1
0
forked from M-Labs/nac3
nac3/nac3core/src/codegen/numpy.rs

1987 lines
67 KiB
Rust

use crate::{
codegen::{
classes::{
ArrayLikeIndexer, ArrayLikeValue, ListType, ListValue, NDArrayType, NDArrayValue,
ProxyType, ProxyValue, TypedArrayLikeAccessor, TypedArrayLikeAdapter,
TypedArrayLikeMutator, UntypedArrayLikeAccessor, UntypedArrayLikeMutator,
},
expr::gen_binop_expr_with_values,
irrt::{
calculate_len_for_slice_range, call_ndarray_calc_broadcast,
call_ndarray_calc_broadcast_index, call_ndarray_calc_nd_indices,
call_ndarray_calc_size,
},
llvm_intrinsics,
llvm_intrinsics::call_memcpy_generic,
stmt::{gen_for_callback_incrementing, gen_for_range_callback, gen_if_else_expr_callback},
CodeGenContext, CodeGenerator,
},
symbol_resolver::ValueEnum,
toplevel::{
helper::PrimDef,
numpy::{make_ndarray_ty, unpack_ndarray_var_tys},
DefinitionId,
},
typecheck::typedef::{FunSignature, Type, TypeEnum},
};
use inkwell::types::{AnyTypeEnum, BasicTypeEnum, PointerType};
use inkwell::{
types::BasicType,
values::{BasicValueEnum, IntValue, PointerValue},
AddressSpace, IntPredicate, OptimizationLevel,
};
use nac3parser::ast::{Operator, StrRef};
/// Creates an uninitialized `NDArray` instance.
fn create_ndarray_uninitialized<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
elem_ty: Type,
) -> Result<NDArrayValue<'ctx>, String> {
let ndarray_ty = make_ndarray_ty(&mut ctx.unifier, &ctx.primitives, Some(elem_ty), None);
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_ndarray_t = ctx
.get_llvm_type(generator, ndarray_ty)
.into_pointer_type()
.get_element_type()
.into_struct_type();
let ndarray = generator.gen_var_alloc(ctx, llvm_ndarray_t.into(), None)?;
Ok(NDArrayValue::from_ptr_val(ndarray, llvm_usize, None))
}
/// Creates an `NDArray` instance from a dynamic shape.
///
/// * `elem_ty` - The element type of the `NDArray`.
/// * `shape` - The shape of the `NDArray`.
/// * `shape_len_fn` - A function that retrieves the number of dimensions from `shape`.
/// * `shape_data_fn` - A function that retrieves the size of a dimension from `shape`.
fn create_ndarray_dyn_shape<'ctx, 'a, G, V, LenFn, DataFn>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, 'a>,
elem_ty: Type,
shape: &V,
shape_len_fn: LenFn,
shape_data_fn: DataFn,
) -> Result<NDArrayValue<'ctx>, String>
where
G: CodeGenerator + ?Sized,
LenFn: Fn(&mut G, &mut CodeGenContext<'ctx, 'a>, &V) -> Result<IntValue<'ctx>, String>,
DataFn: Fn(
&mut G,
&mut CodeGenContext<'ctx, 'a>,
&V,
IntValue<'ctx>,
) -> Result<IntValue<'ctx>, String>,
{
let llvm_usize = generator.get_size_type(ctx.ctx);
// Assert that all dimensions are non-negative
let shape_len = shape_len_fn(generator, ctx, shape)?;
gen_for_callback_incrementing(
generator,
ctx,
llvm_usize.const_zero(),
(shape_len, false),
|generator, ctx, i| {
let shape_dim = shape_data_fn(generator, ctx, shape, i)?;
debug_assert!(shape_dim.get_type().get_bit_width() <= llvm_usize.get_bit_width());
let shape_dim_gez = ctx
.builder
.build_int_compare(
IntPredicate::SGE,
shape_dim,
shape_dim.get_type().const_zero(),
"",
)
.unwrap();
ctx.make_assert(
generator,
shape_dim_gez,
"0:ValueError",
"negative dimensions not supported",
[None, None, None],
ctx.current_loc,
);
// TODO: Disallow dim_sz > u32_MAX
Ok(())
},
llvm_usize.const_int(1, false),
)?;
let ndarray = create_ndarray_uninitialized(generator, ctx, elem_ty)?;
let num_dims = shape_len_fn(generator, ctx, shape)?;
ndarray.store_ndims(ctx, generator, num_dims);
let ndarray_num_dims = ndarray.load_ndims(ctx);
ndarray.create_dim_sizes(ctx, llvm_usize, ndarray_num_dims);
// Copy the dimension sizes from shape to ndarray.dims
let shape_len = shape_len_fn(generator, ctx, shape)?;
gen_for_callback_incrementing(
generator,
ctx,
llvm_usize.const_zero(),
(shape_len, false),
|generator, ctx, i| {
let shape_dim = shape_data_fn(generator, ctx, shape, i)?;
debug_assert!(shape_dim.get_type().get_bit_width() <= llvm_usize.get_bit_width());
let shape_dim = ctx.builder.build_int_z_extend(shape_dim, llvm_usize, "").unwrap();
let ndarray_pdim =
unsafe { ndarray.dim_sizes().ptr_offset_unchecked(ctx, generator, &i, None) };
ctx.builder.build_store(ndarray_pdim, shape_dim).unwrap();
Ok(())
},
llvm_usize.const_int(1, false),
)?;
let ndarray = ndarray_init_data(generator, ctx, elem_ty, ndarray);
Ok(ndarray)
}
/// Creates an `NDArray` instance from a constant shape.
///
/// * `elem_ty` - The element type of the `NDArray`.
/// * `shape` - The shape of the `NDArray`, represented am array of [`IntValue`]s.
fn create_ndarray_const_shape<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
elem_ty: Type,
shape: &[IntValue<'ctx>],
) -> Result<NDArrayValue<'ctx>, String> {
let llvm_usize = generator.get_size_type(ctx.ctx);
for shape_dim in shape {
let shape_dim_gez = ctx
.builder
.build_int_compare(IntPredicate::SGE, *shape_dim, llvm_usize.const_zero(), "")
.unwrap();
ctx.make_assert(
generator,
shape_dim_gez,
"0:ValueError",
"negative dimensions not supported",
[None, None, None],
ctx.current_loc,
);
// TODO: Disallow dim_sz > u32_MAX
}
let ndarray = create_ndarray_uninitialized(generator, ctx, elem_ty)?;
let num_dims = llvm_usize.const_int(shape.len() as u64, false);
ndarray.store_ndims(ctx, generator, num_dims);
let ndarray_num_dims = ndarray.load_ndims(ctx);
ndarray.create_dim_sizes(ctx, llvm_usize, ndarray_num_dims);
for (i, shape_dim) in shape.iter().enumerate() {
let ndarray_dim = unsafe {
ndarray.dim_sizes().ptr_offset_unchecked(
ctx,
generator,
&llvm_usize.const_int(i as u64, true),
None,
)
};
ctx.builder.build_store(ndarray_dim, *shape_dim).unwrap();
}
let ndarray = ndarray_init_data(generator, ctx, elem_ty, ndarray);
Ok(ndarray)
}
/// Initializes the `data` field of [`NDArrayValue`] based on the `ndims` and `dim_sz` fields.
fn ndarray_init_data<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
elem_ty: Type,
ndarray: NDArrayValue<'ctx>,
) -> NDArrayValue<'ctx> {
let llvm_ndarray_data_t = ctx.get_llvm_type(generator, elem_ty).as_basic_type_enum();
assert!(llvm_ndarray_data_t.is_sized());
let ndarray_num_elems = call_ndarray_calc_size(
generator,
ctx,
&ndarray.dim_sizes().as_slice_value(ctx, generator),
(None, None),
);
ndarray.create_data(ctx, llvm_ndarray_data_t, ndarray_num_elems);
ndarray
}
fn ndarray_zero_value<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
elem_ty: Type,
) -> BasicValueEnum<'ctx> {
if [ctx.primitives.int32, ctx.primitives.uint32]
.iter()
.any(|ty| ctx.unifier.unioned(elem_ty, *ty))
{
ctx.ctx.i32_type().const_zero().into()
} else if [ctx.primitives.int64, ctx.primitives.uint64]
.iter()
.any(|ty| ctx.unifier.unioned(elem_ty, *ty))
{
ctx.ctx.i64_type().const_zero().into()
} else if ctx.unifier.unioned(elem_ty, ctx.primitives.float) {
ctx.ctx.f64_type().const_zero().into()
} else if ctx.unifier.unioned(elem_ty, ctx.primitives.bool) {
ctx.ctx.bool_type().const_zero().into()
} else if ctx.unifier.unioned(elem_ty, ctx.primitives.str) {
ctx.gen_string(generator, "")
} else {
unreachable!()
}
}
fn ndarray_one_value<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
elem_ty: Type,
) -> BasicValueEnum<'ctx> {
if [ctx.primitives.int32, ctx.primitives.uint32]
.iter()
.any(|ty| ctx.unifier.unioned(elem_ty, *ty))
{
let is_signed = ctx.unifier.unioned(elem_ty, ctx.primitives.int32);
ctx.ctx.i32_type().const_int(1, is_signed).into()
} else if [ctx.primitives.int64, ctx.primitives.uint64]
.iter()
.any(|ty| ctx.unifier.unioned(elem_ty, *ty))
{
let is_signed = ctx.unifier.unioned(elem_ty, ctx.primitives.int64);
ctx.ctx.i64_type().const_int(1, is_signed).into()
} else if ctx.unifier.unioned(elem_ty, ctx.primitives.float) {
ctx.ctx.f64_type().const_float(1.0).into()
} else if ctx.unifier.unioned(elem_ty, ctx.primitives.bool) {
ctx.ctx.bool_type().const_int(1, false).into()
} else if ctx.unifier.unioned(elem_ty, ctx.primitives.str) {
ctx.gen_string(generator, "1")
} else {
unreachable!()
}
}
/// LLVM-typed implementation for generating the implementation for constructing an `NDArray`.
///
/// * `elem_ty` - The element type of the `NDArray`.
/// * `shape` - The `shape` parameter used to construct the `NDArray`.
fn call_ndarray_empty_impl<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
elem_ty: Type,
shape: ListValue<'ctx>,
) -> Result<NDArrayValue<'ctx>, String> {
create_ndarray_dyn_shape(
generator,
ctx,
elem_ty,
&shape,
|_, ctx, shape| Ok(shape.load_size(ctx, None)),
|generator, ctx, shape, idx| {
Ok(shape.data().get(ctx, generator, &idx, None).into_int_value())
},
)
}
/// Generates LLVM IR for populating the entire `NDArray` using a lambda with its flattened index as
/// its input.
fn ndarray_fill_flattened<'ctx, 'a, G, ValueFn>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, 'a>,
ndarray: NDArrayValue<'ctx>,
value_fn: ValueFn,
) -> Result<(), String>
where
G: CodeGenerator + ?Sized,
ValueFn: Fn(
&mut G,
&mut CodeGenContext<'ctx, 'a>,
IntValue<'ctx>,
) -> Result<BasicValueEnum<'ctx>, String>,
{
let llvm_usize = generator.get_size_type(ctx.ctx);
let ndarray_num_elems = call_ndarray_calc_size(
generator,
ctx,
&ndarray.dim_sizes().as_slice_value(ctx, generator),
(None, None),
);
gen_for_callback_incrementing(
generator,
ctx,
llvm_usize.const_zero(),
(ndarray_num_elems, false),
|generator, ctx, i| {
let elem = unsafe { ndarray.data().ptr_offset_unchecked(ctx, generator, &i, None) };
let value = value_fn(generator, ctx, i)?;
ctx.builder.build_store(elem, value).unwrap();
Ok(())
},
llvm_usize.const_int(1, false),
)
}
/// Generates LLVM IR for populating the entire `NDArray` using a lambda with the dimension-indices
/// as its input.
fn ndarray_fill_indexed<'ctx, 'a, G, ValueFn>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, 'a>,
ndarray: NDArrayValue<'ctx>,
value_fn: ValueFn,
) -> Result<(), String>
where
G: CodeGenerator + ?Sized,
ValueFn: Fn(
&mut G,
&mut CodeGenContext<'ctx, 'a>,
&TypedArrayLikeAdapter<'ctx, IntValue<'ctx>>,
) -> Result<BasicValueEnum<'ctx>, String>,
{
ndarray_fill_flattened(generator, ctx, ndarray, |generator, ctx, idx| {
let indices = call_ndarray_calc_nd_indices(generator, ctx, idx, ndarray);
value_fn(generator, ctx, &indices)
})
}
fn ndarray_fill_mapping<'ctx, 'a, G, MapFn>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, 'a>,
src: NDArrayValue<'ctx>,
dest: NDArrayValue<'ctx>,
map_fn: MapFn,
) -> Result<(), String>
where
G: CodeGenerator + ?Sized,
MapFn: Fn(
&mut G,
&mut CodeGenContext<'ctx, 'a>,
BasicValueEnum<'ctx>,
) -> Result<BasicValueEnum<'ctx>, String>,
{
ndarray_fill_flattened(generator, ctx, dest, |generator, ctx, i| {
let elem = unsafe { src.data().get_unchecked(ctx, generator, &i, None) };
map_fn(generator, ctx, elem)
})
}
/// Generates the LLVM IR for checking whether the source `ndarray` can be broadcast to the shape of
/// the target `ndarray`.
fn ndarray_assert_is_broadcastable<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
target: NDArrayValue<'ctx>,
source: NDArrayValue<'ctx>,
) {
let array_ndims = source.load_ndims(ctx);
let broadcast_size = target.load_ndims(ctx);
ctx.make_assert(
generator,
ctx.builder.build_int_compare(IntPredicate::ULE, array_ndims, broadcast_size, "").unwrap(),
"0:ValueError",
"operands cannot be broadcast together",
[None, None, None],
ctx.current_loc,
);
}
/// Generates the LLVM IR for populating the entire `NDArray` from two `ndarray` or scalar value
/// with broadcast-compatible shapes.
fn ndarray_broadcast_fill<'ctx, 'a, G, ValueFn>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, 'a>,
res: NDArrayValue<'ctx>,
lhs: (BasicValueEnum<'ctx>, bool),
rhs: (BasicValueEnum<'ctx>, bool),
value_fn: ValueFn,
) -> Result<NDArrayValue<'ctx>, String>
where
G: CodeGenerator + ?Sized,
ValueFn: Fn(
&mut G,
&mut CodeGenContext<'ctx, 'a>,
(BasicValueEnum<'ctx>, BasicValueEnum<'ctx>),
) -> Result<BasicValueEnum<'ctx>, String>,
{
let llvm_usize = generator.get_size_type(ctx.ctx);
let (lhs_val, lhs_scalar) = lhs;
let (rhs_val, rhs_scalar) = rhs;
assert!(
!(lhs_scalar && rhs_scalar),
"One of the operands must be a ndarray instance: `{}`, `{}`",
lhs_val.get_type(),
rhs_val.get_type()
);
// Assert that all ndarray operands are broadcastable to the target size
if !lhs_scalar {
let lhs_val = NDArrayValue::from_ptr_val(lhs_val.into_pointer_value(), llvm_usize, None);
ndarray_assert_is_broadcastable(generator, ctx, res, lhs_val);
}
if !rhs_scalar {
let rhs_val = NDArrayValue::from_ptr_val(rhs_val.into_pointer_value(), llvm_usize, None);
ndarray_assert_is_broadcastable(generator, ctx, res, rhs_val);
}
ndarray_fill_indexed(generator, ctx, res, |generator, ctx, idx| {
let lhs_elem = if lhs_scalar {
lhs_val
} else {
let lhs = NDArrayValue::from_ptr_val(lhs_val.into_pointer_value(), llvm_usize, None);
let lhs_idx = call_ndarray_calc_broadcast_index(generator, ctx, lhs, idx);
unsafe { lhs.data().get_unchecked(ctx, generator, &lhs_idx, None) }
};
let rhs_elem = if rhs_scalar {
rhs_val
} else {
let rhs = NDArrayValue::from_ptr_val(rhs_val.into_pointer_value(), llvm_usize, None);
let rhs_idx = call_ndarray_calc_broadcast_index(generator, ctx, rhs, idx);
unsafe { rhs.data().get_unchecked(ctx, generator, &rhs_idx, None) }
};
value_fn(generator, ctx, (lhs_elem, rhs_elem))
})?;
Ok(res)
}
/// LLVM-typed implementation for generating the implementation for `ndarray.zeros`.
///
/// * `elem_ty` - The element type of the `NDArray`.
/// * `shape` - The `shape` parameter used to construct the `NDArray`.
fn call_ndarray_zeros_impl<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
elem_ty: Type,
shape: ListValue<'ctx>,
) -> Result<NDArrayValue<'ctx>, String> {
let supported_types = [
ctx.primitives.int32,
ctx.primitives.int64,
ctx.primitives.uint32,
ctx.primitives.uint64,
ctx.primitives.float,
ctx.primitives.bool,
ctx.primitives.str,
];
assert!(supported_types.iter().any(|supported_ty| ctx.unifier.unioned(*supported_ty, elem_ty)));
let ndarray = call_ndarray_empty_impl(generator, ctx, elem_ty, shape)?;
ndarray_fill_flattened(generator, ctx, ndarray, |generator, ctx, _| {
let value = ndarray_zero_value(generator, ctx, elem_ty);
Ok(value)
})?;
Ok(ndarray)
}
/// LLVM-typed implementation for generating the implementation for `ndarray.ones`.
///
/// * `elem_ty` - The element type of the `NDArray`.
/// * `shape` - The `shape` parameter used to construct the `NDArray`.
fn call_ndarray_ones_impl<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
elem_ty: Type,
shape: ListValue<'ctx>,
) -> Result<NDArrayValue<'ctx>, String> {
let supported_types = [
ctx.primitives.int32,
ctx.primitives.int64,
ctx.primitives.uint32,
ctx.primitives.uint64,
ctx.primitives.float,
ctx.primitives.bool,
ctx.primitives.str,
];
assert!(supported_types.iter().any(|supported_ty| ctx.unifier.unioned(*supported_ty, elem_ty)));
let ndarray = call_ndarray_empty_impl(generator, ctx, elem_ty, shape)?;
ndarray_fill_flattened(generator, ctx, ndarray, |generator, ctx, _| {
let value = ndarray_one_value(generator, ctx, elem_ty);
Ok(value)
})?;
Ok(ndarray)
}
/// LLVM-typed implementation for generating the implementation for `ndarray.full`.
///
/// * `elem_ty` - The element type of the `NDArray`.
/// * `shape` - The `shape` parameter used to construct the `NDArray`.
fn call_ndarray_full_impl<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
elem_ty: Type,
shape: ListValue<'ctx>,
fill_value: BasicValueEnum<'ctx>,
) -> Result<NDArrayValue<'ctx>, String> {
let ndarray = call_ndarray_empty_impl(generator, ctx, elem_ty, shape)?;
ndarray_fill_flattened(generator, ctx, ndarray, |generator, ctx, _| {
let value = if fill_value.is_pointer_value() {
let llvm_i1 = ctx.ctx.bool_type();
let copy = generator.gen_var_alloc(ctx, fill_value.get_type(), None)?;
call_memcpy_generic(
ctx,
copy,
fill_value.into_pointer_value(),
fill_value.get_type().size_of().map(Into::into).unwrap(),
llvm_i1.const_zero(),
);
copy.into()
} else if fill_value.is_int_value() || fill_value.is_float_value() {
fill_value
} else {
unreachable!()
};
Ok(value)
})?;
Ok(ndarray)
}
/// Returns the number of dimensions for a multidimensional list as an [`IntValue`].
fn llvm_ndlist_get_ndims<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
ty: PointerType<'ctx>,
) -> IntValue<'ctx> {
let llvm_usize = generator.get_size_type(ctx.ctx);
let list_ty = ListType::from_type(ty, llvm_usize);
let list_elem_ty = list_ty.element_type();
let ndims = llvm_usize.const_int(1, false);
match list_elem_ty {
AnyTypeEnum::PointerType(ptr_ty) if ListType::is_type(ptr_ty, llvm_usize).is_ok() => {
ndims.const_add(llvm_ndlist_get_ndims(generator, ctx, ptr_ty))
}
AnyTypeEnum::PointerType(ptr_ty) if NDArrayType::is_type(ptr_ty, llvm_usize).is_ok() => {
todo!("Getting ndims for list[ndarray] not supported")
}
_ => ndims,
}
}
/// Returns the number of dimensions for an array-like object as an [`IntValue`].
fn llvm_arraylike_get_ndims<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
value: BasicValueEnum<'ctx>,
) -> IntValue<'ctx> {
let llvm_usize = generator.get_size_type(ctx.ctx);
match value {
BasicValueEnum::PointerValue(v) if NDArrayValue::is_instance(v, llvm_usize).is_ok() => {
NDArrayValue::from_ptr_val(v, llvm_usize, None).load_ndims(ctx)
}
BasicValueEnum::PointerValue(v) if ListValue::is_instance(v, llvm_usize).is_ok() => {
llvm_ndlist_get_ndims(generator, ctx, v.get_type())
}
_ => llvm_usize.const_zero(),
}
}
/// Flattens and copies the values from a multidimensional list into an [`NDArrayValue`].
fn ndarray_from_ndlist_impl<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
elem_ty: Type,
(dst_arr, dst_slice_ptr): (NDArrayValue<'ctx>, PointerValue<'ctx>),
src_lst: ListValue<'ctx>,
dim: u64,
) -> Result<(), String> {
let llvm_i1 = ctx.ctx.bool_type();
let llvm_usize = generator.get_size_type(ctx.ctx);
let list_elem_ty = src_lst.get_type().element_type();
match list_elem_ty {
AnyTypeEnum::PointerType(ptr_ty) if ListType::is_type(ptr_ty, llvm_usize).is_ok() => {
// The stride of elements in this dimension, i.e. the number of elements between arr[i]
// and arr[i + 1] in this dimension
let stride = call_ndarray_calc_size(
generator,
ctx,
&dst_arr.dim_sizes(),
(Some(llvm_usize.const_int(dim + 1, false)), None),
);
gen_for_range_callback(
generator,
ctx,
true,
|_, _| Ok(llvm_usize.const_zero()),
(|_, ctx| Ok(src_lst.load_size(ctx, None)), false),
|_, _| Ok(llvm_usize.const_int(1, false)),
|generator, ctx, i| {
let offset = ctx.builder.build_int_mul(stride, i, "").unwrap();
let dst_ptr =
unsafe { ctx.builder.build_gep(dst_slice_ptr, &[offset], "").unwrap() };
let nested_lst_elem = ListValue::from_ptr_val(
unsafe { src_lst.data().get_unchecked(ctx, generator, &i, None) }
.into_pointer_value(),
llvm_usize,
None,
);
ndarray_from_ndlist_impl(
generator,
ctx,
elem_ty,
(dst_arr, dst_ptr),
nested_lst_elem,
dim + 1,
)?;
Ok(())
},
)?;
}
AnyTypeEnum::PointerType(ptr_ty) if NDArrayType::is_type(ptr_ty, llvm_usize).is_ok() => {
todo!("Not implemented for list[ndarray]")
}
_ => {
let lst_len = src_lst.load_size(ctx, None);
let sizeof_elem = ctx.get_llvm_type(generator, elem_ty).size_of().unwrap();
let cpy_len = ctx
.builder
.build_int_mul(
ctx.builder.build_int_z_extend_or_bit_cast(lst_len, llvm_usize, "").unwrap(),
sizeof_elem,
"",
)
.unwrap();
call_memcpy_generic(
ctx,
dst_slice_ptr,
src_lst.data().base_ptr(ctx, generator),
cpy_len,
llvm_i1.const_zero(),
);
}
}
Ok(())
}
/// LLVM-typed implementation for `ndarray.array`.
fn call_ndarray_array_impl<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
elem_ty: Type,
object: BasicValueEnum<'ctx>,
copy: IntValue<'ctx>,
ndmin: IntValue<'ctx>,
) -> Result<NDArrayValue<'ctx>, String> {
let llvm_i1 = ctx.ctx.bool_type();
let llvm_usize = generator.get_size_type(ctx.ctx);
let ndmin = ctx.builder.build_int_z_extend_or_bit_cast(ndmin, llvm_usize, "").unwrap();
// TODO(Derppening): Add assertions for sizes of different dimensions
// object is not a pointer - 0-dim NDArray
if !object.is_pointer_value() {
let ndarray = create_ndarray_const_shape(generator, ctx, elem_ty, &[])?;
unsafe {
ndarray.data().set_unchecked(ctx, generator, &llvm_usize.const_zero(), object);
}
return Ok(ndarray);
}
let object = object.into_pointer_value();
// object is an NDArray instance - copy object unless copy=0 && ndmin < object.ndims
if NDArrayValue::is_instance(object, llvm_usize).is_ok() {
let object = NDArrayValue::from_ptr_val(object, llvm_usize, None);
let ndarray = gen_if_else_expr_callback(
generator,
ctx,
|_, ctx| {
let copy_nez = ctx
.builder
.build_int_compare(IntPredicate::NE, copy, llvm_i1.const_zero(), "")
.unwrap();
let ndmin_gt_ndims = ctx
.builder
.build_int_compare(IntPredicate::UGT, ndmin, object.load_ndims(ctx), "")
.unwrap();
Ok(ctx.builder.build_and(copy_nez, ndmin_gt_ndims, "").unwrap())
},
|generator, ctx| {
let ndarray = create_ndarray_dyn_shape(
generator,
ctx,
elem_ty,
&object,
|_, ctx, object| {
let ndims = object.load_ndims(ctx);
let ndmin_gt_ndims = ctx
.builder
.build_int_compare(IntPredicate::UGT, ndmin, object.load_ndims(ctx), "")
.unwrap();
Ok(ctx
.builder
.build_select(ndmin_gt_ndims, ndmin, ndims, "")
.map(BasicValueEnum::into_int_value)
.unwrap())
},
|generator, ctx, object, idx| {
let ndims = object.load_ndims(ctx);
let ndmin = llvm_intrinsics::call_int_umax(ctx, ndims, ndmin, None);
// The number of dimensions to prepend 1's to
let offset = ctx.builder.build_int_sub(ndmin, ndims, "").unwrap();
Ok(gen_if_else_expr_callback(
generator,
ctx,
|_, ctx| {
Ok(ctx
.builder
.build_int_compare(IntPredicate::UGE, idx, offset, "")
.unwrap())
},
|_, _| Ok(Some(llvm_usize.const_int(1, false))),
|_, ctx| Ok(Some(ctx.builder.build_int_sub(idx, offset, "").unwrap())),
)?
.map(BasicValueEnum::into_int_value)
.unwrap())
},
)?;
ndarray_sliced_copyto_impl(
generator,
ctx,
elem_ty,
(ndarray, ndarray.data().base_ptr(ctx, generator)),
(object, object.data().base_ptr(ctx, generator)),
0,
&[],
)?;
Ok(Some(ndarray.as_base_value()))
},
|_, _| Ok(Some(object.as_base_value())),
)?;
return Ok(NDArrayValue::from_ptr_val(
ndarray.map(BasicValueEnum::into_pointer_value).unwrap(),
llvm_usize,
None,
));
}
// Remaining case: TList
assert!(ListValue::is_instance(object, llvm_usize).is_ok());
let object = ListValue::from_ptr_val(object, llvm_usize, None);
// The number of dimensions to prepend 1's to
let ndims = llvm_ndlist_get_ndims(generator, ctx, object.as_base_value().get_type());
let ndmin = llvm_intrinsics::call_int_umax(ctx, ndims, ndmin, None);
let offset = ctx.builder.build_int_sub(ndmin, ndims, "").unwrap();
let ndarray = create_ndarray_dyn_shape(
generator,
ctx,
elem_ty,
&object,
|generator, ctx, object| {
let ndims = llvm_ndlist_get_ndims(generator, ctx, object.as_base_value().get_type());
let ndmin_gt_ndims =
ctx.builder.build_int_compare(IntPredicate::UGT, ndmin, ndims, "").unwrap();
Ok(ctx
.builder
.build_select(ndmin_gt_ndims, ndmin, ndims, "")
.map(BasicValueEnum::into_int_value)
.unwrap())
},
|generator, ctx, object, idx| {
Ok(gen_if_else_expr_callback(
generator,
ctx,
|_, ctx| {
Ok(ctx.builder.build_int_compare(IntPredicate::ULT, idx, offset, "").unwrap())
},
|_, _| Ok(Some(llvm_usize.const_int(1, false))),
|generator, ctx| {
let make_llvm_list = |elem_ty: BasicTypeEnum<'ctx>| {
ctx.ctx.struct_type(
&[elem_ty.ptr_type(AddressSpace::default()).into(), llvm_usize.into()],
false,
)
};
let llvm_i8 = ctx.ctx.i8_type();
let llvm_list_i8 = make_llvm_list(llvm_i8.into());
let llvm_plist_i8 = llvm_list_i8.ptr_type(AddressSpace::default());
// Cast list to { i8*, usize } since we only care about the size
let lst = generator
.gen_var_alloc(
ctx,
ListType::new(generator, ctx.ctx, llvm_i8.into()).as_base_type().into(),
None,
)
.unwrap();
ctx.builder
.build_store(
lst,
ctx.builder
.build_bitcast(object.as_base_value(), llvm_plist_i8, "")
.unwrap(),
)
.unwrap();
let stop = ctx.builder.build_int_sub(idx, offset, "").unwrap();
gen_for_range_callback(
generator,
ctx,
true,
|_, _| Ok(llvm_usize.const_zero()),
(|_, _| Ok(stop), false),
|_, _| Ok(llvm_usize.const_int(1, false)),
|generator, ctx, _| {
let plist_plist_i8 = make_llvm_list(llvm_plist_i8.into())
.ptr_type(AddressSpace::default());
let this_dim = ctx
.builder
.build_load(lst, "")
.map(BasicValueEnum::into_pointer_value)
.map(|v| ctx.builder.build_bitcast(v, plist_plist_i8, "").unwrap())
.map(BasicValueEnum::into_pointer_value)
.unwrap();
let this_dim = ListValue::from_ptr_val(this_dim, llvm_usize, None);
// TODO: Assert this_dim.sz != 0
let next_dim = unsafe {
this_dim.data().get_unchecked(
ctx,
generator,
&llvm_usize.const_zero(),
None,
)
}
.into_pointer_value();
ctx.builder
.build_store(
lst,
ctx.builder.build_bitcast(next_dim, llvm_plist_i8, "").unwrap(),
)
.unwrap();
Ok(())
},
)?;
let lst = ListValue::from_ptr_val(
ctx.builder
.build_load(lst, "")
.map(BasicValueEnum::into_pointer_value)
.unwrap(),
llvm_usize,
None,
);
Ok(Some(lst.load_size(ctx, None)))
},
)?
.map(BasicValueEnum::into_int_value)
.unwrap())
},
)?;
ndarray_from_ndlist_impl(
generator,
ctx,
elem_ty,
(ndarray, ndarray.data().base_ptr(ctx, generator)),
object,
0,
)?;
Ok(ndarray)
}
/// LLVM-typed implementation for generating the implementation for `ndarray.eye`.
///
/// * `elem_ty` - The element type of the `NDArray`.
fn call_ndarray_eye_impl<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
elem_ty: Type,
nrows: IntValue<'ctx>,
ncols: IntValue<'ctx>,
offset: IntValue<'ctx>,
) -> Result<NDArrayValue<'ctx>, String> {
let llvm_i32 = ctx.ctx.i32_type();
let llvm_usize = generator.get_size_type(ctx.ctx);
let nrows = ctx.builder.build_int_z_extend_or_bit_cast(nrows, llvm_usize, "").unwrap();
let ncols = ctx.builder.build_int_z_extend_or_bit_cast(ncols, llvm_usize, "").unwrap();
let ndarray = create_ndarray_const_shape(generator, ctx, elem_ty, &[nrows, ncols])?;
ndarray_fill_indexed(generator, ctx, ndarray, |generator, ctx, indices| {
let (row, col) = unsafe {
(
indices.get_typed_unchecked(ctx, generator, &llvm_usize.const_zero(), None),
indices.get_typed_unchecked(ctx, generator, &llvm_usize.const_int(1, false), None),
)
};
let col_with_offset = ctx
.builder
.build_int_add(
col,
ctx.builder.build_int_s_extend_or_bit_cast(offset, llvm_i32, "").unwrap(),
"",
)
.unwrap();
let is_on_diag =
ctx.builder.build_int_compare(IntPredicate::EQ, row, col_with_offset, "").unwrap();
let zero = ndarray_zero_value(generator, ctx, elem_ty);
let one = ndarray_one_value(generator, ctx, elem_ty);
let value = ctx.builder.build_select(is_on_diag, one, zero, "").unwrap();
Ok(value)
})?;
Ok(ndarray)
}
/// Copies a slice of an [`NDArrayValue`] to another.
///
/// - `dst_arr`: The [`NDArrayValue`] instance of the destination array. The `ndims` and `dim_sz`
/// fields should be populated before calling this function.
/// - `dst_slice_ptr`: The [`PointerValue`] to the first element of the currently processing
/// dimensional slice in the destination array.
/// - `src_arr`: The [`NDArrayValue`] instance of the source array.
/// - `src_slice_ptr`: The [`PointerValue`] to the first element of the currently processing
/// dimensional slice in the source array.
/// - `dim`: The index of the currently processing dimension.
/// - `slices`: List of all slices, with the first element corresponding to the slice applicable to
/// this dimension. The `start`/`stop` values of each slice must be non-negative indices.
fn ndarray_sliced_copyto_impl<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
elem_ty: Type,
(dst_arr, dst_slice_ptr): (NDArrayValue<'ctx>, PointerValue<'ctx>),
(src_arr, src_slice_ptr): (NDArrayValue<'ctx>, PointerValue<'ctx>),
dim: u64,
slices: &[(IntValue<'ctx>, IntValue<'ctx>, IntValue<'ctx>)],
) -> Result<(), String> {
let llvm_i1 = ctx.ctx.bool_type();
let llvm_usize = generator.get_size_type(ctx.ctx);
// If there are no (remaining) slice expressions, memcpy the entire dimension
if slices.is_empty() {
let stride = call_ndarray_calc_size(
generator,
ctx,
&src_arr.dim_sizes(),
(Some(llvm_usize.const_int(dim, false)), None),
);
let sizeof_elem = ctx.get_llvm_type(generator, elem_ty).size_of().unwrap();
let cpy_len = ctx.builder.build_int_mul(stride, sizeof_elem, "").unwrap();
call_memcpy_generic(ctx, dst_slice_ptr, src_slice_ptr, cpy_len, llvm_i1.const_zero());
return Ok(());
}
// The stride of elements in this dimension, i.e. the number of elements between arr[i] and
// arr[i + 1] in this dimension
let src_stride = call_ndarray_calc_size(
generator,
ctx,
&src_arr.dim_sizes(),
(Some(llvm_usize.const_int(dim + 1, false)), None),
);
let dst_stride = call_ndarray_calc_size(
generator,
ctx,
&dst_arr.dim_sizes(),
(Some(llvm_usize.const_int(dim + 1, false)), None),
);
let (start, stop, step) = slices[0];
let start = ctx.builder.build_int_s_extend_or_bit_cast(start, llvm_usize, "").unwrap();
let stop = ctx.builder.build_int_s_extend_or_bit_cast(stop, llvm_usize, "").unwrap();
let step = ctx.builder.build_int_s_extend_or_bit_cast(step, llvm_usize, "").unwrap();
let dst_i_addr = generator.gen_var_alloc(ctx, start.get_type().into(), None).unwrap();
ctx.builder.build_store(dst_i_addr, start.get_type().const_zero()).unwrap();
gen_for_range_callback(
generator,
ctx,
false,
|_, _| Ok(start),
(|_, _| Ok(stop), true),
|_, _| Ok(step),
|generator, ctx, src_i| {
// Calculate the offset of the active slice
let src_data_offset = ctx.builder.build_int_mul(src_stride, src_i, "").unwrap();
let dst_i =
ctx.builder.build_load(dst_i_addr, "").map(BasicValueEnum::into_int_value).unwrap();
let dst_data_offset = ctx.builder.build_int_mul(dst_stride, dst_i, "").unwrap();
let (src_ptr, dst_ptr) = unsafe {
(
ctx.builder.build_gep(src_slice_ptr, &[src_data_offset], "").unwrap(),
ctx.builder.build_gep(dst_slice_ptr, &[dst_data_offset], "").unwrap(),
)
};
ndarray_sliced_copyto_impl(
generator,
ctx,
elem_ty,
(dst_arr, dst_ptr),
(src_arr, src_ptr),
dim + 1,
&slices[1..],
)?;
let dst_i =
ctx.builder.build_load(dst_i_addr, "").map(BasicValueEnum::into_int_value).unwrap();
let dst_i_add1 =
ctx.builder.build_int_add(dst_i, llvm_usize.const_int(1, false), "").unwrap();
ctx.builder.build_store(dst_i_addr, dst_i_add1).unwrap();
Ok(())
},
)?;
Ok(())
}
/// Copies a [`NDArrayValue`] using slices.
///
/// * `elem_ty` - The element type of the `NDArray`.
/// - `slices`: List of all slices, with the first element corresponding to the slice applicable to
/// this dimension. The `start`/`stop` values of each slice must be positive indices.
pub fn ndarray_sliced_copy<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
elem_ty: Type,
this: NDArrayValue<'ctx>,
slices: &[(IntValue<'ctx>, IntValue<'ctx>, IntValue<'ctx>)],
) -> Result<NDArrayValue<'ctx>, String> {
let llvm_i32 = ctx.ctx.i32_type();
let llvm_usize = generator.get_size_type(ctx.ctx);
let ndarray = if slices.is_empty() {
create_ndarray_dyn_shape(
generator,
ctx,
elem_ty,
&this,
|_, ctx, shape| Ok(shape.load_ndims(ctx)),
|generator, ctx, shape, idx| unsafe {
Ok(shape.dim_sizes().get_typed_unchecked(ctx, generator, &idx, None))
},
)?
} else {
let ndarray = create_ndarray_uninitialized(generator, ctx, elem_ty)?;
ndarray.store_ndims(ctx, generator, this.load_ndims(ctx));
let ndims = this.load_ndims(ctx);
ndarray.create_dim_sizes(ctx, llvm_usize, ndims);
// Populate the first slices.len() dimensions by computing the size of each dim slice
for (i, (start, stop, step)) in slices.iter().enumerate() {
// HACK: workaround calculate_len_for_slice_range requiring exclusive stop
let stop = ctx
.builder
.build_select(
ctx.builder
.build_int_compare(
IntPredicate::SLT,
*step,
llvm_i32.const_zero(),
"is_neg",
)
.unwrap(),
ctx.builder
.build_int_sub(*stop, llvm_i32.const_int(1, true), "e_min_one")
.unwrap(),
ctx.builder
.build_int_add(*stop, llvm_i32.const_int(1, true), "e_add_one")
.unwrap(),
"final_e",
)
.map(BasicValueEnum::into_int_value)
.unwrap();
let slice_len = calculate_len_for_slice_range(generator, ctx, *start, stop, *step);
let slice_len =
ctx.builder.build_int_z_extend_or_bit_cast(slice_len, llvm_usize, "").unwrap();
unsafe {
ndarray.dim_sizes().set_typed_unchecked(
ctx,
generator,
&llvm_usize.const_int(i as u64, false),
slice_len,
);
}
}
// Populate the rest by directly copying the dim size from the source array
gen_for_callback_incrementing(
generator,
ctx,
llvm_usize.const_int(slices.len() as u64, false),
(this.load_ndims(ctx), false),
|generator, ctx, idx| {
unsafe {
let dim_sz = this.dim_sizes().get_typed_unchecked(ctx, generator, &idx, None);
ndarray.dim_sizes().set_typed_unchecked(ctx, generator, &idx, dim_sz);
}
Ok(())
},
llvm_usize.const_int(1, false),
)
.unwrap();
ndarray_init_data(generator, ctx, elem_ty, ndarray)
};
ndarray_sliced_copyto_impl(
generator,
ctx,
elem_ty,
(ndarray, ndarray.data().base_ptr(ctx, generator)),
(this, this.data().base_ptr(ctx, generator)),
0,
slices,
)?;
Ok(ndarray)
}
/// LLVM-typed implementation for generating the implementation for `ndarray.copy`.
///
/// * `elem_ty` - The element type of the `NDArray`.
fn ndarray_copy_impl<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
elem_ty: Type,
this: NDArrayValue<'ctx>,
) -> Result<NDArrayValue<'ctx>, String> {
ndarray_sliced_copy(generator, ctx, elem_ty, this, &[])
}
pub fn ndarray_elementwise_unaryop_impl<'ctx, 'a, G, MapFn>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, 'a>,
elem_ty: Type,
res: Option<NDArrayValue<'ctx>>,
operand: NDArrayValue<'ctx>,
map_fn: MapFn,
) -> Result<NDArrayValue<'ctx>, String>
where
G: CodeGenerator + ?Sized,
MapFn: Fn(
&mut G,
&mut CodeGenContext<'ctx, 'a>,
BasicValueEnum<'ctx>,
) -> Result<BasicValueEnum<'ctx>, String>,
{
let res = res.unwrap_or_else(|| {
create_ndarray_dyn_shape(
generator,
ctx,
elem_ty,
&operand,
|_, ctx, v| Ok(v.load_ndims(ctx)),
|generator, ctx, v, idx| unsafe {
Ok(v.dim_sizes().get_typed_unchecked(ctx, generator, &idx, None))
},
)
.unwrap()
});
ndarray_fill_mapping(generator, ctx, operand, res, |generator, ctx, elem| {
map_fn(generator, ctx, elem)
})?;
Ok(res)
}
/// LLVM-typed implementation for computing elementwise binary operations on two input operands.
///
/// If the operand is a `ndarray`, the broadcast index corresponding to each element in the output
/// is computed, the element accessed and used as an operand of the `value_fn` arguments tuple.
/// Otherwise, the operand is treated as a scalar value, and is used as an operand of the
/// `value_fn` arguments tuple for all output elements.
///
/// The second element of the tuple indicates whether to treat the operand value as a `ndarray`
/// (which would be accessed by its broadcast index) or as a scalar value (which would be
/// broadcast to all elements).
///
/// * `elem_ty` - The element type of the `NDArray`.
/// * `res` - The `ndarray` instance to write results into, or [`None`] if the result should be
/// written to a new `ndarray`.
/// * `value_fn` - Function mapping the two input elements into the result.
///
/// # Panic
///
/// This function will panic if neither input operands (`lhs` or `rhs`) is a `ndarray`.
pub fn ndarray_elementwise_binop_impl<'ctx, 'a, G, ValueFn>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, 'a>,
elem_ty: Type,
res: Option<NDArrayValue<'ctx>>,
lhs: (BasicValueEnum<'ctx>, bool),
rhs: (BasicValueEnum<'ctx>, bool),
value_fn: ValueFn,
) -> Result<NDArrayValue<'ctx>, String>
where
G: CodeGenerator + ?Sized,
ValueFn: Fn(
&mut G,
&mut CodeGenContext<'ctx, 'a>,
(BasicValueEnum<'ctx>, BasicValueEnum<'ctx>),
) -> Result<BasicValueEnum<'ctx>, String>,
{
let llvm_usize = generator.get_size_type(ctx.ctx);
let (lhs_val, lhs_scalar) = lhs;
let (rhs_val, rhs_scalar) = rhs;
assert!(
!(lhs_scalar && rhs_scalar),
"One of the operands must be a ndarray instance: `{}`, `{}`",
lhs_val.get_type(),
rhs_val.get_type()
);
let ndarray = res.unwrap_or_else(|| {
if lhs_scalar && rhs_scalar {
let lhs_val =
NDArrayValue::from_ptr_val(lhs_val.into_pointer_value(), llvm_usize, None);
let rhs_val =
NDArrayValue::from_ptr_val(rhs_val.into_pointer_value(), llvm_usize, None);
let ndarray_dims = call_ndarray_calc_broadcast(generator, ctx, lhs_val, rhs_val);
create_ndarray_dyn_shape(
generator,
ctx,
elem_ty,
&ndarray_dims,
|generator, ctx, v| Ok(v.size(ctx, generator)),
|generator, ctx, v, idx| unsafe {
Ok(v.get_typed_unchecked(ctx, generator, &idx, None))
},
)
.unwrap()
} else {
let ndarray = NDArrayValue::from_ptr_val(
if lhs_scalar { rhs_val } else { lhs_val }.into_pointer_value(),
llvm_usize,
None,
);
create_ndarray_dyn_shape(
generator,
ctx,
elem_ty,
&ndarray,
|_, ctx, v| Ok(v.load_ndims(ctx)),
|generator, ctx, v, idx| unsafe {
Ok(v.dim_sizes().get_typed_unchecked(ctx, generator, &idx, None))
},
)
.unwrap()
}
});
ndarray_broadcast_fill(generator, ctx, ndarray, lhs, rhs, |generator, ctx, elems| {
value_fn(generator, ctx, elems)
})?;
Ok(ndarray)
}
/// LLVM-typed implementation for computing matrix multiplication between two 2D `ndarray`s.
///
/// * `elem_ty` - The element type of the `NDArray`.
/// * `res` - The `ndarray` instance to write results into, or [`None`] if the result should be
/// written to a new `ndarray`.
pub fn ndarray_matmul_2d<'ctx, G: CodeGenerator>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
elem_ty: Type,
res: Option<NDArrayValue<'ctx>>,
lhs: NDArrayValue<'ctx>,
rhs: NDArrayValue<'ctx>,
) -> Result<NDArrayValue<'ctx>, String> {
let llvm_i32 = ctx.ctx.i32_type();
let llvm_usize = generator.get_size_type(ctx.ctx);
if cfg!(debug_assertions) {
let lhs_ndims = lhs.load_ndims(ctx);
let rhs_ndims = rhs.load_ndims(ctx);
// lhs.ndims == 2
ctx.make_assert(
generator,
ctx.builder
.build_int_compare(IntPredicate::EQ, lhs_ndims, llvm_usize.const_int(2, false), "")
.unwrap(),
"0:ValueError",
"",
[None, None, None],
ctx.current_loc,
);
// rhs.ndims == 2
ctx.make_assert(
generator,
ctx.builder
.build_int_compare(IntPredicate::EQ, rhs_ndims, llvm_usize.const_int(2, false), "")
.unwrap(),
"0:ValueError",
"",
[None, None, None],
ctx.current_loc,
);
if let Some(res) = res {
let res_ndims = res.load_ndims(ctx);
let res_dim0 = unsafe {
res.dim_sizes().get_typed_unchecked(ctx, generator, &llvm_usize.const_zero(), None)
};
let res_dim1 = unsafe {
res.dim_sizes().get_typed_unchecked(
ctx,
generator,
&llvm_usize.const_int(1, false),
None,
)
};
let lhs_dim0 = unsafe {
lhs.dim_sizes().get_typed_unchecked(ctx, generator, &llvm_usize.const_zero(), None)
};
let rhs_dim1 = unsafe {
rhs.dim_sizes().get_typed_unchecked(
ctx,
generator,
&llvm_usize.const_int(1, false),
None,
)
};
// res.ndims == 2
ctx.make_assert(
generator,
ctx.builder
.build_int_compare(
IntPredicate::EQ,
res_ndims,
llvm_usize.const_int(2, false),
"",
)
.unwrap(),
"0:ValueError",
"",
[None, None, None],
ctx.current_loc,
);
// res.dims[0] == lhs.dims[0]
ctx.make_assert(
generator,
ctx.builder.build_int_compare(IntPredicate::EQ, lhs_dim0, res_dim0, "").unwrap(),
"0:ValueError",
"",
[None, None, None],
ctx.current_loc,
);
// res.dims[1] == rhs.dims[0]
ctx.make_assert(
generator,
ctx.builder.build_int_compare(IntPredicate::EQ, rhs_dim1, res_dim1, "").unwrap(),
"0:ValueError",
"",
[None, None, None],
ctx.current_loc,
);
}
}
if ctx.registry.llvm_options.opt_level == OptimizationLevel::None {
let lhs_dim1 = unsafe {
lhs.dim_sizes().get_typed_unchecked(
ctx,
generator,
&llvm_usize.const_int(1, false),
None,
)
};
let rhs_dim0 = unsafe {
rhs.dim_sizes().get_typed_unchecked(ctx, generator, &llvm_usize.const_zero(), None)
};
// lhs.dims[1] == rhs.dims[0]
ctx.make_assert(
generator,
ctx.builder.build_int_compare(IntPredicate::EQ, lhs_dim1, rhs_dim0, "").unwrap(),
"0:ValueError",
"",
[None, None, None],
ctx.current_loc,
);
}
let lhs = if res.is_some_and(|res| res.as_base_value() == lhs.as_base_value()) {
ndarray_copy_impl(generator, ctx, elem_ty, lhs)?
} else {
lhs
};
let ndarray = res.unwrap_or_else(|| {
create_ndarray_dyn_shape(
generator,
ctx,
elem_ty,
&(lhs, rhs),
|_, _, _| Ok(llvm_usize.const_int(2, false)),
|generator, ctx, (lhs, rhs), idx| {
gen_if_else_expr_callback(
generator,
ctx,
|_, ctx| {
Ok(ctx
.builder
.build_int_compare(IntPredicate::EQ, idx, llvm_usize.const_zero(), "")
.unwrap())
},
|generator, ctx| {
Ok(Some(unsafe {
lhs.dim_sizes().get_typed_unchecked(
ctx,
generator,
&llvm_usize.const_zero(),
None,
)
}))
},
|generator, ctx| {
Ok(Some(unsafe {
rhs.dim_sizes().get_typed_unchecked(
ctx,
generator,
&llvm_usize.const_int(1, false),
None,
)
}))
},
)
.map(|v| v.map(BasicValueEnum::into_int_value).unwrap())
},
)
.unwrap()
});
let llvm_ndarray_ty = ctx.get_llvm_type(generator, elem_ty);
ndarray_fill_indexed(generator, ctx, ndarray, |generator, ctx, idx| {
llvm_intrinsics::call_expect(
ctx,
idx.size(ctx, generator).get_type().const_int(2, false),
idx.size(ctx, generator),
None,
);
let common_dim = {
let lhs_idx1 = unsafe {
lhs.dim_sizes().get_typed_unchecked(
ctx,
generator,
&llvm_usize.const_int(1, false),
None,
)
};
let rhs_idx0 = unsafe {
rhs.dim_sizes().get_typed_unchecked(ctx, generator, &llvm_usize.const_zero(), None)
};
let idx = llvm_intrinsics::call_expect(ctx, rhs_idx0, lhs_idx1, None);
ctx.builder.build_int_truncate(idx, llvm_i32, "").unwrap()
};
let idx0 = unsafe {
let idx0 = idx.get_typed_unchecked(ctx, generator, &llvm_usize.const_zero(), None);
ctx.builder.build_int_truncate(idx0, llvm_i32, "").unwrap()
};
let idx1 = unsafe {
let idx1 =
idx.get_typed_unchecked(ctx, generator, &llvm_usize.const_int(1, false), None);
ctx.builder.build_int_truncate(idx1, llvm_i32, "").unwrap()
};
let result_addr = generator.gen_var_alloc(ctx, llvm_ndarray_ty, None)?;
let result_identity = ndarray_zero_value(generator, ctx, elem_ty);
ctx.builder.build_store(result_addr, result_identity).unwrap();
gen_for_callback_incrementing(
generator,
ctx,
llvm_i32.const_zero(),
(common_dim, false),
|generator, ctx, i| {
let i = ctx.builder.build_int_truncate(i, llvm_i32, "").unwrap();
let ab_idx = generator.gen_array_var_alloc(
ctx,
llvm_i32.into(),
llvm_usize.const_int(2, false),
None,
)?;
let a = unsafe {
ab_idx.set_unchecked(ctx, generator, &llvm_usize.const_zero(), idx0.into());
ab_idx.set_unchecked(ctx, generator, &llvm_usize.const_int(1, false), i.into());
lhs.data().get_unchecked(ctx, generator, &ab_idx, None)
};
let b = unsafe {
ab_idx.set_unchecked(ctx, generator, &llvm_usize.const_zero(), i.into());
ab_idx.set_unchecked(
ctx,
generator,
&llvm_usize.const_int(1, false),
idx1.into(),
);
rhs.data().get_unchecked(ctx, generator, &ab_idx, None)
};
let a_mul_b = gen_binop_expr_with_values(
generator,
ctx,
(&Some(elem_ty), a),
Operator::Mult,
(&Some(elem_ty), b),
ctx.current_loc,
false,
)?
.unwrap()
.to_basic_value_enum(ctx, generator, elem_ty)?;
let result = ctx.builder.build_load(result_addr, "").unwrap();
let result = gen_binop_expr_with_values(
generator,
ctx,
(&Some(elem_ty), result),
Operator::Add,
(&Some(elem_ty), a_mul_b),
ctx.current_loc,
false,
)?
.unwrap()
.to_basic_value_enum(ctx, generator, elem_ty)?;
ctx.builder.build_store(result_addr, result).unwrap();
Ok(())
},
llvm_usize.const_int(1, false),
)?;
let result = ctx.builder.build_load(result_addr, "").unwrap();
Ok(result)
})?;
Ok(ndarray)
}
/// Generates LLVM IR for `ndarray.empty`.
pub fn gen_ndarray_empty<'ctx>(
context: &mut CodeGenContext<'ctx, '_>,
obj: &Option<(Type, ValueEnum<'ctx>)>,
fun: (&FunSignature, DefinitionId),
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
generator: &mut dyn CodeGenerator,
) -> Result<PointerValue<'ctx>, String> {
assert!(obj.is_none());
assert_eq!(args.len(), 1);
let llvm_usize = generator.get_size_type(context.ctx);
let shape_ty = fun.0.args[0].ty;
let shape_arg = args[0].1.clone().to_basic_value_enum(context, generator, shape_ty)?;
call_ndarray_empty_impl(
generator,
context,
context.primitives.float,
ListValue::from_ptr_val(shape_arg.into_pointer_value(), llvm_usize, None),
)
.map(NDArrayValue::into)
}
/// Generates LLVM IR for `ndarray.zeros`.
pub fn gen_ndarray_zeros<'ctx>(
context: &mut CodeGenContext<'ctx, '_>,
obj: &Option<(Type, ValueEnum<'ctx>)>,
fun: (&FunSignature, DefinitionId),
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
generator: &mut dyn CodeGenerator,
) -> Result<PointerValue<'ctx>, String> {
assert!(obj.is_none());
assert_eq!(args.len(), 1);
let llvm_usize = generator.get_size_type(context.ctx);
let shape_ty = fun.0.args[0].ty;
let shape_arg = args[0].1.clone().to_basic_value_enum(context, generator, shape_ty)?;
call_ndarray_zeros_impl(
generator,
context,
context.primitives.float,
ListValue::from_ptr_val(shape_arg.into_pointer_value(), llvm_usize, None),
)
.map(NDArrayValue::into)
}
/// Generates LLVM IR for `ndarray.ones`.
pub fn gen_ndarray_ones<'ctx>(
context: &mut CodeGenContext<'ctx, '_>,
obj: &Option<(Type, ValueEnum<'ctx>)>,
fun: (&FunSignature, DefinitionId),
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
generator: &mut dyn CodeGenerator,
) -> Result<PointerValue<'ctx>, String> {
assert!(obj.is_none());
assert_eq!(args.len(), 1);
let llvm_usize = generator.get_size_type(context.ctx);
let shape_ty = fun.0.args[0].ty;
let shape_arg = args[0].1.clone().to_basic_value_enum(context, generator, shape_ty)?;
call_ndarray_ones_impl(
generator,
context,
context.primitives.float,
ListValue::from_ptr_val(shape_arg.into_pointer_value(), llvm_usize, None),
)
.map(NDArrayValue::into)
}
/// Generates LLVM IR for `ndarray.full`.
pub fn gen_ndarray_full<'ctx>(
context: &mut CodeGenContext<'ctx, '_>,
obj: &Option<(Type, ValueEnum<'ctx>)>,
fun: (&FunSignature, DefinitionId),
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
generator: &mut dyn CodeGenerator,
) -> Result<PointerValue<'ctx>, String> {
assert!(obj.is_none());
assert_eq!(args.len(), 2);
let llvm_usize = generator.get_size_type(context.ctx);
let shape_ty = fun.0.args[0].ty;
let shape_arg = args[0].1.clone().to_basic_value_enum(context, generator, shape_ty)?;
let fill_value_ty = fun.0.args[1].ty;
let fill_value_arg =
args[1].1.clone().to_basic_value_enum(context, generator, fill_value_ty)?;
call_ndarray_full_impl(
generator,
context,
fill_value_ty,
ListValue::from_ptr_val(shape_arg.into_pointer_value(), llvm_usize, None),
fill_value_arg,
)
.map(NDArrayValue::into)
}
pub fn gen_ndarray_array<'ctx>(
context: &mut CodeGenContext<'ctx, '_>,
obj: &Option<(Type, ValueEnum<'ctx>)>,
fun: (&FunSignature, DefinitionId),
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
generator: &mut dyn CodeGenerator,
) -> Result<PointerValue<'ctx>, String> {
assert!(obj.is_none());
assert!(matches!(args.len(), 1..=3));
let obj_ty = fun.0.args[0].ty;
let obj_elem_ty = match &*context.unifier.get_ty(obj_ty) {
TypeEnum::TObj { obj_id, .. } if *obj_id == PrimDef::NDArray.id() => {
unpack_ndarray_var_tys(&mut context.unifier, obj_ty).0
}
TypeEnum::TList { ty } => {
let mut ty = *ty;
while let TypeEnum::TList { ty: elem_ty } = &*context.unifier.get_ty_immutable(ty) {
ty = *elem_ty;
}
ty
}
_ => obj_ty,
};
let obj_arg = args[0].1.clone().to_basic_value_enum(context, generator, obj_ty)?;
let copy_arg = if let Some(arg) =
args.iter().find(|arg| arg.0.is_some_and(|name| name == fun.0.args[1].name))
{
let copy_ty = fun.0.args[1].ty;
arg.1.clone().to_basic_value_enum(context, generator, copy_ty)?
} else {
context.gen_symbol_val(
generator,
fun.0.args[1].default_value.as_ref().unwrap(),
fun.0.args[1].ty,
)
};
let ndmin_arg = if let Some(arg) =
args.iter().find(|arg| arg.0.is_some_and(|name| name == fun.0.args[2].name))
{
let ndmin_ty = fun.0.args[2].ty;
arg.1.clone().to_basic_value_enum(context, generator, ndmin_ty)?
} else {
context.gen_symbol_val(
generator,
fun.0.args[2].default_value.as_ref().unwrap(),
fun.0.args[2].ty,
)
};
call_ndarray_array_impl(
generator,
context,
obj_elem_ty,
obj_arg,
copy_arg.into_int_value(),
ndmin_arg.into_int_value(),
)
.map(NDArrayValue::into)
}
/// Generates LLVM IR for `ndarray.eye`.
pub fn gen_ndarray_eye<'ctx>(
context: &mut CodeGenContext<'ctx, '_>,
obj: &Option<(Type, ValueEnum<'ctx>)>,
fun: (&FunSignature, DefinitionId),
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
generator: &mut dyn CodeGenerator,
) -> Result<PointerValue<'ctx>, String> {
assert!(obj.is_none());
assert!(matches!(args.len(), 1..=3));
let nrows_ty = fun.0.args[0].ty;
let nrows_arg = args[0].1.clone().to_basic_value_enum(context, generator, nrows_ty)?;
let ncols_ty = fun.0.args[1].ty;
let ncols_arg = if let Some(arg) =
args.iter().find(|arg| arg.0.is_some_and(|name| name == fun.0.args[1].name))
{
arg.1.clone().to_basic_value_enum(context, generator, ncols_ty)
} else {
args[0].1.clone().to_basic_value_enum(context, generator, nrows_ty)
}?;
let offset_ty = fun.0.args[2].ty;
let offset_arg = if let Some(arg) =
args.iter().find(|arg| arg.0.is_some_and(|name| name == fun.0.args[2].name))
{
arg.1.clone().to_basic_value_enum(context, generator, offset_ty)
} else {
Ok(context.gen_symbol_val(
generator,
fun.0.args[2].default_value.as_ref().unwrap(),
offset_ty,
))
}?;
call_ndarray_eye_impl(
generator,
context,
context.primitives.float,
nrows_arg.into_int_value(),
ncols_arg.into_int_value(),
offset_arg.into_int_value(),
)
.map(NDArrayValue::into)
}
/// Generates LLVM IR for `ndarray.identity`.
pub fn gen_ndarray_identity<'ctx>(
context: &mut CodeGenContext<'ctx, '_>,
obj: &Option<(Type, ValueEnum<'ctx>)>,
fun: (&FunSignature, DefinitionId),
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
generator: &mut dyn CodeGenerator,
) -> Result<PointerValue<'ctx>, String> {
assert!(obj.is_none());
assert_eq!(args.len(), 1);
let llvm_usize = generator.get_size_type(context.ctx);
let n_ty = fun.0.args[0].ty;
let n_arg = args[0].1.clone().to_basic_value_enum(context, generator, n_ty)?;
call_ndarray_eye_impl(
generator,
context,
context.primitives.float,
n_arg.into_int_value(),
n_arg.into_int_value(),
llvm_usize.const_zero(),
)
.map(NDArrayValue::into)
}
/// Generates LLVM IR for `ndarray.copy`.
pub fn gen_ndarray_copy<'ctx>(
context: &mut CodeGenContext<'ctx, '_>,
obj: &Option<(Type, ValueEnum<'ctx>)>,
_fun: (&FunSignature, DefinitionId),
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
generator: &mut dyn CodeGenerator,
) -> Result<PointerValue<'ctx>, String> {
assert!(obj.is_some());
assert!(args.is_empty());
let llvm_usize = generator.get_size_type(context.ctx);
let this_ty = obj.as_ref().unwrap().0;
let (this_elem_ty, _) = unpack_ndarray_var_tys(&mut context.unifier, this_ty);
let this_arg =
obj.as_ref().unwrap().1.clone().to_basic_value_enum(context, generator, this_ty)?;
ndarray_copy_impl(
generator,
context,
this_elem_ty,
NDArrayValue::from_ptr_val(this_arg.into_pointer_value(), llvm_usize, None),
)
.map(NDArrayValue::into)
}
/// Generates LLVM IR for `ndarray.fill`.
pub fn gen_ndarray_fill<'ctx>(
context: &mut CodeGenContext<'ctx, '_>,
obj: &Option<(Type, ValueEnum<'ctx>)>,
fun: (&FunSignature, DefinitionId),
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
generator: &mut dyn CodeGenerator,
) -> Result<(), String> {
assert!(obj.is_some());
assert_eq!(args.len(), 1);
let llvm_usize = generator.get_size_type(context.ctx);
let this_ty = obj.as_ref().unwrap().0;
let this_arg = obj
.as_ref()
.unwrap()
.1
.clone()
.to_basic_value_enum(context, generator, this_ty)?
.into_pointer_value();
let value_ty = fun.0.args[0].ty;
let value_arg = args[0].1.clone().to_basic_value_enum(context, generator, value_ty)?;
ndarray_fill_flattened(
generator,
context,
NDArrayValue::from_ptr_val(this_arg, llvm_usize, None),
|generator, ctx, _| {
let value = if value_arg.is_pointer_value() {
let llvm_i1 = ctx.ctx.bool_type();
let copy = generator.gen_var_alloc(ctx, value_arg.get_type(), None)?;
call_memcpy_generic(
ctx,
copy,
value_arg.into_pointer_value(),
value_arg.get_type().size_of().map(Into::into).unwrap(),
llvm_i1.const_zero(),
);
copy.into()
} else if value_arg.is_int_value() || value_arg.is_float_value() {
value_arg
} else {
unreachable!()
};
Ok(value)
},
)?;
Ok(())
}