forked from M-Labs/artiq
wavesynth: get coefficients.py into useable state
SplineSource() supports spline interpolating multi-channel tabular data, cropping it and generating wavesynth compatible segment data from it. ComposingSplineSource() needs some verification still.
This commit is contained in:
parent
5805240df6
commit
60baed68b4
|
@ -0,0 +1,38 @@
|
||||||
|
import unittest
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
from artiq.wavesynth import coefficients, compute_samples
|
||||||
|
|
||||||
|
|
||||||
|
class TestSplineCoef(unittest.TestCase):
|
||||||
|
def setUp(self):
|
||||||
|
self.x = np.arange(5.)
|
||||||
|
self.y = np.sin(2*np.pi*self.x/5) + np.arange(2)[:, None]
|
||||||
|
self.s = coefficients.SplineSource(self.x, self.y, order=4)
|
||||||
|
|
||||||
|
def test_get_segment(self):
|
||||||
|
return list(self.s.get_segment_data(1.5, 3.2, 1/100.))
|
||||||
|
|
||||||
|
def test_synth(self):
|
||||||
|
d = self.test_get_segment()
|
||||||
|
d[0]["trigger"] = True
|
||||||
|
return compute_samples.Synthesizer(self.y.shape[0], [d, d + d])
|
||||||
|
|
||||||
|
def drive(self, s):
|
||||||
|
y = []
|
||||||
|
for f in 0, 1, None, 0:
|
||||||
|
if f is not None:
|
||||||
|
s.select(f)
|
||||||
|
y += s.trigger()[0]
|
||||||
|
return y
|
||||||
|
|
||||||
|
def test_run(self):
|
||||||
|
return self.drive(self.test_synth())
|
||||||
|
|
||||||
|
@unittest.skip("manual/visual test")
|
||||||
|
def test_plot(self):
|
||||||
|
import cairoplot
|
||||||
|
y = self.test_run()
|
||||||
|
x = list(range(len(y)))
|
||||||
|
cairoplot.scatter_plot("plot.png", [x, y])
|
|
@ -1,67 +1,263 @@
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from scipy.interpolate import splrep, splev, spalde
|
from scipy.interpolate import splrep, splev, spalde
|
||||||
|
from scipy.special import binom
|
||||||
|
|
||||||
|
|
||||||
|
class UnivariateMultiSpline:
|
||||||
|
"""Multidimensional wrapper around `scipy.interpolate.sp*` functions.
|
||||||
|
`scipy.inteprolate.splprep` unfortunately does only up to 12 dimsions.
|
||||||
|
"""
|
||||||
|
def __init__(self, x, y, order=4):
|
||||||
|
self.order = order
|
||||||
|
self.s = [splrep(x, yi, k=order - 1) for yi in y]
|
||||||
|
|
||||||
|
def lev(self, x, *a, **k):
|
||||||
|
return np.array([splev(x, si) for si in self.s])
|
||||||
|
|
||||||
|
def alde(self, x):
|
||||||
|
u = np.array([spalde(x, si) for si in self.s])
|
||||||
|
if len(x) == 1:
|
||||||
|
u = u[:, None, :]
|
||||||
|
return u
|
||||||
|
|
||||||
|
def __call__(self, x, use_alde=True):
|
||||||
|
if use_alde:
|
||||||
|
u = self.alde(x)[:, :, :self.order]
|
||||||
|
s = (len(self.s), len(x), self.order)
|
||||||
|
assert u.shape == s, (u.shape, s)
|
||||||
|
return u.transpose(2, 0, 1)
|
||||||
|
else:
|
||||||
|
return np.array([self.lev(x, der=i) for i in range(self.order)])
|
||||||
|
|
||||||
|
|
||||||
|
class UnivariateMultiSparseSpline(UnivariateMultiSpline):
|
||||||
|
def __init__(self, d, x0=None, order=4):
|
||||||
|
self.order = order
|
||||||
|
self.n = sorted(set(n for x, n, y in d))
|
||||||
|
self.s = []
|
||||||
|
for n in self.n:
|
||||||
|
x, y = np.array([(x, y) for x, ni, y in d if n == ni]).T
|
||||||
|
if x0 is not None:
|
||||||
|
y0 = splev(x0, splrep(x, y, k=order - 1))
|
||||||
|
x, y = x0, y0
|
||||||
|
s = splrep(x, y, k=order - 1)
|
||||||
|
self.s.append(s)
|
||||||
|
|
||||||
|
|
||||||
|
def pad_const(x, n, axis=0):
|
||||||
|
"""Prefix and postfix the array `x` by `n` repetitions of the first and
|
||||||
|
last vlaue along `axis`.
|
||||||
|
"""
|
||||||
|
a = np.repeat(x.take([0], axis), n, axis)
|
||||||
|
b = np.repeat(x.take([-1], axis), n, axis)
|
||||||
|
xp = np.concatenate([a, x, b], axis)
|
||||||
|
s = list(x.shape)
|
||||||
|
s[axis] += 2*n
|
||||||
|
assert xp.shape == tuple(s), (x.shape, s, xp.shape)
|
||||||
|
return xp
|
||||||
|
|
||||||
|
|
||||||
|
def build_segment(durations, coefficients, target="bias",
|
||||||
|
variable="amplitude"):
|
||||||
|
"""Build a wavesynth-style segment from homogeneous duration and
|
||||||
|
coefficient data.
|
||||||
|
|
||||||
|
:param durations: 1D sequence of line durations.
|
||||||
|
:param coefficients: 3D array with shape `(n, m, len(x))`,
|
||||||
|
with `n` being the interpolation order + 1 and `m` the number of
|
||||||
|
channels.
|
||||||
|
:param target: The target component of the channel to affect.
|
||||||
|
:param variable: The variable within the target component.
|
||||||
|
"""
|
||||||
|
for dxi, yi in zip(durations, coefficients.transpose()):
|
||||||
|
d = {"duration": int(dxi)}
|
||||||
|
d["channel_data"] = cd = []
|
||||||
|
for yij in yi:
|
||||||
|
cdj = []
|
||||||
|
for yijk in reversed(yij):
|
||||||
|
if cdj or abs(yijk):
|
||||||
|
cdj.append(float(yijk))
|
||||||
|
cdj.reverse()
|
||||||
|
cd.append({target: {variable: cdj}})
|
||||||
|
yield d
|
||||||
|
|
||||||
|
|
||||||
class CoefficientSource:
|
class CoefficientSource:
|
||||||
def get_times(self, t, speed, clock):
|
def crop_x(self, start, stop, num=2):
|
||||||
pass
|
"""Return an array of valid sample positions.
|
||||||
|
|
||||||
def get_coefficients(self, t, speed):
|
This function needs to be implemented only if this
|
||||||
pass
|
`CoefficientSource` does not support sampling at arbitrary
|
||||||
|
positions.
|
||||||
|
|
||||||
def get_program(self, dt, u):
|
:param start: First sample position.
|
||||||
pass
|
:param stop: Last sample position.
|
||||||
|
:param num: Number of samples between `start` and `stop`.
|
||||||
|
:return: Array of sample positions. `start` and `stop` should be
|
||||||
|
returned as the first and last value in the array respectively.
|
||||||
|
"""
|
||||||
|
return np.linspace(start, stop, num)
|
||||||
|
|
||||||
|
def scale_x(self, x, scale):
|
||||||
|
"""Scale and round sample positions.
|
||||||
|
|
||||||
|
:param x: Input sample positions in data space.
|
||||||
|
:param scale: Data space position to cycles conversion scale,
|
||||||
|
in units of x-units per clock cycle.
|
||||||
|
:return: `x_sample`, the rounded sample positions and `durations`, the
|
||||||
|
integer durations of the individual samples in cycles.
|
||||||
|
"""
|
||||||
|
raise NotImplementedError
|
||||||
|
|
||||||
|
def __call__(self, x, **kwargs):
|
||||||
|
"""Perform sampling and return coefficients.
|
||||||
|
|
||||||
|
:param x: Sample positions.
|
||||||
|
:return: `y` the array of coefficients. `y.shape == (order, n, len(x))`
|
||||||
|
with `n` being the number of channels."""
|
||||||
|
raise NotImplementedError
|
||||||
|
|
||||||
|
def get_segment_data(self, start, stop, scale, cutoff=1e-12,
|
||||||
|
min_duration=1, min_length=20,
|
||||||
|
target="bias", variable="amplitude"):
|
||||||
|
"""Build wavesynth segment data.
|
||||||
|
|
||||||
|
:param start: see `crop_x()`.
|
||||||
|
:param stop: see `crop_x()`.
|
||||||
|
:param scale: see `scale_x()`.
|
||||||
|
:param num: see `crop_x()`.
|
||||||
|
:param cutoff: coefficient cutoff towards zero to compress data.
|
||||||
|
:param min_duration: Minimum duration of a line.
|
||||||
|
:param min_length: Minimum segment length to space triggers.
|
||||||
|
"""
|
||||||
|
x = self.crop_x(start, stop)
|
||||||
|
x_sample, durations = self.scale_x(x, scale)
|
||||||
|
coefficients = self(x_sample)
|
||||||
|
np.clip(np.fabs(durations), min_duration, None, out=durations)
|
||||||
|
if len(durations) == 1:
|
||||||
|
durations[0] = max(durations[0], min_length)
|
||||||
|
if start == stop:
|
||||||
|
coefficients = coefficients[:1]
|
||||||
|
# rescale coefficients accordingly
|
||||||
|
coefficients *= (scale*np.sign(durations))**np.arange(
|
||||||
|
coefficients.shape[0])[:, None, None]
|
||||||
|
if cutoff:
|
||||||
|
coefficients[np.fabs(coefficients) < cutoff] = 0
|
||||||
|
return build_segment(durations, coefficients, target=target,
|
||||||
|
variable=variable)
|
||||||
|
|
||||||
|
def extend_segment(self, segment, *args, **kwargs):
|
||||||
|
"""Extend a wavesynth segment.
|
||||||
|
|
||||||
|
See `get_segment()` for arguments.
|
||||||
|
"""
|
||||||
|
for line in self.get_segment_data(*args, **kwargs):
|
||||||
|
segment.add_line(**line)
|
||||||
|
|
||||||
|
|
||||||
def _round_times(times, sample_times=None):
|
class SplineSource(CoefficientSource):
|
||||||
times = np.asanyarray(times)
|
def __init__(self, x, y, order=4, pad_dx=1.):
|
||||||
if sample_times is None:
|
"""
|
||||||
sample_times = np.rint(times)
|
:param x: 1D sample positions.
|
||||||
duration = np.diff(sample_times)
|
:param y: 2D sample values.
|
||||||
sample_times = sample_times[:-1]
|
"""
|
||||||
assert np.all(duration >= 0)
|
self.x = np.asanyarray(x)
|
||||||
assert np.all(duration < (1 << 16))
|
assert self.x.ndim == 1
|
||||||
return times, sample_times, duration
|
self.y = np.asanyarray(y)
|
||||||
|
assert self.y.ndim == 2
|
||||||
|
|
||||||
|
if pad_dx is not None:
|
||||||
|
a = np.arange(-order, 0)*pad_dx + self.x[0]
|
||||||
|
b = self.x[-1] + np.arange(1, order + 1)*pad_dx
|
||||||
|
self.x = np.r_[a, self.x, b]
|
||||||
|
self.y = pad_const(self.y, order, axis=1)
|
||||||
|
|
||||||
def _interpolate(time, data, sample_times, order=3):
|
assert self.y.shape[1] == self.x.shape[0]
|
||||||
# FIXME: this does not ensure that the spline does not clip
|
self.spline = UnivariateMultiSpline(self.x, self.y, order)
|
||||||
spline = splrep(time, data, k=order or 1)
|
|
||||||
# FIXME: this could be faster but needs k knots outside t_eval
|
|
||||||
# dv = np.array(spalde(t_eval, s))
|
|
||||||
coeffs = np.array([splev(sample_times, spline, der=i, ext=0)
|
|
||||||
for i in range(order + 1)]).T
|
|
||||||
return coeffs
|
|
||||||
|
|
||||||
|
def crop_x(self, start, stop):
|
||||||
|
ia, ib = np.searchsorted(self.x, (start, stop))
|
||||||
|
if start > stop:
|
||||||
|
x = self.x[ia - 1:ib - 1:-1]
|
||||||
|
else:
|
||||||
|
x = self.x[ia:ib]
|
||||||
|
return np.r_[start, x, stop]
|
||||||
|
|
||||||
|
def scale_x(self, x, scale, nudge=1e-9):
|
||||||
def _zip_program(times, channels, target):
|
# We want to only sample a spline at t_knot + epsilon
|
||||||
for tc in zip(times, *channels):
|
# where the highest order derivative has just jumped
|
||||||
yield {
|
# and is valid at least up to the next knot after t_knot.
|
||||||
"duration": tc[0],
|
|
||||||
"channel_data": tc[1:],
|
|
||||||
}
|
|
||||||
# FIXME: this does not handle:
|
|
||||||
# `clear` (clearing the phase accumulator)
|
|
||||||
# `silence` (stopping the dac clock)
|
|
||||||
|
|
||||||
|
|
||||||
def interpolate_channels(times, data, sample_times=None, **kwargs):
|
|
||||||
if len(times) == 1:
|
|
||||||
return _zip_program(np.array([1]), data[:, :, None])
|
|
||||||
data = np.asanyarray(data)
|
|
||||||
assert len(times) == len(data)
|
|
||||||
times, sample_times, duration = _round_times(times, sample_times)
|
|
||||||
channel_coeff = [_interpolate(sample_times, i, **kwargs) for i in data.T]
|
|
||||||
return _zip_program(duration, np.array(channel_coeff))
|
|
||||||
# v = np.clip(v/self.max_out, -1, 1)
|
|
||||||
#
|
#
|
||||||
|
# To ensure that we are on the right side of a knot:
|
||||||
|
# * only ever increase t when rounding (for increasing t)
|
||||||
|
# * or only ever decrease it (for decreasing t)
|
||||||
#
|
#
|
||||||
|
# The highest derivative is discontinuous at t
|
||||||
|
# and the correct value for a segment is obtained
|
||||||
|
# for t_int >= t_float == t_knot (and v.v. for t decreasing).
|
||||||
|
x = x/scale
|
||||||
|
inc = np.diff(x) >= 0
|
||||||
|
inc = np.r_[inc, inc[-1]]
|
||||||
|
x = np.where(inc, np.ceil(x + nudge), np.floor(x - nudge))
|
||||||
|
if len(x) > 1 and x[0] == x[1]:
|
||||||
|
x = x[1:]
|
||||||
|
if len(x) > 1 and x[-2] == x[-1]:
|
||||||
|
x = x[:-1]
|
||||||
|
x_sample = x[:-1]*scale
|
||||||
|
durations = np.diff(x.astype(np.int))
|
||||||
|
return x_sample, durations
|
||||||
|
|
||||||
|
def __call__(self, x):
|
||||||
|
return self.spline(x)
|
||||||
|
|
||||||
|
|
||||||
|
class ComposingSplineSource(SplineSource):
|
||||||
|
# TODO
|
||||||
|
def __init__(self, x, y, components, order=4, pad_dx=1.):
|
||||||
|
self.x = np.asanyarray(x)
|
||||||
|
assert self.x.ndim == 1
|
||||||
|
self.y = np.asanyarray(y)
|
||||||
|
assert self.y.ndim == 3
|
||||||
|
|
||||||
|
if pad_dx is not None:
|
||||||
|
a = np.arange(-order, 0)*pad_dx + self.x[0]
|
||||||
|
b = self.x[-1] + np.arange(1, order + 1)*pad_dx
|
||||||
|
self.x = np.r_[a, self.x, b]
|
||||||
|
self.y = pad_const(self.y, order, axis=2)
|
||||||
|
|
||||||
|
assert self.y.shape[2] == self.x.shape[0]
|
||||||
|
self.splines = [UnivariateMultiSpline(self.x, yi, order)
|
||||||
|
for yi in self.y]
|
||||||
|
|
||||||
|
# need to resample/upsample the shim splines to the master spline knots
|
||||||
|
# shim knot spacings can span an master spline knot and thus would
|
||||||
|
# cross a highest order derivative boundary
|
||||||
|
self.components = UnivariateMultiSparseSpline(
|
||||||
|
components, self.x, order)
|
||||||
|
|
||||||
|
def __call__(self, t, gain={}, offset={}):
|
||||||
|
der = list((set(self.components.n) | set(offset)) & set(self.der))
|
||||||
|
u = np.zeros((self.splines[0].order, len(self.splines[0].s), len(t)))
|
||||||
|
# der, order, ele, t
|
||||||
|
p = np.array([self.splines[i](t) for i in der])
|
||||||
|
# order, der, None, t
|
||||||
|
s = self.components(t)
|
||||||
|
s_gain = np.array([gain.get(_, 1.) for _ in self.components.n])
|
||||||
|
s = s[:, :, None, :]*s_gain[None, :, None, None]
|
||||||
|
for k, v in offset.items():
|
||||||
|
if v and k in self.der:
|
||||||
|
u += v*p[self.der.index(k)]
|
||||||
|
ps = p[[self.der.index(_) for _ in self.shims.der]]
|
||||||
|
for i in range(u.shape[1]):
|
||||||
|
for j in range(i + 1):
|
||||||
|
u[i] += binom(i, j)*(s[j]*ps[:, i - j]).sum(0)
|
||||||
|
return u # (order, ele, t)
|
||||||
|
|
||||||
|
|
||||||
def discrete_compensate(c):
|
def discrete_compensate(c):
|
||||||
"""Compensate spline coefficients for discrete accumulators
|
"""Compensate spline coefficients for discrete accumulators
|
||||||
|
|
||||||
Given continuous time b-spline coefficients, this function
|
Given continuous-time b-spline coefficients, this function
|
||||||
compensates for the effect of discrete time steps in the
|
compensates for the effect of discrete time steps in the
|
||||||
target devices.
|
target devices.
|
||||||
|
|
||||||
|
|
|
@ -81,17 +81,17 @@ class Synthesizer:
|
||||||
|
|
||||||
def select(self, selection):
|
def select(self, selection):
|
||||||
if self.line_iter is not None:
|
if self.line_iter is not None:
|
||||||
raise TriggerError
|
raise TriggerError("a frame is already selected")
|
||||||
self.line_iter = iter(self.program[selection])
|
self.line_iter = iter(self.program[selection])
|
||||||
self.line = next(self.line_iter)
|
self.line = next(self.line_iter)
|
||||||
|
|
||||||
def trigger(self):
|
def trigger(self):
|
||||||
if self.line_iter is None:
|
if self.line_iter is None:
|
||||||
raise TriggerError
|
raise TriggerError("no frame selected")
|
||||||
|
|
||||||
line = self.line
|
line = self.line
|
||||||
if not line.get("trigger", False):
|
if not line.get("trigger", False):
|
||||||
raise TriggerError
|
raise TriggerError("segment is not triggered")
|
||||||
|
|
||||||
r = [[] for _ in self.channels]
|
r = [[] for _ in self.channels]
|
||||||
while True:
|
while True:
|
||||||
|
|
Loading…
Reference in New Issue