forked from M-Labs/artiq
63 lines
1.5 KiB
Python
63 lines
1.5 KiB
Python
from math import sqrt, cos, pi
|
|
import time
|
|
import random
|
|
|
|
import numpy as np
|
|
from scipy.optimize import curve_fit
|
|
|
|
from artiq import *
|
|
|
|
|
|
def model(x, F0):
|
|
t = 0.02
|
|
tpi = 0.03
|
|
A = 80
|
|
B = 40
|
|
return A+(B-A)/2/(4*tpi**2*(x-F0)**2+1)*(1-cos(pi*t/tpi*sqrt(4*tpi**2*(x-F0)**2+1)))
|
|
|
|
|
|
def model_numpy(xdata, F0):
|
|
r = np.zeros(len(xdata))
|
|
for i, x in enumerate(xdata):
|
|
r[i] = model(x, F0)
|
|
return r
|
|
|
|
|
|
class FloppingF(AutoDB):
|
|
class DBKeys:
|
|
implicit_core = False
|
|
|
|
npoints = Argument(100)
|
|
min_freq = Argument(1000)
|
|
max_freq = Argument(2000)
|
|
|
|
F0 = Argument(1500)
|
|
noise_amplitude = Argument(0.1)
|
|
|
|
frequency = Result()
|
|
brightness = Result()
|
|
|
|
flopping_freq = Parameter()
|
|
|
|
@staticmethod
|
|
def realtime_results():
|
|
return {
|
|
("frequency", "brightness"): "xy"
|
|
}
|
|
|
|
def run(self):
|
|
for i in range(self.npoints):
|
|
frequency = (self.max_freq-self.min_freq)*i/(self.npoints - 1) + self.min_freq
|
|
brightness = model(frequency, self.F0) + self.noise_amplitude*random.random()
|
|
self.frequency.append(frequency)
|
|
self.brightness.append(brightness)
|
|
time.sleep(0.1)
|
|
|
|
def analyze(self):
|
|
popt, pcov = curve_fit(model_numpy,
|
|
self.frequency.read, self.brightness.read,
|
|
p0=[self.flopping_freq])
|
|
perr = np.sqrt(np.diag(pcov))
|
|
if perr < 0.1:
|
|
self.flopping_freq = float(popt)
|