use inkwell::{FloatPredicate, IntPredicate}; use inkwell::types::{BasicTypeEnum, IntType}; use inkwell::values::{BasicValueEnum, FloatValue, IntValue}; use itertools::Itertools; use crate::codegen::{CodeGenContext, CodeGenerator, extern_fns, irrt, llvm_intrinsics}; use crate::typecheck::typedef::Type; /// Shorthand for [`unreachable!()`] when a type of argument is not supported. /// /// The generated message will contain the function name and the name of the unsupported type. fn unsupported_type( ctx: &CodeGenContext<'_, '_>, fn_name: &str, tys: &[Type], ) -> ! { unreachable!( "{fn_name}() not supported for '{}'", tys.iter().map(|ty| format!("'{}'", ctx.unifier.stringify(*ty))).join(", "), ) } /// Invokes the `int32` builtin function. pub fn call_int32<'ctx>( ctx: &mut CodeGenContext<'ctx, '_>, n: (Type, BasicValueEnum<'ctx>), ) -> IntValue<'ctx> { let llvm_i32 = ctx.ctx.i32_type(); let (n_ty, n) = n; match n.get_type() { BasicTypeEnum::IntType(int_ty) if matches!(int_ty.get_bit_width(), 1 | 8) => { debug_assert!(ctx.unifier.unioned(n_ty, ctx.primitives.bool)); ctx.builder .build_int_z_extend(n.into_int_value(), llvm_i32, "zext") .unwrap() } BasicTypeEnum::IntType(int_ty) if int_ty.get_bit_width() == 32 => { debug_assert!([ ctx.primitives.int32, ctx.primitives.uint32, ].iter().any(|ty| ctx.unifier.unioned(n_ty, *ty))); n.into_int_value() } BasicTypeEnum::IntType(int_ty) if int_ty.get_bit_width() == 64 => { debug_assert!([ ctx.primitives.int64, ctx.primitives.uint64, ].iter().any(|ty| ctx.unifier.unioned(n_ty, *ty))); ctx.builder .build_int_truncate(n.into_int_value(), llvm_i32, "trunc") .unwrap() } BasicTypeEnum::FloatType(_) => { debug_assert!(ctx.unifier.unioned(n_ty, ctx.primitives.float)); let to_int64 = ctx.builder .build_float_to_signed_int(n.into_float_value(), ctx.ctx.i64_type(), "") .unwrap(); ctx.builder .build_int_truncate(to_int64, llvm_i32, "conv") .unwrap() } _ => unsupported_type(ctx, "int32", &[n_ty]) } } /// Invokes the `int64` builtin function. pub fn call_int64<'ctx>( ctx: &mut CodeGenContext<'ctx, '_>, n: (Type, BasicValueEnum<'ctx>), ) -> IntValue<'ctx> { let llvm_i64 = ctx.ctx.i64_type(); let (n_ty, n) = n; match n.get_type() { BasicTypeEnum::IntType(int_ty) if matches!(int_ty.get_bit_width(), 1 | 8 | 32) => { debug_assert!([ ctx.primitives.bool, ctx.primitives.int32, ctx.primitives.uint32, ].iter().any(|ty| ctx.unifier.unioned(n_ty, *ty))); if ctx.unifier.unioned(n_ty, ctx.primitives.int32) { ctx.builder .build_int_s_extend(n.into_int_value(), llvm_i64, "sext") .unwrap() } else { ctx.builder .build_int_z_extend(n.into_int_value(), llvm_i64, "zext") .unwrap() } } BasicTypeEnum::IntType(int_ty) if int_ty.get_bit_width() == 64 => { debug_assert!([ ctx.primitives.int64, ctx.primitives.uint64, ].iter().any(|ty| ctx.unifier.unioned(n_ty, *ty))); n.into_int_value() } BasicTypeEnum::FloatType(_) => { debug_assert!(ctx.unifier.unioned(n_ty, ctx.primitives.float)); ctx.builder .build_float_to_signed_int(n.into_float_value(), ctx.ctx.i64_type(), "fptosi") .unwrap() } _ => unsupported_type(ctx, "int64", &[n_ty]) } } /// Invokes the `uint32` builtin function. pub fn call_uint32<'ctx>( ctx: &mut CodeGenContext<'ctx, '_>, n: (Type, BasicValueEnum<'ctx>), ) -> IntValue<'ctx> { let llvm_i32 = ctx.ctx.i32_type(); let (n_ty, n) = n; match n.get_type() { BasicTypeEnum::IntType(int_ty) if matches!(int_ty.get_bit_width(), 1 | 8) => { debug_assert!(ctx.unifier.unioned(n_ty, ctx.primitives.bool)); ctx.builder .build_int_z_extend(n.into_int_value(), llvm_i32, "zext") .unwrap() } BasicTypeEnum::IntType(int_ty) if int_ty.get_bit_width() == 32 => { debug_assert!([ ctx.primitives.int32, ctx.primitives.uint32, ].iter().any(|ty| ctx.unifier.unioned(n_ty, *ty))); n.into_int_value() } BasicTypeEnum::IntType(int_ty) if int_ty.get_bit_width() == 64 => { debug_assert!( ctx.unifier.unioned(n_ty, ctx.primitives.int64) || ctx.unifier.unioned(n_ty, ctx.primitives.uint64) ); ctx.builder .build_int_truncate(n.into_int_value(), llvm_i32, "trunc") .unwrap() } BasicTypeEnum::FloatType(_) => { debug_assert!(ctx.unifier.unioned(n_ty, ctx.primitives.float)); let val = n.into_float_value(); let val_gez = ctx.builder .build_float_compare(FloatPredicate::OGE, val, val.get_type().const_zero(), "") .unwrap(); let to_int32 = ctx.builder .build_float_to_signed_int(val, llvm_i32, "") .unwrap(); let to_uint64 = ctx.builder .build_float_to_unsigned_int(val, ctx.ctx.i64_type(), "") .unwrap(); ctx.builder .build_select( val_gez, ctx.builder.build_int_truncate(to_uint64, llvm_i32, "").unwrap(), to_int32, "conv", ) .map(BasicValueEnum::into_int_value) .unwrap() } _ => unsupported_type(ctx, "uint32", &[n_ty]) } } /// Invokes the `uint64` builtin function. pub fn call_uint64<'ctx>( ctx: &mut CodeGenContext<'ctx, '_>, n: (Type, BasicValueEnum<'ctx>), ) -> IntValue<'ctx> { let llvm_i64 = ctx.ctx.i64_type(); let (n_ty, n) = n; match n.get_type() { BasicTypeEnum::IntType(int_ty) if matches!(int_ty.get_bit_width(), 1 | 8 | 32) => { debug_assert!([ ctx.primitives.bool, ctx.primitives.int32, ctx.primitives.uint32, ].iter().any(|ty| ctx.unifier.unioned(n_ty, *ty))); if ctx.unifier.unioned(n_ty, ctx.primitives.int32) { ctx.builder .build_int_s_extend(n.into_int_value(), llvm_i64, "sext") .unwrap() } else { ctx.builder .build_int_z_extend(n.into_int_value(), llvm_i64, "zext") .unwrap() } } BasicTypeEnum::IntType(int_ty) if int_ty.get_bit_width() == 64 => { debug_assert!([ ctx.primitives.int64, ctx.primitives.uint64, ].iter().any(|ty| ctx.unifier.unioned(n_ty, *ty))); n.into_int_value() } BasicTypeEnum::FloatType(_) => { debug_assert!(ctx.unifier.unioned(n_ty, ctx.primitives.float)); let val = n.into_float_value(); let val_gez = ctx.builder .build_float_compare(FloatPredicate::OGE, val, val.get_type().const_zero(), "") .unwrap(); let to_int64 = ctx.builder .build_float_to_signed_int(val, llvm_i64, "") .unwrap(); let to_uint64 = ctx.builder .build_float_to_unsigned_int(val, llvm_i64, "") .unwrap(); ctx.builder .build_select(val_gez, to_uint64, to_int64, "conv") .map(BasicValueEnum::into_int_value) .unwrap() } _ => unsupported_type(ctx, "uint64", &[n_ty]) } } /// Invokes the `float` builtin function. pub fn call_float<'ctx>( ctx: &mut CodeGenContext<'ctx, '_>, n: (Type, BasicValueEnum<'ctx>), ) -> FloatValue<'ctx> { let llvm_f64 = ctx.ctx.f64_type(); let (n_ty, n) = n; match n.get_type() { BasicTypeEnum::IntType(int_ty) if matches!(int_ty.get_bit_width(), 1 | 8 | 32 | 64) => { debug_assert!([ ctx.primitives.bool, ctx.primitives.int32, ctx.primitives.uint32, ctx.primitives.int64, ctx.primitives.uint64, ].iter().any(|ty| ctx.unifier.unioned(n_ty, *ty))); if [ ctx.primitives.bool, ctx.primitives.int32, ctx.primitives.int64, ].iter().any(|ty| ctx.unifier.unioned(n_ty, *ty)) { ctx.builder .build_signed_int_to_float(n.into_int_value(), llvm_f64, "sitofp") .unwrap() } else { ctx.builder .build_unsigned_int_to_float(n.into_int_value(), llvm_f64, "uitofp") .unwrap() } } BasicTypeEnum::FloatType(_) => { debug_assert!(ctx.unifier.unioned(n_ty, ctx.primitives.float)); n.into_float_value() } _ => unsupported_type(ctx, "float", &[n_ty]) } } /// Invokes the `round` builtin function. pub fn call_round<'ctx>( ctx: &mut CodeGenContext<'ctx, '_>, n: (Type, FloatValue<'ctx>), llvm_ret_ty: IntType<'ctx>, ) -> IntValue<'ctx> { const FN_NAME: &str = "round"; let (n_ty, n) = n; if !ctx.unifier.unioned(n_ty, ctx.primitives.float) { unsupported_type(ctx, FN_NAME, &[n_ty]) } let val = llvm_intrinsics::call_float_round(ctx, n, None); ctx.builder .build_float_to_signed_int(val, llvm_ret_ty, FN_NAME) .unwrap() } /// Invokes the `np_round` builtin function. pub fn call_numpy_round<'ctx>( ctx: &mut CodeGenContext<'ctx, '_>, n: (Type, FloatValue<'ctx>), ) -> FloatValue<'ctx> { let (n_ty, n) = n; if !ctx.unifier.unioned(n_ty, ctx.primitives.float) { unsupported_type(ctx, "np_round", &[n_ty]) } llvm_intrinsics::call_float_roundeven(ctx, n, None) } /// Invokes the `bool` builtin function. pub fn call_bool<'ctx>( ctx: &mut CodeGenContext<'ctx, '_>, n: (Type, BasicValueEnum<'ctx>), ) -> IntValue<'ctx> { const FN_NAME: &str = "bool"; let (n_ty, n) = n; match n.get_type() { BasicTypeEnum::IntType(int_ty) if matches!(int_ty.get_bit_width(), 1 | 8) => { debug_assert!(ctx.unifier.unioned(n_ty, ctx.primitives.bool)); n.into_int_value() } BasicTypeEnum::IntType(_) => { debug_assert!([ ctx.primitives.int32, ctx.primitives.uint32, ctx.primitives.int64, ctx.primitives.uint64, ].iter().any(|ty| ctx.unifier.unioned(n_ty, *ty))); let val = n.into_int_value(); ctx.builder .build_int_compare(IntPredicate::NE, val, val.get_type().const_zero(), FN_NAME) .unwrap() } BasicTypeEnum::FloatType(_) => { debug_assert!(ctx.unifier.unioned(n_ty, ctx.primitives.float)); let val = n.into_float_value(); ctx.builder .build_float_compare(FloatPredicate::UNE, val, val.get_type().const_zero(), FN_NAME) .unwrap() } _ => unsupported_type(ctx, FN_NAME, &[n_ty]) } } /// Invokes the `floor` builtin function. pub fn call_floor<'ctx>( ctx: &mut CodeGenContext<'ctx, '_>, n: (Type, FloatValue<'ctx>), llvm_ret_ty: BasicTypeEnum<'ctx>, ) -> BasicValueEnum<'ctx> { const FN_NAME: &str = "floor"; let (n_ty, n) = n; debug_assert!(ctx.unifier.unioned(n_ty, ctx.primitives.float)); let val = llvm_intrinsics::call_float_floor(ctx, n, None); match llvm_ret_ty { _ if llvm_ret_ty == val.get_type().into() => val.into(), BasicTypeEnum::IntType(_) => { ctx.builder .build_float_to_signed_int(val, llvm_ret_ty.into_int_type(), FN_NAME) .map(Into::into) .unwrap() } _ => unsupported_type(ctx, FN_NAME, &[n_ty]) } } /// Invokes the `ceil` builtin function. pub fn call_ceil<'ctx>( ctx: &mut CodeGenContext<'ctx, '_>, n: (Type, FloatValue<'ctx>), llvm_ret_ty: BasicTypeEnum<'ctx>, ) -> BasicValueEnum<'ctx> { const FN_NAME: &str = "ceil"; let (n_ty, n) = n; debug_assert!(ctx.unifier.unioned(n_ty, ctx.primitives.float)); let val = llvm_intrinsics::call_float_ceil(ctx, n, None); match llvm_ret_ty { _ if llvm_ret_ty == val.get_type().into() => val.into(), BasicTypeEnum::IntType(_) => { ctx.builder .build_float_to_signed_int(val, llvm_ret_ty.into_int_type(), FN_NAME) .map(Into::into) .unwrap() } _ => unsupported_type(ctx, FN_NAME, &[n_ty]) } } /// Invokes the `min` builtin function. pub fn call_min<'ctx>( ctx: &mut CodeGenContext<'ctx, '_>, m: (Type, BasicValueEnum<'ctx>), n: (Type, BasicValueEnum<'ctx>), ) -> BasicValueEnum<'ctx> { const FN_NAME: &str = "min"; let (m_ty, m) = m; let (n_ty, n) = n; if !ctx.unifier.unioned(m_ty, n_ty) { unsupported_type(ctx, FN_NAME, &[m_ty, n_ty]) } debug_assert_eq!(m.get_type(), n.get_type()); let common_ty = m_ty; let llvm_common_ty = m.get_type(); match llvm_common_ty { BasicTypeEnum::IntType(_) => { debug_assert!([ ctx.primitives.bool, ctx.primitives.int32, ctx.primitives.uint32, ctx.primitives.int64, ctx.primitives.uint64, ].iter().any(|ty| ctx.unifier.unioned(common_ty, *ty))); let (m, n) = (m.into_int_value(), n.into_int_value()); if [ ctx.primitives.int32, ctx.primitives.int64, ].iter().any(|ty| ctx.unifier.unioned(common_ty, *ty)) { llvm_intrinsics::call_int_smin(ctx, m, n, Some(FN_NAME)).into() } else { llvm_intrinsics::call_int_umin(ctx, m, n, Some(FN_NAME)).into() } } BasicTypeEnum::FloatType(_) => { debug_assert!(ctx.unifier.unioned(common_ty, ctx.primitives.float)); let (m, n) = (m.into_float_value(), n.into_float_value()); llvm_intrinsics::call_float_minnum(ctx, m, n, Some(FN_NAME)).into() } _ => unsupported_type(ctx, FN_NAME, &[m_ty, n_ty]) } } /// Invokes the `max` builtin function. pub fn call_max<'ctx>( ctx: &mut CodeGenContext<'ctx, '_>, m: (Type, BasicValueEnum<'ctx>), n: (Type, BasicValueEnum<'ctx>), ) -> BasicValueEnum<'ctx> { const FN_NAME: &str = "max"; let (m_ty, m) = m; let (n_ty, n) = n; if !ctx.unifier.unioned(m_ty, n_ty) { unsupported_type(ctx, FN_NAME, &[m_ty, n_ty]) } debug_assert_eq!(m.get_type(), n.get_type()); let common_ty = m_ty; let llvm_common_ty = m.get_type(); match llvm_common_ty { BasicTypeEnum::IntType(_) => { debug_assert!([ ctx.primitives.bool, ctx.primitives.int32, ctx.primitives.uint32, ctx.primitives.int64, ctx.primitives.uint64, ].iter().any(|ty| ctx.unifier.unioned(common_ty, *ty))); let (m, n) = (m.into_int_value(), n.into_int_value()); if [ ctx.primitives.int32, ctx.primitives.int64, ].iter().any(|ty| ctx.unifier.unioned(common_ty, *ty)) { llvm_intrinsics::call_int_smax(ctx, m, n, Some(FN_NAME)).into() } else { llvm_intrinsics::call_int_umax(ctx, m, n, Some(FN_NAME)).into() } } BasicTypeEnum::FloatType(_) => { debug_assert!(ctx.unifier.unioned(common_ty, ctx.primitives.float)); let (m, n) = (m.into_float_value(), n.into_float_value()); llvm_intrinsics::call_float_maxnum(ctx, m, n, Some(FN_NAME)).into() } _ => unsupported_type(ctx, FN_NAME, &[m_ty, n_ty]) } } /// Invokes the `abs` builtin function. pub fn call_abs<'ctx>( ctx: &mut CodeGenContext<'ctx, '_>, n: (Type, BasicValueEnum<'ctx>), ) -> BasicValueEnum<'ctx> { const FN_NAME: &str = "abs"; let llvm_i1 = ctx.ctx.bool_type(); let (n_ty, n) = n; match n.get_type() { BasicTypeEnum::IntType(_) => { debug_assert!([ ctx.primitives.bool, ctx.primitives.int32, ctx.primitives.uint32, ctx.primitives.int64, ctx.primitives.uint64, ].iter().any(|ty| ctx.unifier.unioned(n_ty, *ty))); if [ ctx.primitives.int32, ctx.primitives.int64, ].iter().any(|ty| ctx.unifier.unioned(n_ty, *ty)) { llvm_intrinsics::call_int_abs( ctx, n.into_int_value(), llvm_i1.const_zero(), Some(FN_NAME), ).into() } else { n } } BasicTypeEnum::FloatType(_) => { debug_assert!(ctx.unifier.unioned(n_ty, ctx.primitives.float)); llvm_intrinsics::call_float_fabs(ctx, n.into_float_value(), Some(FN_NAME)).into() } _ => unsupported_type(ctx, FN_NAME, &[n_ty]) } } /// Invokes the `np_isnan` builtin function. pub fn call_numpy_isnan<'ctx, G: CodeGenerator + ?Sized>( generator: &mut G, ctx: &mut CodeGenContext<'ctx, '_>, x: (Type, FloatValue<'ctx>), ) -> IntValue<'ctx> { let (x_ty, x) = x; if !ctx.unifier.unioned(x_ty, ctx.primitives.float) { unsupported_type(ctx, "np_isnan", &[x_ty]) } irrt::call_isnan(generator, ctx, x) } /// Invokes the `np_isinf` builtin function. pub fn call_numpy_isinf<'ctx, G: CodeGenerator + ?Sized>( generator: &mut G, ctx: &mut CodeGenContext<'ctx, '_>, x: (Type, FloatValue<'ctx>), ) -> IntValue<'ctx> { let (x_ty, x) = x; if !ctx.unifier.unioned(x_ty, ctx.primitives.float) { unsupported_type(ctx, "np_isinf", &[x_ty]) } irrt::call_isinf(generator, ctx, x) } /// Invokes the `np_sin` builtin function. pub fn call_numpy_sin<'ctx>( ctx: &mut CodeGenContext<'ctx, '_>, x: (Type, FloatValue<'ctx>), ) -> FloatValue<'ctx> { let (x_ty, x) = x; if !ctx.unifier.unioned(x_ty, ctx.primitives.float) { unsupported_type(ctx, "np_sin", &[x_ty]) } llvm_intrinsics::call_float_sin(ctx, x, None) } /// Invokes the `np_cos` builtin function. pub fn call_numpy_cos<'ctx>( ctx: &mut CodeGenContext<'ctx, '_>, x: (Type, FloatValue<'ctx>), ) -> FloatValue<'ctx> { let (x_ty, x) = x; if !ctx.unifier.unioned(x_ty, ctx.primitives.float) { unsupported_type(ctx, "np_cos", &[x_ty]) } llvm_intrinsics::call_float_cos(ctx, x, None) } /// Invokes the `np_exp` builtin function. pub fn call_numpy_exp<'ctx>( ctx: &mut CodeGenContext<'ctx, '_>, x: (Type, FloatValue<'ctx>), ) -> FloatValue<'ctx> { let (x_ty, x) = x; if !ctx.unifier.unioned(x_ty, ctx.primitives.float) { unsupported_type(ctx, "np_exp", &[x_ty]) } llvm_intrinsics::call_float_exp(ctx, x, None) } /// Invokes the `np_exp2` builtin function. pub fn call_numpy_exp2<'ctx>( ctx: &mut CodeGenContext<'ctx, '_>, x: (Type, FloatValue<'ctx>), ) -> FloatValue<'ctx> { let (x_ty, x) = x; if !ctx.unifier.unioned(x_ty, ctx.primitives.float) { unsupported_type(ctx, "np_exp2", &[x_ty]) } llvm_intrinsics::call_float_exp2(ctx, x, None) } /// Invokes the `np_log` builtin function. pub fn call_numpy_log<'ctx>( ctx: &mut CodeGenContext<'ctx, '_>, x: (Type, FloatValue<'ctx>), ) -> FloatValue<'ctx> { let (x_ty, x) = x; if !ctx.unifier.unioned(x_ty, ctx.primitives.float) { unsupported_type(ctx, "np_log", &[x_ty]) } llvm_intrinsics::call_float_log(ctx, x, None) } /// Invokes the `np_log10` builtin function. pub fn call_numpy_log10<'ctx>( ctx: &mut CodeGenContext<'ctx, '_>, x: (Type, FloatValue<'ctx>), ) -> FloatValue<'ctx> { let (x_ty, x) = x; if !ctx.unifier.unioned(x_ty, ctx.primitives.float) { unsupported_type(ctx, "np_log10", &[x_ty]) } llvm_intrinsics::call_float_log10(ctx, x, None) } /// Invokes the `np_log2` builtin function. pub fn call_numpy_log2<'ctx>( ctx: &mut CodeGenContext<'ctx, '_>, x: (Type, FloatValue<'ctx>), ) -> FloatValue<'ctx> { let (x_ty, x) = x; if !ctx.unifier.unioned(x_ty, ctx.primitives.float) { unsupported_type(ctx, "np_log2", &[x_ty]) } llvm_intrinsics::call_float_log2(ctx, x, None) } /// Invokes the `np_sqrt` builtin function. pub fn call_numpy_fabs<'ctx>( ctx: &mut CodeGenContext<'ctx, '_>, x: (Type, FloatValue<'ctx>), ) -> FloatValue<'ctx> { let (x_ty, x) = x; if !ctx.unifier.unioned(x_ty, ctx.primitives.float) { unsupported_type(ctx, "np_fabs", &[x_ty]) } llvm_intrinsics::call_float_fabs(ctx, x, None) } /// Invokes the `np_sqrt` builtin function. pub fn call_numpy_sqrt<'ctx>( ctx: &mut CodeGenContext<'ctx, '_>, x: (Type, FloatValue<'ctx>), ) -> FloatValue<'ctx> { let (x_ty, x) = x; if !ctx.unifier.unioned(x_ty, ctx.primitives.float) { unsupported_type(ctx, "np_sqrt", &[x_ty]) } llvm_intrinsics::call_float_sqrt(ctx, x, None) } /// Invokes the `np_rint` builtin function. pub fn call_numpy_rint<'ctx>( ctx: &mut CodeGenContext<'ctx, '_>, x: (Type, FloatValue<'ctx>), ) -> FloatValue<'ctx> { let (x_ty, x) = x; if !ctx.unifier.unioned(x_ty, ctx.primitives.float) { unsupported_type(ctx, "np_rint", &[x_ty]) } llvm_intrinsics::call_float_roundeven(ctx, x, None) } /// Invokes the `np_tan` builtin function. pub fn call_numpy_tan<'ctx>( ctx: &mut CodeGenContext<'ctx, '_>, x: (Type, FloatValue<'ctx>), ) -> FloatValue<'ctx> { let (x_ty, x) = x; if !ctx.unifier.unioned(x_ty, ctx.primitives.float) { unsupported_type(ctx, "np_tan", &[x_ty]) } extern_fns::call_tan(ctx, x, None) } /// Invokes the `np_arcsin` builtin function. pub fn call_numpy_arcsin<'ctx>( ctx: &mut CodeGenContext<'ctx, '_>, x: (Type, FloatValue<'ctx>), ) -> FloatValue<'ctx> { let (x_ty, x) = x; if !ctx.unifier.unioned(x_ty, ctx.primitives.float) { unsupported_type(ctx, "np_arcsin", &[x_ty]) } extern_fns::call_asin(ctx, x, None) } /// Invokes the `np_arccos` builtin function. pub fn call_numpy_arccos<'ctx>( ctx: &mut CodeGenContext<'ctx, '_>, x: (Type, FloatValue<'ctx>), ) -> FloatValue<'ctx> { let (x_ty, x) = x; if !ctx.unifier.unioned(x_ty, ctx.primitives.float) { unsupported_type(ctx, "np_arccos", &[x_ty]) } extern_fns::call_acos(ctx, x, None) } /// Invokes the `np_arctan` builtin function. pub fn call_numpy_arctan<'ctx>( ctx: &mut CodeGenContext<'ctx, '_>, x: (Type, FloatValue<'ctx>), ) -> FloatValue<'ctx> { let (x_ty, x) = x; if !ctx.unifier.unioned(x_ty, ctx.primitives.float) { unsupported_type(ctx, "np_arctan", &[x_ty]) } extern_fns::call_atan(ctx, x, None) } /// Invokes the `np_sinh` builtin function. pub fn call_numpy_sinh<'ctx>( ctx: &mut CodeGenContext<'ctx, '_>, x: (Type, FloatValue<'ctx>), ) -> FloatValue<'ctx> { let (x_ty, x) = x; if !ctx.unifier.unioned(x_ty, ctx.primitives.float) { unsupported_type(ctx, "np_sinh", &[x_ty]) } extern_fns::call_sinh(ctx, x, None) } /// Invokes the `np_cosh` builtin function. pub fn call_numpy_cosh<'ctx>( ctx: &mut CodeGenContext<'ctx, '_>, x: (Type, FloatValue<'ctx>), ) -> FloatValue<'ctx> { let (x_ty, x) = x; if !ctx.unifier.unioned(x_ty, ctx.primitives.float) { unsupported_type(ctx, "np_cosh", &[x_ty]) } extern_fns::call_cosh(ctx, x, None) } /// Invokes the `np_tanh` builtin function. pub fn call_numpy_tanh<'ctx>( ctx: &mut CodeGenContext<'ctx, '_>, x: (Type, FloatValue<'ctx>), ) -> FloatValue<'ctx> { let (x_ty, x) = x; if !ctx.unifier.unioned(x_ty, ctx.primitives.float) { unsupported_type(ctx, "np_tanh", &[x_ty]) } extern_fns::call_tanh(ctx, x, None) } /// Invokes the `np_asinh` builtin function. pub fn call_numpy_asinh<'ctx>( ctx: &mut CodeGenContext<'ctx, '_>, x: (Type, FloatValue<'ctx>), ) -> FloatValue<'ctx> { let (x_ty, x) = x; if !ctx.unifier.unioned(x_ty, ctx.primitives.float) { unsupported_type(ctx, "np_asinh", &[x_ty]) } extern_fns::call_asinh(ctx, x, None) } /// Invokes the `np_acosh` builtin function. pub fn call_numpy_acosh<'ctx>( ctx: &mut CodeGenContext<'ctx, '_>, x: (Type, FloatValue<'ctx>), ) -> FloatValue<'ctx> { let (x_ty, x) = x; if !ctx.unifier.unioned(x_ty, ctx.primitives.float) { unsupported_type(ctx, "np_acosh", &[x_ty]) } extern_fns::call_acosh(ctx, x, None) } /// Invokes the `np_atanh` builtin function. pub fn call_numpy_atanh<'ctx>( ctx: &mut CodeGenContext<'ctx, '_>, x: (Type, FloatValue<'ctx>), ) -> FloatValue<'ctx> { let (x_ty, x) = x; if !ctx.unifier.unioned(x_ty, ctx.primitives.float) { unsupported_type(ctx, "np_atanh", &[x_ty]) } extern_fns::call_atanh(ctx, x, None) } /// Invokes the `np_expm1` builtin function. pub fn call_numpy_expm1<'ctx>( ctx: &mut CodeGenContext<'ctx, '_>, x: (Type, FloatValue<'ctx>), ) -> FloatValue<'ctx> { let (x_ty, x) = x; if !ctx.unifier.unioned(x_ty, ctx.primitives.float) { unsupported_type(ctx, "np_expm1", &[x_ty]) } extern_fns::call_expm1(ctx, x, None) } /// Invokes the `np_cbrt` builtin function. pub fn call_numpy_cbrt<'ctx>( ctx: &mut CodeGenContext<'ctx, '_>, x: (Type, FloatValue<'ctx>), ) -> FloatValue<'ctx> { let (x_ty, x) = x; if !ctx.unifier.unioned(x_ty, ctx.primitives.float) { unsupported_type(ctx, "np_cbrt", &[x_ty]) } extern_fns::call_cbrt(ctx, x, None) } /// Invokes the `sp_spec_erf` builtin function. pub fn call_scipy_special_erf<'ctx>( ctx: &mut CodeGenContext<'ctx, '_>, z: (Type, FloatValue<'ctx>), ) -> FloatValue<'ctx> { let (z_ty, z) = z; if !ctx.unifier.unioned(z_ty, ctx.primitives.float) { unsupported_type(ctx, "sp_spec_erf", &[z_ty]) } extern_fns::call_erf(ctx, z, None) } /// Invokes the `sp_spec_erfc` builtin function. pub fn call_scipy_special_erfc<'ctx>( ctx: &mut CodeGenContext<'ctx, '_>, x: (Type, FloatValue<'ctx>), ) -> FloatValue<'ctx> { let (x_ty, x) = x; if !ctx.unifier.unioned(x_ty, ctx.primitives.float) { unsupported_type(ctx, "sp_spec_erfc", &[x_ty]) } extern_fns::call_erfc(ctx, x, None) } /// Invokes the `sp_spec_gamma` builtin function. pub fn call_scipy_special_gamma<'ctx>( ctx: &mut CodeGenContext<'ctx, '_>, z: (Type, FloatValue<'ctx>), ) -> FloatValue<'ctx> { let (z_ty, z) = z; if !ctx.unifier.unioned(z_ty, ctx.primitives.float) { unsupported_type(ctx, "sp_spec_gamma", &[z_ty]) } irrt::call_gamma(ctx, z) } /// Invokes the `sp_spec_gammaln` builtin function. pub fn call_scipy_special_gammaln<'ctx>( ctx: &mut CodeGenContext<'ctx, '_>, x: (Type, FloatValue<'ctx>), ) -> FloatValue<'ctx> { let (x_ty, x) = x; if !ctx.unifier.unioned(x_ty, ctx.primitives.float) { unsupported_type(ctx, "sp_spec_gammaln", &[x_ty]) } irrt::call_gammaln(ctx, x) } /// Invokes the `sp_spec_j0` builtin function. pub fn call_scipy_special_j0<'ctx>( ctx: &mut CodeGenContext<'ctx, '_>, x: (Type, FloatValue<'ctx>), ) -> FloatValue<'ctx> { let (x_ty, x) = x; if !ctx.unifier.unioned(x_ty, ctx.primitives.float) { unsupported_type(ctx, "sp_spec_j0", &[x_ty]) } irrt::call_j0(ctx, x) } /// Invokes the `sp_spec_j1` builtin function. pub fn call_scipy_special_j1<'ctx>( ctx: &mut CodeGenContext<'ctx, '_>, x: (Type, FloatValue<'ctx>), ) -> FloatValue<'ctx> { let (x_ty, x) = x; if !ctx.unifier.unioned(x_ty, ctx.primitives.float) { unsupported_type(ctx, "sp_spec_j1", &[x_ty]) } extern_fns::call_j1(ctx, x, None) } /// Invokes the `np_arctan2` builtin function. pub fn call_numpy_arctan2<'ctx>( ctx: &mut CodeGenContext<'ctx, '_>, x1: (Type, FloatValue<'ctx>), x2: (Type, FloatValue<'ctx>), ) -> FloatValue<'ctx> { let float_t = ctx.primitives.float; let (x1_ty, x1) = x1; let (x2_ty, x2) = x2; if !ctx.unifier.unioned(x1_ty, float_t) || !ctx.unifier.unioned(x2_ty, float_t) { unsupported_type(ctx, "np_atan2", &[x1_ty, x2_ty]) } extern_fns::call_atan2(ctx, x1, x2, None) } /// Invokes the `np_copysign` builtin function. pub fn call_numpy_copysign<'ctx>( ctx: &mut CodeGenContext<'ctx, '_>, x1: (Type, FloatValue<'ctx>), x2: (Type, FloatValue<'ctx>), ) -> FloatValue<'ctx> { let float_t = ctx.primitives.float; let (x1_ty, x1) = x1; let (x2_ty, x2) = x2; debug_assert_eq!(x1.get_type(), x2.get_type()); if !ctx.unifier.unioned(x1_ty, float_t) || !ctx.unifier.unioned(x2_ty, float_t) { unsupported_type(ctx, "np_copysign", &[x1_ty, x2_ty]) } llvm_intrinsics::call_float_copysign(ctx, x1, x2, None) } /// Invokes the `np_fmax` builtin function. pub fn call_numpy_fmax<'ctx>( ctx: &mut CodeGenContext<'ctx, '_>, x1: (Type, FloatValue<'ctx>), x2: (Type, FloatValue<'ctx>), ) -> FloatValue<'ctx> { let float_t = ctx.primitives.float; let (x1_ty, x1) = x1; let (x2_ty, x2) = x2; debug_assert_eq!(x1.get_type(), x2.get_type()); if !ctx.unifier.unioned(x1_ty, float_t) || !ctx.unifier.unioned(x2_ty, float_t) { unsupported_type(ctx, "np_fmax", &[x1_ty, x2_ty]) } llvm_intrinsics::call_float_maxnum(ctx, x1, x2, None) } /// Invokes the `np_fmin` builtin function. pub fn call_numpy_fmin<'ctx>( ctx: &mut CodeGenContext<'ctx, '_>, x1: (Type, FloatValue<'ctx>), x2: (Type, FloatValue<'ctx>), ) -> FloatValue<'ctx> { let float_t = ctx.primitives.float; let (x1_ty, x1) = x1; let (x2_ty, x2) = x2; debug_assert_eq!(x1.get_type(), x2.get_type()); if !ctx.unifier.unioned(x1_ty, float_t) || !ctx.unifier.unioned(x2_ty, float_t) { unsupported_type(ctx, "np_fmin", &[x1_ty, x2_ty]) } llvm_intrinsics::call_float_minnum(ctx, x1, x2, None) } /// Invokes the `np_ldexp` builtin function. pub fn call_numpy_ldexp<'ctx>( ctx: &mut CodeGenContext<'ctx, '_>, x1: (Type, FloatValue<'ctx>), x2: (Type, IntValue<'ctx>), ) -> FloatValue<'ctx> { let (x1_ty, x1) = x1; let (x2_ty, x2) = x2; if !ctx.unifier.unioned(x1_ty, ctx.primitives.float) { unsupported_type(ctx, "fp_ldexp", &[x1_ty, x2_ty]) } if !ctx.unifier.unioned(x2_ty, ctx.primitives.int32) { unsupported_type(ctx, "fp_ldexp", &[x1_ty, x2_ty]) } extern_fns::call_ldexp(ctx, x1, x2, None) } /// Invokes the `np_hypot` builtin function. pub fn call_numpy_hypot<'ctx>( ctx: &mut CodeGenContext<'ctx, '_>, x1: (Type, FloatValue<'ctx>), x2: (Type, FloatValue<'ctx>), ) -> FloatValue<'ctx> { let float_t = ctx.primitives.float; let (x1_ty, x1) = x1; let (x2_ty, x2) = x2; if !ctx.unifier.unioned(x1_ty, float_t) || !ctx.unifier.unioned(x2_ty, float_t) { unsupported_type(ctx, "np_hypot", &[x1_ty, x2_ty]) } extern_fns::call_hypot(ctx, x1, x2, None) } /// Invokes the `np_nextafter` builtin function. pub fn call_numpy_nextafter<'ctx>( ctx: &mut CodeGenContext<'ctx, '_>, x1: (Type, FloatValue<'ctx>), x2: (Type, FloatValue<'ctx>), ) -> FloatValue<'ctx> { let float_t = ctx.primitives.float; let (x1_ty, x1) = x1; let (x2_ty, x2) = x2; if !ctx.unifier.unioned(x1_ty, float_t) || !ctx.unifier.unioned(x2_ty, float_t) { unsupported_type(ctx, "np_nextafter", &[x1_ty, x2_ty]) } extern_fns::call_nextafter(ctx, x1, x2, None) }