forked from M-Labs/nac3
454 lines
20 KiB
Rust
454 lines
20 KiB
Rust
use std::borrow::Borrow;
|
|
use std::{collections::HashMap, sync::Arc};
|
|
|
|
use super::typecheck::type_inferencer::PrimitiveStore;
|
|
use super::typecheck::typedef::{SharedUnifier, Type, TypeEnum, Unifier};
|
|
use crate::symbol_resolver::SymbolResolver;
|
|
use inkwell::context::Context;
|
|
use parking_lot::{Mutex, RwLock};
|
|
use rustpython_parser::ast::{self, Stmt};
|
|
|
|
#[derive(PartialEq, Eq, PartialOrd, Ord, Clone, Copy)]
|
|
pub struct DefinitionId(pub usize);
|
|
|
|
pub enum TopLevelDef {
|
|
Class {
|
|
// object ID used for TypeEnum
|
|
object_id: DefinitionId,
|
|
// type variables bounded to the class.
|
|
type_vars: Vec<Type>,
|
|
// class fields
|
|
fields: Vec<(String, Type)>,
|
|
// class methods, pointing to the corresponding function definition.
|
|
methods: Vec<(String, Type, DefinitionId)>,
|
|
// ancestor classes, including itself.
|
|
ancestors: Vec<DefinitionId>,
|
|
// symbol resolver of the module defined the class, none if it is built-in type
|
|
resolver: Option<Arc<Mutex<dyn SymbolResolver + Send>>>,
|
|
},
|
|
Function {
|
|
// prefix for symbol, should be unique globally, and not ending with numbers
|
|
name: String,
|
|
// function signature.
|
|
signature: Type,
|
|
/// Function instance to symbol mapping
|
|
/// Key: string representation of type variable values, sorted by variable ID in ascending
|
|
/// order, including type variables associated with the class.
|
|
/// Value: function symbol name.
|
|
instance_to_symbol: HashMap<String, String>,
|
|
/// Function instances to annotated AST mapping
|
|
/// Key: string representation of type variable values, sorted by variable ID in ascending
|
|
/// order, including type variables associated with the class. Excluding rigid type
|
|
/// variables.
|
|
/// Value: AST annotated with types together with a unification table index. Could contain
|
|
/// rigid type variables that would be substituted when the function is instantiated.
|
|
instance_to_stmt: HashMap<String, (Stmt<Option<Type>>, usize)>,
|
|
// symbol resolver of the module defined the class
|
|
resolver: Option<Arc<Mutex<dyn SymbolResolver + Send>>>,
|
|
},
|
|
Initializer {
|
|
class_id: DefinitionId,
|
|
},
|
|
}
|
|
|
|
pub struct TopLevelContext {
|
|
pub definitions: Arc<RwLock<Vec<RwLock<TopLevelDef>>>>,
|
|
pub unifiers: Arc<RwLock<Vec<(SharedUnifier, PrimitiveStore)>>>,
|
|
pub conetexts: Arc<RwLock<Vec<Mutex<Context>>>>,
|
|
}
|
|
|
|
pub fn name_mangling(mut class_name: String, method_name: &str) -> String {
|
|
// need to further extend to more name mangling like instantiations of typevar
|
|
class_name.push_str(method_name);
|
|
class_name
|
|
}
|
|
|
|
// like adding some info on top of the TopLevelDef for later parsing the class bases, method,
|
|
// and function sigatures
|
|
pub struct TopLevelDefInfo {
|
|
// the definition entry
|
|
def: TopLevelDef,
|
|
// the entry in the top_level unifier
|
|
ty: Type,
|
|
// the ast submitted by applications, primitives and
|
|
// class methods will have None value here
|
|
ast: Option<ast::Stmt<()>>,
|
|
}
|
|
|
|
pub struct TopLevelComposer {
|
|
// list of top level definitions and their info
|
|
pub definition_list: RwLock<Vec<TopLevelDefInfo>>,
|
|
// primitive store
|
|
pub primitives: PrimitiveStore,
|
|
// start as a primitive unifier, will add more top_level defs inside
|
|
pub unifier: Unifier,
|
|
// class method to definition id
|
|
pub class_method_to_def_id: HashMap<String, DefinitionId>,
|
|
}
|
|
|
|
impl TopLevelComposer {
|
|
pub fn make_primitives() -> (PrimitiveStore, Unifier) {
|
|
let mut unifier = Unifier::new();
|
|
let int32 = unifier.add_ty(TypeEnum::TObj {
|
|
obj_id: DefinitionId(0),
|
|
fields: HashMap::new().into(),
|
|
params: HashMap::new(),
|
|
});
|
|
let int64 = unifier.add_ty(TypeEnum::TObj {
|
|
obj_id: DefinitionId(1),
|
|
fields: HashMap::new().into(),
|
|
params: HashMap::new(),
|
|
});
|
|
let float = unifier.add_ty(TypeEnum::TObj {
|
|
obj_id: DefinitionId(2),
|
|
fields: HashMap::new().into(),
|
|
params: HashMap::new(),
|
|
});
|
|
let bool = unifier.add_ty(TypeEnum::TObj {
|
|
obj_id: DefinitionId(3),
|
|
fields: HashMap::new().into(),
|
|
params: HashMap::new(),
|
|
});
|
|
let none = unifier.add_ty(TypeEnum::TObj {
|
|
obj_id: DefinitionId(4),
|
|
fields: HashMap::new().into(),
|
|
params: HashMap::new(),
|
|
});
|
|
let primitives = PrimitiveStore { int32, int64, float, bool, none };
|
|
crate::typecheck::magic_methods::set_primitives_magic_methods(&primitives, &mut unifier);
|
|
(primitives, unifier)
|
|
}
|
|
|
|
// return a composer and things to make a "primitive" symbol resolver, so that the symbol
|
|
// resolver can later figure out primitive type definitions when passed a primitive type name
|
|
pub fn new() -> (Vec<(String, DefinitionId, Type)>, Self) {
|
|
let primitives = Self::make_primitives();
|
|
// the def list including the entries of primitive info
|
|
let definition_list: Vec<TopLevelDefInfo> = vec![
|
|
TopLevelDefInfo {
|
|
def: Self::make_top_level_class_def(0, None),
|
|
ast: None,
|
|
ty: primitives.0.int32,
|
|
},
|
|
TopLevelDefInfo {
|
|
def: Self::make_top_level_class_def(1, None),
|
|
ast: None,
|
|
ty: primitives.0.int64,
|
|
},
|
|
TopLevelDefInfo {
|
|
def: Self::make_top_level_class_def(2, None),
|
|
ast: None,
|
|
ty: primitives.0.float,
|
|
},
|
|
TopLevelDefInfo {
|
|
def: Self::make_top_level_class_def(3, None),
|
|
ast: None,
|
|
ty: primitives.0.bool,
|
|
},
|
|
TopLevelDefInfo {
|
|
def: Self::make_top_level_class_def(4, None),
|
|
ast: None,
|
|
ty: primitives.0.none,
|
|
},
|
|
];
|
|
let composer = TopLevelComposer {
|
|
definition_list: definition_list.into(),
|
|
primitives: primitives.0,
|
|
unifier: primitives.1,
|
|
class_method_to_def_id: Default::default(),
|
|
};
|
|
(vec![
|
|
("int32".into(), DefinitionId(0), composer.primitives.int32),
|
|
("int64".into(), DefinitionId(1), composer.primitives.int64),
|
|
("float".into(), DefinitionId(2), composer.primitives.float),
|
|
("bool".into(), DefinitionId(3), composer.primitives.bool),
|
|
("none".into(), DefinitionId(4), composer.primitives.none),
|
|
], composer)
|
|
}
|
|
|
|
/// already include the definition_id of itself inside the ancestors vector
|
|
pub fn make_top_level_class_def(
|
|
index: usize,
|
|
resolver: Option<Arc<Mutex<dyn SymbolResolver + Send>>>,
|
|
) -> TopLevelDef {
|
|
TopLevelDef::Class {
|
|
object_id: DefinitionId(index),
|
|
type_vars: Default::default(),
|
|
fields: Default::default(),
|
|
methods: Default::default(),
|
|
ancestors: vec![DefinitionId(index)],
|
|
resolver,
|
|
}
|
|
}
|
|
|
|
pub fn make_top_level_function_def(
|
|
name: String,
|
|
ty: Type,
|
|
resolver: Option<Arc<Mutex<dyn SymbolResolver + Send>>>,
|
|
) -> TopLevelDef {
|
|
TopLevelDef::Function {
|
|
name,
|
|
signature: ty,
|
|
instance_to_symbol: Default::default(),
|
|
instance_to_stmt: Default::default(),
|
|
resolver,
|
|
}
|
|
}
|
|
|
|
pub fn register_top_level(
|
|
&mut self,
|
|
ast: ast::Stmt<()>,
|
|
resolver: Option<Arc<Mutex<dyn SymbolResolver + Send>>>,
|
|
) -> Result<Vec<(String, DefinitionId, Type)>, String> {
|
|
match &ast.node {
|
|
ast::StmtKind::ClassDef { name, body, .. } => {
|
|
let class_name = name.to_string();
|
|
let def_list = self.definition_list.write();
|
|
let class_def_id = def_list.len();
|
|
|
|
// add the class to the unifier
|
|
let ty = self.unifier.add_ty(TypeEnum::TObj {
|
|
obj_id: DefinitionId(class_def_id),
|
|
fields: Default::default(),
|
|
params: Default::default(),
|
|
});
|
|
|
|
let mut ret_vector: Vec<(String, DefinitionId, Type)> =
|
|
vec![(class_name.clone(), DefinitionId(class_def_id), ty)];
|
|
// parse class def body and register class methods into the def list
|
|
// NOTE: module's symbol resolver would not know the name of the class methods,
|
|
// thus cannot return their definition_id? so we have to manage it ourselves?
|
|
// or do we return the class method list of (method_name, def_id, type) to
|
|
// application to be used to build symbol resolver? <- current implementation
|
|
// FIXME: better do not return and let symbol resolver to manage the mangled name
|
|
for b in body {
|
|
if let ast::StmtKind::FunctionDef { name, .. } = &b.node {
|
|
let fun_name = name_mangling(class_name.clone(), name);
|
|
let def_id = self.definition_list.len();
|
|
// add to unifier
|
|
let ty = self.unifier.add_ty(TypeEnum::TFunc(
|
|
crate::typecheck::typedef::FunSignature {
|
|
args: Default::default(),
|
|
ret: self.primitives.none,
|
|
vars: Default::default(),
|
|
},
|
|
));
|
|
// add to the definition list
|
|
self.definition_list.push(TopLevelDefInfo {
|
|
def: Self::make_top_level_function_def(fun_name.clone(), ty, None), // FIXME:
|
|
ty,
|
|
ast: None, // since it is inside the class def body statments
|
|
});
|
|
ret_vector.push((fun_name, DefinitionId(def_id), ty));
|
|
|
|
// if it is the contructor, special handling is needed. In the above
|
|
// handling, we still add __init__ function to the class method
|
|
if name == "__init__" {
|
|
self.definition_list.push(TopLevelDefInfo {
|
|
def: TopLevelDef::Initializer {
|
|
class_id: DefinitionId(class_def_id),
|
|
},
|
|
ty: self.primitives.none, // arbitary picked one
|
|
ast: None, // it is inside the class def body statments
|
|
})
|
|
// FIXME: should we return this to the symbol resolver?, should be yes
|
|
}
|
|
}
|
|
}
|
|
|
|
// add the class to the definition list
|
|
self.definition_list.push(TopLevelDefInfo {
|
|
def: Self::make_top_level_class_def(class_def_id, resolver),
|
|
ast: Some(ast),
|
|
ty,
|
|
});
|
|
|
|
Ok(ret_vector)
|
|
}
|
|
|
|
ast::StmtKind::FunctionDef { name, .. } => {
|
|
let fun_name = name.to_string();
|
|
let def_id = self.definition_list.len();
|
|
// add to the unifier
|
|
let ty =
|
|
self.unifier.add_ty(TypeEnum::TFunc(crate::typecheck::typedef::FunSignature {
|
|
args: Default::default(),
|
|
ret: self.primitives.none,
|
|
vars: Default::default(),
|
|
}));
|
|
// add to the definition list
|
|
self.definition_list.push(TopLevelDefInfo {
|
|
def: Self::make_top_level_function_def(
|
|
name.into(),
|
|
self.primitives.none,
|
|
resolver,
|
|
),
|
|
ast: Some(ast),
|
|
ty,
|
|
});
|
|
|
|
Ok(vec![(fun_name, DefinitionId(def_id), ty)])
|
|
}
|
|
|
|
_ => Err("only registrations of top level classes/functions are supprted".into()),
|
|
}
|
|
}
|
|
|
|
/// this should be called after all top level classes are registered, and will actually fill in those fields of the previous dummy one
|
|
pub fn analyze_top_level(&mut self) -> Result<(), String> {
|
|
for mut d in &mut self.definition_list {
|
|
if let Some(ast) = &d.ast {
|
|
match &ast.node {
|
|
ast::StmtKind::ClassDef {
|
|
bases,
|
|
body,
|
|
..
|
|
} => {
|
|
// get the mutable reference of the entry in the definition list, get the `TopLevelDef`
|
|
let (_,
|
|
ancestors,
|
|
fields,
|
|
methods,
|
|
type_vars,
|
|
// resolver,
|
|
) = if let TopLevelDef::Class {
|
|
object_id,
|
|
ancestors,
|
|
fields,
|
|
methods,
|
|
type_vars,
|
|
resolver
|
|
} = &mut d.def {
|
|
(object_id, ancestors, fields, methods, type_vars) // FIXME: this unwrap is not safe
|
|
} else { unreachable!() };
|
|
|
|
// try to get mutable reference of the entry in the unification table, get the `TypeEnum`
|
|
let (params,
|
|
fields
|
|
) = if let TypeEnum::TObj {
|
|
params, // FIXME: this params is immutable, even if this is mutable, what should the key be, get the original typevar's var_id?
|
|
fields,
|
|
..
|
|
} = self.unifier.get_ty(d.ty).borrow() {
|
|
(params, fields)
|
|
} else { unreachable!() };
|
|
|
|
// ancestors and typevars associate with the class are analyzed by looking
|
|
// into the `bases` ast node
|
|
for b in bases {
|
|
match &b.node {
|
|
// typevars bounded to the class, things like `class A(Generic[T, V, ImportedModule.T])`
|
|
// should update the TopLevelDef::Class.typevars and the TypeEnum::TObj.params
|
|
ast::ExprKind::Subscript {value, slice, ..} if {
|
|
if let ast::ExprKind::Name {id, ..} = &value.node {
|
|
id == "Generic"
|
|
} else { false }
|
|
} => {
|
|
match &slice.node {
|
|
// `class Foo(Generic[T, V, P, ImportedModule.T]):`
|
|
ast::ExprKind::Tuple {elts, ..} => {
|
|
for e in elts {
|
|
// TODO: I'd better parse the node to get the Type of the type vars(can have things like: A.B.C.typevar?)
|
|
match &e.node {
|
|
ast::ExprKind::Name {id, ..} => {
|
|
// the def_list
|
|
// type_vars.push(resolver.get_symbol_type(id).ok_or_else(|| "unknown type variable".to_string())?); FIXME:
|
|
|
|
// the TypeEnum of the class
|
|
// FIXME: the `params` destructed above is not mutable, even if this is mutable, what should the key be?
|
|
unimplemented!()
|
|
},
|
|
|
|
_ => unimplemented!()
|
|
}
|
|
}
|
|
},
|
|
|
|
// `class Foo(Generic[T]):`
|
|
ast::ExprKind::Name {id, ..} => {
|
|
// the def_list
|
|
// type_vars.push(resolver.get_symbol_type(id).ok_or_else(|| "unknown type variable".to_string())?); FIXME:
|
|
|
|
// the TypeEnum of the class
|
|
// FIXME: the `params` destructed above is not mutable, even if this is mutable, what should the key be?
|
|
unimplemented!()
|
|
},
|
|
|
|
// `class Foo(Generic[ImportedModule.T])`
|
|
ast::ExprKind::Attribute {value, attr, ..} => {
|
|
// TODO:
|
|
unimplemented!()
|
|
},
|
|
|
|
_ => return Err("not supported".into()) // NOTE: it is really all the supported cases?
|
|
};
|
|
},
|
|
|
|
// base class, name directly available inside the
|
|
// module, can use this module's symbol resolver
|
|
ast::ExprKind::Name {id, ..} => {
|
|
// let def_id = resolver.get_identifier_def(id); FIXME:
|
|
// the definition list
|
|
// ancestors.push(def_id);
|
|
},
|
|
|
|
// base class, things can be like `class A(BaseModule.Base)`, here we have to get the
|
|
// symbol resolver of the module `BaseModule`?
|
|
ast::ExprKind::Attribute {value, attr, ..} => {
|
|
if let ast::ExprKind::Name {id, ..} = &value.node {
|
|
// if let Some(base_module_resolver) = resolver.get_module_resolver(id) {
|
|
// let def_id = base_module_resolver.get_identifier_def(attr);
|
|
// // the definition list
|
|
// ancestors.push(def_id);
|
|
// } else { return Err("unkown imported module".into()) } FIXME:
|
|
} else { return Err("unkown imported module".into()) }
|
|
},
|
|
|
|
// `class Foo(ImportedModule.A[int, bool])`, A is a class with associated type variables
|
|
ast::ExprKind::Subscript {value, slice, ..} => {
|
|
unimplemented!()
|
|
},
|
|
_ => return Err("not supported".into())
|
|
}
|
|
}
|
|
|
|
// class method and field are analyzed by
|
|
// looking into the class body ast node
|
|
for stmt in body {
|
|
if let ast::StmtKind::FunctionDef {
|
|
name,
|
|
args,
|
|
body,
|
|
returns,
|
|
..
|
|
} = &stmt.node {
|
|
|
|
} else { }
|
|
// do nothing. we do not care about things like this?
|
|
// class A:
|
|
// a = 3
|
|
// b = [2, 3]
|
|
|
|
|
|
}
|
|
},
|
|
|
|
// top level function definition
|
|
ast::StmtKind::FunctionDef {
|
|
name,
|
|
args,
|
|
body,
|
|
returns,
|
|
..
|
|
} => {
|
|
unimplemented!()
|
|
}
|
|
|
|
_ => return Err("only expect function and class definitions to be submitted here to be analyzed".into())
|
|
}
|
|
}
|
|
}
|
|
Ok(())
|
|
}
|
|
}
|