pub fn subst_ndarray_tvars(
unifier: &mut Unifier,
ndarray: Type,
dtype: Option<Type>,
ndims: Option<Type>,
) -> Type {
let TypeEnum::TObj { obj_id, params, .. } = &*unifier.get_ty_immutable(ndarray) else {
panic!("Expected `ndarray` to be TObj, but got {}", unifier.stringify(ndarray))
};
debug_assert_eq!(*obj_id, PrimDef::NDArray.id());
if dtype.is_none() && ndims.is_none() {
return ndarray;
}
let tvar_ids = params.iter().map(|(obj_id, _)| *obj_id).collect_vec();
debug_assert_eq!(tvar_ids.len(), 2);
let mut tvar_subst = VarMap::new();
if let Some(dtype) = dtype {
tvar_subst.insert(tvar_ids[0], dtype);
}
if let Some(ndims) = ndims {
tvar_subst.insert(tvar_ids[1], ndims);
}
unifier.subst(ndarray, &tvar_subst).unwrap_or(ndarray)
}
fn unpack_ndarray_tvars(unifier: &mut Unifier, ndarray: Type) -> Vec<(TypeVarId, Type)> {
let TypeEnum::TObj { obj_id, params, .. } = &*unifier.get_ty_immutable(ndarray) else {
panic!("Expected `ndarray` to be TObj, but got {}", unifier.stringify(ndarray))
};
debug_assert_eq!(*obj_id, PrimDef::NDArray.id());
debug_assert_eq!(params.len(), 2);
params
.iter()
.sorted_by_key(|(obj_id, _)| *obj_id)
.map(|(var_id, ty)| (*var_id, *ty))
.collect_vec()
}
/// Unpacks the type variable IDs of `ndarray` into a tuple. The elements of the tuple corresponds
/// to `dtype` (the element type) and `ndims` (the number of dimensions) of the `ndarray`
/// respectively.
pub fn unpack_ndarray_var_ids(unifier: &mut Unifier, ndarray: Type) -> (TypeVarId, TypeVarId) {
unpack_ndarray_tvars(unifier, ndarray).into_iter().map(|v| v.0).collect_tuple().unwrap()
}
/// Unpacks the type variables of `ndarray` into a tuple. The elements of the tuple corresponds to
/// `dtype` (the element type) and `ndims` (the number of dimensions) of the `ndarray` respectively.
pub fn unpack_ndarray_var_tys(unifier: &mut Unifier, ndarray: Type) -> (Type, Type) {
unpack_ndarray_tvars(unifier, ndarray).into_iter().map(|v| v.1).collect_tuple().unwrap()
}

View File

@ -1,12 +1,13 @@
--- ---
source: nac3core/src/toplevel/test.rs source: nac3core/src/toplevel/test.rs
expression: res_vec expression: res_vec
--- ---
[ [
"Class {\nname: \"Generic_A\",\nancestors: [\"Generic_A[V]\", \"B\"],\nfields: [\"aa\", \"a\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"foo\", \"fn[[b:T], none]\"), (\"fun\", \"fn[[a:int32], V]\")],\ntype_vars: [\"V\"]\n}\n", "Class {\nname: \"Generic_A\",\nancestors: [\"{class: Generic_A, params: [\\\"var4\\\"]}\", \"{class: B, params: []}\"],\nfields: [\"aa\", \"a\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"foo\", \"fn[[b=var3], none]\"), (\"fun\", \"fn[[a=int32], var4]\")],\ntype_vars: [\"var4\"]\n}\n",
"Function {\nname: \"Generic_A.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n", "Function {\nname: \"Generic_A.__init__\",\nsig: \"fn[[], none]\",\nvar_id: [4]\n}\n",
"Function {\nname: \"Generic_A.fun\",\nsig: \"fn[[a:int32], V]\",\nvar_id: [TypeVarId(241)]\n}\n", "Function {\nname: \"Generic_A.fun\",\nsig: \"fn[[a=int32], var4]\",\nvar_id: [4]\n}\n",
"Class {\nname: \"B\",\nancestors: [\"B\"],\nfields: [\"aa\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"foo\", \"fn[[b:T], none]\")],\ntype_vars: []\n}\n", "Class {\nname: \"B\",\nancestors: [\"{class: B, params: []}\"],\nfields: [\"aa\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"foo\", \"fn[[b=var3], none]\")],\ntype_vars: []\n}\n",
"Function {\nname: \"B.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n", "Function {\nname: \"B.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n",
"Function {\nname: \"B.foo\",\nsig: \"fn[[b:T], none]\",\nvar_id: []\n}\n", "Function {\nname: \"B.foo\",\nsig: \"fn[[b=var3], none]\",\nvar_id: []\n}\n",
] ]

View File

@ -1,15 +1,16 @@
--- ---
source: nac3core/src/toplevel/test.rs source: nac3core/src/toplevel/test.rs
expression: res_vec expression: res_vec
--- ---
[ [
"Class {\nname: \"A\",\nancestors: [\"A[T]\"],\nfields: [\"a\", \"b\", \"c\"],\nmethods: [(\"__init__\", \"fn[[t:T], none]\"), (\"fun\", \"fn[[a:int32, b:T], list[virtual[B[bool]]]]\"), (\"foo\", \"fn[[c:C], none]\")],\ntype_vars: [\"T\"]\n}\n", "Class {\nname: \"A\",\nancestors: [\"{class: A, params: [\\\"var3\\\"]}\"],\nfields: [\"a\", \"b\", \"c\"],\nmethods: [(\"__init__\", \"fn[[t=var3], none]\"), (\"fun\", \"fn[[a=int32, b=var3], list[virtual[B[4->bool]]]]\"), (\"foo\", \"fn[[c=C], none]\")],\ntype_vars: [\"var3\"]\n}\n",
"Function {\nname: \"A.__init__\",\nsig: \"fn[[t:T], none]\",\nvar_id: []\n}\n", "Function {\nname: \"A.__init__\",\nsig: \"fn[[t=var3], none]\",\nvar_id: []\n}\n",
"Function {\nname: \"A.fun\",\nsig: \"fn[[a:int32, b:T], list[virtual[B[bool]]]]\",\nvar_id: []\n}\n", "Function {\nname: \"A.fun\",\nsig: \"fn[[a=int32, b=var3], list[virtual[B[4->bool]]]]\",\nvar_id: []\n}\n",
"Function {\nname: \"A.foo\",\nsig: \"fn[[c:C], none]\",\nvar_id: []\n}\n", "Function {\nname: \"A.foo\",\nsig: \"fn[[c=C], none]\",\nvar_id: []\n}\n",
"Class {\nname: \"B\",\nancestors: [\"B[typevar230]\", \"A[float]\"],\nfields: [\"a\", \"b\", \"c\", \"d\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[a:int32, b:T], list[virtual[B[bool]]]]\"), (\"foo\", \"fn[[c:C], none]\")],\ntype_vars: [\"typevar230\"]\n}\n", "Class {\nname: \"B\",\nancestors: [\"{class: B, params: [\\\"var4\\\"]}\", \"{class: A, params: [\\\"float\\\"]}\"],\nfields: [\"a\", \"b\", \"c\", \"d\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[a=int32, b=var3], list[virtual[B[4->bool]]]]\"), (\"foo\", \"fn[[c=C], none]\")],\ntype_vars: [\"var4\"]\n}\n",
"Function {\nname: \"B.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n", "Function {\nname: \"B.__init__\",\nsig: \"fn[[], none]\",\nvar_id: [4]\n}\n",
"Function {\nname: \"B.fun\",\nsig: \"fn[[a:int32, b:T], list[virtual[B[bool]]]]\",\nvar_id: []\n}\n", "Function {\nname: \"B.fun\",\nsig: \"fn[[a=int32, b=var3], list[virtual[B[4->bool]]]]\",\nvar_id: [4]\n}\n",
"Class {\nname: \"C\",\nancestors: [\"C\", \"B[bool]\", \"A[float]\"],\nfields: [\"a\", \"b\", \"c\", \"d\", \"e\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[a:int32, b:T], list[virtual[B[bool]]]]\"), (\"foo\", \"fn[[c:C], none]\")],\ntype_vars: []\n}\n", "Class {\nname: \"C\",\nancestors: [\"{class: C, params: []}\", \"{class: B, params: [\\\"bool\\\"]}\", \"{class: A, params: [\\\"float\\\"]}\"],\nfields: [\"a\", \"b\", \"c\", \"d\", \"e\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[a=int32, b=var3], list[virtual[B[4->bool]]]]\"), (\"foo\", \"fn[[c=C], none]\")],\ntype_vars: []\n}\n",
"Function {\nname: \"C.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n", "Function {\nname: \"C.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n",
] ]

View File

@ -1,13 +1,14 @@
--- ---
source: nac3core/src/toplevel/test.rs source: nac3core/src/toplevel/test.rs
expression: res_vec expression: res_vec
--- ---
[ [
"Function {\nname: \"foo\",\nsig: \"fn[[a:list[int32], b:tuple[T, float]], A[B, bool]]\",\nvar_id: []\n}\n", "Function {\nname: \"foo\",\nsig: \"fn[[a=list[int32], b=tuple[var3, float]], A[3->B, 4->bool]]\",\nvar_id: []\n}\n",
"Class {\nname: \"A\",\nancestors: [\"A[T, V]\"],\nfields: [\"a\", \"b\"],\nmethods: [(\"__init__\", \"fn[[v:V], none]\"), (\"fun\", \"fn[[a:T], V]\")],\ntype_vars: [\"T\", \"V\"]\n}\n", "Class {\nname: \"A\",\nancestors: [\"{class: A, params: [\\\"var3\\\", \\\"var4\\\"]}\"],\nfields: [\"a\", \"b\"],\nmethods: [(\"__init__\", \"fn[[v=var4], none]\"), (\"fun\", \"fn[[a=var3], var4]\")],\ntype_vars: [\"var3\", \"var4\"]\n}\n",
"Function {\nname: \"A.__init__\",\nsig: \"fn[[v:V], none]\",\nvar_id: [TypeVarId(243)]\n}\n", "Function {\nname: \"A.__init__\",\nsig: \"fn[[v=var4], none]\",\nvar_id: [4]\n}\n",
"Function {\nname: \"A.fun\",\nsig: \"fn[[a:T], V]\",\nvar_id: [TypeVarId(248)]\n}\n", "Function {\nname: \"A.fun\",\nsig: \"fn[[a=var3], var4]\",\nvar_id: [4]\n}\n",
"Function {\nname: \"gfun\",\nsig: \"fn[[a:A[list[float], int32]], none]\",\nvar_id: []\n}\n", "Function {\nname: \"gfun\",\nsig: \"fn[[a=A[3->list[float], 4->int32]], none]\",\nvar_id: []\n}\n",
"Class {\nname: \"B\",\nancestors: [\"B\"],\nfields: [],\nmethods: [(\"__init__\", \"fn[[], none]\")],\ntype_vars: []\n}\n", "Class {\nname: \"B\",\nancestors: [\"{class: B, params: []}\"],\nfields: [],\nmethods: [(\"__init__\", \"fn[[], none]\")],\ntype_vars: []\n}\n",
"Function {\nname: \"B.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n", "Function {\nname: \"B.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n",
] ]

View File

@ -1,13 +1,14 @@
--- ---
source: nac3core/src/toplevel/test.rs source: nac3core/src/toplevel/test.rs
expression: res_vec expression: res_vec
--- ---
[ [
"Class {\nname: \"A\",\nancestors: [\"A[typevar229, typevar230]\"],\nfields: [\"a\", \"b\"],\nmethods: [(\"__init__\", \"fn[[a:A[float, bool], b:B], none]\"), (\"fun\", \"fn[[a:A[float, bool]], A[bool, int32]]\")],\ntype_vars: [\"typevar229\", \"typevar230\"]\n}\n", "Class {\nname: \"A\",\nancestors: [\"{class: A, params: [\\\"var3\\\", \\\"var4\\\"]}\"],\nfields: [\"a\", \"b\"],\nmethods: [(\"__init__\", \"fn[[a=A[3->float, 4->bool], b=B], none]\"), (\"fun\", \"fn[[a=A[3->float, 4->bool]], A[3->bool, 4->int32]]\")],\ntype_vars: [\"var3\", \"var4\"]\n}\n",
"Function {\nname: \"A.__init__\",\nsig: \"fn[[a:A[float, bool], b:B], none]\",\nvar_id: []\n}\n", "Function {\nname: \"A.__init__\",\nsig: \"fn[[a=A[3->float, 4->bool], b=B], none]\",\nvar_id: [4]\n}\n",
"Function {\nname: \"A.fun\",\nsig: \"fn[[a:A[float, bool]], A[bool, int32]]\",\nvar_id: []\n}\n", "Function {\nname: \"A.fun\",\nsig: \"fn[[a=A[3->float, 4->bool]], A[3->bool, 4->int32]]\",\nvar_id: [4]\n}\n",
"Class {\nname: \"B\",\nancestors: [\"B\", \"A[int64, bool]\"],\nfields: [\"a\", \"b\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[a:A[float, bool]], A[bool, int32]]\"), (\"foo\", \"fn[[b:B], B]\"), (\"bar\", \"fn[[a:A[list[B], int32]], tuple[A[virtual[A[B, int32]], bool], B]]\")],\ntype_vars: []\n}\n", "Class {\nname: \"B\",\nancestors: [\"{class: B, params: []}\", \"{class: A, params: [\\\"int64\\\", \\\"bool\\\"]}\"],\nfields: [\"a\", \"b\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[a=A[3->float, 4->bool]], A[3->bool, 4->int32]]\"), (\"foo\", \"fn[[b=B], B]\"), (\"bar\", \"fn[[a=A[3->list[B], 4->int32]], tuple[A[3->virtual[A[3->B, 4->int32]], 4->bool], B]]\")],\ntype_vars: []\n}\n",
"Function {\nname: \"B.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n", "Function {\nname: \"B.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n",
"Function {\nname: \"B.foo\",\nsig: \"fn[[b:B], B]\",\nvar_id: []\n}\n", "Function {\nname: \"B.foo\",\nsig: \"fn[[b=B], B]\",\nvar_id: []\n}\n",
"Function {\nname: \"B.bar\",\nsig: \"fn[[a:A[list[B], int32]], tuple[A[virtual[A[B, int32]], bool], B]]\",\nvar_id: []\n}\n", "Function {\nname: \"B.bar\",\nsig: \"fn[[a=A[3->list[B], 4->int32]], tuple[A[3->virtual[A[3->B, 4->int32]], 4->bool], B]]\",\nvar_id: []\n}\n",
] ]

View File

@ -1,17 +1,18 @@
--- ---
source: nac3core/src/toplevel/test.rs source: nac3core/src/toplevel/test.rs
expression: res_vec expression: res_vec
--- ---
[ [
"Class {\nname: \"A\",\nancestors: [\"A\"],\nfields: [\"a\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[b:B], none]\"), (\"foo\", \"fn[[a:T, b:V], none]\")],\ntype_vars: []\n}\n", "Class {\nname: \"A\",\nancestors: [\"{class: A, params: []}\"],\nfields: [\"a\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[b=B], none]\"), (\"foo\", \"fn[[a=var3, b=var4], none]\")],\ntype_vars: []\n}\n",
"Function {\nname: \"A.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n", "Function {\nname: \"A.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n",
"Function {\nname: \"A.fun\",\nsig: \"fn[[b:B], none]\",\nvar_id: []\n}\n", "Function {\nname: \"A.fun\",\nsig: \"fn[[b=B], none]\",\nvar_id: []\n}\n",
"Function {\nname: \"A.foo\",\nsig: \"fn[[a:T, b:V], none]\",\nvar_id: [TypeVarId(249)]\n}\n", "Function {\nname: \"A.foo\",\nsig: \"fn[[a=var3, b=var4], none]\",\nvar_id: [4]\n}\n",
"Class {\nname: \"B\",\nancestors: [\"B\", \"C\", \"A\"],\nfields: [\"a\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[b:B], none]\"), (\"foo\", \"fn[[a:T, b:V], none]\")],\ntype_vars: []\n}\n", "Class {\nname: \"B\",\nancestors: [\"{class: B, params: []}\", \"{class: C, params: []}\", \"{class: A, params: []}\"],\nfields: [\"a\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[b=B], none]\"), (\"foo\", \"fn[[a=var3, b=var4], none]\")],\ntype_vars: []\n}\n",
"Function {\nname: \"B.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n", "Function {\nname: \"B.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n",
"Class {\nname: \"C\",\nancestors: [\"C\", \"A\"],\nfields: [\"a\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[b:B], none]\"), (\"foo\", \"fn[[a:T, b:V], none]\")],\ntype_vars: []\n}\n", "Class {\nname: \"C\",\nancestors: [\"{class: C, params: []}\", \"{class: A, params: []}\"],\nfields: [\"a\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[b=B], none]\"), (\"foo\", \"fn[[a=var3, b=var4], none]\")],\ntype_vars: []\n}\n",
"Function {\nname: \"C.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n", "Function {\nname: \"C.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n",
"Function {\nname: \"C.fun\",\nsig: \"fn[[b:B], none]\",\nvar_id: []\n}\n", "Function {\nname: \"C.fun\",\nsig: \"fn[[b=B], none]\",\nvar_id: []\n}\n",
"Function {\nname: \"foo\",\nsig: \"fn[[a:A], none]\",\nvar_id: []\n}\n", "Function {\nname: \"foo\",\nsig: \"fn[[a=A], none]\",\nvar_id: []\n}\n",
"Function {\nname: \"ff\",\nsig: \"fn[[a:T], V]\",\nvar_id: [TypeVarId(257)]\n}\n", "Function {\nname: \"ff\",\nsig: \"fn[[a=var3], var4]\",\nvar_id: [4]\n}\n",
] ]

View File

@ -1,9 +1,8 @@
--- ---
source: nac3core/src/toplevel/test.rs source: nac3core/src/toplevel/test.rs
assertion_line: 549
expression: res_vec expression: res_vec
--- ---
[ [
"Class {\nname: \"A\",\nancestors: [\"A\"],\nfields: [],\nmethods: [],\ntype_vars: []\n}\n", "Class {\nname: \"A\",\nancestors: [\"{class: A, params: []}\"],\nfields: [],\nmethods: [],\ntype_vars: []\n}\n",
] ]

View File

@ -1,23 +1,20 @@
use std::{collections::HashMap, sync::Arc};
use indoc::indoc;
use parking_lot::Mutex;
use test_case::test_case;
use nac3parser::{
ast::{fold::Fold, FileName},
parser::parse_program,
};
use super::{helper::PrimDef, DefinitionId, *};
use crate::{ use crate::{
codegen::CodeGenContext, codegen::CodeGenContext,
location::Location,
symbol_resolver::{SymbolResolver, ValueEnum}, symbol_resolver::{SymbolResolver, ValueEnum},
toplevel::DefinitionId,
typecheck::{ typecheck::{
type_inferencer::PrimitiveStore, type_inferencer::PrimitiveStore,
typedef::{into_var_map, Type, Unifier}, typedef::{Type, Unifier},
}, },
}; };
use indoc::indoc;
use nac3parser::{ast::fold::Fold, parser::parse_program};
use parking_lot::Mutex;
use std::{collections::HashMap, sync::Arc};
use test_case::test_case;
use super::*;
struct ResolverInternal { struct ResolverInternal {
id_to_type: Mutex<HashMap<StrRef, Type>>, id_to_type: Mutex<HashMap<StrRef, Type>>,
@ -38,10 +35,7 @@ impl ResolverInternal {
struct Resolver(Arc<ResolverInternal>); struct Resolver(Arc<ResolverInternal>);
impl SymbolResolver for Resolver { impl SymbolResolver for Resolver {
fn get_default_param_value( fn get_default_param_value(&self, _: &nac3parser::ast::Expr) -> Option<crate::symbol_resolver::SymbolValue> {
&self,
_: &ast::Expr,
) -> Option<crate::symbol_resolver::SymbolValue> {
unimplemented!() unimplemented!()
} }
@ -51,39 +45,25 @@ impl SymbolResolver for Resolver {
_: &[Arc<RwLock<TopLevelDef>>], _: &[Arc<RwLock<TopLevelDef>>],
_: &PrimitiveStore, _: &PrimitiveStore,
str: StrRef, str: StrRef,
) -> Result<Type, String> { ) -> Option<Type> {
self.0 let ret = self.0.id_to_type.lock().get(&str).cloned();
.id_to_type ret
.lock()
.get(&str)
.copied()
.ok_or_else(|| format!("cannot find symbol `{str}`"))
} }
fn get_symbol_value<'ctx>( fn get_symbol_value<'ctx, 'a>(
&self, &self,
_: StrRef, _: StrRef,
_: &mut CodeGenContext<'ctx, '_>, _: &mut CodeGenContext<'ctx, 'a>,
_: &mut dyn CodeGenerator,
) -> Option<ValueEnum<'ctx>> { ) -> Option<ValueEnum<'ctx>> {
unimplemented!() unimplemented!()
} }
fn get_identifier_def(&self, id: StrRef) -> Result<DefinitionId, HashSet<String>> { fn get_symbol_location(&self, _: StrRef) -> Option<Location> {
self.0
.id_to_def
.lock()
.get(&id)
.copied()
.ok_or_else(|| HashSet::from(["Unknown identifier".to_string()]))
}
fn get_string_id(&self, _: &str) -> i32 {
unimplemented!() unimplemented!()
} }
fn get_exception_id(&self, _tyid: usize) -> usize { fn get_identifier_def(&self, id: StrRef) -> Option<DefinitionId> {
unimplemented!() self.0.id_to_def.lock().get(&id).cloned()
} }
} }
@ -115,41 +95,23 @@ impl SymbolResolver for Resolver {
def __init__(self): def __init__(self):
self.c: int32 = 4 self.c: int32 = 4
self.a: bool = True self.a: bool = True
"}, "}
]; ];
"register" "register"
)] )]
fn test_simple_register(source: Vec<&str>) { fn test_simple_register(source: Vec<&str>) {
let mut composer = let mut composer: TopLevelComposer = Default::default();
TopLevelComposer::new(Vec::new(), Vec::new(), ComposerConfig::default(), 64).0;
for s in source { for s in source {
let ast = parse_program(s, FileName::default()).unwrap(); let ast = parse_program(s).unwrap();
let ast = ast[0].clone(); let ast = ast[0].clone();
composer.register_top_level(ast, None, "", false).unwrap(); composer.register_top_level(ast, None, "".into()).unwrap();
} }
} }
#[test_case( #[test_case(
indoc! {" vec![
class A:
def foo(self):
pass
a = A()
"};
"register"
)]
fn test_simple_register_without_constructor(source: &str) {
let mut composer =
TopLevelComposer::new(Vec::new(), Vec::new(), ComposerConfig::default(), 64).0;
let ast = parse_program(source, FileName::default()).unwrap();
let ast = ast[0].clone();
composer.register_top_level(ast, None, "", true).unwrap();
}
#[test_case(
&[
indoc! {" indoc! {"
def fun(a: int32) -> int32: def fun(a: int32) -> int32:
return a return a
@ -163,36 +125,35 @@ fn test_simple_register_without_constructor(source: &str) {
return 3 return 3
"}, "},
], ],
&[ vec![
"fn[[a:0], 0]", "fn[[a=0], 0]",
"fn[[a:2], 4]", "fn[[a=2], 4]",
"fn[[b:1], 0]", "fn[[b=1], 0]",
], ],
&[ vec![
"fun", "fun",
"foo", "foo",
"f" "f"
]; ];
"function compose" "function compose"
)] )]
fn test_simple_function_analyze(source: &[&str], tys: &[&str], names: &[&str]) { fn test_simple_function_analyze(source: Vec<&str>, tys: Vec<&str>, names: Vec<&str>) {
let mut composer = let mut composer: TopLevelComposer = Default::default();
TopLevelComposer::new(Vec::new(), Vec::new(), ComposerConfig::default(), 64).0;
let internal_resolver = Arc::new(ResolverInternal { let internal_resolver = Arc::new(ResolverInternal {
id_to_def: Mutex::default(), id_to_def: Default::default(),
id_to_type: Mutex::default(), id_to_type: Default::default(),
class_names: Mutex::default(), class_names: Default::default(),
}); });
let resolver = let resolver =
Arc::new(Resolver(internal_resolver.clone())) as Arc<dyn SymbolResolver + Send + Sync>; Arc::new(Resolver(internal_resolver.clone())) as Arc<dyn SymbolResolver + Send + Sync>;
for s in source { for s in source {
let ast = parse_program(s, FileName::default()).unwrap(); let ast = parse_program(s).unwrap();
let ast = ast[0].clone(); let ast = ast[0].clone();
let (id, def_id, ty) = let (id, def_id, ty) =
composer.register_top_level(ast, Some(resolver.clone()), "", false).unwrap(); composer.register_top_level(ast, Some(resolver.clone()), "".into()).unwrap();
internal_resolver.add_id_def(id, def_id); internal_resolver.add_id_def(id, def_id);
if let Some(ty) = ty { if let Some(ty) = ty {
internal_resolver.add_id_type(id, ty); internal_resolver.add_id_type(id, ty);
@ -201,16 +162,14 @@ fn test_simple_function_analyze(source: &[&str], tys: &[&str], names: &[&str]) {
composer.start_analysis(true).unwrap(); composer.start_analysis(true).unwrap();
for (i, (def, _)) in composer.definition_ast_list.iter().skip(composer.builtin_num).enumerate() for (i, (def, _)) in composer.definition_ast_list.iter().skip(composer.built_in_num).enumerate()
{ {
let def = &*def.read(); let def = &*def.read();
if let TopLevelDef::Function { signature, name, .. } = def { if let TopLevelDef::Function { signature, name, .. } = def {
let ty_str = composer.unifier.internal_stringify( let ty_str =
*signature, composer
&mut |id| id.to_string(), .unifier
&mut |id| id.to_string(), .stringify(*signature, &mut |id| id.to_string(), &mut |id| id.to_string());
&mut None,
);
assert_eq!(ty_str, tys[i]); assert_eq!(ty_str, tys[i]);
assert_eq!(name, names[i]); assert_eq!(name, names[i]);
} }
@ -218,7 +177,7 @@ fn test_simple_function_analyze(source: &[&str], tys: &[&str], names: &[&str]) {
} }
#[test_case( #[test_case(
&[ vec![
indoc! {" indoc! {"
class A(): class A():
a: int32 a: int32
@ -251,11 +210,11 @@ fn test_simple_function_analyze(source: &[&str], tys: &[&str], names: &[&str]) {
pass pass
"} "}
], ],
&[]; vec![];
"simple class compose" "simple class compose"
)] )]
#[test_case( #[test_case(
&[ vec![
indoc! {" indoc! {"
class Generic_A(Generic[V], B): class Generic_A(Generic[V], B):
a: int64 a: int64
@ -273,11 +232,11 @@ fn test_simple_function_analyze(source: &[&str], tys: &[&str], names: &[&str]) {
pass pass
"} "}
], ],
&[]; vec![];
"generic class" "generic class"
)] )]
#[test_case( #[test_case(
&[ vec![
indoc! {" indoc! {"
def foo(a: list[int32], b: tuple[T, float]) -> A[B, bool]: def foo(a: list[int32], b: tuple[T, float]) -> A[B, bool]:
pass pass
@ -302,11 +261,11 @@ fn test_simple_function_analyze(source: &[&str], tys: &[&str], names: &[&str]) {
pass pass
"} "}
], ],
&[]; vec![];
"list tuple generic" "list tuple generic"
)] )]
#[test_case( #[test_case(
&[ vec![
indoc! {" indoc! {"
class A(Generic[T, V]): class A(Generic[T, V]):
a: A[float, bool] a: A[float, bool]
@ -327,11 +286,11 @@ fn test_simple_function_analyze(source: &[&str], tys: &[&str], names: &[&str]) {
pass pass
"} "}
], ],
&[]; vec![];
"self1" "self1"
)] )]
#[test_case( #[test_case(
&[ vec![
indoc! {" indoc! {"
class A(Generic[T]): class A(Generic[T]):
a: int32 a: int32
@ -361,11 +320,11 @@ fn test_simple_function_analyze(source: &[&str], tys: &[&str], names: &[&str]) {
pass pass
"} "}
], ],
&[]; vec![];
"inheritance_override" "inheritance_override"
)] )]
#[test_case( #[test_case(
&[ vec![
indoc! {" indoc! {"
class A(Generic[T]): class A(Generic[T]):
def __init__(self): def __init__(self):
@ -374,11 +333,11 @@ fn test_simple_function_analyze(source: &[&str], tys: &[&str], names: &[&str]) {
pass pass
"} "}
], ],
&["application of type vars to generic class is not currently supported (at unknown:4:24)"]; vec!["application of type vars to generic class is not currently supported"];
"err no type var in generic app" "err no type var in generic app"
)] )]
#[test_case( #[test_case(
&[ vec![
indoc! {" indoc! {"
class A(B): class A(B):
def __init__(self): def __init__(self):
@ -390,11 +349,11 @@ fn test_simple_function_analyze(source: &[&str], tys: &[&str], names: &[&str]) {
pass pass
"} "}
], ],
&["cyclic inheritance detected"]; vec!["cyclic inheritance detected"];
"cyclic1" "cyclic1"
)] )]
#[test_case( #[test_case(
&[ vec![
indoc! {" indoc! {"
class A(B[bool, int64]): class A(B[bool, int64]):
def __init__(self): def __init__(self):
@ -411,30 +370,30 @@ fn test_simple_function_analyze(source: &[&str], tys: &[&str], names: &[&str]) {
pass pass
"}, "},
], ],
&["cyclic inheritance detected"]; vec!["cyclic inheritance detected"];
"cyclic2" "cyclic2"
)] )]
#[test_case( #[test_case(
&[ vec![
indoc! {" indoc! {"
class A: class A:
pass pass
"} "}
], ],
&["5: Class {\nname: \"A\",\ndef_id: DefinitionId(5),\nancestors: [CustomClassKind { id: DefinitionId(5), params: [] }],\nfields: [],\nmethods: [],\ntype_vars: []\n}"]; vec!["5: Class {\nname: \"A\",\ndef_id: DefinitionId(5),\nancestors: [CustomClassKind { id: DefinitionId(5), params: [] }],\nfields: [],\nmethods: [],\ntype_vars: []\n}"];
"simple pass in class" "simple pass in class"
)] )]
#[test_case( #[test_case(
&[indoc! {" vec![indoc! {"
class A: class A:
def __init__(): def __init__():
pass pass
"}], "}],
&["__init__ method must have a `self` parameter (at unknown:2:5)"]; vec!["__init__ function must have a `self` parameter"];
"err no self_1" "err no self_1"
)] )]
#[test_case( #[test_case(
&[ vec![
indoc! {" indoc! {"
class A(B, Generic[T], C): class A(B, Generic[T], C):
def __init__(self): def __init__(self):
@ -452,11 +411,11 @@ fn test_simple_function_analyze(source: &[&str], tys: &[&str], names: &[&str]) {
"} "}
], ],
&["a class definition can only have at most one base class declaration and one generic declaration (at unknown:1:24)"]; vec!["a class def can only have at most one base class declaration and one generic declaration"];
"err multiple inheritance" "err multiple inheritance"
)] )]
#[test_case( #[test_case(
&[ vec![
indoc! {" indoc! {"
class A(Generic[T]): class A(Generic[T]):
a: int32 a: int32
@ -477,11 +436,11 @@ fn test_simple_function_analyze(source: &[&str], tys: &[&str], names: &[&str]) {
pass pass
"} "}
], ],
&["method fun has same name as ancestors' method, but incompatible type"]; vec!["method has same name as ancestors' method, but incompatible type"];
"err_incompatible_inheritance_method" "err_incompatible_inheritance_method"
)] )]
#[test_case( #[test_case(
&[ vec![
indoc! {" indoc! {"
class A(Generic[T]): class A(Generic[T]):
a: int32 a: int32
@ -503,11 +462,11 @@ fn test_simple_function_analyze(source: &[&str], tys: &[&str], names: &[&str]) {
pass pass
"} "}
], ],
&["field `a` has already declared in the ancestor classes"]; vec!["field `a` has already declared in the ancestor classes"];
"err_incompatible_inheritance_field" "err_incompatible_inheritance_field"
)] )]
#[test_case( #[test_case(
&[ vec![
indoc! {" indoc! {"
class A: class A:
def __init__(self): def __init__(self):
@ -520,13 +479,12 @@ fn test_simple_function_analyze(source: &[&str], tys: &[&str], names: &[&str]) {
pass pass
"} "}
], ],
&["duplicate definition of class `A` (at unknown:1:1)"]; vec!["duplicate definition of class"];
"class same name" "class same name"
)] )]
fn test_analyze(source: &[&str], res: &[&str]) { fn test_analyze(source: Vec<&str>, res: Vec<&str>) {
let print = false; let print = false;
let mut composer = let mut composer: TopLevelComposer = Default::default();
TopLevelComposer::new(Vec::new(), Vec::new(), ComposerConfig::default(), 64).0;
let internal_resolver = make_internal_resolver_with_tvar( let internal_resolver = make_internal_resolver_with_tvar(
vec![ vec![
@ -541,15 +499,15 @@ fn test_analyze(source: &[&str], res: &[&str]) {
Arc::new(Resolver(internal_resolver.clone())) as Arc<dyn SymbolResolver + Send + Sync>; Arc::new(Resolver(internal_resolver.clone())) as Arc<dyn SymbolResolver + Send + Sync>;
for s in source { for s in source {
let ast = parse_program(s, FileName::default()).unwrap(); let ast = parse_program(s).unwrap();
let ast = ast[0].clone(); let ast = ast[0].clone();
let (id, def_id, ty) = { let (id, def_id, ty) = {
match composer.register_top_level(ast, Some(resolver.clone()), "", false) { match composer.register_top_level(ast, Some(resolver.clone()), "".into()) {
Ok(x) => x, Ok(x) => x,
Err(msg) => { Err(msg) => {
if print { if print {
println!("{msg}"); println!("{}", msg);
} else { } else {
assert_eq!(res[0], msg); assert_eq!(res[0], msg);
} }
@ -565,14 +523,14 @@ fn test_analyze(source: &[&str], res: &[&str]) {
if let Err(msg) = composer.start_analysis(false) { if let Err(msg) = composer.start_analysis(false) {
if print { if print {
println!("{}", msg.iter().sorted().join("\n----------\n")); println!("{}", msg);
} else { } else {
assert_eq!(res[0], msg.iter().next().unwrap()); assert_eq!(res[0], msg);
} }
} else { } else {
// skip 5 to skip primitives // skip 5 to skip primitives
let mut res_vec: Vec<String> = Vec::new(); let mut res_vec: Vec<String> = Vec::new();
for (def, _) in composer.definition_ast_list.iter().skip(composer.builtin_num) { for (def, _) in composer.definition_ast_list.iter().skip(composer.built_in_num) {
let def = &*def.read(); let def = &*def.read();
res_vec.push(format!("{}\n", def.to_string(composer.unifier.borrow_mut()))); res_vec.push(format!("{}\n", def.to_string(composer.unifier.borrow_mut())));
} }
@ -595,7 +553,7 @@ fn test_analyze(source: &[&str], res: &[&str]) {
return fib(n - 1) return fib(n - 1)
"} "}
], ],
&[]; vec![];
"simple function" "simple function"
)] )]
#[test_case( #[test_case(
@ -628,7 +586,7 @@ fn test_analyze(source: &[&str], res: &[&str]) {
return a.fun() + 2 return a.fun() + 2
"} "}
], ],
&[]; vec![];
"simple class body" "simple class body"
)] )]
#[test_case( #[test_case(
@ -653,7 +611,7 @@ fn test_analyze(source: &[&str], res: &[&str]) {
return [a, b] return [a, b]
"} "}
], ],
&[]; vec![];
"type var fun" "type var fun"
)] )]
#[test_case( #[test_case(
@ -674,7 +632,7 @@ fn test_analyze(source: &[&str], res: &[&str]) {
return ret if self.b else self.fun(self.a) return ret if self.b else self.fun(self.a)
"} "}
], ],
&[]; vec![];
"type var class" "type var class"
)] )]
#[test_case( #[test_case(
@ -698,13 +656,12 @@ fn test_analyze(source: &[&str], res: &[&str]) {
self.b = True self.b = True
"} "}
], ],
&[]; vec![];
"no_init_inst_check" "no_init_inst_check"
)] )]
fn test_inference(source: Vec<&str>, res: &[&str]) { fn test_inference(source: Vec<&str>, res: Vec<&str>) {
let print = true; let print = true;
let mut composer = let mut composer: TopLevelComposer = Default::default();
TopLevelComposer::new(Vec::new(), Vec::new(), ComposerConfig::default(), 64).0;
let internal_resolver = make_internal_resolver_with_tvar( let internal_resolver = make_internal_resolver_with_tvar(
vec![ vec![
@ -726,15 +683,15 @@ fn test_inference(source: Vec<&str>, res: &[&str]) {
Arc::new(Resolver(internal_resolver.clone())) as Arc<dyn SymbolResolver + Send + Sync>; Arc::new(Resolver(internal_resolver.clone())) as Arc<dyn SymbolResolver + Send + Sync>;
for s in source { for s in source {
let ast = parse_program(s, FileName::default()).unwrap(); let ast = parse_program(s).unwrap();
let ast = ast[0].clone(); let ast = ast[0].clone();
let (id, def_id, ty) = { let (id, def_id, ty) = {
match composer.register_top_level(ast, Some(resolver.clone()), "", false) { match composer.register_top_level(ast, Some(resolver.clone()), "".into()) {
Ok(x) => x, Ok(x) => x,
Err(msg) => { Err(msg) => {
if print { if print {
println!("{msg}"); println!("{}", msg);
} else { } else {
assert_eq!(res[0], msg); assert_eq!(res[0], msg);
} }
@ -750,14 +707,16 @@ fn test_inference(source: Vec<&str>, res: &[&str]) {
if let Err(msg) = composer.start_analysis(true) { if let Err(msg) = composer.start_analysis(true) {
if print { if print {
println!("{}", msg.iter().sorted().join("\n----------\n")); println!("{}", msg);
} else { } else {
assert_eq!(res[0], msg.iter().next().unwrap()); assert_eq!(res[0], msg);
} }
} else { } else {
// skip 5 to skip primitives // skip 5 to skip primitives
let mut stringify_folder = TypeToStringFolder { unifier: &mut composer.unifier }; let mut stringify_folder = TypeToStringFolder { unifier: &mut composer.unifier };
for (def, _) in composer.definition_ast_list.iter().skip(composer.builtin_num) { for (_i, (def, _)) in
composer.definition_ast_list.iter().skip(composer.built_in_num).enumerate()
{
let def = &*def.read(); let def = &*def.read();
if let TopLevelDef::Function { instance_to_stmt, name, .. } = def { if let TopLevelDef::Function { instance_to_stmt, name, .. } = def {
@ -766,7 +725,7 @@ fn test_inference(source: Vec<&str>, res: &[&str]) {
name, name,
instance_to_stmt.len() instance_to_stmt.len()
); );
for inst in instance_to_stmt { for inst in instance_to_stmt.iter() {
let ast = &inst.1.body; let ast = &inst.1.body;
for b in ast.iter() { for b in ast.iter() {
println!("{:?}", stringify_folder.fold_stmt(b.clone()).unwrap()); println!("{:?}", stringify_folder.fold_stmt(b.clone()).unwrap());
@ -784,29 +743,22 @@ fn make_internal_resolver_with_tvar(
unifier: &mut Unifier, unifier: &mut Unifier,
print: bool, print: bool,
) -> Arc<ResolverInternal> { ) -> Arc<ResolverInternal> {
let list_elem_tvar = unifier.get_fresh_var(Some("list_elem".into()), None);
let list = unifier.add_ty(TypeEnum::TObj {
obj_id: PrimDef::List.id(),
fields: HashMap::new(),
params: into_var_map([list_elem_tvar]),
});
let res: Arc<ResolverInternal> = ResolverInternal { let res: Arc<ResolverInternal> = ResolverInternal {
id_to_def: Mutex::new(HashMap::from([("list".into(), PrimDef::List.id())])), id_to_def: Default::default(),
id_to_type: tvars id_to_type: tvars
.into_iter() .into_iter()
.map(|(name, range)| { .map(|(name, range)| {
(name, { (name, {
let tvar = unifier.get_fresh_var_with_range(range.as_slice(), None, None); let (ty, id) = unifier.get_fresh_var_with_range(range.as_slice());
if print { if print {
println!("{}: {:?}, typevar{}", name, tvar.ty, tvar.id); println!("{}: {:?}, tvar{}", name, ty, id);
} }
tvar.ty ty
}) })
}) })
.collect::<HashMap<_, _>>() .collect::<HashMap<_, _>>()
.into(), .into(),
class_names: Mutex::new(HashMap::from([("list".into(), list)])), class_names: Default::default(),
} }
.into(); .into();
if print { if print {
@ -824,12 +776,9 @@ impl<'a> Fold<Option<Type>> for TypeToStringFolder<'a> {
type Error = String; type Error = String;
fn map_user(&mut self, user: Option<Type>) -> Result<Self::TargetU, Self::Error> { fn map_user(&mut self, user: Option<Type>) -> Result<Self::TargetU, Self::Error> {
Ok(if let Some(ty) = user { Ok(if let Some(ty) = user {
self.unifier.internal_stringify( self.unifier.stringify(ty, &mut |id| format!("class{}", id.to_string()), &mut |id| {
ty, format!("tvar{}", id.to_string())
&mut |id| format!("class{id}"), })
&mut |id| format!("typevar{id}"),
&mut None,
)
} else { } else {
"None".into() "None".into()
}) })

View File

@ -1,12 +1,8 @@
use strum::IntoEnumIterator; use std::cell::RefCell;
use nac3parser::ast::Constant; use crate::typecheck::typedef::TypeVarMeta;
use super::{ use super::*;
helper::{PrimDef, PrimDefDetails},
*,
};
use crate::{symbol_resolver::SymbolValue, typecheck::typedef::VarMap};
#[derive(Clone, Debug)] #[derive(Clone, Debug)]
pub enum TypeAnnotation { pub enum TypeAnnotation {
@ -20,8 +16,7 @@ pub enum TypeAnnotation {
// can only be CustomClassKind // can only be CustomClassKind
Virtual(Box<TypeAnnotation>), Virtual(Box<TypeAnnotation>),
TypeVar(Type), TypeVar(Type),
/// A `Literal` allowing a subset of literals. List(Box<TypeAnnotation>),
Literal(Vec<Constant>),
Tuple(Vec<TypeAnnotation>), Tuple(Vec<TypeAnnotation>),
} }
@ -29,86 +24,55 @@ impl TypeAnnotation {
pub fn stringify(&self, unifier: &mut Unifier) -> String { pub fn stringify(&self, unifier: &mut Unifier) -> String {
use TypeAnnotation::*; use TypeAnnotation::*;
match self { match self {
Primitive(ty) | TypeVar(ty) => unifier.stringify(*ty), Primitive(ty) | TypeVar(ty) => unifier.default_stringify(*ty),
CustomClass { id, params } => { CustomClass { id, params } => {
let class_name = if let Some(ref top) = unifier.top_level { let class_name = match unifier.top_level {
if let TopLevelDef::Class { name, .. } = &*top.definitions.read()[id.0].read() { Some(ref top) => if let TopLevelDef::Class { name, .. } = &*top.definitions.read()[id.0].read() {
(*name).into() (*name).into()
} else { } else {
unreachable!() format!("def_{}", id.0)
} }
} else { None => format!("def_{}", id.0)
format!("class_def_{}", id.0)
}; };
format!("{}{}", class_name, { format!("{{class: {}, params: {:?}}}", class_name, params.iter().map(|p| p.stringify(unifier)).collect_vec())
let param_list =
params.iter().map(|p| p.stringify(unifier)).collect_vec().join(", ");
if param_list.is_empty() {
String::new()
} else {
format!("[{param_list}]")
}
})
}
Literal(values) => {
format!("Literal({})", values.iter().map(|v| format!("{v:?}")).join(", "))
}
Virtual(ty) => format!("virtual[{}]", ty.stringify(unifier)),
Tuple(types) => {
format!(
"tuple[{}]",
types.iter().map(|p| p.stringify(unifier)).collect_vec().join(", ")
)
} }
Virtual(ty) | List(ty) => ty.stringify(unifier),
Tuple(types) => format!("({:?})", types.iter().map(|p| p.stringify(unifier)).collect_vec()),
} }
} }
} }
/// Parses an AST expression `expr` into a [`TypeAnnotation`]. pub fn parse_ast_to_type_annotation_kinds<T>(
///
/// * `locked` - A [`HashMap`] containing the IDs of known definitions, mapped to a [`Vec`] of all
/// generic variables associated with the definition.
/// * `type_var` - The type variable associated with the type argument currently being parsed. Pass
/// [`None`] when this function is invoked externally.
pub fn parse_ast_to_type_annotation_kinds<T, S: std::hash::BuildHasher + Clone>(
resolver: &(dyn SymbolResolver + Send + Sync), resolver: &(dyn SymbolResolver + Send + Sync),
top_level_defs: &[Arc<RwLock<TopLevelDef>>], top_level_defs: &[Arc<RwLock<TopLevelDef>>],
unifier: &mut Unifier, unifier: &mut Unifier,
primitives: &PrimitiveStore, primitives: &PrimitiveStore,
expr: &ast::Expr<T>, expr: &ast::Expr<T>,
// the key stores the type_var of this topleveldef::class, we only need this field here // the key stores the type_var of this topleveldef::class, we only need this field here
locked: HashMap<DefinitionId, Vec<Type>, S>, mut locked: HashMap<DefinitionId, Vec<Type>>,
) -> Result<TypeAnnotation, HashSet<String>> { ) -> Result<TypeAnnotation, String> {
let name_handle = |id: &StrRef, match &expr.node {
unifier: &mut Unifier, ast::ExprKind::Name { id, .. } => {
locked: HashMap<DefinitionId, Vec<Type>, S>| {
if id == &"int32".into() { if id == &"int32".into() {
Ok(TypeAnnotation::Primitive(primitives.int32)) Ok(TypeAnnotation::Primitive(primitives.int32))
} else if id == &"int64".into() { } else if id == &"int64".into() {
Ok(TypeAnnotation::Primitive(primitives.int64)) Ok(TypeAnnotation::Primitive(primitives.int64))
} else if id == &"uint32".into() {
Ok(TypeAnnotation::Primitive(primitives.uint32))
} else if id == &"uint64".into() {
Ok(TypeAnnotation::Primitive(primitives.uint64))
} else if id == &"float".into() { } else if id == &"float".into() {
Ok(TypeAnnotation::Primitive(primitives.float)) Ok(TypeAnnotation::Primitive(primitives.float))
} else if id == &"bool".into() { } else if id == &"bool".into() {
Ok(TypeAnnotation::Primitive(primitives.bool)) Ok(TypeAnnotation::Primitive(primitives.bool))
} else if id == &"None".into() {
Ok(TypeAnnotation::Primitive(primitives.none))
} else if id == &"str".into() { } else if id == &"str".into() {
Ok(TypeAnnotation::Primitive(primitives.str)) Ok(TypeAnnotation::Primitive(primitives.str))
} else if id == &"Exception".into() { } else if let Some(obj_id) = resolver.get_identifier_def(*id) {
Ok(TypeAnnotation::CustomClass { id: PrimDef::Exception.id(), params: Vec::default() })
} else if let Ok(obj_id) = resolver.get_identifier_def(*id) {
let type_vars = { let type_vars = {
let def_read = top_level_defs[obj_id.0].try_read(); let def_read = top_level_defs[obj_id.0].try_read();
if let Some(def_read) = def_read { if let Some(def_read) = def_read {
if let TopLevelDef::Class { type_vars, .. } = &*def_read { if let TopLevelDef::Class { type_vars, .. } = &*def_read {
type_vars.clone() type_vars.clone()
} else { } else {
return Err(HashSet::from([format!( return Err("function cannot be used as a type".into());
"function cannot be used as a type (at {})",
expr.location
)]));
} }
} else { } else {
locked.get(&obj_id).unwrap().clone() locked.get(&obj_id).unwrap().clone()
@ -116,106 +80,23 @@ pub fn parse_ast_to_type_annotation_kinds<T, S: std::hash::BuildHasher + Clone>(
}; };
// check param number here // check param number here
if !type_vars.is_empty() { if !type_vars.is_empty() {
return Err(HashSet::from([format!( return Err(format!(
"expect {} type variable parameter but got 0 (at {})", "expect {} type variable parameter but got 0",
type_vars.len(), type_vars.len()
expr.location, ));
)]));
} }
Ok(TypeAnnotation::CustomClass { id: obj_id, params: vec![] }) Ok(TypeAnnotation::CustomClass { id: obj_id, params: vec![] })
} else if let Ok(ty) = resolver.get_symbol_type(unifier, top_level_defs, primitives, *id) { } else if let Some(ty) = resolver.get_symbol_type(unifier, top_level_defs, primitives, *id) {
if let TypeEnum::TVar { .. } = unifier.get_ty(ty).as_ref() { if let TypeEnum::TVar { .. } = unifier.get_ty(ty).as_ref() {
let var = unifier.get_fresh_var(Some(*id), Some(expr.location)).ty;
unifier.unify(var, ty).unwrap();
Ok(TypeAnnotation::TypeVar(ty)) Ok(TypeAnnotation::TypeVar(ty))
} else { } else {
Err(HashSet::from([format!( Err("not a type variable identifier".into())
"`{}` is not a valid type annotation (at {})",
id, expr.location
)]))
} }
} else { } else {
Err(HashSet::from([format!( Err("name cannot be parsed as a type annotation".into())
"`{}` is not a valid type annotation (at {})", }
id, expr.location
)]))
} }
};
let class_name_handle =
|id: &StrRef,
slice: &ast::Expr<T>,
unifier: &mut Unifier,
mut locked: HashMap<DefinitionId, Vec<Type>, S>| {
if ["virtual".into(), "Generic".into(), "tuple".into(), "Option".into()].contains(id) {
return Err(HashSet::from([format!(
"keywords cannot be class name (at {})",
expr.location
)]));
}
let obj_id = resolver.get_identifier_def(*id)?;
let type_vars = {
let def_read = top_level_defs[obj_id.0].try_read();
if let Some(def_read) = def_read {
let TopLevelDef::Class { type_vars, .. } = &*def_read else {
unreachable!("must be class here")
};
type_vars.clone()
} else {
locked.get(&obj_id).unwrap().clone()
}
};
// we do not check whether the application of type variables are compatible here
let param_type_infos = {
let params_ast = if let ast::ExprKind::Tuple { elts, .. } = &slice.node {
elts.iter().collect_vec()
} else {
vec![slice]
};
if type_vars.len() != params_ast.len() {
return Err(HashSet::from([format!(
"expect {} type parameters but got {} (at {})",
type_vars.len(),
params_ast.len(),
params_ast[0].location,
)]));
}
let result = params_ast
.iter()
.map(|x| {
parse_ast_to_type_annotation_kinds(
resolver,
top_level_defs,
unifier,
primitives,
x,
{
locked.insert(obj_id, type_vars.clone());
locked.clone()
},
)
})
.collect::<Result<Vec<_>, _>>()?;
// make sure the result do not contain any type vars
let no_type_var =
result.iter().all(|x| get_type_var_contained_in_type_annotation(x).is_empty());
if no_type_var {
result
} else {
return Err(HashSet::from([
format!(
"application of type vars to generic class is not currently supported (at {})",
params_ast[0].location
),
]));
}
};
Ok(TypeAnnotation::CustomClass { id: obj_id, params: param_type_infos })
};
match &expr.node {
ast::ExprKind::Name { id, .. } => name_handle(id, unifier, locked),
// virtual // virtual
ast::ExprKind::Subscript { value, slice, .. } ast::ExprKind::Subscript { value, slice, .. }
if { if {
@ -236,10 +117,10 @@ pub fn parse_ast_to_type_annotation_kinds<T, S: std::hash::BuildHasher + Clone>(
Ok(TypeAnnotation::Virtual(def.into())) Ok(TypeAnnotation::Virtual(def.into()))
} }
// option // list
ast::ExprKind::Subscript { value, slice, .. } ast::ExprKind::Subscript { value, slice, .. }
if { if {
matches!(&value.node, ast::ExprKind::Name { id, .. } if id == &"Option".into()) matches!(&value.node, ast::ExprKind::Name { id, .. } if id == &"list".into())
} => } =>
{ {
let def_ann = parse_ast_to_type_annotation_kinds( let def_ann = parse_ast_to_type_annotation_kinds(
@ -250,13 +131,7 @@ pub fn parse_ast_to_type_annotation_kinds<T, S: std::hash::BuildHasher + Clone>(
slice.as_ref(), slice.as_ref(),
locked, locked,
)?; )?;
let id = Ok(TypeAnnotation::List(def_ann.into()))
if let TypeEnum::TObj { obj_id, .. } = unifier.get_ty(primitives.option).as_ref() {
*obj_id
} else {
unreachable!()
};
Ok(TypeAnnotation::CustomClass { id, params: vec![def_ann] })
} }
// tuple // tuple
@ -265,14 +140,8 @@ pub fn parse_ast_to_type_annotation_kinds<T, S: std::hash::BuildHasher + Clone>(
matches!(&value.node, ast::ExprKind::Name { id, .. } if id == &"tuple".into()) matches!(&value.node, ast::ExprKind::Name { id, .. } if id == &"tuple".into())
} => } =>
{ {
let tup_elts = {
if let ast::ExprKind::Tuple { elts, .. } = &slice.node { if let ast::ExprKind::Tuple { elts, .. } = &slice.node {
elts.as_slice() let type_annotations = elts
} else {
std::slice::from_ref(slice.as_ref())
}
};
let type_annotations = tup_elts
.iter() .iter()
.map(|e| { .map(|e| {
parse_ast_to_type_annotation_kinds( parse_ast_to_type_annotation_kinds(
@ -286,72 +155,85 @@ pub fn parse_ast_to_type_annotation_kinds<T, S: std::hash::BuildHasher + Clone>(
}) })
.collect::<Result<Vec<_>, _>>()?; .collect::<Result<Vec<_>, _>>()?;
Ok(TypeAnnotation::Tuple(type_annotations)) Ok(TypeAnnotation::Tuple(type_annotations))
}
// Literal
ast::ExprKind::Subscript { value, slice, .. }
if {
matches!(&value.node, ast::ExprKind::Name { id, .. } if id == &"Literal".into())
} =>
{
let tup_elts = {
if let ast::ExprKind::Tuple { elts, .. } = &slice.node {
elts.as_slice()
} else { } else {
std::slice::from_ref(slice.as_ref()) Err("Expect multiple elements for tuple".into())
}
};
let type_annotations = tup_elts
.iter()
.map(|e| match &e.node {
ast::ExprKind::Constant { value, .. } => {
Ok(TypeAnnotation::Literal(vec![value.clone()]))
}
_ => parse_ast_to_type_annotation_kinds(
resolver,
top_level_defs,
unifier,
primitives,
e,
locked.clone(),
),
})
.collect::<Result<Vec<_>, _>>()?
.into_iter()
.flat_map(|type_ann| match type_ann {
TypeAnnotation::Literal(values) => values,
_ => unreachable!(),
})
.collect_vec();
if type_annotations.len() == 1 {
Ok(TypeAnnotation::Literal(type_annotations))
} else {
Err(HashSet::from([format!(
"multiple literal bounds are currently unsupported (at {})",
value.location
)]))
} }
} }
// custom class // custom class
ast::ExprKind::Subscript { value, slice, .. } => { ast::ExprKind::Subscript { value, slice, .. } => {
if let ast::ExprKind::Name { id, .. } = &value.node { if let ast::ExprKind::Name { id, .. } = &value.node {
class_name_handle(id, slice, unifier, locked) if vec!["virtual".into(), "Generic".into(), "list".into(), "tuple".into()]
.contains(id)
{
return Err("keywords cannot be class name".into());
}
let obj_id = resolver
.get_identifier_def(*id)
.ok_or_else(|| "unknown class name".to_string())?;
let type_vars = {
let def_read = top_level_defs[obj_id.0].try_read();
if let Some(def_read) = def_read {
if let TopLevelDef::Class { type_vars, .. } = &*def_read {
type_vars.clone()
} else { } else {
Err(HashSet::from([format!( unreachable!("must be class here")
"unsupported expression type for class name (at {})", }
value.location } else {
)])) locked.get(&obj_id).unwrap().clone()
}
};
// we do not check whether the application of type variables are compatible here
let param_type_infos = {
let params_ast = if let ast::ExprKind::Tuple { elts, .. } = &slice.node {
elts.iter().collect_vec()
} else {
vec![slice.as_ref()]
};
if type_vars.len() != params_ast.len() {
return Err(format!(
"expect {} type parameters but got {}",
type_vars.len(),
params_ast.len()
));
}
let result = params_ast
.into_iter()
.map(|x| {
parse_ast_to_type_annotation_kinds(
resolver,
top_level_defs,
unifier,
primitives,
x,
{
locked.insert(obj_id, type_vars.clone());
locked.clone()
},
)
})
.collect::<Result<Vec<_>, _>>()?;
// make sure the result do not contain any type vars
let no_type_var = result
.iter()
.all(|x| get_type_var_contained_in_type_annotation(x).is_empty());
if no_type_var {
result
} else {
return Err("application of type vars to generic class \
is not currently supported"
.into());
}
};
Ok(TypeAnnotation::CustomClass { id: obj_id, params: param_type_infos })
} else {
Err("unsupported expression type for class name".into())
} }
} }
ast::ExprKind::Constant { value, .. } => Ok(TypeAnnotation::Literal(vec![value.clone()])), _ => Err("unsupported expression for type annotation".into()),
_ => Err(HashSet::from([format!(
"unsupported expression for type annotation (at {})",
expr.location
)])),
} }
} }
@ -363,24 +245,19 @@ pub fn get_type_from_type_annotation_kinds(
unifier: &mut Unifier, unifier: &mut Unifier,
primitives: &PrimitiveStore, primitives: &PrimitiveStore,
ann: &TypeAnnotation, ann: &TypeAnnotation,
subst_list: &mut Option<Vec<Type>>, ) -> Result<Type, String> {
) -> Result<Type, HashSet<String>> {
match ann { match ann {
TypeAnnotation::CustomClass { id: obj_id, params } => { TypeAnnotation::CustomClass { id: obj_id, params } => {
let def_read = top_level_defs[obj_id.0].read(); let def_read = top_level_defs[obj_id.0].read();
let class_def: &TopLevelDef = &def_read; let class_def: &TopLevelDef = def_read.deref();
let TopLevelDef::Class { fields, methods, type_vars, .. } = class_def else { if let TopLevelDef::Class { fields, methods, type_vars, .. } = class_def {
unreachable!("should be class def here")
};
if type_vars.len() != params.len() { if type_vars.len() != params.len() {
return Err(HashSet::from([format!( Err(format!(
"unexpected number of type parameters: expected {} but got {}", "unexpected number of type parameters: expected {} but got {}",
type_vars.len(), type_vars.len(),
params.len() params.len()
)])); ))
} } else {
let param_ty = params let param_ty = params
.iter() .iter()
.map(|x| { .map(|x| {
@ -389,108 +266,45 @@ pub fn get_type_from_type_annotation_kinds(
unifier, unifier,
primitives, primitives,
x, x,
subst_list,
) )
}) })
.collect::<Result<Vec<_>, _>>()?; .collect::<Result<Vec<_>, _>>()?;
let ty = if let Some(prim_def) = PrimDef::iter().find(|prim| prim.id() == *obj_id) {
// Primitive TopLevelDefs do not contain all fields that are present in their Type
// counterparts, so directly perform subst on the Type instead.
let PrimDefDetails::PrimClass { get_ty_fn, .. } = prim_def.details() else {
unreachable!()
};
let base_ty = get_ty_fn(primitives);
let params =
if let TypeEnum::TObj { params, .. } = &*unifier.get_ty_immutable(base_ty) {
params.clone()
} else {
unreachable!()
};
unifier
.subst(
get_ty_fn(primitives),
&params
.iter()
.zip(param_ty)
.map(|(obj_tv, param)| (*obj_tv.0, param))
.collect(),
)
.unwrap_or(base_ty)
} else {
let subst = { let subst = {
// check for compatible range // check for compatible range
// TODO: if allow type var to be applied(now this disallowed in the parse_to_type_annotation), need more check // TODO: if allow type var to be applied(now this disallowed in the parse_to_type_annotation), need more check
let mut result = VarMap::new(); let mut result: HashMap<u32, Type> = HashMap::new();
for (tvar, p) in type_vars.iter().zip(param_ty) { for (tvar, p) in type_vars.iter().zip(param_ty) {
match unifier.get_ty(*tvar).as_ref() { if let TypeEnum::TVar { id, range, meta: TypeVarMeta::Generic } =
TypeEnum::TVar { unifier.get_ty(*tvar).as_ref()
id, {
range,
fields: None,
name,
loc,
is_const_generic: false,
} => {
let ok: bool = {
// create a temp type var and unify to check compatibility
p == *tvar || {
let temp = unifier.get_fresh_var_with_range(
range.as_slice(),
*name,
*loc,
);
unifier.unify(temp.ty, p).is_ok()
}
};
if ok {
result.insert(*id, p);
} else {
return Err(HashSet::from([format!(
"cannot apply type {} to type variable with id {:?}",
unifier.internal_stringify(
p,
&mut |id| format!("class{id}"),
&mut |id| format!("typevar{id}"),
&mut None
),
*id
)]));
}
}
TypeEnum::TVar {
id, range, name, loc, is_const_generic: true, ..
} => {
let ty = range[0];
let ok: bool = { let ok: bool = {
// create a temp type var and unify to check compatibility // create a temp type var and unify to check compatibility
p == *tvar || { p == *tvar || {
let temp = let temp =
unifier.get_fresh_const_generic_var(ty, *name, *loc); unifier.get_fresh_var_with_range(range.borrow().as_slice());
unifier.unify(temp.ty, p).is_ok() unifier.unify(temp.0, p).is_ok()
} }
}; };
if ok { if ok {
result.insert(*id, p); result.insert(*id, p);
} else { } else {
return Err(HashSet::from([format!( return Err(format!(
"cannot apply type {} to type variable {}", "cannot apply type {} to type variable with id {:?}",
unifier.stringify(p), unifier.stringify(
name.unwrap_or_else(|| format!("typevar{id}").into()), p,
)])); &mut |id| format!("class{}", id),
&mut |id| format!("tvar{}", id)
),
*id
));
} }
} } else {
unreachable!("must be generic type var")
_ => unreachable!("must be generic type var"),
} }
} }
result result
}; };
// Class Attributes keep a copy with Class Definition and are not added to objects
let mut tobj_fields = methods let mut tobj_fields = methods
.iter() .iter()
.map(|(name, ty, _)| { .map(|(name, ty, _)| {
@ -503,59 +317,44 @@ pub fn get_type_from_type_annotation_kinds(
let subst_ty = unifier.subst(*ty, &subst).unwrap_or(*ty); let subst_ty = unifier.subst(*ty, &subst).unwrap_or(*ty);
(*name, (subst_ty, *mutability)) (*name, (subst_ty, *mutability))
})); }));
let need_subst = !subst.is_empty();
let ty = unifier.add_ty(TypeEnum::TObj { Ok(unifier.add_ty(TypeEnum::TObj {
obj_id: *obj_id, obj_id: *obj_id,
fields: tobj_fields, fields: RefCell::new(tobj_fields),
params: subst, params: subst.into(),
}); }))
if need_subst {
if let Some(wl) = subst_list.as_mut() {
wl.push(ty);
} }
} else {
unreachable!("should be class def here")
} }
ty
};
Ok(ty)
} }
TypeAnnotation::Primitive(ty) | TypeAnnotation::TypeVar(ty) => Ok(*ty), TypeAnnotation::Primitive(ty) | TypeAnnotation::TypeVar(ty) => Ok(*ty),
TypeAnnotation::Literal(values) => {
let values = values
.iter()
.map(SymbolValue::from_constant_inferred)
.collect::<Result<Vec<_>, _>>()
.map_err(|err| HashSet::from([err]))?;
let var = unifier.get_fresh_literal(values, None);
Ok(var)
}
TypeAnnotation::Virtual(ty) => { TypeAnnotation::Virtual(ty) => {
let ty = get_type_from_type_annotation_kinds( let ty = get_type_from_type_annotation_kinds(
top_level_defs, top_level_defs,
unifier, unifier,
primitives, primitives,
ty.as_ref(), ty.as_ref(),
subst_list,
)?; )?;
Ok(unifier.add_ty(TypeEnum::TVirtual { ty })) Ok(unifier.add_ty(TypeEnum::TVirtual { ty }))
} }
TypeAnnotation::List(ty) => {
let ty = get_type_from_type_annotation_kinds(
top_level_defs,
unifier,
primitives,
ty.as_ref(),
)?;
Ok(unifier.add_ty(TypeEnum::TList { ty }))
}
TypeAnnotation::Tuple(tys) => { TypeAnnotation::Tuple(tys) => {
let tys = tys let tys = tys
.iter() .iter()
.map(|x| { .map(|x| {
get_type_from_type_annotation_kinds( get_type_from_type_annotation_kinds(top_level_defs, unifier, primitives, x)
top_level_defs,
unifier,
primitives,
x,
subst_list,
)
}) })
.collect::<Result<Vec<_>, _>>()?; .collect::<Result<Vec<_>, _>>()?;
Ok(unifier.add_ty(TypeEnum::TTuple { ty: tys, is_vararg_ctx: false })) Ok(unifier.add_ty(TypeEnum::TTuple { ty: tys }))
} }
} }
} }
@ -568,11 +367,16 @@ pub fn get_type_from_type_annotation_kinds(
/// the type of `self` should be similar to `A[T, V]`, where `T`, `V` /// the type of `self` should be similar to `A[T, V]`, where `T`, `V`
/// considered to be type variables associated with the class \ /// considered to be type variables associated with the class \
/// \ /// \
/// But note that here we do not make a duplication of `T`, `V`, we directly /// But note that here we do not make a duplication of `T`, `V`, we direclty
/// use them as they are in the [`TopLevelDef::Class`] since those in the /// use them as they are in the TopLevelDef::Class since those in the
/// `TopLevelDef::Class.type_vars` will be substitute later when seeing applications/instantiations /// TopLevelDef::Class.type_vars will be substitute later when seeing applications/instantiations
/// the Type of their fields and methods will also be subst when application/instantiation /// the Type of their fields and methods will also be subst when application/instantiation \
#[must_use] /// \
/// Note this implicit self type is different with seeing `A[T, V]` explicitly outside
/// the class def ast body, where it is a new instantiation of the generic class `A`,
/// but equivalent to seeing `A[T, V]` inside the class def body ast, where although we
/// create copies of `T` and `V`, we will find them out as occured type vars in the analyze_class()
/// and unify them with the class generic `T`, `V`
pub fn make_self_type_annotation(type_vars: &[Type], object_id: DefinitionId) -> TypeAnnotation { pub fn make_self_type_annotation(type_vars: &[Type], object_id: DefinitionId) -> TypeAnnotation {
TypeAnnotation::CustomClass { TypeAnnotation::CustomClass {
id: object_id, id: object_id,
@ -583,25 +387,27 @@ pub fn make_self_type_annotation(type_vars: &[Type], object_id: DefinitionId) ->
/// get all the occurences of type vars contained in a type annotation /// get all the occurences of type vars contained in a type annotation
/// e.g. `A[int, B[T], V, virtual[C[G]]]` => [T, V, G] /// e.g. `A[int, B[T], V, virtual[C[G]]]` => [T, V, G]
/// this function will not make a duplicate of type var /// this function will not make a duplicate of type var
#[must_use]
pub fn get_type_var_contained_in_type_annotation(ann: &TypeAnnotation) -> Vec<TypeAnnotation> { pub fn get_type_var_contained_in_type_annotation(ann: &TypeAnnotation) -> Vec<TypeAnnotation> {
let mut result: Vec<TypeAnnotation> = Vec::new(); let mut result: Vec<TypeAnnotation> = Vec::new();
match ann { match ann {
TypeAnnotation::TypeVar(..) => result.push(ann.clone()), TypeAnnotation::TypeVar(..) => result.push(ann.clone()),
TypeAnnotation::Virtual(ann) => { TypeAnnotation::Virtual(ann) => {
result.extend(get_type_var_contained_in_type_annotation(ann.as_ref())); result.extend(get_type_var_contained_in_type_annotation(ann.as_ref()))
} }
TypeAnnotation::CustomClass { params, .. } => { TypeAnnotation::CustomClass { params, .. } => {
for p in params { for p in params {
result.extend(get_type_var_contained_in_type_annotation(p)); result.extend(get_type_var_contained_in_type_annotation(p));
} }
} }
TypeAnnotation::List(ann) => {
result.extend(get_type_var_contained_in_type_annotation(ann.as_ref()))
}
TypeAnnotation::Tuple(anns) => { TypeAnnotation::Tuple(anns) => {
for a in anns { for a in anns {
result.extend(get_type_var_contained_in_type_annotation(a)); result.extend(get_type_var_contained_in_type_annotation(a));
} }
} }
TypeAnnotation::Primitive(..) | TypeAnnotation::Literal { .. } => {} TypeAnnotation::Primitive(..) => {}
} }
result result
} }
@ -616,20 +422,21 @@ pub fn check_overload_type_annotation_compatible(
(TypeAnnotation::Primitive(a), TypeAnnotation::Primitive(b)) => a == b, (TypeAnnotation::Primitive(a), TypeAnnotation::Primitive(b)) => a == b,
(TypeAnnotation::TypeVar(a), TypeAnnotation::TypeVar(b)) => { (TypeAnnotation::TypeVar(a), TypeAnnotation::TypeVar(b)) => {
let a = unifier.get_ty(*a); let a = unifier.get_ty(*a);
let a = &*a; let a = a.deref();
let b = unifier.get_ty(*b); let b = unifier.get_ty(*b);
let b = &*b; let b = b.deref();
let ( if let (
TypeEnum::TVar { id: a, fields: None, .. }, TypeEnum::TVar { id: a, meta: TypeVarMeta::Generic, .. },
TypeEnum::TVar { id: b, fields: None, .. }, TypeEnum::TVar { id: b, meta: TypeVarMeta::Generic, .. },
) = (a, b) ) = (a, b)
else { {
unreachable!("must be type var")
};
a == b a == b
} else {
unreachable!("must be type var")
} }
(TypeAnnotation::Virtual(a), TypeAnnotation::Virtual(b)) => { }
(TypeAnnotation::Virtual(a), TypeAnnotation::Virtual(b))
| (TypeAnnotation::List(a), TypeAnnotation::List(b)) => {
check_overload_type_annotation_compatible(a.as_ref(), b.as_ref(), unifier) check_overload_type_annotation_compatible(a.as_ref(), b.as_ref(), unifier)
} }

View File

@ -1,24 +1,14 @@
use std::{ use crate::typecheck::typedef::TypeEnum;
collections::{HashMap, HashSet},
iter::once,
};
use nac3parser::ast::{ use super::type_inferencer::Inferencer;
self, Constant, Expr, ExprKind, use super::typedef::Type;
Operator::{LShift, RShift}, use nac3parser::ast::{self, Expr, ExprKind, Stmt, StmtKind, StrRef};
Stmt, StmtKind, StrRef, use std::{collections::HashSet, iter::once};
};
use super::{
type_inferencer::{DeclarationSource, IdentifierInfo, Inferencer},
typedef::{Type, TypeEnum},
};
use crate::toplevel::helper::PrimDef;
impl<'a> Inferencer<'a> { impl<'a> Inferencer<'a> {
fn should_have_value(&mut self, expr: &Expr<Option<Type>>) -> Result<(), HashSet<String>> { fn should_have_value(&mut self, expr: &Expr<Option<Type>>) -> Result<(), String> {
if matches!(expr.custom, Some(ty) if self.unifier.unioned(ty, self.primitives.none)) { if matches!(expr.custom, Some(ty) if self.unifier.unioned(ty, self.primitives.none)) {
Err(HashSet::from([format!("Error at {}: cannot have value none", expr.location)])) Err(format!("Error at {}: cannot have value none", expr.location))
} else { } else {
Ok(()) Ok(())
} }
@ -27,61 +17,35 @@ impl<'a> Inferencer<'a> {
fn check_pattern( fn check_pattern(
&mut self, &mut self,
pattern: &Expr<Option<Type>>, pattern: &Expr<Option<Type>>,
defined_identifiers: &mut HashMap<StrRef, IdentifierInfo>, defined_identifiers: &mut HashSet<StrRef>,
) -> Result<(), HashSet<String>> { ) -> Result<(), String> {
match &pattern.node { match &pattern.node {
ExprKind::Name { id, .. } if id == &"none".into() => {
Err(HashSet::from([format!("cannot assign to a `none` (at {})", pattern.location)]))
}
ExprKind::Name { id, .. } => { ExprKind::Name { id, .. } => {
// If `id` refers to a declared symbol, reject this assignment if it is used in the if !defined_identifiers.contains(id) {
// context of an (implicit) global variable defined_identifiers.insert(*id);
if let Some(id_info) = defined_identifiers.get(id) {
if matches!(
id_info.source,
DeclarationSource::Global { is_explicit: Some(false) }
) {
return Err(HashSet::from([format!(
"cannot access local variable '{id}' before it is declared (at {})",
pattern.location
)]));
}
}
if !defined_identifiers.contains_key(id) {
defined_identifiers.insert(*id, IdentifierInfo::default());
} }
self.should_have_value(pattern)?; self.should_have_value(pattern)?;
Ok(()) Ok(())
} }
ExprKind::List { elts, .. } | ExprKind::Tuple { elts, .. } => { ExprKind::Tuple { elts, .. } => {
for elt in elts { for elt in elts.iter() {
self.check_pattern(elt, defined_identifiers)?; self.check_pattern(elt, defined_identifiers)?;
self.should_have_value(elt)?; self.should_have_value(elt)?;
} }
Ok(()) Ok(())
} }
ExprKind::Starred { value, .. } => {
self.check_pattern(value, defined_identifiers)?;
self.should_have_value(value)?;
Ok(())
}
ExprKind::Subscript { value, slice, .. } => { ExprKind::Subscript { value, slice, .. } => {
self.check_expr(value, defined_identifiers)?; self.check_expr(value, defined_identifiers)?;
self.should_have_value(value)?; self.should_have_value(value)?;
self.check_expr(slice, defined_identifiers)?; self.check_expr(slice, defined_identifiers)?;
if let TypeEnum::TTuple { .. } = &*self.unifier.get_ty(value.custom.unwrap()) { if let TypeEnum::TTuple { .. } = &*self.unifier.get_ty(value.custom.unwrap()) {
return Err(HashSet::from([format!( return Err(format!(
"Error at {}: cannot assign to tuple element", "Error at {}: cannot assign to tuple element",
value.location value.location
)])); ));
} }
Ok(()) Ok(())
} }
ExprKind::Constant { .. } => Err(HashSet::from([format!(
"cannot assign to a constant (at {})",
pattern.location
)])),
_ => self.check_expr(pattern, defined_identifiers), _ => self.check_expr(pattern, defined_identifiers),
} }
} }
@ -89,65 +53,46 @@ impl<'a> Inferencer<'a> {
fn check_expr( fn check_expr(
&mut self, &mut self,
expr: &Expr<Option<Type>>, expr: &Expr<Option<Type>>,
defined_identifiers: &mut HashMap<StrRef, IdentifierInfo>, defined_identifiers: &mut HashSet<StrRef>,
) -> Result<(), HashSet<String>> { ) -> Result<(), String> {
// there are some cases where the custom field is None // there are some cases where the custom field is None
if let Some(ty) = &expr.custom { if let Some(ty) = &expr.custom {
if !matches!(&expr.node, ExprKind::Constant { value: Constant::Ellipsis, .. }) if !self.unifier.is_concrete(*ty, &self.function_data.bound_variables) {
&& !ty.obj_id(self.unifier).is_some_and(|id| id == PrimDef::List.id()) return Err(format!(
&& !self.unifier.is_concrete(*ty, &self.function_data.bound_variables)
{
return Err(HashSet::from([format!(
"expected concrete type at {} but got {}", "expected concrete type at {} but got {}",
expr.location, expr.location,
self.unifier.get_ty(*ty).get_type_name() self.unifier.get_ty(*ty).get_type_name()
)])); ));
} }
} }
match &expr.node { match &expr.node {
ExprKind::Name { id, .. } => { ExprKind::Name { id, .. } => {
if id == &"none".into() {
return Ok(());
}
self.should_have_value(expr)?; self.should_have_value(expr)?;
if !defined_identifiers.contains_key(id) { if !defined_identifiers.contains(id) {
match self.function_data.resolver.get_symbol_type( if self
.function_data
.resolver
.get_symbol_type(
self.unifier, self.unifier,
&self.top_level.definitions.read(), &self.top_level.definitions.read(),
self.primitives, self.primitives,
*id, *id,
) { )
Ok(_) => { .is_some()
let is_global = self.is_id_global(*id); {
defined_identifiers.insert(*id);
defined_identifiers.insert( } else {
*id, return Err(format!(
IdentifierInfo { "unknown identifier {} (use before def?) at {}",
source: match is_global { id, expr.location
Some(true) => { ));
DeclarationSource::Global { is_explicit: Some(false) }
}
Some(false) => {
DeclarationSource::Global { is_explicit: None }
}
None => DeclarationSource::Local,
},
},
);
}
Err(e) => {
return Err(HashSet::from([format!(
"type error at identifier `{}` ({}) at {}",
id, e, expr.location
)]))
}
} }
} }
} }
ExprKind::List { elts, .. } ExprKind::List { elts, .. }
| ExprKind::Tuple { elts, .. } | ExprKind::Tuple { elts, .. }
| ExprKind::BoolOp { values: elts, .. } => { | ExprKind::BoolOp { values: elts, .. } => {
for elt in elts { for elt in elts.iter() {
self.check_expr(elt, defined_identifiers)?; self.check_expr(elt, defined_identifiers)?;
self.should_have_value(elt)?; self.should_have_value(elt)?;
} }
@ -156,25 +101,11 @@ impl<'a> Inferencer<'a> {
self.check_expr(value, defined_identifiers)?; self.check_expr(value, defined_identifiers)?;
self.should_have_value(value)?; self.should_have_value(value)?;
} }
ExprKind::BinOp { left, op, right } => { ExprKind::BinOp { left, right, .. } => {
self.check_expr(left, defined_identifiers)?; self.check_expr(left, defined_identifiers)?;
self.check_expr(right, defined_identifiers)?; self.check_expr(right, defined_identifiers)?;
self.should_have_value(left)?; self.should_have_value(left)?;
self.should_have_value(right)?; self.should_have_value(right)?;
// Check whether a bitwise shift has a negative RHS constant value
if *op == LShift || *op == RShift {
if let ExprKind::Constant { value, .. } = &right.node {
let Constant::Int(rhs_val) = value else { unreachable!() };
if *rhs_val < 0 {
return Err(HashSet::from([format!(
"shift count is negative at {}",
right.location
)]));
}
}
}
} }
ExprKind::UnaryOp { operand, .. } => { ExprKind::UnaryOp { operand, .. } => {
self.check_expr(operand, defined_identifiers)?; self.check_expr(operand, defined_identifiers)?;
@ -204,9 +135,11 @@ impl<'a> Inferencer<'a> {
} }
ExprKind::Lambda { args, body } => { ExprKind::Lambda { args, body } => {
let mut defined_identifiers = defined_identifiers.clone(); let mut defined_identifiers = defined_identifiers.clone();
for arg in &args.args { for arg in args.args.iter() {
// TODO: should we check the types here? // TODO: should we check the types here?
defined_identifiers.entry(arg.node.arg).or_default(); if !defined_identifiers.contains(&arg.node.arg) {
defined_identifiers.insert(arg.node.arg);
}
} }
self.check_expr(body, &mut defined_identifiers)?; self.check_expr(body, &mut defined_identifiers)?;
} }
@ -234,55 +167,31 @@ impl<'a> Inferencer<'a> {
} }
ExprKind::Constant { .. } => {} ExprKind::Constant { .. } => {}
_ => { _ => {
println!("{:?}", expr.node);
unimplemented!() unimplemented!()
} }
} }
Ok(()) Ok(())
} }
/// Check that the return value is a non-`alloca` type, effectively only allowing primitive types.
///
/// This is a workaround preventing the caller from using a variable `alloca`-ed in the body, which
/// is freed when the function returns.
fn check_return_value_ty(&mut self, ret_ty: Type) -> bool {
if cfg!(feature = "no-escape-analysis") {
true
} else {
match &*self.unifier.get_ty_immutable(ret_ty) {
TypeEnum::TObj { .. } => [
self.primitives.int32,
self.primitives.int64,
self.primitives.uint32,
self.primitives.uint64,
self.primitives.float,
self.primitives.bool,
]
.iter()
.any(|allowed_ty| self.unifier.unioned(ret_ty, *allowed_ty)),
TypeEnum::TTuple { ty, .. } => ty.iter().all(|t| self.check_return_value_ty(*t)),
_ => false,
}
}
}
// check statements for proper identifier def-use and return on all paths // check statements for proper identifier def-use and return on all paths
fn check_stmt( fn check_stmt(
&mut self, &mut self,
stmt: &Stmt<Option<Type>>, stmt: &Stmt<Option<Type>>,
defined_identifiers: &mut HashMap<StrRef, IdentifierInfo>, defined_identifiers: &mut HashSet<StrRef>,
) -> Result<bool, HashSet<String>> { ) -> Result<bool, String> {
match &stmt.node { match &stmt.node {
StmtKind::For { target, iter, body, orelse, .. } => { StmtKind::For { target, iter, body, orelse, .. } => {
self.check_expr(iter, defined_identifiers)?; self.check_expr(iter, defined_identifiers)?;
self.should_have_value(iter)?; self.should_have_value(iter)?;
let mut local_defined_identifiers = defined_identifiers.clone(); let mut local_defined_identifiers = defined_identifiers.clone();
for stmt in orelse { for stmt in orelse.iter() {
self.check_stmt(stmt, &mut local_defined_identifiers)?; self.check_stmt(stmt, &mut local_defined_identifiers)?;
} }
let mut local_defined_identifiers = defined_identifiers.clone(); let mut local_defined_identifiers = defined_identifiers.clone();
self.check_pattern(target, &mut local_defined_identifiers)?; self.check_pattern(target, &mut local_defined_identifiers)?;
self.should_have_value(target)?; self.should_have_value(target)?;
for stmt in body { for stmt in body.iter() {
self.check_stmt(stmt, &mut local_defined_identifiers)?; self.check_stmt(stmt, &mut local_defined_identifiers)?;
} }
Ok(false) Ok(false)
@ -295,11 +204,9 @@ impl<'a> Inferencer<'a> {
let body_returned = self.check_block(body, &mut body_identifiers)?; let body_returned = self.check_block(body, &mut body_identifiers)?;
let orelse_returned = self.check_block(orelse, &mut orelse_identifiers)?; let orelse_returned = self.check_block(orelse, &mut orelse_identifiers)?;
for ident in body_identifiers.keys() { for ident in body_identifiers.iter() {
if !defined_identifiers.contains_key(ident) if !defined_identifiers.contains(ident) && orelse_identifiers.contains(ident) {
&& orelse_identifiers.contains_key(ident) defined_identifiers.insert(*ident);
{
defined_identifiers.insert(*ident, IdentifierInfo::default());
} }
} }
Ok(body_returned && orelse_returned) Ok(body_returned && orelse_returned)
@ -314,7 +221,7 @@ impl<'a> Inferencer<'a> {
} }
StmtKind::With { items, body, .. } => { StmtKind::With { items, body, .. } => {
let mut new_defined_identifiers = defined_identifiers.clone(); let mut new_defined_identifiers = defined_identifiers.clone();
for item in items { for item in items.iter() {
self.check_expr(&item.context_expr, defined_identifiers)?; self.check_expr(&item.context_expr, defined_identifiers)?;
if let Some(var) = item.optional_vars.as_ref() { if let Some(var) = item.optional_vars.as_ref() {
self.check_pattern(var, &mut new_defined_identifiers)?; self.check_pattern(var, &mut new_defined_identifiers)?;
@ -323,20 +230,6 @@ impl<'a> Inferencer<'a> {
self.check_block(body, &mut new_defined_identifiers)?; self.check_block(body, &mut new_defined_identifiers)?;
Ok(false) Ok(false)
} }
StmtKind::Try { body, handlers, orelse, finalbody, .. } => {
self.check_block(body, &mut defined_identifiers.clone())?;
self.check_block(orelse, &mut defined_identifiers.clone())?;
for handler in handlers {
let mut defined_identifiers = defined_identifiers.clone();
let ast::ExcepthandlerKind::ExceptHandler { name, body, .. } = &handler.node;
if let Some(name) = name {
defined_identifiers.insert(*name, IdentifierInfo::default());
}
self.check_block(body, &mut defined_identifiers)?;
}
self.check_block(finalbody, defined_identifiers)?;
Ok(false)
}
StmtKind::Expr { value, .. } => { StmtKind::Expr { value, .. } => {
self.check_expr(value, defined_identifiers)?; self.check_expr(value, defined_identifiers)?;
Ok(false) Ok(false)
@ -361,30 +254,6 @@ impl<'a> Inferencer<'a> {
if let Some(value) = value { if let Some(value) = value {
self.check_expr(value, defined_identifiers)?; self.check_expr(value, defined_identifiers)?;
self.should_have_value(value)?; self.should_have_value(value)?;
// Check that the return value is a non-`alloca` type, effectively only allowing primitive types.
// This is a workaround preventing the caller from using a variable `alloca`-ed in the body, which
// is freed when the function returns.
if let Some(ret_ty) = value.custom {
// Explicitly allow ellipsis as a return value, as the type of the ellipsis is contextually
// inferred and just generates an unconditional assertion
if matches!(
value.node,
ExprKind::Constant { value: Constant::Ellipsis, .. }
) {
return Ok(true);
}
if !self.check_return_value_ty(ret_ty) {
return Err(HashSet::from([
format!(
"return value of type {} must be a primitive or a tuple of primitives at {}",
self.unifier.stringify(ret_ty),
value.location,
),
]));
}
}
} }
Ok(true) Ok(true)
} }
@ -394,44 +263,6 @@ impl<'a> Inferencer<'a> {
} }
Ok(true) Ok(true)
} }
StmtKind::Global { names, .. } => {
for id in names {
if let Some(id_info) = defined_identifiers.get(id) {
if id_info.source == DeclarationSource::Local {
return Err(HashSet::from([format!(
"name '{id}' is referenced prior to global declaration at {}",
stmt.location,
)]));
}
continue;
}
match self.function_data.resolver.get_symbol_type(
self.unifier,
&self.top_level.definitions.read(),
self.primitives,
*id,
) {
Ok(_) => {
defined_identifiers.insert(
*id,
IdentifierInfo {
source: DeclarationSource::Global { is_explicit: Some(true) },
},
);
}
Err(e) => {
return Err(HashSet::from([format!(
"type error at identifier `{}` ({}) at {}",
id, e, stmt.location
)]))
}
}
}
Ok(false)
}
// break, raise, etc. // break, raise, etc.
_ => Ok(false), _ => Ok(false),
} }
@ -440,12 +271,12 @@ impl<'a> Inferencer<'a> {
pub fn check_block( pub fn check_block(
&mut self, &mut self,
block: &[Stmt<Option<Type>>], block: &[Stmt<Option<Type>>],
defined_identifiers: &mut HashMap<StrRef, IdentifierInfo>, defined_identifiers: &mut HashSet<StrRef>,
) -> Result<bool, HashSet<String>> { ) -> Result<bool, String> {
let mut ret = false; let mut ret = false;
for stmt in block { for stmt in block {
if ret { if ret {
eprintln!("warning: dead code at {}\n", stmt.location); return Err(format!("dead code at {:?}", stmt.location));
} }
if self.check_stmt(stmt, defined_identifiers)? { if self.check_stmt(stmt, defined_identifiers)? {
ret = true; ret = true;

View File

@ -1,288 +1,195 @@
use std::{cmp::max, collections::HashMap, rc::Rc}; use crate::typecheck::{
use itertools::{iproduct, Itertools};
use strum::IntoEnumIterator;
use nac3parser::ast::{Cmpop, Operator, StrRef, Unaryop};
use super::{
type_inferencer::*, type_inferencer::*,
typedef::{FunSignature, FuncArg, Type, TypeEnum, Unifier, VarMap}, typedef::{FunSignature, FuncArg, Type, TypeEnum, Unifier},
};
use crate::{
symbol_resolver::SymbolValue,
toplevel::{
helper::PrimDef,
numpy::{make_ndarray_ty, unpack_ndarray_var_tys},
},
}; };
use nac3parser::ast;
use nac3parser::ast::{Cmpop, Operator, Unaryop};
use std::borrow::Borrow;
use std::collections::HashMap;
/// The variant of a binary operator. pub fn binop_name(op: &Operator) -> &'static str {
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum BinopVariant {
/// The normal variant.
/// For addition, it would be `+`.
Normal,
/// The "Augmented Assigning Operator" variant.
/// For addition, it would be `+=`.
AugAssign,
}
/// A binary operator with its variant.
#[derive(Debug, Clone, Copy)]
pub struct Binop {
/// The base [`Operator`] of this binary operator.
pub base: Operator,
/// The variant of this binary operator.
pub variant: BinopVariant,
}
impl Binop {
/// Make a [`Binop`] of the normal variant from an [`Operator`].
#[must_use]
pub fn normal(base: Operator) -> Self {
Binop { base, variant: BinopVariant::Normal }
}
/// Make a [`Binop`] of the aug assign variant from an [`Operator`].
#[must_use]
pub fn aug_assign(base: Operator) -> Self {
Binop { base, variant: BinopVariant::AugAssign }
}
}
/// Details about an operator (unary, binary, etc...) in Python
#[derive(Debug, Clone, Copy)]
pub struct OpInfo {
/// The method name of the binary operator.
/// For addition, this would be `__add__`, and `__iadd__` if
/// it is the augmented assigning variant.
pub method_name: &'static str,
/// The symbol of the binary operator.
/// For addition, this would be `+`, and `+=` if
/// it is the augmented assigning variant.
pub symbol: &'static str,
}
/// Helper macro to conveniently build an [`OpInfo`].
///
/// Example usage: `make_info("add", "+")` generates `OpInfo { name: "__add__", symbol: "+" }`
macro_rules! make_op_info {
($name:expr, $symbol:expr) => {
OpInfo { method_name: concat!("__", $name, "__"), symbol: $symbol }
};
}
pub trait HasOpInfo {
fn op_info(&self) -> OpInfo;
}
fn try_get_cmpop_info(op: Cmpop) -> Option<OpInfo> {
match op { match op {
Cmpop::Lt => Some(make_op_info!("lt", "<")), Operator::Add => "__add__",
Cmpop::LtE => Some(make_op_info!("le", "<=")), Operator::Sub => "__sub__",
Cmpop::Gt => Some(make_op_info!("gt", ">")), Operator::Div => "__truediv__",
Cmpop::GtE => Some(make_op_info!("ge", ">=")), Operator::Mod => "__mod__",
Cmpop::Eq => Some(make_op_info!("eq", "==")), Operator::Mult => "__mul__",
Cmpop::NotEq => Some(make_op_info!("ne", "!=")), Operator::Pow => "__pow__",
Operator::BitOr => "__or__",
Operator::BitXor => "__xor__",
Operator::BitAnd => "__and__",
Operator::LShift => "__lshift__",
Operator::RShift => "__rshift__",
Operator::FloorDiv => "__floordiv__",
Operator::MatMult => "__matmul__",
}
}
pub fn binop_assign_name(op: &Operator) -> &'static str {
match op {
Operator::Add => "__iadd__",
Operator::Sub => "__isub__",
Operator::Div => "__itruediv__",
Operator::Mod => "__imod__",
Operator::Mult => "__imul__",
Operator::Pow => "__ipow__",
Operator::BitOr => "__ior__",
Operator::BitXor => "__ixor__",
Operator::BitAnd => "__iand__",
Operator::LShift => "__ilshift__",
Operator::RShift => "__irshift__",
Operator::FloorDiv => "__ifloordiv__",
Operator::MatMult => "__imatmul__",
}
}
pub fn unaryop_name(op: &Unaryop) -> &'static str {
match op {
Unaryop::UAdd => "__pos__",
Unaryop::USub => "__neg__",
Unaryop::Not => "__not__",
Unaryop::Invert => "__inv__",
}
}
pub fn comparison_name(op: &Cmpop) -> Option<&'static str> {
match op {
Cmpop::Lt => Some("__lt__"),
Cmpop::LtE => Some("__le__"),
Cmpop::Gt => Some("__gt__"),
Cmpop::GtE => Some("__ge__"),
Cmpop::Eq => Some("__eq__"),
Cmpop::NotEq => Some("__ne__"),
_ => None, _ => None,
} }
} }
impl OpInfo {
#[must_use]
pub fn supports_cmpop(op: Cmpop) -> bool {
try_get_cmpop_info(op).is_some()
}
}
impl HasOpInfo for Cmpop {
fn op_info(&self) -> OpInfo {
try_get_cmpop_info(*self).expect("{self:?} is not supported")
}
}
impl HasOpInfo for Binop {
fn op_info(&self) -> OpInfo {
// Helper macro to generate both the normal variant [`OpInfo`] and the
// augmented assigning variant [`OpInfo`] for a binary operator conveniently.
macro_rules! info {
($name:literal, $symbol:literal) => {
(
make_op_info!($name, $symbol),
make_op_info!(concat!("i", $name), concat!($symbol, "=")),
)
};
}
let (normal_variant, aug_assign_variant) = match self.base {
Operator::Add => info!("add", "+"),
Operator::Sub => info!("sub", "-"),
Operator::Div => info!("truediv", "/"),
Operator::Mod => info!("mod", "%"),
Operator::Mult => info!("mul", "*"),
Operator::Pow => info!("pow", "**"),
Operator::BitOr => info!("or", "|"),
Operator::BitXor => info!("xor", "^"),
Operator::BitAnd => info!("and", "&"),
Operator::LShift => info!("lshift", "<<"),
Operator::RShift => info!("rshift", ">>"),
Operator::FloorDiv => info!("floordiv", "//"),
Operator::MatMult => info!("matmul", "@"),
};
match self.variant {
BinopVariant::Normal => normal_variant,
BinopVariant::AugAssign => aug_assign_variant,
}
}
}
impl HasOpInfo for Unaryop {
fn op_info(&self) -> OpInfo {
match self {
Unaryop::UAdd => make_op_info!("pos", "+"),
Unaryop::USub => make_op_info!("neg", "-"),
Unaryop::Not => make_op_info!("not", "not"), // i.e., `not False`, so the symbol is just `not`.
Unaryop::Invert => make_op_info!("inv", "~"),
}
}
}
pub(super) fn with_fields<F>(unifier: &mut Unifier, ty: Type, f: F)
where
F: FnOnce(&mut Unifier, &mut HashMap<StrRef, (Type, bool)>),
{
let (id, mut fields, params) =
if let TypeEnum::TObj { obj_id, fields, params } = &*unifier.get_ty(ty) {
(*obj_id, fields.clone(), params.clone())
} else {
unreachable!()
};
f(unifier, &mut fields);
unsafe {
let unification_table = unifier.get_unification_table();
unification_table.set_value(ty, Rc::new(TypeEnum::TObj { obj_id: id, fields, params }));
}
}
pub fn impl_binop( pub fn impl_binop(
unifier: &mut Unifier, unifier: &mut Unifier,
_store: &PrimitiveStore, store: &PrimitiveStore,
ty: Type, ty: Type,
other_ty: &[Type], other_ty: &[Type],
ret_ty: Option<Type>, ret_ty: Type,
ops: &[Operator], ops: &[ast::Operator],
) { ) {
with_fields(unifier, ty, |unifier, fields| { if let TypeEnum::TObj { fields, .. } = unifier.get_ty(ty).borrow() {
let (other_ty, other_var_id) = if other_ty.len() == 1 { let (other_ty, other_var_id) = if other_ty.len() == 1 {
(other_ty[0], None) (other_ty[0], None)
} else { } else {
let tvar = unifier.get_fresh_var_with_range(other_ty, Some("N".into()), None); let (ty, var_id) = unifier.get_fresh_var_with_range(other_ty);
(tvar.ty, Some(tvar.id)) (ty, Some(var_id))
}; };
let function_vars = if let Some(var_id) = other_var_id { let function_vars = if let Some(var_id) = other_var_id {
vec![(var_id, other_ty)].into_iter().collect::<VarMap>() vec![(var_id, other_ty)].into_iter().collect::<HashMap<_, _>>()
} else { } else {
VarMap::new() HashMap::new()
}; };
for op in ops {
let ret_ty = ret_ty.unwrap_or_else(|| unifier.get_fresh_var(None, None).ty); fields.borrow_mut().insert(binop_name(op).into(), {
for (base_op, variant) in iproduct!(ops, [BinopVariant::Normal, BinopVariant::AugAssign]) {
let op = Binop { base: *base_op, variant };
fields.insert(op.op_info().method_name.into(), {
( (
unifier.add_ty(TypeEnum::TFunc(FunSignature { unifier.add_ty(TypeEnum::TFunc(
FunSignature {
ret: ret_ty, ret: ret_ty,
vars: function_vars.clone(), vars: function_vars.clone(),
args: vec![FuncArg { args: vec![FuncArg {
ty: other_ty, ty: other_ty,
default_value: None, default_value: None,
name: "other".into(), name: "other".into(),
is_vararg: false,
}], }],
})), }
.into(),
)),
false,
)
});
fields.borrow_mut().insert(binop_assign_name(op).into(), {
(
unifier.add_ty(TypeEnum::TFunc(
FunSignature {
ret: store.none,
vars: function_vars.clone(),
args: vec![FuncArg {
ty: other_ty,
default_value: None,
name: "other".into(),
}],
}
.into(),
)),
false, false,
) )
}); });
} }
}); } else {
unreachable!("")
}
} }
pub fn impl_unaryop(unifier: &mut Unifier, ty: Type, ret_ty: Option<Type>, ops: &[Unaryop]) { pub fn impl_unaryop(
with_fields(unifier, ty, |unifier, fields| { unifier: &mut Unifier,
let ret_ty = ret_ty.unwrap_or_else(|| unifier.get_fresh_var(None, None).ty); _store: &PrimitiveStore,
ty: Type,
ret_ty: Type,
ops: &[ast::Unaryop],
) {
if let TypeEnum::TObj { fields, .. } = unifier.get_ty(ty).borrow() {
for op in ops { for op in ops {
fields.insert( fields.borrow_mut().insert(
op.op_info().method_name.into(), unaryop_name(op).into(),
( (
unifier.add_ty(TypeEnum::TFunc(FunSignature { unifier.add_ty(TypeEnum::TFunc(
ret: ret_ty, FunSignature { ret: ret_ty, vars: HashMap::new(), args: vec![] }.into(),
vars: VarMap::new(), )),
args: vec![],
})),
false, false,
), ),
); );
} }
}); } else {
unreachable!()
}
} }
pub fn impl_cmpop( pub fn impl_cmpop(
unifier: &mut Unifier, unifier: &mut Unifier,
_store: &PrimitiveStore, store: &PrimitiveStore,
ty: Type, ty: Type,
other_ty: &[Type], other_ty: Type,
ops: &[Cmpop], ops: &[ast::Cmpop],
ret_ty: Option<Type>,
) { ) {
with_fields(unifier, ty, |unifier, fields| { if let TypeEnum::TObj { fields, .. } = unifier.get_ty(ty).borrow() {
let (other_ty, other_var_id) = if other_ty.len() == 1 {
(other_ty[0], None)
} else {
let tvar = unifier.get_fresh_var_with_range(other_ty, Some("N".into()), None);
(tvar.ty, Some(tvar.id))
};
let function_vars = if let Some(var_id) = other_var_id {
vec![(var_id, other_ty)].into_iter().collect::<VarMap>()
} else {
VarMap::new()
};
let ret_ty = ret_ty.unwrap_or_else(|| unifier.get_fresh_var(None, None).ty);
for op in ops { for op in ops {
fields.insert( fields.borrow_mut().insert(
op.op_info().method_name.into(), comparison_name(op).unwrap().into(),
( (
unifier.add_ty(TypeEnum::TFunc(FunSignature { unifier.add_ty(TypeEnum::TFunc(
ret: ret_ty, FunSignature {
vars: function_vars.clone(), ret: store.bool,
vars: HashMap::new(),
args: vec![FuncArg { args: vec![FuncArg {
ty: other_ty, ty: other_ty,
default_value: None, default_value: None,
name: "other".into(), name: "other".into(),
is_vararg: false,
}], }],
})), }
.into(),
)),
false, false,
), ),
); );
} }
}); } else {
unreachable!()
}
} }
/// `Add`, `Sub`, `Mult` /// Add, Sub, Mult, Pow
pub fn impl_basic_arithmetic( pub fn impl_basic_arithmetic(
unifier: &mut Unifier, unifier: &mut Unifier,
store: &PrimitiveStore, store: &PrimitiveStore,
ty: Type, ty: Type,
other_ty: &[Type], other_ty: &[Type],
ret_ty: Option<Type>, ret_ty: Type,
) { ) {
impl_binop( impl_binop(
unifier, unifier,
@ -290,492 +197,138 @@ pub fn impl_basic_arithmetic(
ty, ty,
other_ty, other_ty,
ret_ty, ret_ty,
&[Operator::Add, Operator::Sub, Operator::Mult], &[ast::Operator::Add, ast::Operator::Sub, ast::Operator::Mult],
); )
} }
/// `Pow`
pub fn impl_pow( pub fn impl_pow(
unifier: &mut Unifier, unifier: &mut Unifier,
store: &PrimitiveStore, store: &PrimitiveStore,
ty: Type, ty: Type,
other_ty: &[Type], other_ty: &[Type],
ret_ty: Option<Type>, ret_ty: Type,
) { ) {
impl_binop(unifier, store, ty, other_ty, ret_ty, &[Operator::Pow]); impl_binop(unifier, store, ty, other_ty, ret_ty, &[ast::Operator::Pow])
} }
/// `BitOr`, `BitXor`, `BitAnd` /// BitOr, BitXor, BitAnd
pub fn impl_bitwise_arithmetic(unifier: &mut Unifier, store: &PrimitiveStore, ty: Type) { pub fn impl_bitwise_arithmetic(unifier: &mut Unifier, store: &PrimitiveStore, ty: Type) {
impl_binop( impl_binop(
unifier, unifier,
store, store,
ty, ty,
&[ty], &[ty],
Some(ty),
&[Operator::BitAnd, Operator::BitOr, Operator::BitXor],
);
}
/// `LShift`, `RShift`
pub fn impl_bitwise_shift(unifier: &mut Unifier, store: &PrimitiveStore, ty: Type) {
impl_binop(
unifier,
store,
ty, ty,
&[store.int32, store.uint32], &[ast::Operator::BitAnd, ast::Operator::BitOr, ast::Operator::BitXor],
Some(ty), )
&[Operator::LShift, Operator::RShift],
);
} }
/// `Div` /// LShift, RShift
pub fn impl_div( pub fn impl_bitwise_shift(unifier: &mut Unifier, store: &PrimitiveStore, ty: Type) {
unifier: &mut Unifier, impl_binop(unifier, store, ty, &[ty], ty, &[ast::Operator::LShift, ast::Operator::RShift])
store: &PrimitiveStore,
ty: Type,
other_ty: &[Type],
ret_ty: Option<Type>,
) {
impl_binop(unifier, store, ty, other_ty, ret_ty, &[Operator::Div]);
} }
/// `FloorDiv` /// Div
pub fn impl_div(unifier: &mut Unifier, store: &PrimitiveStore, ty: Type, other_ty: &[Type]) {
impl_binop(unifier, store, ty, other_ty, store.float, &[ast::Operator::Div])
}
/// FloorDiv
pub fn impl_floordiv( pub fn impl_floordiv(
unifier: &mut Unifier, unifier: &mut Unifier,
store: &PrimitiveStore, store: &PrimitiveStore,
ty: Type, ty: Type,
other_ty: &[Type], other_ty: &[Type],
ret_ty: Option<Type>, ret_ty: Type,
) { ) {
impl_binop(unifier, store, ty, other_ty, ret_ty, &[Operator::FloorDiv]); impl_binop(unifier, store, ty, other_ty, ret_ty, &[ast::Operator::FloorDiv])
} }
/// `Mod` /// Mod
pub fn impl_mod( pub fn impl_mod(
unifier: &mut Unifier, unifier: &mut Unifier,
store: &PrimitiveStore, store: &PrimitiveStore,
ty: Type, ty: Type,
other_ty: &[Type], other_ty: &[Type],
ret_ty: Option<Type>, ret_ty: Type,
) { ) {
impl_binop(unifier, store, ty, other_ty, ret_ty, &[Operator::Mod]); impl_binop(unifier, store, ty, other_ty, ret_ty, &[ast::Operator::Mod])
} }
/// [`Operator::MatMult`] /// UAdd, USub
pub fn impl_matmul( pub fn impl_sign(unifier: &mut Unifier, store: &PrimitiveStore, ty: Type) {
unifier: &mut Unifier, impl_unaryop(unifier, store, ty, ty, &[ast::Unaryop::UAdd, ast::Unaryop::USub])
store: &PrimitiveStore,
ty: Type,
other_ty: &[Type],
ret_ty: Option<Type>,
) {
impl_binop(unifier, store, ty, other_ty, ret_ty, &[Operator::MatMult]);
} }
/// `UAdd`, `USub` /// Invert
pub fn impl_sign(unifier: &mut Unifier, _store: &PrimitiveStore, ty: Type, ret_ty: Option<Type>) { pub fn impl_invert(unifier: &mut Unifier, store: &PrimitiveStore, ty: Type) {
impl_unaryop(unifier, ty, ret_ty, &[Unaryop::UAdd, Unaryop::USub]); impl_unaryop(unifier, store, ty, ty, &[ast::Unaryop::Invert])
} }
/// `Invert` /// Not
pub fn impl_invert(unifier: &mut Unifier, _store: &PrimitiveStore, ty: Type, ret_ty: Option<Type>) { pub fn impl_not(unifier: &mut Unifier, store: &PrimitiveStore, ty: Type) {
impl_unaryop(unifier, ty, ret_ty, &[Unaryop::Invert]); impl_unaryop(unifier, store, ty, store.bool, &[ast::Unaryop::Not])
} }
/// `Not` /// Lt, LtE, Gt, GtE
pub fn impl_not(unifier: &mut Unifier, _store: &PrimitiveStore, ty: Type, ret_ty: Option<Type>) { pub fn impl_comparison(unifier: &mut Unifier, store: &PrimitiveStore, ty: Type, other_ty: Type) {
impl_unaryop(unifier, ty, ret_ty, &[Unaryop::Not]);
}
/// `Lt`, `LtE`, `Gt`, `GtE`
pub fn impl_comparison(
unifier: &mut Unifier,
store: &PrimitiveStore,
ty: Type,
other_ty: &[Type],
ret_ty: Option<Type>,
) {
impl_cmpop( impl_cmpop(
unifier, unifier,
store, store,
ty, ty,
other_ty, other_ty,
&[Cmpop::Lt, Cmpop::Gt, Cmpop::LtE, Cmpop::GtE], &[ast::Cmpop::Lt, ast::Cmpop::Gt, ast::Cmpop::LtE, ast::Cmpop::GtE],
ret_ty, )
);
} }
/// `Eq`, `NotEq` /// Eq, NotEq
pub fn impl_eq( pub fn impl_eq(unifier: &mut Unifier, store: &PrimitiveStore, ty: Type) {
unifier: &mut Unifier, impl_cmpop(unifier, store, ty, ty, &[ast::Cmpop::Eq, ast::Cmpop::NotEq])
store: &PrimitiveStore,
ty: Type,
other_ty: &[Type],
ret_ty: Option<Type>,
) {
impl_cmpop(unifier, store, ty, other_ty, &[Cmpop::Eq, Cmpop::NotEq], ret_ty);
}
/// Returns the expected return type of binary operations with at least one `ndarray` operand.
pub fn typeof_ndarray_broadcast(
unifier: &mut Unifier,
primitives: &PrimitiveStore,
left: Type,
right: Type,
) -> Result<Type, String> {
let is_left_ndarray = left.obj_id(unifier).is_some_and(|id| id == PrimDef::NDArray.id());
let is_right_ndarray = right.obj_id(unifier).is_some_and(|id| id == PrimDef::NDArray.id());
assert!(is_left_ndarray || is_right_ndarray);
if is_left_ndarray && is_right_ndarray {
// Perform broadcasting on two ndarray operands.
let (left_ty_dtype, left_ty_ndims) = unpack_ndarray_var_tys(unifier, left);
let (right_ty_dtype, right_ty_ndims) = unpack_ndarray_var_tys(unifier, right);
assert!(unifier.unioned(left_ty_dtype, right_ty_dtype));
let left_ty_ndims = match &*unifier.get_ty_immutable(left_ty_ndims) {
TypeEnum::TLiteral { values, .. } => values.clone(),
_ => unreachable!(),
};
let right_ty_ndims = match &*unifier.get_ty_immutable(right_ty_ndims) {
TypeEnum::TLiteral { values, .. } => values.clone(),
_ => unreachable!(),
};
let res_ndims = left_ty_ndims
.into_iter()
.cartesian_product(right_ty_ndims)
.map(|(left, right)| {
let left_val = u64::try_from(left).unwrap();
let right_val = u64::try_from(right).unwrap();
max(left_val, right_val)
})
.unique()
.map(SymbolValue::U64)
.collect_vec();
let res_ndims = unifier.get_fresh_literal(res_ndims, None);
Ok(make_ndarray_ty(unifier, primitives, Some(left_ty_dtype), Some(res_ndims)))
} else {
let (ndarray_ty, scalar_ty) = if is_left_ndarray { (left, right) } else { (right, left) };
let (ndarray_ty_dtype, _) = unpack_ndarray_var_tys(unifier, ndarray_ty);
if unifier.unioned(ndarray_ty_dtype, scalar_ty) {
Ok(ndarray_ty)
} else {
let (expected_ty, actual_ty) = if is_left_ndarray {
(ndarray_ty_dtype, scalar_ty)
} else {
(scalar_ty, ndarray_ty_dtype)
};
Err(format!(
"Expected right-hand side operand to be {}, got {}",
unifier.stringify(expected_ty),
unifier.stringify(actual_ty),
))
}
}
}
/// Returns the return type given a binary operator and its primitive operands.
pub fn typeof_binop(
unifier: &mut Unifier,
primitives: &PrimitiveStore,
op: Operator,
lhs: Type,
rhs: Type,
) -> Result<Option<Type>, String> {
let op = Binop { base: op, variant: BinopVariant::Normal };
let is_left_list = lhs.obj_id(unifier).is_some_and(|id| id == PrimDef::List.id());
let is_right_list = rhs.obj_id(unifier).is_some_and(|id| id == PrimDef::List.id());
let is_left_ndarray = lhs.obj_id(unifier).is_some_and(|id| id == PrimDef::NDArray.id());
let is_right_ndarray = rhs.obj_id(unifier).is_some_and(|id| id == PrimDef::NDArray.id());
Ok(Some(match op.base {
Operator::Add | Operator::Sub | Operator::Mult | Operator::Mod | Operator::FloorDiv => {
if is_left_list || is_right_list {
if ![Operator::Add, Operator::Mult].contains(&op.base) {
return Err(format!(
"Binary operator {} not supported for list",
op.op_info().symbol
));
}
if is_left_list {
lhs
} else {
rhs
}
} else if is_left_ndarray || is_right_ndarray {
typeof_ndarray_broadcast(unifier, primitives, lhs, rhs)?
} else if unifier.unioned(lhs, rhs) {
lhs
} else {
return Ok(None);
}
}
Operator::MatMult => {
// NOTE: NumPy matmul's LHS and RHS must both be ndarrays. Scalars are not allowed.
match (&*unifier.get_ty(lhs), &*unifier.get_ty(rhs)) {
(
TypeEnum::TObj { obj_id: lhs_obj_id, .. },
TypeEnum::TObj { obj_id: rhs_obj_id, .. },
) if *lhs_obj_id == primitives.ndarray.obj_id(unifier).unwrap()
&& *rhs_obj_id == primitives.ndarray.obj_id(unifier).unwrap() =>
{
// LHS and RHS have valid types
}
_ => {
let lhs_str = unifier.stringify(lhs);
let rhs_str = unifier.stringify(rhs);
return Err(format!("ndarray.__matmul__ only accepts ndarray operands, but left operand has type {lhs_str}, and right operand has type {rhs_str}"));
}
}
let (_, lhs_ndims) = unpack_ndarray_var_tys(unifier, lhs);
let lhs_ndims = match &*unifier.get_ty_immutable(lhs_ndims) {
TypeEnum::TLiteral { values, .. } => {
assert_eq!(values.len(), 1);
u64::try_from(values[0].clone()).unwrap()
}
_ => unreachable!(),
};
let (_, rhs_ndims) = unpack_ndarray_var_tys(unifier, rhs);
let rhs_ndims = match &*unifier.get_ty_immutable(rhs_ndims) {
TypeEnum::TLiteral { values, .. } => {
assert_eq!(values.len(), 1);
u64::try_from(values[0].clone()).unwrap()
}
_ => unreachable!(),
};
match (lhs_ndims, rhs_ndims) {
(2, 2) => typeof_ndarray_broadcast(unifier, primitives, lhs, rhs)?,
(lhs, rhs) if lhs == 0 || rhs == 0 => {
return Err(format!(
"Input operand {} does not have enough dimensions (has {lhs}, requires {rhs})",
u8::from(rhs == 0)
))
}
(lhs, rhs) => {
return Err(format!(
"ndarray.__matmul__ on {lhs}D and {rhs}D operands not supported"
))
}
}
}
Operator::Div => {
if is_left_ndarray || is_right_ndarray {
typeof_ndarray_broadcast(unifier, primitives, lhs, rhs)?
} else if unifier.unioned(lhs, rhs) {
primitives.float
} else {
return Ok(None);
}
}
Operator::Pow => {
if is_left_ndarray || is_right_ndarray {
typeof_ndarray_broadcast(unifier, primitives, lhs, rhs)?
} else if [
primitives.int32,
primitives.int64,
primitives.uint32,
primitives.uint64,
primitives.float,
]
.into_iter()
.any(|ty| unifier.unioned(lhs, ty))
{
lhs
} else {
return Ok(None);
}
}
Operator::LShift | Operator::RShift => lhs,
Operator::BitOr | Operator::BitXor | Operator::BitAnd => {
if unifier.unioned(lhs, rhs) {
lhs
} else {
return Ok(None);
}
}
}))
}
pub fn typeof_unaryop(
unifier: &mut Unifier,
primitives: &PrimitiveStore,
op: Unaryop,
operand: Type,
) -> Result<Option<Type>, String> {
let operand_obj_id = operand.obj_id(unifier);
if op == Unaryop::Not
&& operand_obj_id.is_some_and(|id| id == primitives.ndarray.obj_id(unifier).unwrap())
{
return Err(
"The truth value of an array with more than one element is ambiguous".to_string()
);
}
Ok(match op {
Unaryop::Not => match operand_obj_id {
Some(v) if v == PrimDef::NDArray.id() => Some(operand),
Some(_) => Some(primitives.bool),
_ => None,
},
Unaryop::Invert => {
if operand_obj_id.is_some_and(|id| id == PrimDef::Bool.id()) {
Some(primitives.int32)
} else if operand_obj_id.is_some_and(|id| PrimDef::iter().any(|prim| id == prim.id())) {
Some(operand)
} else {
None
}
}
Unaryop::UAdd | Unaryop::USub => {
if operand_obj_id.is_some_and(|id| id == PrimDef::NDArray.id()) {
let (dtype, _) = unpack_ndarray_var_tys(unifier, operand);
if dtype.obj_id(unifier).is_some_and(|id| id == PrimDef::Bool.id()) {
return Err(if op == Unaryop::UAdd {
"The ufunc 'positive' cannot be applied to ndarray[bool, N]".to_string()
} else {
"The numpy boolean negative, the `-` operator, is not supported, use the `~` operator function instead.".to_string()
});
}
Some(operand)
} else if operand_obj_id.is_some_and(|id| id == PrimDef::Bool.id()) {
Some(primitives.int32)
} else if operand_obj_id.is_some_and(|id| PrimDef::iter().any(|prim| id == prim.id())) {
Some(operand)
} else {
None
}
}
})
}
/// Returns the return type given a comparison operator and its primitive operands.
pub fn typeof_cmpop(
unifier: &mut Unifier,
primitives: &PrimitiveStore,
_op: Cmpop,
lhs: Type,
rhs: Type,
) -> Result<Option<Type>, String> {
let is_left_ndarray = lhs.obj_id(unifier).is_some_and(|id| id == PrimDef::NDArray.id());
let is_right_ndarray = rhs.obj_id(unifier).is_some_and(|id| id == PrimDef::NDArray.id());
Ok(Some(if is_left_ndarray || is_right_ndarray {
let brd = typeof_ndarray_broadcast(unifier, primitives, lhs, rhs)?;
let (_, ndims) = unpack_ndarray_var_tys(unifier, brd);
make_ndarray_ty(unifier, primitives, Some(primitives.bool), Some(ndims))
} else if unifier.unioned(lhs, rhs) {
primitives.bool
} else {
return Ok(None);
}))
} }
pub fn set_primitives_magic_methods(store: &PrimitiveStore, unifier: &mut Unifier) { pub fn set_primitives_magic_methods(store: &PrimitiveStore, unifier: &mut Unifier) {
let PrimitiveStore { let PrimitiveStore { int32: int32_t, int64: int64_t, float: float_t, bool: bool_t, .. } =
int32: int32_t, *store;
int64: int64_t, /* int32 ======== */
float: float_t, impl_basic_arithmetic(unifier, store, int32_t, &[int32_t], int32_t);
bool: bool_t, impl_pow(unifier, store, int32_t, &[int32_t], int32_t);
uint32: uint32_t, impl_bitwise_arithmetic(unifier, store, int32_t);
uint64: uint64_t, impl_bitwise_shift(unifier, store, int32_t);
str: str_t, impl_div(unifier, store, int32_t, &[int32_t]);
list: list_t, impl_floordiv(unifier, store, int32_t, &[int32_t], int32_t);
ndarray: ndarray_t, impl_mod(unifier, store, int32_t, &[int32_t], int32_t);
.. impl_sign(unifier, store, int32_t);
} = *store; impl_invert(unifier, store, int32_t);
let size_t = store.usize(); impl_not(unifier, store, int32_t);
impl_comparison(unifier, store, int32_t, int32_t);
impl_eq(unifier, store, int32_t);
/* int ======== */ /* int64 ======== */
for t in [int32_t, int64_t, uint32_t, uint64_t] { impl_basic_arithmetic(unifier, store, int64_t, &[int64_t], int64_t);
let ndarray_int_t = make_ndarray_ty(unifier, store, Some(t), None); impl_pow(unifier, store, int64_t, &[int64_t], int64_t);
impl_basic_arithmetic(unifier, store, t, &[t, ndarray_int_t], None); impl_bitwise_arithmetic(unifier, store, int64_t);
impl_pow(unifier, store, t, &[t, ndarray_int_t], None); impl_bitwise_shift(unifier, store, int64_t);
impl_bitwise_arithmetic(unifier, store, t); impl_div(unifier, store, int64_t, &[int64_t]);
impl_bitwise_shift(unifier, store, t); impl_floordiv(unifier, store, int64_t, &[int64_t], int64_t);
impl_div(unifier, store, t, &[t, ndarray_int_t], None); impl_mod(unifier, store, int64_t, &[int64_t], int64_t);
impl_floordiv(unifier, store, t, &[t, ndarray_int_t], None); impl_sign(unifier, store, int64_t);
impl_mod(unifier, store, t, &[t, ndarray_int_t], None); impl_invert(unifier, store, int64_t);
impl_invert(unifier, store, t, Some(t)); impl_not(unifier, store, int64_t);
impl_not(unifier, store, t, Some(bool_t)); impl_comparison(unifier, store, int64_t, int64_t);
impl_comparison(unifier, store, t, &[t, ndarray_int_t], None); impl_eq(unifier, store, int64_t);
impl_eq(unifier, store, t, &[t, ndarray_int_t], None);
}
for t in [int32_t, int64_t] {
impl_sign(unifier, store, t, Some(t));
}
/* float ======== */ /* float ======== */
let ndarray_float_t = make_ndarray_ty(unifier, store, Some(float_t), None); impl_basic_arithmetic(unifier, store, float_t, &[float_t], float_t);
let ndarray_int32_t = make_ndarray_ty(unifier, store, Some(int32_t), None); impl_pow(unifier, store, float_t, &[int32_t, float_t], float_t);
impl_basic_arithmetic(unifier, store, float_t, &[float_t, ndarray_float_t], None); impl_div(unifier, store, float_t, &[float_t]);
impl_pow(unifier, store, float_t, &[int32_t, float_t, ndarray_int32_t, ndarray_float_t], None); impl_floordiv(unifier, store, float_t, &[float_t], float_t);
impl_div(unifier, store, float_t, &[float_t, ndarray_float_t], None); impl_mod(unifier, store, float_t, &[float_t], float_t);
impl_floordiv(unifier, store, float_t, &[float_t, ndarray_float_t], None); impl_sign(unifier, store, float_t);
impl_mod(unifier, store, float_t, &[float_t, ndarray_float_t], None); impl_not(unifier, store, float_t);
impl_sign(unifier, store, float_t, Some(float_t)); impl_comparison(unifier, store, float_t, float_t);
impl_not(unifier, store, float_t, Some(bool_t)); impl_eq(unifier, store, float_t);
impl_comparison(unifier, store, float_t, &[float_t, ndarray_float_t], None);
impl_eq(unifier, store, float_t, &[float_t, ndarray_float_t], None);
/* bool ======== */ /* bool ======== */
let ndarray_bool_t = make_ndarray_ty(unifier, store, Some(bool_t), None); impl_not(unifier, store, bool_t);
impl_invert(unifier, store, bool_t, Some(int32_t)); impl_eq(unifier, store, bool_t);
impl_not(unifier, store, bool_t, Some(bool_t));
impl_sign(unifier, store, bool_t, Some(int32_t));
impl_eq(unifier, store, bool_t, &[bool_t, ndarray_bool_t], None);
/* str ========= */
impl_cmpop(unifier, store, str_t, &[str_t], &[Cmpop::Eq, Cmpop::NotEq], Some(bool_t));
/* list ======== */
impl_binop(unifier, store, list_t, &[list_t], Some(list_t), &[Operator::Add]);
impl_binop(unifier, store, list_t, &[int32_t, int64_t], Some(list_t), &[Operator::Mult]);
impl_cmpop(unifier, store, list_t, &[list_t], &[Cmpop::Eq, Cmpop::NotEq], Some(bool_t));
/* ndarray ===== */
let ndarray_usized_ndims_tvar =
unifier.get_fresh_const_generic_var(size_t, Some("ndarray_ndims".into()), None);
let ndarray_unsized_t =
make_ndarray_ty(unifier, store, None, Some(ndarray_usized_ndims_tvar.ty));
let (ndarray_dtype_t, _) = unpack_ndarray_var_tys(unifier, ndarray_t);
let (ndarray_unsized_dtype_t, _) = unpack_ndarray_var_tys(unifier, ndarray_unsized_t);
impl_basic_arithmetic(
unifier,
store,
ndarray_t,
&[ndarray_unsized_t, ndarray_unsized_dtype_t],
None,
);
impl_pow(unifier, store, ndarray_t, &[ndarray_unsized_t, ndarray_unsized_dtype_t], None);
impl_div(unifier, store, ndarray_t, &[ndarray_t, ndarray_dtype_t], None);
impl_floordiv(unifier, store, ndarray_t, &[ndarray_unsized_t, ndarray_unsized_dtype_t], None);
impl_mod(unifier, store, ndarray_t, &[ndarray_unsized_t, ndarray_unsized_dtype_t], None);
impl_matmul(unifier, store, ndarray_t, &[ndarray_t], Some(ndarray_t));
impl_sign(unifier, store, ndarray_t, Some(ndarray_t));
impl_invert(unifier, store, ndarray_t, Some(ndarray_t));
impl_eq(unifier, store, ndarray_t, &[ndarray_unsized_t, ndarray_unsized_dtype_t], None);
impl_comparison(unifier, store, ndarray_t, &[ndarray_unsized_t, ndarray_unsized_dtype_t], None);
} }

View File

@ -1,6 +1,5 @@
mod function_check; mod function_check;
pub mod magic_methods; pub mod magic_methods;
pub mod type_error;
pub mod type_inferencer; pub mod type_inferencer;
pub mod typedef; pub mod typedef;
mod unification_table; mod unification_table;

View File

@ -1,241 +0,0 @@
use std::{collections::HashMap, fmt::Display};
use itertools::Itertools;
use nac3parser::ast::{Cmpop, Location, StrRef};
use super::{
magic_methods::{Binop, HasOpInfo},
typedef::{RecordKey, Type, TypeEnum, Unifier},
};
#[derive(Debug, Clone)]
pub enum TypeErrorKind {
GotMultipleValues {
name: StrRef,
},
TooManyArguments {
expected_min_count: usize,
expected_max_count: usize,
got_count: usize,
},
MissingArgs {
missing_arg_names: Vec<StrRef>,
},
UnknownArgName(StrRef),
IncorrectArgType {
name: StrRef,
expected: Type,
got: Type,
},
UnsupportedBinaryOpTypes {
operator: Binop,
lhs_type: Type,
rhs_type: Type,
expected_rhs_type: Type,
},
UnsupportedComparsionOpTypes {
operator: Cmpop,
lhs_type: Type,
rhs_type: Type,
expected_rhs_type: Type,
},
FieldUnificationError {
field: RecordKey,
types: (Type, Type),
loc: (Option<Location>, Option<Location>),
},
IncompatibleRange(Type, Vec<Type>),
IncompatibleTypes(Type, Type),
MutationError(RecordKey, Type),
NoSuchField(RecordKey, Type),
TupleIndexOutOfBounds {
index: i32,
len: i32,
},
RequiresTypeAnn,
PolymorphicFunctionPointer,
NoSuchAttribute(RecordKey, Type),
}
#[derive(Debug, Clone)]
pub struct TypeError {
pub kind: TypeErrorKind,
pub loc: Option<Location>,
}
impl TypeError {
#[must_use]
pub fn new(kind: TypeErrorKind, loc: Option<Location>) -> TypeError {
TypeError { kind, loc }
}
#[must_use]
pub fn at(mut self, loc: Option<Location>) -> TypeError {
self.loc = self.loc.or(loc);
self
}
#[must_use]
pub fn to_display(self, unifier: &Unifier) -> DisplayTypeError {
DisplayTypeError { err: self, unifier }
}
}
pub struct DisplayTypeError<'a> {
pub err: TypeError,
pub unifier: &'a Unifier,
}
fn loc_to_str(loc: Option<Location>) -> String {
match loc {
Some(loc) => format!("(in {loc})"),
None => String::new(),
}
}
impl<'a> Display for DisplayTypeError<'a> {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
use TypeErrorKind::*;
let mut notes = Some(HashMap::new());
match &self.err.kind {
GotMultipleValues { name } => {
write!(f, "For multiple values for parameter {name}")
}
TooManyArguments { expected_min_count, expected_max_count, got_count } => {
debug_assert!(expected_min_count <= expected_max_count);
if expected_min_count == expected_max_count {
let expected_count = expected_min_count; // or expected_max_count
write!(f, "Too many arguments. Expected {expected_count} but got {got_count}")
} else {
write!(f, "Too many arguments. Expected {expected_min_count} to {expected_max_count} arguments but got {got_count}")
}
}
MissingArgs { missing_arg_names } => {
let args = missing_arg_names.iter().join(", ");
write!(f, "Missing arguments: {args}")
}
UnsupportedBinaryOpTypes { operator, lhs_type, rhs_type, expected_rhs_type } => {
let op_symbol = operator.op_info().symbol;
let lhs_type_str = self.unifier.stringify_with_notes(*lhs_type, &mut notes);
let rhs_type_str = self.unifier.stringify_with_notes(*rhs_type, &mut notes);
let expected_rhs_type_str =
self.unifier.stringify_with_notes(*expected_rhs_type, &mut notes);
write!(f, "Unsupported operand type(s) for {op_symbol}: '{lhs_type_str}' and '{rhs_type_str}' (right operand should have type {expected_rhs_type_str})")
}
UnsupportedComparsionOpTypes { operator, lhs_type, rhs_type, expected_rhs_type } => {
let op_symbol = operator.op_info().symbol;
let lhs_type_str = self.unifier.stringify_with_notes(*lhs_type, &mut notes);
let rhs_type_str = self.unifier.stringify_with_notes(*rhs_type, &mut notes);
let expected_rhs_type_str =
self.unifier.stringify_with_notes(*expected_rhs_type, &mut notes);
write!(f, "'{op_symbol}' not supported between instances of '{lhs_type_str}' and '{rhs_type_str}' (right operand should have type {expected_rhs_type_str})")
}
UnknownArgName(name) => {
write!(f, "Unknown argument name: {name}")
}
IncorrectArgType { name, expected, got } => {
let expected = self.unifier.stringify_with_notes(*expected, &mut notes);
let got = self.unifier.stringify_with_notes(*got, &mut notes);
write!(f, "Incorrect argument type for parameter {name}. Expected {expected}, but got {got}")
}
FieldUnificationError { field, types, loc } => {
let lhs = self.unifier.stringify_with_notes(types.0, &mut notes);
let rhs = self.unifier.stringify_with_notes(types.1, &mut notes);
write!(
f,
"Unable to unify field {}: Got types {}{} and {}{}",
field,
lhs,
loc_to_str(loc.0),
rhs,
loc_to_str(loc.1)
)
}
IncompatibleRange(t, ts) => {
let t = self.unifier.stringify_with_notes(*t, &mut notes);
let ts = ts
.iter()
.map(|t| self.unifier.stringify_with_notes(*t, &mut notes))
.collect::<Vec<_>>();
write!(f, "Expected any one of these types: {}, but got {}", ts.join(", "), t)
}
IncompatibleTypes(t1, t2) => {
let type1 = self.unifier.get_ty_immutable(*t1);
let type2 = self.unifier.get_ty_immutable(*t2);
match (&*type1, &*type2) {
(TypeEnum::TCall(calls), _) => {
let loc = self.unifier.calls[calls[0].0].loc;
let result = write!(
f,
"{} is not callable",
self.unifier.stringify_with_notes(*t2, &mut notes)
);
if let Some(loc) = loc {
result?;
write!(f, " (in {loc})")?;
return Ok(());
}
result
}
(
TypeEnum::TTuple { ty: ty1, is_vararg_ctx: is_vararg1 },
TypeEnum::TTuple { ty: ty2, is_vararg_ctx: is_vararg2 },
) if !is_vararg1 && !is_vararg2 && ty1.len() != ty2.len() => {
let t1 = self.unifier.stringify_with_notes(*t1, &mut notes);
let t2 = self.unifier.stringify_with_notes(*t2, &mut notes);
write!(f, "Tuple length mismatch: got {t1} and {t2}")
}
_ => {
let t1 = self.unifier.stringify_with_notes(*t1, &mut notes);
let t2 = self.unifier.stringify_with_notes(*t2, &mut notes);
write!(f, "Incompatible types: {t1} and {t2}")
}
}
}
MutationError(name, t) => {
if let TypeEnum::TTuple { .. } = &*self.unifier.get_ty_immutable(*t) {
write!(f, "Cannot assign to an element of a tuple")
} else {
let t = self.unifier.stringify_with_notes(*t, &mut notes);
write!(f, "Cannot assign to field {name} of {t}, which is immutable")
}
}
NoSuchField(name, t) => {
let t = self.unifier.stringify_with_notes(*t, &mut notes);
write!(f, "`{t}::{name}` field/method does not exist")
}
NoSuchAttribute(name, t) => {
let t = self.unifier.stringify_with_notes(*t, &mut notes);
write!(f, "`{t}::{name}` is not a class attribute")
}
TupleIndexOutOfBounds { index, len } => {
write!(
f,
"Tuple index out of bounds. Got {index} but tuple has only {len} elements"
)
}
RequiresTypeAnn => {
write!(f, "Unable to infer virtual object type: Type annotation required")
}
PolymorphicFunctionPointer => {
write!(f, "Polymorphic function pointers is not supported")
}
}?;
if let Some(loc) = self.err.loc {
write!(f, " at {loc}")?;
}
let notes = notes.unwrap();
if !notes.is_empty() {
write!(f, "\n\nNotes:")?;
for line in notes.values() {
write!(f, "\n {line}")?;
}
}
Ok(())
}
}

File diff suppressed because it is too large Load Diff

View File

@ -1,19 +1,16 @@
use std::iter::zip; use super::super::typedef::*;
use indexmap::IndexMap;
use indoc::indoc;
use parking_lot::RwLock;
use test_case::test_case;
use nac3parser::{ast::FileName, parser::parse_program};
use super::*; use super::*;
use crate::{ use crate::{
codegen::{CodeGenContext, CodeGenerator}, codegen::CodeGenContext,
location::Location,
symbol_resolver::ValueEnum, symbol_resolver::ValueEnum,
toplevel::{helper::PrimDef, DefinitionId, TopLevelDef}, toplevel::{DefinitionId, TopLevelDef},
typecheck::{magic_methods::with_fields, typedef::*},
}; };
use indoc::indoc;
use itertools::zip;
use nac3parser::parser::parse_program;
use parking_lot::RwLock;
use test_case::test_case;
struct Resolver { struct Resolver {
id_to_type: HashMap<StrRef, Type>, id_to_type: HashMap<StrRef, Type>,
@ -22,10 +19,7 @@ struct Resolver {
} }
impl SymbolResolver for Resolver { impl SymbolResolver for Resolver {
fn get_default_param_value( fn get_default_param_value(&self, _: &nac3parser::ast::Expr) -> Option<crate::symbol_resolver::SymbolValue> {
&self,
_: &ast::Expr,
) -> Option<crate::symbol_resolver::SymbolValue> {
unimplemented!() unimplemented!()
} }
@ -35,32 +29,24 @@ impl SymbolResolver for Resolver {
_: &[Arc<RwLock<TopLevelDef>>], _: &[Arc<RwLock<TopLevelDef>>],
_: &PrimitiveStore, _: &PrimitiveStore,
str: StrRef, str: StrRef,
) -> Result<Type, String> { ) -> Option<Type> {
self.id_to_type.get(&str).copied().ok_or_else(|| format!("cannot find symbol `{str}`")) self.id_to_type.get(&str).cloned()
} }
fn get_symbol_value<'ctx>( fn get_symbol_value<'ctx, 'a>(
&self, &self,
_: StrRef, _: StrRef,
_: &mut CodeGenContext<'ctx, '_>, _: &mut CodeGenContext<'ctx, 'a>,
_: &mut dyn CodeGenerator,
) -> Option<ValueEnum<'ctx>> { ) -> Option<ValueEnum<'ctx>> {
unimplemented!() unimplemented!()
} }
fn get_identifier_def(&self, id: StrRef) -> Result<DefinitionId, HashSet<String>> { fn get_symbol_location(&self, _: StrRef) -> Option<Location> {
self.id_to_def
.get(&id)
.copied()
.ok_or_else(|| HashSet::from(["Unknown identifier".to_string()]))
}
fn get_string_id(&self, _: &str) -> i32 {
unimplemented!() unimplemented!()
} }
fn get_exception_id(&self, _tyid: usize) -> usize { fn get_identifier_def(&self, id: StrRef) -> Option<DefinitionId> {
unimplemented!() self.id_to_def.get(&id).cloned()
} }
} }
@ -70,7 +56,7 @@ struct TestEnvironment {
pub primitives: PrimitiveStore, pub primitives: PrimitiveStore,
pub id_to_name: HashMap<usize, StrRef>, pub id_to_name: HashMap<usize, StrRef>,
pub identifier_mapping: HashMap<StrRef, Type>, pub identifier_mapping: HashMap<StrRef, Type>,
pub virtual_checks: Vec<(Type, Type, Location)>, pub virtual_checks: Vec<(Type, Type)>,
pub calls: HashMap<CodeLocation, CallId>, pub calls: HashMap<CodeLocation, CallId>,
pub top_level: TopLevelContext, pub top_level: TopLevelContext,
} }
@ -80,107 +66,55 @@ impl TestEnvironment {
let mut unifier = Unifier::new(); let mut unifier = Unifier::new();
let int32 = unifier.add_ty(TypeEnum::TObj { let int32 = unifier.add_ty(TypeEnum::TObj {
obj_id: PrimDef::Int32.id(), obj_id: DefinitionId(0),
fields: HashMap::new(), fields: HashMap::new().into(),
params: VarMap::new(), params: HashMap::new().into(),
}); });
with_fields(&mut unifier, int32, |unifier, fields| { if let TypeEnum::TObj { fields, .. } = &*unifier.get_ty(int32) {
let add_ty = unifier.add_ty(TypeEnum::TFunc(FunSignature { let add_ty = unifier.add_ty(TypeEnum::TFunc(
args: vec![FuncArg { FunSignature {
name: "other".into(), args: vec![FuncArg { name: "other".into(), ty: int32, default_value: None }],
ty: int32,
default_value: None,
is_vararg: false,
}],
ret: int32, ret: int32,
vars: VarMap::new(), vars: HashMap::new(),
})); }
fields.insert("__add__".into(), (add_ty, false)); .into(),
}); ));
fields.borrow_mut().insert("__add__".into(), (add_ty, false));
}
let int64 = unifier.add_ty(TypeEnum::TObj { let int64 = unifier.add_ty(TypeEnum::TObj {
obj_id: PrimDef::Int64.id(), obj_id: DefinitionId(1),
fields: HashMap::new(), fields: HashMap::new().into(),
params: VarMap::new(), params: HashMap::new().into(),
}); });
let float = unifier.add_ty(TypeEnum::TObj { let float = unifier.add_ty(TypeEnum::TObj {
obj_id: PrimDef::Float.id(), obj_id: DefinitionId(2),
fields: HashMap::new(), fields: HashMap::new().into(),
params: VarMap::new(), params: HashMap::new().into(),
}); });
let bool = unifier.add_ty(TypeEnum::TObj { let bool = unifier.add_ty(TypeEnum::TObj {
obj_id: PrimDef::Bool.id(), obj_id: DefinitionId(3),
fields: HashMap::new(), fields: HashMap::new().into(),
params: VarMap::new(), params: HashMap::new().into(),
}); });
let none = unifier.add_ty(TypeEnum::TObj { let none = unifier.add_ty(TypeEnum::TObj {
obj_id: PrimDef::None.id(), obj_id: DefinitionId(4),
fields: HashMap::new(), fields: HashMap::new().into(),
params: VarMap::new(), params: HashMap::new().into(),
}); });
let range = unifier.add_ty(TypeEnum::TObj { let range = unifier.add_ty(TypeEnum::TObj {
obj_id: PrimDef::Range.id(), obj_id: DefinitionId(5),
fields: HashMap::new(), fields: HashMap::new().into(),
params: VarMap::new(), params: HashMap::new().into(),
}); });
let str = unifier.add_ty(TypeEnum::TObj { let str = unifier.add_ty(TypeEnum::TObj {
obj_id: PrimDef::Str.id(), obj_id: DefinitionId(6),
fields: HashMap::new(), fields: HashMap::new().into(),
params: VarMap::new(), params: HashMap::new().into(),
}); });
let exception = unifier.add_ty(TypeEnum::TObj { let primitives = PrimitiveStore { int32, int64, float, bool, none, range, str };
obj_id: PrimDef::Exception.id(),
fields: HashMap::new(),
params: VarMap::new(),
});
let uint32 = unifier.add_ty(TypeEnum::TObj {
obj_id: PrimDef::UInt32.id(),
fields: HashMap::new(),
params: VarMap::new(),
});
let uint64 = unifier.add_ty(TypeEnum::TObj {
obj_id: PrimDef::UInt64.id(),
fields: HashMap::new(),
params: VarMap::new(),
});
let option = unifier.add_ty(TypeEnum::TObj {
obj_id: PrimDef::Option.id(),
fields: HashMap::new(),
params: VarMap::new(),
});
let list_elem_tvar = unifier.get_fresh_var(Some("list_elem".into()), None);
let list = unifier.add_ty(TypeEnum::TObj {
obj_id: PrimDef::List.id(),
fields: HashMap::new(),
params: into_var_map([list_elem_tvar]),
});
let ndarray_dtype_tvar = unifier.get_fresh_var(Some("ndarray_dtype".into()), None);
let ndarray_ndims_tvar =
unifier.get_fresh_const_generic_var(uint64, Some("ndarray_ndims".into()), None);
let ndarray = unifier.add_ty(TypeEnum::TObj {
obj_id: PrimDef::NDArray.id(),
fields: HashMap::new(),
params: into_var_map([ndarray_dtype_tvar, ndarray_ndims_tvar]),
});
let primitives = PrimitiveStore {
int32,
int64,
float,
bool,
none,
range,
str,
exception,
uint32,
uint64,
option,
list,
ndarray,
size_t: 64,
};
unifier.put_primitive_store(&primitives);
set_primitives_magic_methods(&primitives, &mut unifier); set_primitives_magic_methods(&primitives, &mut unifier);
let id_to_name: HashMap<_, _> = [ let id_to_name = [
(0, "int32".into()), (0, "int32".into()),
(1, "int64".into()), (1, "int64".into()),
(2, "float".into()), (2, "float".into()),
@ -188,23 +122,24 @@ impl TestEnvironment {
(4, "none".into()), (4, "none".into()),
(5, "range".into()), (5, "range".into()),
(6, "str".into()), (6, "str".into()),
(7, "exception".into()),
] ]
.into(); .iter()
.cloned()
.collect();
let mut identifier_mapping = HashMap::new(); let mut identifier_mapping = HashMap::new();
identifier_mapping.insert("None".into(), none); identifier_mapping.insert("None".into(), none);
let resolver = Arc::new(Resolver { let resolver = Arc::new(Resolver {
id_to_type: identifier_mapping.clone(), id_to_type: identifier_mapping.clone(),
id_to_def: HashMap::default(), id_to_def: Default::default(),
class_names: HashMap::default(), class_names: Default::default(),
}) as Arc<dyn SymbolResolver + Send + Sync>; }) as Arc<dyn SymbolResolver + Send + Sync>;
TestEnvironment { TestEnvironment {
top_level: TopLevelContext { top_level: TopLevelContext {
definitions: Arc::default(), definitions: Default::default(),
unifiers: Arc::default(), unifiers: Default::default(),
personality_symbol: None, personality_symbol: None,
}, },
unifier, unifier,
@ -226,272 +161,199 @@ impl TestEnvironment {
let mut identifier_mapping = HashMap::new(); let mut identifier_mapping = HashMap::new();
let mut top_level_defs: Vec<Arc<RwLock<TopLevelDef>>> = Vec::new(); let mut top_level_defs: Vec<Arc<RwLock<TopLevelDef>>> = Vec::new();
let int32 = unifier.add_ty(TypeEnum::TObj { let int32 = unifier.add_ty(TypeEnum::TObj {
obj_id: PrimDef::Int32.id(), obj_id: DefinitionId(0),
fields: HashMap::new(), fields: HashMap::new().into(),
params: VarMap::new(), params: HashMap::new().into(),
}); });
with_fields(&mut unifier, int32, |unifier, fields| { if let TypeEnum::TObj { fields, .. } = &*unifier.get_ty(int32) {
let add_ty = unifier.add_ty(TypeEnum::TFunc(FunSignature { let add_ty = unifier.add_ty(TypeEnum::TFunc(
args: vec![FuncArg { FunSignature {
name: "other".into(), args: vec![FuncArg { name: "other".into(), ty: int32, default_value: None }],
ty: int32,
default_value: None,
is_vararg: false,
}],
ret: int32, ret: int32,
vars: VarMap::new(), vars: HashMap::new(),
})); }
fields.insert("__add__".into(), (add_ty, false)); .into(),
}); ));
fields.borrow_mut().insert("__add__".into(), (add_ty, false));
}
let int64 = unifier.add_ty(TypeEnum::TObj { let int64 = unifier.add_ty(TypeEnum::TObj {
obj_id: PrimDef::Int64.id(), obj_id: DefinitionId(1),
fields: HashMap::new(), fields: HashMap::new().into(),
params: VarMap::new(), params: HashMap::new().into(),
}); });
let float = unifier.add_ty(TypeEnum::TObj { let float = unifier.add_ty(TypeEnum::TObj {
obj_id: PrimDef::Float.id(), obj_id: DefinitionId(2),
fields: HashMap::new(), fields: HashMap::new().into(),
params: VarMap::new(), params: HashMap::new().into(),
}); });
let bool = unifier.add_ty(TypeEnum::TObj { let bool = unifier.add_ty(TypeEnum::TObj {
obj_id: PrimDef::Bool.id(), obj_id: DefinitionId(3),
fields: HashMap::new(), fields: HashMap::new().into(),
params: VarMap::new(), params: HashMap::new().into(),
}); });
let none = unifier.add_ty(TypeEnum::TObj { let none = unifier.add_ty(TypeEnum::TObj {
obj_id: PrimDef::None.id(), obj_id: DefinitionId(4),
fields: HashMap::new(), fields: HashMap::new().into(),
params: VarMap::new(), params: HashMap::new().into(),
}); });
let range = unifier.add_ty(TypeEnum::TObj { let range = unifier.add_ty(TypeEnum::TObj {
obj_id: PrimDef::Range.id(), obj_id: DefinitionId(5),
fields: HashMap::new(), fields: HashMap::new().into(),
params: VarMap::new(), params: HashMap::new().into(),
}); });
let str = unifier.add_ty(TypeEnum::TObj { let str = unifier.add_ty(TypeEnum::TObj {
obj_id: PrimDef::Str.id(), obj_id: DefinitionId(6),
fields: HashMap::new(), fields: HashMap::new().into(),
params: VarMap::new(), params: HashMap::new().into(),
});
let exception = unifier.add_ty(TypeEnum::TObj {
obj_id: PrimDef::Exception.id(),
fields: HashMap::new(),
params: VarMap::new(),
});
let uint32 = unifier.add_ty(TypeEnum::TObj {
obj_id: PrimDef::UInt32.id(),
fields: HashMap::new(),
params: VarMap::new(),
});
let uint64 = unifier.add_ty(TypeEnum::TObj {
obj_id: PrimDef::UInt64.id(),
fields: HashMap::new(),
params: VarMap::new(),
});
let option = unifier.add_ty(TypeEnum::TObj {
obj_id: PrimDef::Option.id(),
fields: HashMap::new(),
params: VarMap::new(),
});
let list_elem_tvar = unifier.get_fresh_var(Some("list_elem".into()), None);
let list = unifier.add_ty(TypeEnum::TObj {
obj_id: PrimDef::List.id(),
fields: HashMap::new(),
params: into_var_map([list_elem_tvar]),
});
let ndarray = unifier.add_ty(TypeEnum::TObj {
obj_id: PrimDef::NDArray.id(),
fields: HashMap::new(),
params: VarMap::new(),
}); });
identifier_mapping.insert("None".into(), none); identifier_mapping.insert("None".into(), none);
for (i, name) in [ for (i, name) in
"int32", ["int32", "int64", "float", "bool", "none", "range", "str"].iter().enumerate()
"int64",
"float",
"bool",
"none",
"range",
"str",
"Exception",
"uint32",
"uint64",
"Option",
"list",
"ndarray",
]
.iter()
.enumerate()
{ {
top_level_defs.push( top_level_defs.push(
RwLock::new(TopLevelDef::Class { RwLock::new(TopLevelDef::Class {
name: (*name).into(), name: (*name).into(),
object_id: DefinitionId(i), object_id: DefinitionId(i),
type_vars: Vec::default(), type_vars: Default::default(),
fields: Vec::default(), fields: Default::default(),
attributes: Vec::default(), methods: Default::default(),
methods: Vec::default(), ancestors: Default::default(),
ancestors: Vec::default(),
resolver: None, resolver: None,
constructor: None, constructor: None,
loc: None,
}) })
.into(), .into(),
); );
} }
let defs = 12;
let primitives = PrimitiveStore { let primitives = PrimitiveStore { int32, int64, float, bool, none, range, str };
int32,
int64,
float,
bool,
none,
range,
str,
exception,
uint32,
uint64,
option,
list,
ndarray,
size_t: 64,
};
unifier.put_primitive_store(&primitives); let (v0, id) = unifier.get_fresh_var();
let tvar = unifier.get_dummy_var();
let foo_ty = unifier.add_ty(TypeEnum::TObj { let foo_ty = unifier.add_ty(TypeEnum::TObj {
obj_id: DefinitionId(defs + 1), obj_id: DefinitionId(7),
fields: [("a".into(), (tvar.ty, true))].into(), fields: [("a".into(), (v0, true))].iter().cloned().collect::<HashMap<_, _>>().into(),
params: into_var_map([tvar]), params: [(id, v0)].iter().cloned().collect::<HashMap<_, _>>().into(),
}); });
top_level_defs.push( top_level_defs.push(
RwLock::new(TopLevelDef::Class { RwLock::new(TopLevelDef::Class {
name: "Foo".into(), name: "Foo".into(),
object_id: DefinitionId(defs + 1), object_id: DefinitionId(7),
type_vars: vec![tvar.ty], type_vars: vec![v0],
fields: [("a".into(), tvar.ty, true)].into(), fields: [("a".into(), v0, true)].into(),
attributes: Vec::default(), methods: Default::default(),
methods: Vec::default(), ancestors: Default::default(),
ancestors: Vec::default(),
resolver: None, resolver: None,
constructor: None, constructor: None,
loc: None,
}) })
.into(), .into(),
); );
identifier_mapping.insert( identifier_mapping.insert(
"Foo".into(), "Foo".into(),
unifier.add_ty(TypeEnum::TFunc(FunSignature { unifier.add_ty(TypeEnum::TFunc(
FunSignature {
args: vec![], args: vec![],
ret: foo_ty, ret: foo_ty,
vars: into_var_map([tvar]), vars: [(id, v0)].iter().cloned().collect(),
})), }
.into(),
)),
); );
let fun = unifier.add_ty(TypeEnum::TFunc(FunSignature { let fun = unifier.add_ty(TypeEnum::TFunc(
args: vec![], FunSignature { args: vec![], ret: int32, vars: Default::default() }.into(),
ret: int32, ));
vars: IndexMap::default(),
}));
let bar = unifier.add_ty(TypeEnum::TObj { let bar = unifier.add_ty(TypeEnum::TObj {
obj_id: DefinitionId(defs + 2), obj_id: DefinitionId(8),
fields: [("a".into(), (int32, true)), ("b".into(), (fun, true))].into(), fields: [("a".into(), (int32, true)), ("b".into(), (fun, true))]
params: IndexMap::default(), .iter()
.cloned()
.collect::<HashMap<_, _>>()
.into(),
params: Default::default(),
}); });
top_level_defs.push( top_level_defs.push(
RwLock::new(TopLevelDef::Class { RwLock::new(TopLevelDef::Class {
name: "Bar".into(), name: "Bar".into(),
object_id: DefinitionId(defs + 2), object_id: DefinitionId(8),
type_vars: Vec::default(), type_vars: Default::default(),
fields: [("a".into(), int32, true), ("b".into(), fun, true)].into(), fields: [("a".into(), int32, true), ("b".into(), fun, true)].into(),
attributes: Vec::default(), methods: Default::default(),
methods: Vec::default(), ancestors: Default::default(),
ancestors: Vec::default(),
resolver: None, resolver: None,
constructor: None, constructor: None,
loc: None,
}) })
.into(), .into(),
); );
identifier_mapping.insert( identifier_mapping.insert(
"Bar".into(), "Bar".into(),
unifier.add_ty(TypeEnum::TFunc(FunSignature { unifier.add_ty(TypeEnum::TFunc(
args: vec![], FunSignature { args: vec![], ret: bar, vars: Default::default() }.into(),
ret: bar, )),
vars: IndexMap::default(),
})),
); );
let bar2 = unifier.add_ty(TypeEnum::TObj { let bar2 = unifier.add_ty(TypeEnum::TObj {
obj_id: DefinitionId(defs + 3), obj_id: DefinitionId(9),
fields: [("a".into(), (bool, true)), ("b".into(), (fun, false))].into(), fields: [("a".into(), (bool, true)), ("b".into(), (fun, false))]
params: IndexMap::default(), .iter()
.cloned()
.collect::<HashMap<_, _>>()
.into(),
params: Default::default(),
}); });
top_level_defs.push( top_level_defs.push(
RwLock::new(TopLevelDef::Class { RwLock::new(TopLevelDef::Class {
name: "Bar2".into(), name: "Bar2".into(),
object_id: DefinitionId(defs + 3), object_id: DefinitionId(9),
type_vars: Vec::default(), type_vars: Default::default(),
fields: [("a".into(), bool, true), ("b".into(), fun, false)].into(), fields: [("a".into(), bool, true), ("b".into(), fun, false)].into(),
attributes: Vec::default(), methods: Default::default(),
methods: Vec::default(), ancestors: Default::default(),
ancestors: Vec::default(),
resolver: None, resolver: None,
constructor: None, constructor: None,
loc: None,
}) })
.into(), .into(),
); );
identifier_mapping.insert( identifier_mapping.insert(
"Bar2".into(), "Bar2".into(),
unifier.add_ty(TypeEnum::TFunc(FunSignature { unifier.add_ty(TypeEnum::TFunc(
args: vec![], FunSignature { args: vec![], ret: bar2, vars: Default::default() }.into(),
ret: bar2, )),
vars: IndexMap::default(),
})),
); );
let class_names: HashMap<_, _> = [("Bar".into(), bar), ("Bar2".into(), bar2)].into(); let class_names = [("Bar".into(), bar), ("Bar2".into(), bar2)].iter().cloned().collect();
let id_to_name = [ let id_to_name = [
"int32".into(), (0, "int32".into()),
"int64".into(), (1, "int64".into()),
"float".into(), (2, "float".into()),
"bool".into(), (3, "bool".into()),
"none".into(), (4, "none".into()),
"range".into(), (5, "range".into()),
"str".into(), (6, "str".into()),
"exception".into(), (7, "Foo".into()),
"uint32".into(), (8, "Bar".into()),
"uint64".into(), (9, "Bar2".into()),
"option".into(),
"list".into(),
"ndarray".into(),
"Foo".into(),
"Bar".into(),
"Bar2".into(),
] ]
.into_iter() .iter()
.enumerate() .cloned()
.collect(); .collect();
let top_level = TopLevelContext { let top_level = TopLevelContext {
definitions: Arc::new(top_level_defs.into()), definitions: Arc::new(top_level_defs.into()),
unifiers: Arc::default(), unifiers: Default::default(),
personality_symbol: None, personality_symbol: None,
}; };
let resolver = Arc::new(Resolver { let resolver = Arc::new(Resolver {
id_to_type: identifier_mapping.clone(), id_to_type: identifier_mapping.clone(),
id_to_def: [ id_to_def: [
("Foo".into(), DefinitionId(defs + 1)), ("Foo".into(), DefinitionId(7)),
("Bar".into(), DefinitionId(defs + 2)), ("Bar".into(), DefinitionId(8)),
("Bar2".into(), DefinitionId(defs + 3)), ("Bar2".into(), DefinitionId(9)),
] ]
.into(), .iter()
.cloned()
.collect(),
class_names, class_names,
}) as Arc<dyn SymbolResolver + Send + Sync>; }) as Arc<dyn SymbolResolver + Send + Sync>;
@ -516,12 +378,11 @@ impl TestEnvironment {
top_level: &self.top_level, top_level: &self.top_level,
function_data: &mut self.function_data, function_data: &mut self.function_data,
unifier: &mut self.unifier, unifier: &mut self.unifier,
variable_mapping: HashMap::default(), variable_mapping: Default::default(),
primitives: &mut self.primitives, primitives: &mut self.primitives,
virtual_checks: &mut self.virtual_checks, virtual_checks: &mut self.virtual_checks,
calls: &mut self.calls, calls: &mut self.calls,
defined_identifiers: HashMap::default(), defined_identifiers: Default::default(),
in_handler: false,
} }
} }
} }
@ -532,7 +393,7 @@ impl TestEnvironment {
c = 1.234 c = 1.234
d = True d = True
"}, "},
&[("a", "int32"), ("b", "int64"), ("c", "float"), ("d", "bool")].into(), [("a", "int32"), ("b", "int64"), ("c", "float"), ("d", "bool")].iter().cloned().collect(),
&[] &[]
; "primitives test")] ; "primitives test")]
#[test_case(indoc! {" #[test_case(indoc! {"
@ -541,7 +402,7 @@ impl TestEnvironment {
c = 1.234 c = 1.234
d = b(c) d = b(c)
"}, "},
&[("a", "fn[[x:float, y:float], float]"), ("b", "fn[[x:float], float]"), ("c", "float"), ("d", "float")].into(), [("a", "fn[[x=float, y=float], float]"), ("b", "fn[[x=float], float]"), ("c", "float"), ("d", "float")].iter().cloned().collect(),
&[] &[]
; "lambda test")] ; "lambda test")]
#[test_case(indoc! {" #[test_case(indoc! {"
@ -550,7 +411,7 @@ impl TestEnvironment {
a = b a = b
c = b(1) c = b(1)
"}, "},
&[("a", "fn[[x:int32], int32]"), ("b", "fn[[x:int32], int32]"), ("c", "int32")].into(), [("a", "fn[[x=int32], int32]"), ("b", "fn[[x=int32], int32]"), ("c", "int32")].iter().cloned().collect(),
&[] &[]
; "lambda test 2")] ; "lambda test 2")]
#[test_case(indoc! {" #[test_case(indoc! {"
@ -566,15 +427,15 @@ impl TestEnvironment {
b(123) b(123)
"}, "},
&[("a", "fn[[x:bool], bool]"), ("b", "fn[[x:int32], int32]"), ("c", "bool"), [("a", "fn[[x=bool], bool]"), ("b", "fn[[x=int32], int32]"), ("c", "bool"),
("d", "int32"), ("foo1", "Foo[bool]"), ("foo2", "Foo[int32]")].into(), ("d", "int32"), ("foo1", "Foo[1->bool]"), ("foo2", "Foo[1->int32]")].iter().cloned().collect(),
&[] &[]
; "obj test")] ; "obj test")]
#[test_case(indoc! {" #[test_case(indoc! {"
a = [1, 2, 3] a = [1, 2, 3]
b = [x + x for x in a] b = [x + x for x in a]
"}, "},
&[("a", "list[int32]"), ("b", "list[int32]")].into(), [("a", "list[int32]"), ("b", "list[int32]")].iter().cloned().collect(),
&[] &[]
; "listcomp test")] ; "listcomp test")]
#[test_case(indoc! {" #[test_case(indoc! {"
@ -582,26 +443,25 @@ impl TestEnvironment {
b = a.b() b = a.b()
a = virtual(Bar2()) a = virtual(Bar2())
"}, "},
&[("a", "virtual[Bar]"), ("b", "int32")].into(), [("a", "virtual[Bar]"), ("b", "int32")].iter().cloned().collect(),
&[("Bar", "Bar"), ("Bar2", "Bar")] &[("Bar", "Bar"), ("Bar2", "Bar")]
; "virtual test")] ; "virtual test")]
#[test_case(indoc! {" #[test_case(indoc! {"
a = [virtual(Bar(), Bar), virtual(Bar2())] a = [virtual(Bar(), Bar), virtual(Bar2())]
b = [x.b() for x in a] b = [x.b() for x in a]
"}, "},
&[("a", "list[virtual[Bar]]"), ("b", "list[int32]")].into(), [("a", "list[virtual[Bar]]"), ("b", "list[int32]")].iter().cloned().collect(),
&[("Bar", "Bar"), ("Bar2", "Bar")] &[("Bar", "Bar"), ("Bar2", "Bar")]
; "virtual list test")] ; "virtual list test")]
fn test_basic(source: &str, mapping: &HashMap<&str, &str>, virtuals: &[(&str, &str)]) { fn test_basic(source: &str, mapping: HashMap<&str, &str>, virtuals: &[(&str, &str)]) {
println!("source:\n{source}"); println!("source:\n{}", source);
let mut env = TestEnvironment::new(); let mut env = TestEnvironment::new();
let id_to_name = std::mem::take(&mut env.id_to_name); let id_to_name = std::mem::take(&mut env.id_to_name);
let mut defined_identifiers: HashMap<_, _> = let mut defined_identifiers: HashSet<_> = env.identifier_mapping.keys().cloned().collect();
env.identifier_mapping.keys().copied().map(|id| (id, IdentifierInfo::default())).collect(); defined_identifiers.insert("virtual".into());
defined_identifiers.insert("virtual".into(), IdentifierInfo::default());
let mut inferencer = env.get_inferencer(); let mut inferencer = env.get_inferencer();
inferencer.defined_identifiers.clone_from(&defined_identifiers); inferencer.defined_identifiers = defined_identifiers.clone();
let statements = parse_program(source, FileName::default()).unwrap(); let statements = parse_program(source).unwrap();
let statements = statements let statements = statements
.into_iter() .into_iter()
.map(|v| inferencer.fold_stmt(v)) .map(|v| inferencer.fold_stmt(v))
@ -610,38 +470,34 @@ fn test_basic(source: &str, mapping: &HashMap<&str, &str>, virtuals: &[(&str, &s
inferencer.check_block(&statements, &mut defined_identifiers).unwrap(); inferencer.check_block(&statements, &mut defined_identifiers).unwrap();
for (k, v) in &inferencer.variable_mapping { for (k, v) in inferencer.variable_mapping.iter() {
let name = inferencer.unifier.internal_stringify( let name = inferencer.unifier.stringify(
*v, *v,
&mut |v| (*id_to_name.get(&v).unwrap()).into(), &mut |v| (*id_to_name.get(&v).unwrap()).into(),
&mut |v| format!("v{v}"), &mut |v| format!("v{}", v),
&mut None,
); );
println!("{k}: {name}"); println!("{}: {}", k, name);
} }
for (k, v) in mapping { for (k, v) in mapping.iter() {
let ty = inferencer.variable_mapping.get(&(*k).into()).unwrap(); let ty = inferencer.variable_mapping.get(&(*k).into()).unwrap();
let name = inferencer.unifier.internal_stringify( let name = inferencer.unifier.stringify(
*ty, *ty,
&mut |v| (*id_to_name.get(&v).unwrap()).into(), &mut |v| (*id_to_name.get(&v).unwrap()).into(),
&mut |v| format!("v{v}"), &mut |v| format!("v{}", v),
&mut None,
); );
assert_eq!(format!("{k}: {v}"), format!("{k}: {name}")); assert_eq!(format!("{}: {}", k, v), format!("{}: {}", k, name));
} }
assert_eq!(inferencer.virtual_checks.len(), virtuals.len()); assert_eq!(inferencer.virtual_checks.len(), virtuals.len());
for ((a, b, _), (x, y)) in zip(inferencer.virtual_checks.iter(), virtuals) { for ((a, b), (x, y)) in zip(inferencer.virtual_checks.iter(), virtuals) {
let a = inferencer.unifier.internal_stringify( let a = inferencer.unifier.stringify(
*a, *a,
&mut |v| (*id_to_name.get(&v).unwrap()).into(), &mut |v| (*id_to_name.get(&v).unwrap()).into(),
&mut |v| format!("v{v}"), &mut |v| format!("v{}", v),
&mut None,
); );
let b = inferencer.unifier.internal_stringify( let b = inferencer.unifier.stringify(
*b, *b,
&mut |v| (*id_to_name.get(&v).unwrap()).into(), &mut |v| (*id_to_name.get(&v).unwrap()).into(),
&mut |v| format!("v{v}"), &mut |v| format!("v{}", v),
&mut None,
); );
assert_eq!(&a, x); assert_eq!(&a, x);
@ -659,14 +515,14 @@ fn test_basic(source: &str, mapping: &HashMap<&str, &str>, virtuals: &[(&str, &s
g = a // b g = a // b
h = a % b h = a % b
"}, "},
&[("a", "int32"), [("a", "int32"),
("b", "int32"), ("b", "int32"),
("c", "int32"), ("c", "int32"),
("d", "int32"), ("d", "int32"),
("e", "int32"), ("e", "int32"),
("f", "float"), ("f", "float"),
("g", "int32"), ("g", "int32"),
("h", "int32")].into() ("h", "int32")].iter().cloned().collect()
; "int32")] ; "int32")]
#[test_case( #[test_case(
indoc! {" indoc! {"
@ -682,7 +538,7 @@ fn test_basic(source: &str, mapping: &HashMap<&str, &str>, virtuals: &[(&str, &s
ii = 3 ii = 3
j = a ** b j = a ** b
"}, "},
&[("a", "float"), [("a", "float"),
("b", "float"), ("b", "float"),
("c", "float"), ("c", "float"),
("d", "float"), ("d", "float"),
@ -692,7 +548,7 @@ fn test_basic(source: &str, mapping: &HashMap<&str, &str>, virtuals: &[(&str, &s
("h", "float"), ("h", "float"),
("i", "float"), ("i", "float"),
("ii", "int32"), ("ii", "int32"),
("j", "float")].into() ("j", "float")].iter().cloned().collect()
; "float" ; "float"
)] )]
#[test_case( #[test_case(
@ -710,7 +566,7 @@ fn test_basic(source: &str, mapping: &HashMap<&str, &str>, virtuals: &[(&str, &s
k = a < b k = a < b
l = a != b l = a != b
"}, "},
&[("a", "int64"), [("a", "int64"),
("b", "int64"), ("b", "int64"),
("c", "int64"), ("c", "int64"),
("d", "int64"), ("d", "int64"),
@ -721,7 +577,7 @@ fn test_basic(source: &str, mapping: &HashMap<&str, &str>, virtuals: &[(&str, &s
("i", "bool"), ("i", "bool"),
("j", "bool"), ("j", "bool"),
("k", "bool"), ("k", "bool"),
("l", "bool")].into() ("l", "bool")].iter().cloned().collect()
; "int64" ; "int64"
)] )]
#[test_case( #[test_case(
@ -732,23 +588,22 @@ fn test_basic(source: &str, mapping: &HashMap<&str, &str>, virtuals: &[(&str, &s
d = not a d = not a
e = a != b e = a != b
"}, "},
&[("a", "bool"), [("a", "bool"),
("b", "bool"), ("b", "bool"),
("c", "bool"), ("c", "bool"),
("d", "bool"), ("d", "bool"),
("e", "bool")].into() ("e", "bool")].iter().cloned().collect()
; "boolean" ; "boolean"
)] )]
fn test_primitive_magic_methods(source: &str, mapping: &HashMap<&str, &str>) { fn test_primitive_magic_methods(source: &str, mapping: HashMap<&str, &str>) {
println!("source:\n{source}"); println!("source:\n{}", source);
let mut env = TestEnvironment::basic_test_env(); let mut env = TestEnvironment::basic_test_env();
let id_to_name = std::mem::take(&mut env.id_to_name); let id_to_name = std::mem::take(&mut env.id_to_name);
let mut defined_identifiers: HashMap<_, _> = let mut defined_identifiers: HashSet<_> = env.identifier_mapping.keys().cloned().collect();
env.identifier_mapping.keys().copied().map(|id| (id, IdentifierInfo::default())).collect(); defined_identifiers.insert("virtual".into());
defined_identifiers.insert("virtual".into(), IdentifierInfo::default());
let mut inferencer = env.get_inferencer(); let mut inferencer = env.get_inferencer();
inferencer.defined_identifiers.clone_from(&defined_identifiers); inferencer.defined_identifiers = defined_identifiers.clone();
let statements = parse_program(source, FileName::default()).unwrap(); let statements = parse_program(source).unwrap();
let statements = statements let statements = statements
.into_iter() .into_iter()
.map(|v| inferencer.fold_stmt(v)) .map(|v| inferencer.fold_stmt(v))
@ -757,23 +612,21 @@ fn test_primitive_magic_methods(source: &str, mapping: &HashMap<&str, &str>) {
inferencer.check_block(&statements, &mut defined_identifiers).unwrap(); inferencer.check_block(&statements, &mut defined_identifiers).unwrap();
for (k, v) in &inferencer.variable_mapping { for (k, v) in inferencer.variable_mapping.iter() {
let name = inferencer.unifier.internal_stringify( let name = inferencer.unifier.stringify(
*v, *v,
&mut |v| (*id_to_name.get(&v).unwrap()).into(), &mut |v| (*id_to_name.get(&v).unwrap()).into(),
&mut |v| format!("v{v}"), &mut |v| format!("v{}", v),
&mut None,
); );
println!("{k}: {name}"); println!("{}: {}", k, name);
} }
for (k, v) in mapping { for (k, v) in mapping.iter() {
let ty = inferencer.variable_mapping.get(&(*k).into()).unwrap(); let ty = inferencer.variable_mapping.get(&(*k).into()).unwrap();
let name = inferencer.unifier.internal_stringify( let name = inferencer.unifier.stringify(
*ty, *ty,
&mut |v| (*id_to_name.get(&v).unwrap()).into(), &mut |v| (*id_to_name.get(&v).unwrap()).into(),
&mut |v| format!("v{v}"), &mut |v| format!("v{}", v),
&mut None,
); );
assert_eq!(format!("{k}: {v}"), format!("{k}: {name}")); assert_eq!(format!("{}: {}", k, v), format!("{}: {}", k, name));
} }
} }

Some files were not shown because too many files have changed in this diff Show More