1
0
forked from M-Labs/nac3
nac3/nac3core/src/toplevel/helper.rs

499 lines
19 KiB
Rust

use std::convert::TryInto;
use nac3parser::ast::{Constant, Location};
use crate::symbol_resolver::SymbolValue;
use super::*;
impl TopLevelDef {
pub fn to_string(
&self,
unifier: &mut Unifier,
) -> String
{
match self {
TopLevelDef::Class {
name, ancestors, fields, methods, type_vars, ..
} => {
let fields_str = fields
.iter()
.map(|(n, ty, _)| {
(n.to_string(), unifier.stringify(*ty))
})
.collect_vec();
let methods_str = methods
.iter()
.map(|(n, ty, id)| {
(n.to_string(), unifier.stringify(*ty), *id)
})
.collect_vec();
format!(
"Class {{\nname: {:?},\nancestors: {:?},\nfields: {:?},\nmethods: {:?},\ntype_vars: {:?}\n}}",
name,
ancestors.iter().map(|ancestor| ancestor.stringify(unifier)).collect_vec(),
fields_str.iter().map(|(a, _)| a).collect_vec(),
methods_str.iter().map(|(a, b, _)| (a, b)).collect_vec(),
type_vars.iter().map(|id| unifier.stringify(*id)).collect_vec(),
)
}
TopLevelDef::Function { name, signature, var_id, .. } => format!(
"Function {{\nname: {:?},\nsig: {:?},\nvar_id: {:?}\n}}",
name,
unifier.stringify(*signature),
{
// preserve the order for debug output and test
let mut r = var_id.clone();
r.sort_unstable();
r
}
),
}
}
}
impl TopLevelComposer {
pub fn make_primitives() -> (PrimitiveStore, Unifier) {
let mut unifier = Unifier::new();
let int32 = unifier.add_ty(TypeEnum::TObj {
obj_id: DefinitionId(0),
fields: HashMap::new().into(),
params: HashMap::new().into(),
});
let int64 = unifier.add_ty(TypeEnum::TObj {
obj_id: DefinitionId(1),
fields: HashMap::new().into(),
params: HashMap::new().into(),
});
let float = unifier.add_ty(TypeEnum::TObj {
obj_id: DefinitionId(2),
fields: HashMap::new().into(),
params: HashMap::new().into(),
});
let bool = unifier.add_ty(TypeEnum::TObj {
obj_id: DefinitionId(3),
fields: HashMap::new().into(),
params: HashMap::new().into(),
});
let none = unifier.add_ty(TypeEnum::TObj {
obj_id: DefinitionId(4),
fields: HashMap::new().into(),
params: HashMap::new().into(),
});
let range = unifier.add_ty(TypeEnum::TObj {
obj_id: DefinitionId(5),
fields: HashMap::new().into(),
params: HashMap::new().into(),
});
let str = unifier.add_ty(TypeEnum::TObj {
obj_id: DefinitionId(6),
fields: HashMap::new().into(),
params: HashMap::new().into(),
});
let exception = unifier.add_ty(TypeEnum::TObj {
obj_id: DefinitionId(7),
fields: vec![
("__name__".into(), (int32, true)),
("__file__".into(), (int32, true)),
("__line__".into(), (int32, true)),
("__col__".into(), (int32, true)),
("__func__".into(), (str, true)),
("__message__".into(), (str, true)),
("__param0__".into(), (int64, true)),
("__param1__".into(), (int64, true)),
("__param2__".into(), (int64, true)),
].into_iter().collect::<HashMap<_, _>>().into(),
params: HashMap::new().into(),
});
let primitives = PrimitiveStore { int32, int64, float, bool, none, range, str, exception };
crate::typecheck::magic_methods::set_primitives_magic_methods(&primitives, &mut unifier);
(primitives, unifier)
}
/// already include the definition_id of itself inside the ancestors vector
/// when first regitering, the type_vars, fields, methods, ancestors are invalid
pub fn make_top_level_class_def(
index: usize,
resolver: Option<Arc<dyn SymbolResolver + Send + Sync>>,
name: StrRef,
constructor: Option<Type>,
loc: Option<Location>
) -> TopLevelDef {
TopLevelDef::Class {
name,
object_id: DefinitionId(index),
type_vars: Default::default(),
fields: Default::default(),
methods: Default::default(),
ancestors: Default::default(),
constructor,
resolver,
loc,
}
}
/// when first registering, the type is a invalid value
pub fn make_top_level_function_def(
name: String,
simple_name: StrRef,
ty: Type,
resolver: Option<Arc<dyn SymbolResolver + Send + Sync>>,
loc: Option<Location>
) -> TopLevelDef {
TopLevelDef::Function {
name,
simple_name,
signature: ty,
var_id: Default::default(),
instance_to_symbol: Default::default(),
instance_to_stmt: Default::default(),
resolver,
codegen_callback: None,
loc,
}
}
pub fn make_class_method_name(mut class_name: String, method_name: &str) -> String {
class_name.push('.');
class_name.push_str(method_name);
class_name
}
pub fn get_class_method_def_info(
class_methods_def: &[(StrRef, Type, DefinitionId)],
method_name: StrRef,
) -> Result<(Type, DefinitionId), String> {
for (name, ty, def_id) in class_methods_def {
if name == &method_name {
return Ok((*ty, *def_id));
}
}
Err(format!("no method {} in the current class", method_name))
}
/// get all base class def id of a class, excluding itself. \
/// this function should called only after the direct parent is set
/// and before all the ancestors are set
/// and when we allow single inheritance \
/// the order of the returned list is from the child to the deepest ancestor
pub fn get_all_ancestors_helper(
child: &TypeAnnotation,
temp_def_list: &[Arc<RwLock<TopLevelDef>>],
) -> Result<Vec<TypeAnnotation>, String> {
let mut result: Vec<TypeAnnotation> = Vec::new();
let mut parent = Self::get_parent(child, temp_def_list);
while let Some(p) = parent {
parent = Self::get_parent(&p, temp_def_list);
let p_id = if let TypeAnnotation::CustomClass { id, .. } = &p {
*id
} else {
unreachable!("must be class kind annotation")
};
// check cycle
let no_cycle = result.iter().all(|x| {
if let TypeAnnotation::CustomClass { id, .. } = x {
id.0 != p_id.0
} else {
unreachable!("must be class kind annotation")
}
});
if no_cycle {
result.push(p);
} else {
return Err("cyclic inheritance detected".into());
}
}
Ok(result)
}
/// should only be called when finding all ancestors, so panic when wrong
fn get_parent(
child: &TypeAnnotation,
temp_def_list: &[Arc<RwLock<TopLevelDef>>],
) -> Option<TypeAnnotation> {
let child_id = if let TypeAnnotation::CustomClass { id, .. } = child {
*id
} else {
unreachable!("should be class type annotation")
};
let child_def = temp_def_list.get(child_id.0).unwrap();
let child_def = child_def.read();
if let TopLevelDef::Class { ancestors, .. } = &*child_def {
if !ancestors.is_empty() {
Some(ancestors[0].clone())
} else {
None
}
} else {
unreachable!("child must be top level class def")
}
}
/// get the var_id of a given TVar type
pub fn get_var_id(var_ty: Type, unifier: &mut Unifier) -> Result<u32, String> {
if let TypeEnum::TVar { id, .. } = unifier.get_ty(var_ty).as_ref() {
Ok(*id)
} else {
Err("not type var".to_string())
}
}
pub fn check_overload_function_type(
this: Type,
other: Type,
unifier: &mut Unifier,
type_var_to_concrete_def: &HashMap<Type, TypeAnnotation>,
) -> bool {
let this = unifier.get_ty(this);
let this = this.as_ref();
let other = unifier.get_ty(other);
let other = other.as_ref();
if let (TypeEnum::TFunc(FunSignature { args: this_args, ret: this_ret, ..}),
TypeEnum::TFunc(FunSignature { args: other_args, ret: other_ret, .. })) = (this, other) {
// check args
let args_ok = this_args
.iter()
.map(|FuncArg { name, ty, .. }| (name, type_var_to_concrete_def.get(ty).unwrap()))
.zip(other_args.iter().map(|FuncArg { name, ty, .. }| {
(name, type_var_to_concrete_def.get(ty).unwrap())
}))
.all(|(this, other)| {
if this.0 == &"self".into() && this.0 == other.0 {
true
} else {
this.0 == other.0
&& check_overload_type_annotation_compatible(this.1, other.1, unifier)
}
});
// check rets
let ret_ok = check_overload_type_annotation_compatible(
type_var_to_concrete_def.get(this_ret).unwrap(),
type_var_to_concrete_def.get(other_ret).unwrap(),
unifier,
);
// return
args_ok && ret_ok
} else {
unreachable!("this function must be called with function type")
}
}
pub fn check_overload_field_type(
this: Type,
other: Type,
unifier: &mut Unifier,
type_var_to_concrete_def: &HashMap<Type, TypeAnnotation>,
) -> bool {
check_overload_type_annotation_compatible(
type_var_to_concrete_def.get(&this).unwrap(),
type_var_to_concrete_def.get(&other).unwrap(),
unifier,
)
}
pub fn get_all_assigned_field(stmts: &[ast::Stmt<()>]) -> Result<HashSet<StrRef>, String> {
let mut result = HashSet::new();
for s in stmts {
match &s.node {
ast::StmtKind::AnnAssign { target, .. }
if {
if let ast::ExprKind::Attribute { value, .. } = &target.node {
if let ast::ExprKind::Name { id, .. } = &value.node {
id == &"self".into()
} else {
false
}
} else {
false
}
} =>
{
return Err(format!(
"redundant type annotation for class fields at {}",
s.location
))
}
ast::StmtKind::Assign { targets, .. } => {
for t in targets {
if let ast::ExprKind::Attribute { value, attr, .. } = &t.node {
if let ast::ExprKind::Name { id, .. } = &value.node {
if id == &"self".into() {
result.insert(*attr);
}
}
}
}
}
// TODO: do not check for For and While?
ast::StmtKind::For { body, orelse, .. }
| ast::StmtKind::While { body, orelse, .. } => {
result.extend(Self::get_all_assigned_field(body.as_slice())?);
result.extend(Self::get_all_assigned_field(orelse.as_slice())?);
}
ast::StmtKind::If { body, orelse, .. } => {
let inited_for_sure = Self::get_all_assigned_field(body.as_slice())?
.intersection(&Self::get_all_assigned_field(orelse.as_slice())?)
.cloned()
.collect::<HashSet<_>>();
result.extend(inited_for_sure);
}
ast::StmtKind::Try { body, orelse, finalbody, .. } => {
let inited_for_sure = Self::get_all_assigned_field(body.as_slice())?
.intersection(&Self::get_all_assigned_field(orelse.as_slice())?)
.cloned()
.collect::<HashSet<_>>();
result.extend(inited_for_sure);
result.extend(Self::get_all_assigned_field(finalbody.as_slice())?);
}
ast::StmtKind::With { body, .. } => {
result.extend(Self::get_all_assigned_field(body.as_slice())?);
}
ast::StmtKind::Pass { .. } => {}
ast::StmtKind::Assert { .. } => {}
ast::StmtKind::Expr { .. } => {}
_ => {
unimplemented!()
}
}
}
Ok(result)
}
pub fn parse_parameter_default_value(default: &ast::Expr, resolver: &(dyn SymbolResolver + Send + Sync)) -> Result<SymbolValue, String> {
parse_parameter_default_value(default, resolver)
}
pub fn check_default_param_type(val: &SymbolValue, ty: &TypeAnnotation, primitive: &PrimitiveStore, unifier: &mut Unifier) -> Result<(), String> {
let res = match val {
SymbolValue::Bool(..) => {
if matches!(ty, TypeAnnotation::Primitive(t) if *t == primitive.bool) {
None
} else {
Some("bool".to_string())
}
}
SymbolValue::Double(..) => {
if matches!(ty, TypeAnnotation::Primitive(t) if *t == primitive.float) {
None
} else {
Some("float".to_string())
}
}
SymbolValue::I32(..) => {
if matches!(ty, TypeAnnotation::Primitive(t) if *t == primitive.int32) {
None
} else {
Some("int32".to_string())
}
}
SymbolValue::I64(..) => {
if matches!(ty, TypeAnnotation::Primitive(t) if *t == primitive.int64) {
None
} else {
Some("int64".to_string())
}
}
SymbolValue::Str(..) => {
if matches!(ty, TypeAnnotation::Primitive(t) if *t == primitive.str) {
None
} else {
Some("str".to_string())
}
}
SymbolValue::Tuple(elts) => {
if let TypeAnnotation::Tuple(elts_ty) = ty {
for (e, t) in elts.iter().zip(elts_ty.iter()) {
Self::check_default_param_type(e, t, primitive, unifier)?
}
if elts.len() != elts_ty.len() {
Some(format!("tuple of length {}", elts.len()))
} else {
None
}
} else {
Some("tuple".to_string())
}
}
};
if let Some(found) = res {
Err(format!(
"incompatible default parameter type, expect {}, found {}",
ty.stringify(unifier),
found
))
} else {
Ok(())
}
}
}
pub fn parse_parameter_default_value(default: &ast::Expr, resolver: &(dyn SymbolResolver + Send + Sync)) -> Result<SymbolValue, String> {
fn handle_constant(val: &Constant, loc: &Location) -> Result<SymbolValue, String> {
match val {
Constant::Int(v) => {
match v {
Some(v) => {
if let Ok(v) = (*v).try_into() {
Ok(SymbolValue::I32(v))
} else {
Err(format!(
"integer value out of range at {}",
loc
))
}
},
None => {
Err(format!(
"integer value out of range at {}",
loc
))
}
}
}
Constant::Float(v) => Ok(SymbolValue::Double(*v)),
Constant::Bool(v) => Ok(SymbolValue::Bool(*v)),
Constant::Tuple(tuple) => Ok(SymbolValue::Tuple(
tuple.iter().map(|x| handle_constant(x, loc)).collect::<Result<Vec<_>, _>>()?
)),
_ => unimplemented!("this constant is not supported at {}", loc),
}
}
match &default.node {
ast::ExprKind::Constant { value, .. } => handle_constant(value, &default.location),
ast::ExprKind::Call { func, args, .. } if {
match &func.node {
ast::ExprKind::Name { id, .. } => *id == "int64".into(),
_ => false,
}
} => {
if args.len() == 1 {
match &args[0].node {
ast::ExprKind::Constant { value: Constant::Int(Some(v)), .. } =>
Ok(SymbolValue::I64(*v)),
_ => Err(format!("only allow constant integer here at {}", default.location))
}
} else {
Err(format!("only allow constant integer here at {}", default.location))
}
}
ast::ExprKind::Tuple { elts, .. } => Ok(SymbolValue::Tuple(elts
.iter()
.map(|x| parse_parameter_default_value(x, resolver))
.collect::<Result<Vec<_>, _>>()?
)),
ast::ExprKind::Name { id, .. } => {
resolver.get_default_param_value(default).ok_or_else(
|| format!(
"`{}` cannot be used as a default parameter at {} (not primitive type or tuple / not defined?)",
id,
default.location
)
)
}
_ => Err(format!("unsupported default parameter at {}", default.location))
}
}