1
0
forked from M-Labs/nac3
nac3/nac3artiq/src/symbol_resolver.rs
pca006132 1084ba2158 nac3core: fixed typevar with finite range
1. Function type variables should not include class type variables,
   because they are not bound to the function.
2. Defer type variable constraint evaluation until we get all fields
   definition.
2022-03-24 21:31:51 +08:00

1069 lines
45 KiB
Rust

use inkwell::{types::BasicType, values::BasicValueEnum, AddressSpace};
use nac3core::{
codegen::{CodeGenContext, CodeGenerator},
symbol_resolver::{StaticValue, SymbolResolver, SymbolValue, ValueEnum},
toplevel::{DefinitionId, TopLevelDef},
typecheck::{
type_inferencer::PrimitiveStore,
typedef::{Type, TypeEnum, Unifier},
},
};
use nac3parser::ast::{self, StrRef};
use parking_lot::{Mutex, RwLock};
use pyo3::{
types::{PyDict, PyTuple},
PyAny, PyObject, PyResult, Python,
};
use std::{
collections::{HashMap, HashSet},
sync::{
Arc,
atomic::{AtomicBool, Ordering::Relaxed}
}
};
use crate::PrimitivePythonId;
pub enum PrimitiveValue {
I32(i32),
I64(i64),
U32(u32),
U64(u64),
F64(f64),
Bool(bool),
}
#[derive(Clone)]
pub struct DeferredEvaluationStore {
needs_defer: Arc<AtomicBool>,
store: Arc<RwLock<Vec<(Vec<Type>, PyObject, String)>>>,
}
impl DeferredEvaluationStore {
pub fn new() -> Self {
DeferredEvaluationStore {
needs_defer: Arc::new(AtomicBool::new(true)),
store: Arc::new(RwLock::new(Vec::new())),
}
}
}
pub struct InnerResolver {
pub id_to_type: RwLock<HashMap<StrRef, Type>>,
pub id_to_def: RwLock<HashMap<StrRef, DefinitionId>>,
pub id_to_pyval: RwLock<HashMap<StrRef, (u64, PyObject)>>,
pub id_to_primitive: RwLock<HashMap<u64, PrimitiveValue>>,
pub field_to_val: RwLock<HashMap<(u64, StrRef), Option<(u64, PyObject)>>>,
pub global_value_ids: Arc<RwLock<HashSet<u64>>>,
pub class_names: Mutex<HashMap<StrRef, Type>>,
pub pyid_to_def: Arc<RwLock<HashMap<u64, DefinitionId>>>,
pub pyid_to_type: Arc<RwLock<HashMap<u64, Type>>>,
pub primitive_ids: PrimitivePythonId,
pub helper: PythonHelper,
pub string_store: Arc<RwLock<HashMap<String, i32>>>,
pub exception_ids: Arc<RwLock<HashMap<usize, usize>>>,
pub deferred_eval_store: DeferredEvaluationStore,
// module specific
pub name_to_pyid: HashMap<StrRef, u64>,
pub module: PyObject,
}
pub struct Resolver(pub Arc<InnerResolver>);
#[derive(Clone)]
pub struct PythonHelper {
pub type_fn: PyObject,
pub len_fn: PyObject,
pub id_fn: PyObject,
pub origin_ty_fn: PyObject,
pub args_ty_fn: PyObject,
pub store_obj: PyObject,
pub store_str: PyObject,
}
struct PythonValue {
id: u64,
value: PyObject,
store_obj: PyObject,
resolver: Arc<InnerResolver>,
}
impl StaticValue for PythonValue {
fn get_unique_identifier(&self) -> u64 {
self.id
}
fn get_const_obj<'ctx, 'a>(
&self,
ctx: &mut CodeGenContext<'ctx, 'a>,
_: &mut dyn CodeGenerator,
) -> BasicValueEnum<'ctx> {
ctx.module
.get_global(self.id.to_string().as_str())
.map(|val| val.as_pointer_value().into())
.unwrap_or_else(|| {
Python::with_gil(|py| -> PyResult<BasicValueEnum<'ctx>> {
let id: u32 = self.store_obj.call1(py, (self.value.clone(),))?.extract(py)?;
let struct_type = ctx.ctx.struct_type(&[ctx.ctx.i32_type().into()], false);
let global = ctx.module.add_global(
struct_type,
None,
format!("{}_const", self.id).as_str(),
);
global.set_constant(true);
global.set_initializer(&ctx.ctx.const_struct(
&[ctx.ctx.i32_type().const_int(id as u64, false).into()],
false,
));
let global2 = ctx.module.add_global(
struct_type.ptr_type(AddressSpace::Generic),
None,
format!("{}_const2", self.id).as_str(),
);
global2.set_initializer(&global.as_pointer_value());
Ok(global2.as_pointer_value().into())
})
.unwrap()
})
}
fn to_basic_value_enum<'ctx, 'a>(
&self,
ctx: &mut CodeGenContext<'ctx, 'a>,
generator: &mut dyn CodeGenerator,
) -> Result<BasicValueEnum<'ctx>, String> {
if let Some(val) = self.resolver.id_to_primitive.read().get(&self.id) {
return Ok(match val {
PrimitiveValue::I32(val) => ctx.ctx.i32_type().const_int(*val as u64, false).into(),
PrimitiveValue::I64(val) => ctx.ctx.i64_type().const_int(*val as u64, false).into(),
PrimitiveValue::U32(val) => ctx.ctx.i32_type().const_int(*val as u64, false).into(),
PrimitiveValue::U64(val) => ctx.ctx.i64_type().const_int(*val as u64, false).into(),
PrimitiveValue::F64(val) => ctx.ctx.f64_type().const_float(*val).into(),
PrimitiveValue::Bool(val) => {
ctx.ctx.bool_type().const_int(*val as u64, false).into()
}
});
}
if let Some(global) = ctx.module.get_global(&self.id.to_string()) {
return Ok(global.as_pointer_value().into());
}
Python::with_gil(|py| -> PyResult<BasicValueEnum<'ctx>> {
self.resolver
.get_obj_value(py, self.value.as_ref(py), ctx, generator)
.map(Option::unwrap)
}).map_err(|e| e.to_string())
}
fn get_field<'ctx, 'a>(
&self,
name: StrRef,
ctx: &mut CodeGenContext<'ctx, 'a>,
) -> Option<ValueEnum<'ctx>> {
{
let field_to_val = self.resolver.field_to_val.read();
field_to_val.get(&(self.id, name)).cloned()
}
.unwrap_or_else(|| {
Python::with_gil(|py| -> PyResult<Option<(u64, PyObject)>> {
let helper = &self.resolver.helper;
let ty = helper.type_fn.call1(py, (&self.value,))?;
let ty_id: u64 = helper.id_fn.call1(py, (ty,))?.extract(py)?;
let def_id = { *self.resolver.pyid_to_def.read().get(&ty_id).unwrap() };
let mut mutable = true;
let defs = ctx.top_level.definitions.read();
if let TopLevelDef::Class { fields, .. } = &*defs[def_id.0].read() {
for (field_name, _, is_mutable) in fields.iter() {
if field_name == &name {
mutable = *is_mutable;
break;
}
}
}
let result = if mutable {
None
} else {
let obj = self.value.getattr(py, &name.to_string())?;
let id = self.resolver.helper.id_fn.call1(py, (&obj,))?.extract(py)?;
Some((id, obj))
};
self.resolver.field_to_val.write().insert((self.id, name), result.clone());
Ok(result)
})
.unwrap()
})
.map(|(id, obj)| {
ValueEnum::Static(Arc::new(PythonValue {
id,
value: obj,
store_obj: self.store_obj.clone(),
resolver: self.resolver.clone(),
}))
})
}
}
impl InnerResolver {
fn get_list_elem_type(
&self,
py: Python,
list: &PyAny,
len: usize,
unifier: &mut Unifier,
defs: &[Arc<RwLock<TopLevelDef>>],
primitives: &PrimitiveStore,
) -> PyResult<Result<Type, String>> {
let mut ty = match self.get_obj_type(py, list.get_item(0)?, unifier, defs, primitives)? {
Ok(t) => t,
Err(e) => return Ok(Err(format!("type error ({}) at element #0 of the list", e))),
};
for i in 1..len {
let b = match list
.get_item(i)
.map(|elem| self.get_obj_type(py, elem, unifier, defs, primitives))??
{
Ok(t) => t,
Err(e) => {
return Ok(Err(format!("type error ({}) at element #{} of the list", e, i)))
}
};
ty = match unifier.unify(ty, b) {
Ok(_) => ty,
Err(e) => {
return Ok(Err(format!(
"inhomogeneous type ({}) at element #{} of the list",
e.to_display(unifier).to_string(),
i
)))
}
};
}
Ok(Ok(ty))
}
// handle python objects that represent types themselves
// primitives and class types should be themselves, use `ty_id` to check,
// TypeVars and GenericAlias(`A[int, bool]`) should use `ty_ty_id` to check
// the `bool` value returned indicates whether they are instantiated or not
fn get_pyty_obj_type(
&self,
py: Python,
pyty: &PyAny,
unifier: &mut Unifier,
defs: &[Arc<RwLock<TopLevelDef>>],
primitives: &PrimitiveStore,
) -> PyResult<Result<(Type, bool), String>> {
let ty_id: u64 = self.helper.id_fn.call1(py, (pyty,))?.extract(py)?;
let ty_ty_id: u64 =
self.helper.id_fn.call1(py, (self.helper.type_fn.call1(py, (pyty,))?,))?.extract(py)?;
if ty_id == self.primitive_ids.int || ty_id == self.primitive_ids.int32 {
Ok(Ok((primitives.int32, true)))
} else if ty_id == self.primitive_ids.int64 {
Ok(Ok((primitives.int64, true)))
} else if ty_id == self.primitive_ids.uint32 {
Ok(Ok((primitives.uint32, true)))
} else if ty_id == self.primitive_ids.uint64 {
Ok(Ok((primitives.uint64, true)))
} else if ty_id == self.primitive_ids.bool {
Ok(Ok((primitives.bool, true)))
} else if ty_id == self.primitive_ids.float {
Ok(Ok((primitives.float, true)))
} else if ty_id == self.primitive_ids.exception {
Ok(Ok((primitives.exception, true)))
} else if ty_id == self.primitive_ids.list {
// do not handle type var param and concrete check here
let var = unifier.get_dummy_var().0;
let list = unifier.add_ty(TypeEnum::TList { ty: var });
Ok(Ok((list, false)))
} else if ty_id == self.primitive_ids.tuple {
// do not handle type var param and concrete check here
Ok(Ok((unifier.add_ty(TypeEnum::TTuple { ty: vec![] }), false)))
} else if let Some(def_id) = self.pyid_to_def.read().get(&ty_id).cloned() {
let def = defs[def_id.0].read();
if let TopLevelDef::Class { object_id, type_vars, fields, methods, .. } = &*def {
// do not handle type var param and concrete check here, and no subst
Ok(Ok({
let ty = TypeEnum::TObj {
obj_id: *object_id,
params: type_vars
.iter()
.map(|x| {
if let TypeEnum::TVar { id, .. } = &*unifier.get_ty(*x) {
(*id, *x)
} else {
unreachable!()
}
})
.collect(),
fields: {
let mut res = methods
.iter()
.map(|(iden, ty, _)| (*iden, (*ty, false)))
.collect::<HashMap<_, _>>();
res.extend(fields.clone().into_iter().map(|x| (x.0, (x.1, x.2))));
res
},
};
// here also false, later instantiation use python object to check compatible
(unifier.add_ty(ty), false)
}))
} else {
// only object is supported, functions are not supported
unreachable!("function type is not supported, should not be queried")
}
} else if ty_ty_id == self.primitive_ids.typevar {
let name: &str = pyty.getattr("__name__").unwrap().extract().unwrap();
let constraint_types = {
let constraints = pyty.getattr("__constraints__").unwrap();
let mut result: Vec<Type> = vec![];
let needs_defer = self.deferred_eval_store.needs_defer.load(Relaxed);
for i in 0.. {
if let Ok(constr) = constraints.get_item(i) {
if needs_defer {
result.push(unifier.get_dummy_var().0);
} else {
result.push({
match self.get_pyty_obj_type(py, constr, unifier, defs, primitives)? {
Ok((ty, _)) => {
if unifier.is_concrete(ty, &[]) {
ty
} else {
return Ok(Err(format!(
"the {}th constraint of TypeVar `{}` is not concrete",
i + 1,
pyty.getattr("__name__")?.extract::<String>()?
)));
}
}
Err(err) => return Ok(Err(err)),
}
})
}
} else {
break;
}
}
if needs_defer {
self.deferred_eval_store.store.write()
.push((result.clone(),
constraints.extract()?,
pyty.getattr("__name__")?.extract::<String>()?
))
}
result
};
let res =
unifier.get_fresh_var_with_range(&constraint_types, Some(name.into()), None).0;
Ok(Ok((res, true)))
} else if ty_ty_id == self.primitive_ids.generic_alias.0
|| ty_ty_id == self.primitive_ids.generic_alias.1
{
let origin = self.helper.origin_ty_fn.call1(py, (pyty,))?;
let args = self.helper.args_ty_fn.call1(py, (pyty,))?;
let args: &PyTuple = args.cast_as(py)?;
let origin_ty =
match self.get_pyty_obj_type(py, origin.as_ref(py), unifier, defs, primitives)? {
Ok((ty, false)) => ty,
Ok((_, true)) => {
return Ok(Err("instantiated type does not take type parameters".into()))
}
Err(err) => return Ok(Err(err)),
};
match &*unifier.get_ty(origin_ty) {
TypeEnum::TList { .. } => {
if args.len() == 1 {
let ty = match self.get_pyty_obj_type(
py,
args.get_item(0),
unifier,
defs,
primitives,
)? {
Ok(ty) => ty,
Err(err) => return Ok(Err(err)),
};
if !unifier.is_concrete(ty.0, &[]) && !ty.1 {
return Ok(Err(
"type list should take concrete parameters in typevar range".into(),
));
}
Ok(Ok((unifier.add_ty(TypeEnum::TList { ty: ty.0 }), true)))
} else {
return Ok(Err(format!(
"type list needs exactly 1 type parameters, found {}",
args.len()
)));
}
}
TypeEnum::TTuple { .. } => {
let args = match args
.iter()
.map(|x| self.get_pyty_obj_type(py, x, unifier, defs, primitives))
.collect::<Result<Vec<_>, _>>()?
.into_iter()
.collect::<Result<Vec<_>, _>>() {
Ok(args) if !args.is_empty() => args
.into_iter()
.map(|(x, check)| if !unifier.is_concrete(x, &[]) && !check {
panic!("type tuple should take concrete parameters in type var ranges")
} else {
x
}
)
.collect::<Vec<_>>(),
Err(err) => return Ok(Err(err)),
_ => return Ok(Err("tuple type needs at least 1 type parameters".to_string()))
};
Ok(Ok((unifier.add_ty(TypeEnum::TTuple { ty: args }), true)))
}
TypeEnum::TObj { params, obj_id, .. } => {
let subst = {
if params.len() != args.len() {
return Ok(Err(format!(
"for class #{}, expect {} type parameters, got {}.",
obj_id.0,
params.len(),
args.len(),
)));
}
let args = match args
.iter()
.map(|x| self.get_pyty_obj_type(py, x, unifier, defs, primitives))
.collect::<Result<Vec<_>, _>>()?
.into_iter()
.collect::<Result<Vec<_>, _>>() {
Ok(args) => args
.into_iter()
.map(|(x, check)| if !unifier.is_concrete(x, &[]) && !check {
panic!("type class should take concrete parameters in type var ranges")
} else {
x
}
)
.collect::<Vec<_>>(),
Err(err) => return Ok(Err(err)),
};
params
.iter()
.zip(args.iter())
.map(|((id, _), ty)| (*id, *ty))
.collect::<HashMap<_, _>>()
};
Ok(Ok((unifier.subst(origin_ty, &subst).unwrap_or(origin_ty), true)))
}
TypeEnum::TVirtual { .. } => {
if args.len() == 1 {
let ty = match self.get_pyty_obj_type(
py,
args.get_item(0),
unifier,
defs,
primitives,
)? {
Ok(ty) => ty,
Err(err) => return Ok(Err(err)),
};
if !unifier.is_concrete(ty.0, &[]) && !ty.1 {
panic!(
"virtual class should take concrete parameters in type var ranges"
)
}
Ok(Ok((unifier.add_ty(TypeEnum::TVirtual { ty: ty.0 }), true)))
} else {
return Ok(Err(format!(
"virtual class needs exactly 1 type parameters, found {}",
args.len()
)));
}
}
_ => unimplemented!(),
}
} else if ty_id == self.primitive_ids.virtual_id {
Ok(Ok((
{
let ty = TypeEnum::TVirtual { ty: unifier.get_dummy_var().0 };
unifier.add_ty(ty)
},
false,
)))
} else {
let str_fn =
pyo3::types::PyModule::import(py, "builtins").unwrap().getattr("repr").unwrap();
let str_repr: String = str_fn.call1((pyty,)).unwrap().extract().unwrap();
Ok(Err(format!(
"{} is not registered with NAC3 (@nac3 decorator missing?)",
str_repr
)))
}
}
fn get_obj_type(
&self,
py: Python,
obj: &PyAny,
unifier: &mut Unifier,
defs: &[Arc<RwLock<TopLevelDef>>],
primitives: &PrimitiveStore,
) -> PyResult<Result<Type, String>> {
let ty = self.helper.type_fn.call1(py, (obj,)).unwrap();
let ty_id: u64 = self.helper.id_fn.call1(py, (ty.clone(),))?.extract(py)?;
if let Some(ty) = self.pyid_to_type.read().get(&ty_id) {
return Ok(Ok(*ty))
}
let (extracted_ty, inst_check) = match self.get_pyty_obj_type(
py,
{
if [
self.primitive_ids.typevar,
self.primitive_ids.generic_alias.0,
self.primitive_ids.generic_alias.1,
]
.contains(&self.helper.id_fn.call1(py, (ty.clone(),))?.extract::<u64>(py)?)
{
obj
} else {
ty.as_ref(py)
}
},
unifier,
defs,
primitives,
)? {
Ok(s) => s,
Err(e) => return Ok(Err(e)),
};
match (&*unifier.get_ty(extracted_ty), inst_check) {
// do the instantiation for these three types
(TypeEnum::TList { ty }, false) => {
let len: usize = self.helper.len_fn.call1(py, (obj,))?.extract(py)?;
if len == 0 {
assert!(matches!(
&*unifier.get_ty(extracted_ty),
TypeEnum::TVar { fields: None, range, .. }
if range.is_empty()
));
Ok(Ok(extracted_ty))
} else {
let actual_ty =
self.get_list_elem_type(py, obj, len, unifier, defs, primitives)?;
match actual_ty {
Ok(t) => match unifier.unify(*ty, t) {
Ok(_) => Ok(Ok(unifier.add_ty(TypeEnum::TList { ty: *ty }))),
Err(e) => Ok(Err(format!(
"type error ({}) for the list",
e.to_display(unifier).to_string()
))),
},
Err(e) => Ok(Err(e)),
}
}
}
(TypeEnum::TTuple { .. }, false) => {
let elements: &PyTuple = obj.cast_as()?;
let types: Result<Result<Vec<_>, _>, _> = elements
.iter()
.map(|elem| self.get_obj_type(py, elem, unifier, defs, primitives))
.collect();
let types = types?;
Ok(types.map(|types| unifier.add_ty(TypeEnum::TTuple { ty: types })))
}
(TypeEnum::TObj { params, fields, .. }, false) => {
let var_map = params
.iter()
.map(|(id_var, ty)| {
if let TypeEnum::TVar { id, range, name, loc, .. } =
&*unifier.get_ty(*ty)
{
assert_eq!(*id, *id_var);
(*id, unifier.get_fresh_var_with_range(range, *name, *loc).0)
} else {
unreachable!()
}
})
.collect::<HashMap<_, _>>();
let mut instantiate_obj = || {
// loop through non-function fields of the class to get the instantiated value
for field in fields.iter() {
let name: String = (*field.0).into();
if let TypeEnum::TFunc(..) = &*unifier.get_ty(field.1.0) {
continue;
} else {
let field_data = obj.getattr(&name)?;
let ty = match self
.get_obj_type(py, field_data, unifier, defs, primitives)?
{
Ok(t) => t,
Err(e) => {
return Ok(Err(format!(
"error when getting type of field `{}` ({})",
name, e
)))
}
};
let field_ty =
unifier.subst(field.1.0, &var_map).unwrap_or(field.1.0);
if let Err(e) = unifier.unify(ty, field_ty) {
// field type mismatch
return Ok(Err(format!(
"error when getting type of field `{}` ({})",
name,
e.to_display(unifier).to_string()
)));
}
}
}
for (_, ty) in var_map.iter() {
// must be concrete type
if !unifier.is_concrete(*ty, &[]) {
return Ok(Err("object is not of concrete type".into()));
}
}
let extracted_ty = unifier.subst(extracted_ty, &var_map).unwrap_or(extracted_ty);
Ok(Ok(extracted_ty))
};
instantiate_obj()
}
_ => Ok(Ok(extracted_ty)),
}
}
fn get_obj_value<'ctx, 'a>(
&self,
py: Python,
obj: &PyAny,
ctx: &mut CodeGenContext<'ctx, 'a>,
generator: &mut dyn CodeGenerator,
) -> PyResult<Option<BasicValueEnum<'ctx>>> {
let ty_id: u64 =
self.helper.id_fn.call1(py, (self.helper.type_fn.call1(py, (obj,))?,))?.extract(py)?;
let id: u64 = self.helper.id_fn.call1(py, (obj,))?.extract(py)?;
if ty_id == self.primitive_ids.int || ty_id == self.primitive_ids.int32 {
let val: i32 = obj.extract().map_err(|_| super::CompileError::new_err(
format!("{} is not in the range of int32", obj)))?;
self.id_to_primitive.write().insert(id, PrimitiveValue::I32(val));
Ok(Some(ctx.ctx.i32_type().const_int(val as u64, false).into()))
} else if ty_id == self.primitive_ids.int64 {
let val: i64 = obj.extract().map_err(|_| super::CompileError::new_err(
format!("{} is not in the range of int64", obj)))?;
self.id_to_primitive.write().insert(id, PrimitiveValue::I64(val));
Ok(Some(ctx.ctx.i64_type().const_int(val as u64, false).into()))
} else if ty_id == self.primitive_ids.uint32 {
let val: u32 = obj.extract().map_err(|_| super::CompileError::new_err(
format!("{} is not in the range of uint32", obj)))?;
self.id_to_primitive.write().insert(id, PrimitiveValue::U32(val));
Ok(Some(ctx.ctx.i32_type().const_int(val as u64, false).into()))
} else if ty_id == self.primitive_ids.uint64 {
let val: u64 = obj.extract().map_err(|_| super::CompileError::new_err(
format!("{} is not in the range of uint64", obj)))?;
self.id_to_primitive.write().insert(id, PrimitiveValue::U64(val));
Ok(Some(ctx.ctx.i64_type().const_int(val, false).into()))
} else if ty_id == self.primitive_ids.bool {
let val: bool = obj.extract().map_err(|_| super::CompileError::new_err(
format!("{} is not in the range of bool", obj)))?;
self.id_to_primitive.write().insert(id, PrimitiveValue::Bool(val));
Ok(Some(ctx.ctx.bool_type().const_int(val as u64, false).into()))
} else if ty_id == self.primitive_ids.float {
let val: f64 = obj.extract().map_err(|_| super::CompileError::new_err(
format!("{} is not in the range of float64", obj)))?;
self.id_to_primitive.write().insert(id, PrimitiveValue::F64(val));
Ok(Some(ctx.ctx.f64_type().const_float(val).into()))
} else if ty_id == self.primitive_ids.list {
let id_str = id.to_string();
if let Some(global) = ctx.module.get_global(&id_str) {
return Ok(Some(global.as_pointer_value().into()));
}
let len: usize = self.helper.len_fn.call1(py, (obj,))?.extract(py)?;
let ty = if len == 0 {
ctx.primitives.int32
} else {
self.get_list_elem_type(
py,
obj,
len,
&mut ctx.unifier,
&ctx.top_level.definitions.read(),
&ctx.primitives,
)?
.unwrap()
};
let ty = ctx.get_llvm_type(generator, ty);
let size_t = generator.get_size_type(ctx.ctx);
let arr_ty = ctx
.ctx
.struct_type(&[ty.ptr_type(AddressSpace::Generic).into(), size_t.into()], false);
{
if self.global_value_ids.read().contains(&id) {
let global = ctx.module.get_global(&id_str).unwrap_or_else(|| {
ctx.module.add_global(arr_ty, Some(AddressSpace::Generic), &id_str)
});
return Ok(Some(global.as_pointer_value().into()));
} else {
self.global_value_ids.write().insert(id);
}
}
let arr: Result<Option<Vec<_>>, _> = (0..len)
.map(|i| {
obj.get_item(i).and_then(|elem| self.get_obj_value(py, elem, ctx, generator).map_err(
|e| super::CompileError::new_err(format!("Error getting element {}: {}", i, e))))
})
.collect();
let arr = arr?.unwrap();
let arr_global = ctx.module.add_global(
ty.array_type(len as u32),
Some(AddressSpace::Generic),
&(id_str.clone() + "_"),
);
let arr: BasicValueEnum = if ty.is_int_type() {
let arr: Vec<_> = arr.into_iter().map(BasicValueEnum::into_int_value).collect();
ty.into_int_type().const_array(&arr)
} else if ty.is_float_type() {
let arr: Vec<_> = arr.into_iter().map(BasicValueEnum::into_float_value).collect();
ty.into_float_type().const_array(&arr)
} else if ty.is_array_type() {
let arr: Vec<_> = arr.into_iter().map(BasicValueEnum::into_array_value).collect();
ty.into_array_type().const_array(&arr)
} else if ty.is_struct_type() {
let arr: Vec<_> = arr.into_iter().map(BasicValueEnum::into_struct_value).collect();
ty.into_struct_type().const_array(&arr)
} else if ty.is_pointer_type() {
let arr: Vec<_> = arr.into_iter().map(BasicValueEnum::into_pointer_value).collect();
ty.into_pointer_type().const_array(&arr)
} else {
unreachable!()
}
.into();
arr_global.set_initializer(&arr);
let val = arr_ty.const_named_struct(&[
arr_global.as_pointer_value().const_cast(ty.ptr_type(AddressSpace::Generic)).into(),
size_t.const_int(len as u64, false).into(),
]);
let global = ctx.module.add_global(arr_ty, Some(AddressSpace::Generic), &id_str);
global.set_initializer(&val);
Ok(Some(global.as_pointer_value().into()))
} else if ty_id == self.primitive_ids.tuple {
let id_str = id.to_string();
if let Some(global) = ctx.module.get_global(&id_str) {
return Ok(Some(global.as_pointer_value().into()));
}
let elements: &PyTuple = obj.cast_as()?;
let types: Result<Result<Vec<_>, _>, _> = elements
.iter()
.enumerate()
.map(|(i, elem)| {
self.get_obj_type(
py,
elem,
&mut ctx.unifier,
&ctx.top_level.definitions.read(),
&ctx.primitives,
)
.map_err(|e| super::CompileError::new_err(format!("Error getting element {}: {}", i, e)))
.map(|ty| ty.map(|ty| ctx.get_llvm_type(generator, ty)))
})
.collect();
let types = types?.unwrap();
let ty = ctx.ctx.struct_type(&types, false);
{
if self.global_value_ids.read().contains(&id) {
let global = ctx.module.get_global(&id_str).unwrap_or_else(|| {
ctx.module.add_global(ty, Some(AddressSpace::Generic), &id_str)
});
return Ok(Some(global.as_pointer_value().into()));
} else {
self.global_value_ids.write().insert(id);
}
}
let val: Result<Option<Vec<_>>, _> =
elements.iter().enumerate().map(|(i, elem)| self.get_obj_value(py, elem, ctx, generator).map_err(|e|
super::CompileError::new_err(format!("Error getting element {}: {}", i, e)))).collect();
let val = val?.unwrap();
let val = ctx.ctx.const_struct(&val, false);
let global = ctx.module.add_global(ty, Some(AddressSpace::Generic), &id_str);
global.set_initializer(&val);
Ok(Some(global.as_pointer_value().into()))
} else {
let id_str = id.to_string();
if let Some(global) = ctx.module.get_global(&id_str) {
return Ok(Some(global.as_pointer_value().into()));
}
let top_level_defs = ctx.top_level.definitions.read();
let ty = self
.get_obj_type(py, obj, &mut ctx.unifier, &top_level_defs, &ctx.primitives)?
.unwrap();
let ty = ctx
.get_llvm_type(generator, ty)
.into_pointer_type()
.get_element_type()
.into_struct_type();
{
if self.global_value_ids.read().contains(&id) {
let global = ctx.module.get_global(&id_str).unwrap_or_else(|| {
ctx.module.add_global(ty, Some(AddressSpace::Generic), &id_str)
});
return Ok(Some(global.as_pointer_value().into()));
} else {
self.global_value_ids.write().insert(id);
}
}
// should be classes
let definition =
top_level_defs.get(self.pyid_to_def.read().get(&ty_id).unwrap().0).unwrap().read();
if let TopLevelDef::Class { fields, .. } = &*definition {
let values: Result<Option<Vec<_>>, _> = fields
.iter()
.map(|(name, _, _)| {
self.get_obj_value(py, obj.getattr(&name.to_string())?, ctx, generator).map_err(|e|
super::CompileError::new_err(format!("Error getting field {}: {}", name, e)))
})
.collect();
let values = values?;
if let Some(values) = values {
let val = ty.const_named_struct(&values);
let global = ctx.module.add_global(ty, Some(AddressSpace::Generic), &id_str);
global.set_initializer(&val);
Ok(Some(global.as_pointer_value().into()))
} else {
Ok(None)
}
} else {
unreachable!()
}
}
}
fn get_default_param_obj_value(
&self,
py: Python,
obj: &PyAny,
) -> PyResult<Result<SymbolValue, String>> {
let ty_id: u64 =
self.helper.id_fn.call1(py, (self.helper.type_fn.call1(py, (obj,))?,))?.extract(py)?;
Ok(if ty_id == self.primitive_ids.int || ty_id == self.primitive_ids.int32 {
let val: i32 = obj.extract()?;
Ok(SymbolValue::I32(val))
} else if ty_id == self.primitive_ids.int64 {
let val: i64 = obj.extract()?;
Ok(SymbolValue::I64(val))
} else if ty_id == self.primitive_ids.bool {
let val: bool = obj.extract()?;
Ok(SymbolValue::Bool(val))
} else if ty_id == self.primitive_ids.float {
let val: f64 = obj.extract()?;
Ok(SymbolValue::Double(val))
} else if ty_id == self.primitive_ids.tuple {
let elements: &PyTuple = obj.cast_as()?;
let elements: Result<Result<Vec<_>, String>, _> =
elements.iter().map(|elem| self.get_default_param_obj_value(py, elem)).collect();
let elements = match elements? {
Ok(el) => el,
Err(err) => return Ok(Err(err)),
};
Ok(SymbolValue::Tuple(elements))
} else {
Err("only primitives values and tuple can be default parameter value".into())
})
}
}
impl SymbolResolver for Resolver {
fn get_default_param_value(&self, expr: &ast::Expr) -> Option<SymbolValue> {
match &expr.node {
ast::ExprKind::Name { id, .. } => {
Python::with_gil(|py| -> PyResult<Option<SymbolValue>> {
let obj: &PyAny = self.0.module.extract(py)?;
let members: &PyDict = obj.getattr("__dict__").unwrap().cast_as().unwrap();
let mut sym_value = None;
for (key, val) in members.iter() {
let key: &str = key.extract()?;
if key == id.to_string() {
sym_value =
Some(self.0.get_default_param_obj_value(py, val).unwrap().unwrap());
break;
}
}
Ok(sym_value)
})
.unwrap()
}
_ => unimplemented!("other type of expr not supported at {}", expr.location),
}
}
fn get_symbol_type(
&self,
unifier: &mut Unifier,
defs: &[Arc<RwLock<TopLevelDef>>],
primitives: &PrimitiveStore,
str: StrRef,
) -> Result<Type, String> {
match {
let id_to_type = self.0.id_to_type.read();
id_to_type.get(&str).cloned()
} {
Some(ty) => Ok(ty),
None => {
let id = match self.0.name_to_pyid.get(&str) {
Some(id) => id,
None => return Err(format!("cannot find symbol `{}`", str)),
};
let result = match {
let pyid_to_type = self.0.pyid_to_type.read();
pyid_to_type.get(id).copied()
} {
Some(t) => Ok(t),
None => Python::with_gil(|py| -> PyResult<Result<Type, String>> {
let obj: &PyAny = self.0.module.extract(py)?;
let mut sym_ty = Err(format!("cannot find symbol `{}`", str));
let members: &PyDict = obj.getattr("__dict__").unwrap().cast_as().unwrap();
for (key, val) in members.iter() {
let key: &str = key.extract()?;
if key == str.to_string() {
sym_ty = self.0.get_obj_type(py, val, unifier, defs, primitives)?;
break;
}
}
if let Ok(t) = sym_ty {
if let TypeEnum::TVar { .. } = &*unifier.get_ty(t) {
self.0.pyid_to_type.write().insert(*id, t);
}
}
Ok(sym_ty)
})
.unwrap(),
};
result
}
}
}
fn get_symbol_value<'ctx, 'a>(
&self,
id: StrRef,
_: &mut CodeGenContext<'ctx, 'a>,
) -> Option<ValueEnum<'ctx>> {
let sym_value = {
let id_to_val = self.0.id_to_pyval.read();
id_to_val.get(&id).cloned()
}
.or_else(|| {
Python::with_gil(|py| -> PyResult<Option<(u64, PyObject)>> {
let obj: &PyAny = self.0.module.extract(py)?;
let mut sym_value: Option<(u64, PyObject)> = None;
let members: &PyDict = obj.getattr("__dict__").unwrap().cast_as().unwrap();
for (key, val) in members.iter() {
let key: &str = key.extract()?;
if key == id.to_string() {
let id = self.0.helper.id_fn.call1(py, (val,))?.extract(py)?;
sym_value = Some((id, val.extract()?));
break;
}
}
if let Some((pyid, val)) = &sym_value {
self.0.id_to_pyval.write().insert(id, (*pyid, val.clone()));
}
Ok(sym_value)
})
.unwrap()
});
sym_value.map(|(id, v)| {
ValueEnum::Static(Arc::new(PythonValue {
id,
value: v,
store_obj: self.0.helper.store_obj.clone(),
resolver: self.0.clone(),
}))
})
}
fn get_identifier_def(&self, id: StrRef) -> Result<DefinitionId, String> {
{
let id_to_def = self.0.id_to_def.read();
id_to_def.get(&id).cloned().ok_or_else(|| "".to_string())
}
.or_else(|_| {
let py_id =
self.0.name_to_pyid.get(&id).ok_or(format!("Undefined identifier `{}`", id))?;
let result = self.0.pyid_to_def.read().get(py_id).copied().ok_or(format!(
"`{}` is not registered with NAC3 (@nac3 decorator missing?)",
id
))?;
self.0.id_to_def.write().insert(id, result);
Ok(result)
})
}
fn get_string_id(&self, s: &str) -> i32 {
let mut string_store = self.0.string_store.write();
if let Some(id) = string_store.get(s) {
*id
} else {
let id = Python::with_gil(|py| -> PyResult<i32> {
self.0.helper.store_str.call1(py, (s,))?.extract(py)
})
.unwrap();
string_store.insert(s.into(), id);
id
}
}
fn handle_deferred_eval(
&self,
unifier: &mut Unifier,
defs: &[Arc<RwLock<TopLevelDef>>],
primitives: &PrimitiveStore
) -> Result<(), String> {
// we don't need a lock because this will only be run in a single thread
if self.0.deferred_eval_store.needs_defer.load(Relaxed) {
self.0.deferred_eval_store.needs_defer.store(false, Relaxed);
let store = self.0.deferred_eval_store.store.read();
Python::with_gil(|py| -> PyResult<Result<(), String>> {
for (variables, constraints, name) in store.iter() {
let constraints: &PyAny = constraints.as_ref(py);
for (i, var) in variables.iter().enumerate() {
if let Ok(constr) = constraints.get_item(i) {
match self.0.get_pyty_obj_type(py, constr, unifier, defs, primitives)? {
Ok((ty, _)) => {
if !unifier.is_concrete(ty, &[]) {
return Ok(Err(format!(
"the {}th constraint of TypeVar `{}` is not concrete",
i + 1,
name,
)));
}
unifier.unify(ty, *var).unwrap()
}
Err(err) => return Ok(Err(err)),
}
} else {
break;
}
}
}
Ok(Ok(()))
}).unwrap()?
}
Ok(())
}
fn get_exception_id(&self, tyid: usize) -> usize {
let exn_ids = self.0.exception_ids.read();
exn_ids.get(&tyid).cloned().unwrap_or(0)
}
}