forked from M-Labs/nac3
1
0
Fork 0

Compare commits

..

10 Commits

Author SHA1 Message Date
lyken 59bea2cd4d core/ndstrides: implement len(ndarray) & refactor len() 2024-10-04 15:47:55 +08:00
lyken c1913f11c6 core/ndstrides: implement np_{zeros,ones,full,empty} 2024-10-04 15:46:56 +08:00
lyken 7f4b4597c5 core/model: add util::gen_for_model 2024-10-04 15:45:47 +08:00
lyken 1a61a000b2 core/object: add ListObject and TupleObject
Needed for implementing other ndarray utils.
2024-10-04 15:44:42 +08:00
lyken ec61b50486 core/ndstrides: implement ndarray iterator NDIter
A necessary utility to iterate through all elements in a possibly strided ndarray.
2024-10-04 15:42:52 +08:00
lyken b523a3e227 core/ndstrides: introduce NDArray
NDArray with strides.
2024-10-04 15:39:17 +08:00
lyken e4b050a64b core/irrt: fix exception.hpp C++ castings 2024-10-04 15:26:08 +08:00
lyken 897c26bcfa core/toplevel/helper: add {extract,create}_ndims 2024-10-04 15:26:08 +08:00
lyken 1ce76bcfc9 core/object: introduce object
A small abstraction to simplify implementations.
2024-10-04 15:26:08 +08:00
lyken 0bc98c447d [core] introduce models 2024-10-04 15:21:43 +08:00
29 changed files with 3422 additions and 67 deletions

View File

@ -4,3 +4,6 @@
#include "irrt/math.hpp"
#include "irrt/ndarray.hpp"
#include "irrt/slice.hpp"
#include "irrt/ndarray/basic.hpp"
#include "irrt/ndarray/def.hpp"
#include "irrt/ndarray/iter.hpp"

View File

@ -55,11 +55,14 @@ void _raise_exception_helper(ExceptionId id,
int64_t param2) {
Exception<SizeT> e = {
.id = id,
.filename = {.base = reinterpret_cast<const uint8_t*>(filename), .len = __builtin_strlen(filename)},
.filename = {.base = reinterpret_cast<uint8_t*>(const_cast<char*>(filename)),
.len = static_cast<int32_t>(__builtin_strlen(filename))},
.line = line,
.column = 0,
.function = {.base = reinterpret_cast<const uint8_t*>(function), .len = __builtin_strlen(function)},
.msg = {.base = reinterpret_cast<const uint8_t*>(msg), .len = __builtin_strlen(msg)},
.function = {.base = reinterpret_cast<uint8_t*>(const_cast<char*>(function)),
.len = static_cast<int32_t>(__builtin_strlen(function))},
.msg = {.base = reinterpret_cast<uint8_t*>(const_cast<char*>(msg)),
.len = static_cast<int32_t>(__builtin_strlen(msg))},
};
e.params[0] = param0;
e.params[1] = param1;

View File

@ -2,6 +2,8 @@
#include "irrt/int_types.hpp"
// TODO: To be deleted since NDArray with strides is done.
namespace {
template<typename SizeT>
SizeT __nac3_ndarray_calc_size_impl(const SizeT* list_data, SizeT list_len, SizeT begin_idx, SizeT end_idx) {

View File

@ -0,0 +1,341 @@
#pragma once
#include "irrt/debug.hpp"
#include "irrt/exception.hpp"
#include "irrt/int_types.hpp"
#include "irrt/ndarray/def.hpp"
namespace {
namespace ndarray {
namespace basic {
/**
* @brief Assert that `shape` does not contain negative dimensions.
*
* @param ndims Number of dimensions in `shape`
* @param shape The shape to check on
*/
template<typename SizeT>
void assert_shape_no_negative(SizeT ndims, const SizeT* shape) {
for (SizeT axis = 0; axis < ndims; axis++) {
if (shape[axis] < 0) {
raise_exception(SizeT, EXN_VALUE_ERROR,
"negative dimensions are not allowed; axis {0} "
"has dimension {1}",
axis, shape[axis], NO_PARAM);
}
}
}
/**
* @brief Assert that two shapes are the same in the context of writing output to an ndarray.
*/
template<typename SizeT>
void assert_output_shape_same(SizeT ndarray_ndims,
const SizeT* ndarray_shape,
SizeT output_ndims,
const SizeT* output_shape) {
if (ndarray_ndims != output_ndims) {
// There is no corresponding NumPy error message like this.
raise_exception(SizeT, EXN_VALUE_ERROR, "Cannot write output of ndims {0} to an ndarray with ndims {1}",
output_ndims, ndarray_ndims, NO_PARAM);
}
for (SizeT axis = 0; axis < ndarray_ndims; axis++) {
if (ndarray_shape[axis] != output_shape[axis]) {
// There is no corresponding NumPy error message like this.
raise_exception(SizeT, EXN_VALUE_ERROR,
"Mismatched dimensions on axis {0}, output has "
"dimension {1}, but destination ndarray has dimension {2}.",
axis, output_shape[axis], ndarray_shape[axis]);
}
}
}
/**
* @brief Return the number of elements of an ndarray given its shape.
*
* @param ndims Number of dimensions in `shape`
* @param shape The shape of the ndarray
*/
template<typename SizeT>
SizeT calc_size_from_shape(SizeT ndims, const SizeT* shape) {
SizeT size = 1;
for (SizeT axis = 0; axis < ndims; axis++)
size *= shape[axis];
return size;
}
/**
* @brief Compute the array indices of the `nth` (0-based) element of an ndarray given only its shape.
*
* @param ndims Number of elements in `shape` and `indices`
* @param shape The shape of the ndarray
* @param indices The returned indices indexing the ndarray with shape `shape`.
* @param nth The index of the element of interest.
*/
template<typename SizeT>
void set_indices_by_nth(SizeT ndims, const SizeT* shape, SizeT* indices, SizeT nth) {
for (SizeT i = 0; i < ndims; i++) {
SizeT axis = ndims - i - 1;
SizeT dim = shape[axis];
indices[axis] = nth % dim;
nth /= dim;
}
}
/**
* @brief Return the number of elements of an `ndarray`
*
* This function corresponds to `<an_ndarray>.size`
*/
template<typename SizeT>
SizeT size(const NDArray<SizeT>* ndarray) {
return calc_size_from_shape(ndarray->ndims, ndarray->shape);
}
/**
* @brief Return of the number of its content of an `ndarray`.
*
* This function corresponds to `<an_ndarray>.nbytes`.
*/
template<typename SizeT>
SizeT nbytes(const NDArray<SizeT>* ndarray) {
return size(ndarray) * ndarray->itemsize;
}
/**
* @brief Get the `len()` of an ndarray, and asserts that `ndarray` is a sized object.
*
* This function corresponds to `<an_ndarray>.__len__`.
*
* @param dst_length The length.
*/
template<typename SizeT>
SizeT len(const NDArray<SizeT>* ndarray) {
// numpy prohibits `__len__` on unsized objects
if (ndarray->ndims == 0) {
raise_exception(SizeT, EXN_TYPE_ERROR, "len() of unsized object", NO_PARAM, NO_PARAM, NO_PARAM);
} else {
return ndarray->shape[0];
}
}
/**
* @brief Return a boolean indicating if `ndarray` is (C-)contiguous.
*
* You may want to see ndarray's rules for C-contiguity:
* https://github.com/numpy/numpy/blob/df256d0d2f3bc6833699529824781c58f9c6e697/numpy/core/src/multiarray/flagsobject.c#L95C1-L99C45
*/
template<typename SizeT>
bool is_c_contiguous(const NDArray<SizeT>* ndarray) {
// References:
// - tinynumpy's implementation:
// https://github.com/wadetb/tinynumpy/blob/0d23d22e07062ffab2afa287374c7b366eebdda1/tinynumpy/tinynumpy.py#L102
// - ndarray's flags["C_CONTIGUOUS"]:
// https://numpy.org/doc/stable/reference/generated/numpy.ndarray.flags.html#numpy.ndarray.flags
// - ndarray's rules for C-contiguity:
// https://github.com/numpy/numpy/blob/df256d0d2f3bc6833699529824781c58f9c6e697/numpy/core/src/multiarray/flagsobject.c#L95C1-L99C45
// From
// https://github.com/numpy/numpy/blob/df256d0d2f3bc6833699529824781c58f9c6e697/numpy/core/src/multiarray/flagsobject.c#L95C1-L99C45:
//
// The traditional rule is that for an array to be flagged as C contiguous,
// the following must hold:
//
// strides[-1] == itemsize
// strides[i] == shape[i+1] * strides[i + 1]
// [...]
// According to these rules, a 0- or 1-dimensional array is either both
// C- and F-contiguous, or neither; and an array with 2+ dimensions
// can be C- or F- contiguous, or neither, but not both. Though there
// there are exceptions for arrays with zero or one item, in the first
// case the check is relaxed up to and including the first dimension
// with shape[i] == 0. In the second case `strides == itemsize` will
// can be true for all dimensions and both flags are set.
if (ndarray->ndims == 0) {
return true;
}
if (ndarray->strides[ndarray->ndims - 1] != ndarray->itemsize) {
return false;
}
for (SizeT i = 1; i < ndarray->ndims; i++) {
SizeT axis_i = ndarray->ndims - i - 1;
if (ndarray->strides[axis_i] != ndarray->shape[axis_i + 1] * ndarray->strides[axis_i + 1]) {
return false;
}
}
return true;
}
/**
* @brief Return the pointer to the element indexed by `indices` along the ndarray's axes.
*
* This function does no bound check.
*/
template<typename SizeT>
uint8_t* get_pelement_by_indices(const NDArray<SizeT>* ndarray, const SizeT* indices) {
uint8_t* element = ndarray->data;
for (SizeT dim_i = 0; dim_i < ndarray->ndims; dim_i++)
element += indices[dim_i] * ndarray->strides[dim_i];
return element;
}
/**
* @brief Return the pointer to the nth (0-based) element of `ndarray` in flattened view.
*
* This function does no bound check.
*/
template<typename SizeT>
uint8_t* get_nth_pelement(const NDArray<SizeT>* ndarray, SizeT nth) {
uint8_t* element = ndarray->data;
for (SizeT i = 0; i < ndarray->ndims; i++) {
SizeT axis = ndarray->ndims - i - 1;
SizeT dim = ndarray->shape[axis];
element += ndarray->strides[axis] * (nth % dim);
nth /= dim;
}
return element;
}
/**
* @brief Update the strides of an ndarray given an ndarray `shape` to be contiguous.
*
* You might want to read https://ajcr.net/stride-guide-part-1/.
*/
template<typename SizeT>
void set_strides_by_shape(NDArray<SizeT>* ndarray) {
SizeT stride_product = 1;
for (SizeT i = 0; i < ndarray->ndims; i++) {
SizeT axis = ndarray->ndims - i - 1;
ndarray->strides[axis] = stride_product * ndarray->itemsize;
stride_product *= ndarray->shape[axis];
}
}
/**
* @brief Set an element in `ndarray`.
*
* @param pelement Pointer to the element in `ndarray` to be set.
* @param pvalue Pointer to the value `pelement` will be set to.
*/
template<typename SizeT>
void set_pelement_value(NDArray<SizeT>* ndarray, uint8_t* pelement, const uint8_t* pvalue) {
__builtin_memcpy(pelement, pvalue, ndarray->itemsize);
}
/**
* @brief Copy data from one ndarray to another of the exact same size and itemsize.
*
* Both ndarrays will be viewed in their flatten views when copying the elements.
*/
template<typename SizeT>
void copy_data(const NDArray<SizeT>* src_ndarray, NDArray<SizeT>* dst_ndarray) {
// TODO: Make this faster with memcpy when we see a contiguous segment.
// TODO: Handle overlapping.
debug_assert_eq(SizeT, src_ndarray->itemsize, dst_ndarray->itemsize);
for (SizeT i = 0; i < size(src_ndarray); i++) {
auto src_element = ndarray::basic::get_nth_pelement(src_ndarray, i);
auto dst_element = ndarray::basic::get_nth_pelement(dst_ndarray, i);
ndarray::basic::set_pelement_value(dst_ndarray, dst_element, src_element);
}
}
} // namespace basic
} // namespace ndarray
} // namespace
extern "C" {
using namespace ndarray::basic;
void __nac3_ndarray_util_assert_shape_no_negative(int32_t ndims, int32_t* shape) {
assert_shape_no_negative(ndims, shape);
}
void __nac3_ndarray_util_assert_shape_no_negative64(int64_t ndims, int64_t* shape) {
assert_shape_no_negative(ndims, shape);
}
void __nac3_ndarray_util_assert_output_shape_same(int32_t ndarray_ndims,
const int32_t* ndarray_shape,
int32_t output_ndims,
const int32_t* output_shape) {
assert_output_shape_same(ndarray_ndims, ndarray_shape, output_ndims, output_shape);
}
void __nac3_ndarray_util_assert_output_shape_same64(int64_t ndarray_ndims,
const int64_t* ndarray_shape,
int64_t output_ndims,
const int64_t* output_shape) {
assert_output_shape_same(ndarray_ndims, ndarray_shape, output_ndims, output_shape);
}
uint32_t __nac3_ndarray_size(NDArray<int32_t>* ndarray) {
return size(ndarray);
}
uint64_t __nac3_ndarray_size64(NDArray<int64_t>* ndarray) {
return size(ndarray);
}
uint32_t __nac3_ndarray_nbytes(NDArray<int32_t>* ndarray) {
return nbytes(ndarray);
}
uint64_t __nac3_ndarray_nbytes64(NDArray<int64_t>* ndarray) {
return nbytes(ndarray);
}
int32_t __nac3_ndarray_len(NDArray<int32_t>* ndarray) {
return len(ndarray);
}
int64_t __nac3_ndarray_len64(NDArray<int64_t>* ndarray) {
return len(ndarray);
}
bool __nac3_ndarray_is_c_contiguous(NDArray<int32_t>* ndarray) {
return is_c_contiguous(ndarray);
}
bool __nac3_ndarray_is_c_contiguous64(NDArray<int64_t>* ndarray) {
return is_c_contiguous(ndarray);
}
uint8_t* __nac3_ndarray_get_nth_pelement(const NDArray<int32_t>* ndarray, int32_t nth) {
return get_nth_pelement(ndarray, nth);
}
uint8_t* __nac3_ndarray_get_nth_pelement64(const NDArray<int64_t>* ndarray, int64_t nth) {
return get_nth_pelement(ndarray, nth);
}
uint8_t* __nac3_ndarray_get_pelement_by_indices(const NDArray<int32_t>* ndarray, int32_t* indices) {
return get_pelement_by_indices(ndarray, indices);
}
uint8_t* __nac3_ndarray_get_pelement_by_indices64(const NDArray<int64_t>* ndarray, int64_t* indices) {
return get_pelement_by_indices(ndarray, indices);
}
void __nac3_ndarray_set_strides_by_shape(NDArray<int32_t>* ndarray) {
set_strides_by_shape(ndarray);
}
void __nac3_ndarray_set_strides_by_shape64(NDArray<int64_t>* ndarray) {
set_strides_by_shape(ndarray);
}
void __nac3_ndarray_copy_data(NDArray<int32_t>* src_ndarray, NDArray<int32_t>* dst_ndarray) {
copy_data(src_ndarray, dst_ndarray);
}
void __nac3_ndarray_copy_data64(NDArray<int64_t>* src_ndarray, NDArray<int64_t>* dst_ndarray) {
copy_data(src_ndarray, dst_ndarray);
}
}

View File

@ -0,0 +1,45 @@
#pragma once
#include "irrt/int_types.hpp"
namespace {
/**
* @brief The NDArray object
*
* Official numpy implementation:
* https://github.com/numpy/numpy/blob/735a477f0bc2b5b84d0e72d92f224bde78d4e069/doc/source/reference/c-api/types-and-structures.rst
*/
template<typename SizeT>
struct NDArray {
/**
* @brief The underlying data this `ndarray` is pointing to.
*/
uint8_t* data;
/**
* @brief The number of bytes of a single element in `data`.
*/
SizeT itemsize;
/**
* @brief The number of dimensions of this shape.
*/
SizeT ndims;
/**
* @brief The NDArray shape, with length equal to `ndims`.
*
* Note that it may contain 0.
*/
SizeT* shape;
/**
* @brief Array strides, with length equal to `ndims`
*
* The stride values are in units of bytes, not number of elements.
*
* Note that `strides` can have negative values or contain 0.
*/
SizeT* strides;
};
} // namespace

View File

@ -0,0 +1,146 @@
#pragma once
#include "irrt/int_types.hpp"
#include "irrt/ndarray/def.hpp"
namespace {
/**
* @brief Helper struct to enumerate through an ndarray *efficiently*.
*
* Example usage (in pseudo-code):
* ```
* // Suppose my_ndarray has been initialized, with shape [2, 3] and dtype `double`
* NDIter nditer;
* nditer.initialize(my_ndarray);
* while (nditer.has_element()) {
* // This body is run 6 (= my_ndarray.size) times.
*
* // [0, 0] -> [0, 1] -> [0, 2] -> [1, 0] -> [1, 1] -> [1, 2] -> end
* print(nditer.indices);
*
* // 0 -> 1 -> 2 -> 3 -> 4 -> 5
* print(nditer.nth);
*
* // <1st element> -> <2nd element> -> ... -> <6th element> -> end
* print(*((double *) nditer.element))
*
* nditer.next(); // Go to next element.
* }
* ```
*
* Interesting cases:
* - If `my_ndarray.ndims` == 0, there is one iteration.
* - If `my_ndarray.shape` contains zeroes, there are no iterations.
*/
template<typename SizeT>
struct NDIter {
// Information about the ndarray being iterated over.
SizeT ndims;
SizeT* shape;
SizeT* strides;
/**
* @brief The current indices.
*
* Must be allocated by the caller.
*/
SizeT* indices;
/**
* @brief The nth (0-based) index of the current indices.
*
* Initially this is 0.
*/
SizeT nth;
/**
* @brief Pointer to the current element.
*
* Initially this points to first element of the ndarray.
*/
uint8_t* element;
/**
* @brief Cache for the product of shape.
*
* Could be 0 if `shape` has 0s in it.
*/
SizeT size;
void initialize(SizeT ndims, SizeT* shape, SizeT* strides, uint8_t* element, SizeT* indices) {
this->ndims = ndims;
this->shape = shape;
this->strides = strides;
this->indices = indices;
this->element = element;
// Compute size
this->size = 1;
for (SizeT i = 0; i < ndims; i++) {
this->size *= shape[i];
}
// `indices` starts on all 0s.
for (SizeT axis = 0; axis < ndims; axis++)
indices[axis] = 0;
nth = 0;
}
void initialize_by_ndarray(NDArray<SizeT>* ndarray, SizeT* indices) {
// NOTE: ndarray->data is pointing to the first element, and `NDIter`'s `element` should also point to the first
// element as well.
this->initialize(ndarray->ndims, ndarray->shape, ndarray->strides, ndarray->data, indices);
}
// Is the current iteration valid?
// If true, then `element`, `indices` and `nth` contain details about the current element.
bool has_element() { return nth < size; }
// Go to the next element.
void next() {
for (SizeT i = 0; i < ndims; i++) {
SizeT axis = ndims - i - 1;
indices[axis]++;
if (indices[axis] >= shape[axis]) {
indices[axis] = 0;
// TODO: There is something called backstrides to speedup iteration.
// See https://ajcr.net/stride-guide-part-1/, and
// https://docs.scipy.org/doc/numpy-1.13.0/reference/c-api.types-and-structures.html#c.PyArrayIterObject.PyArrayIterObject.backstrides.
element -= strides[axis] * (shape[axis] - 1);
} else {
element += strides[axis];
break;
}
}
nth++;
}
};
} // namespace
extern "C" {
void __nac3_nditer_initialize(NDIter<int32_t>* iter, NDArray<int32_t>* ndarray, int32_t* indices) {
iter->initialize_by_ndarray(ndarray, indices);
}
void __nac3_nditer_initialize64(NDIter<int64_t>* iter, NDArray<int64_t>* ndarray, int64_t* indices) {
iter->initialize_by_ndarray(ndarray, indices);
}
bool __nac3_nditer_has_element(NDIter<int32_t>* iter) {
return iter->has_element();
}
bool __nac3_nditer_has_element64(NDIter<int64_t>* iter) {
return iter->has_element();
}
void __nac3_nditer_next(NDIter<int32_t>* iter) {
iter->next();
}
void __nac3_nditer_next64(NDIter<int64_t>* iter) {
iter->next();
}
}

View File

@ -5,11 +5,14 @@ use inkwell::{
};
use itertools::Itertools;
use super::{
model::*,
object::{any::AnyObject, list::ListObject, ndarray::NDArrayObject, tuple::TupleObject},
};
use crate::{
codegen::{
classes::{
ArrayLikeValue, NDArrayValue, ProxyValue, RangeValue, TypedArrayLikeAccessor,
UntypedArrayLikeAccessor, UntypedArrayLikeMutator,
NDArrayValue, ProxyValue, RangeValue, UntypedArrayLikeAccessor, UntypedArrayLikeMutator,
},
expr::destructure_range,
extern_fns, irrt,
@ -43,58 +46,33 @@ pub fn call_len<'ctx, G: CodeGenerator + ?Sized>(
ctx: &mut CodeGenContext<'ctx, '_>,
n: (Type, BasicValueEnum<'ctx>),
) -> Result<IntValue<'ctx>, String> {
let llvm_i32 = ctx.ctx.i32_type();
let range_ty = ctx.primitives.range;
let (arg_ty, arg) = n;
Ok(if ctx.unifier.unioned(arg_ty, range_ty) {
Ok(if ctx.unifier.unioned(arg_ty, ctx.primitives.range) {
let arg = RangeValue::from_ptr_val(arg.into_pointer_value(), Some("range"));
let (start, end, step) = destructure_range(ctx, arg);
calculate_len_for_slice_range(generator, ctx, start, end, step)
} else {
match &*ctx.unifier.get_ty_immutable(arg_ty) {
TypeEnum::TTuple { ty, .. } => llvm_i32.const_int(ty.len() as u64, false),
TypeEnum::TObj { obj_id, .. } if *obj_id == PrimDef::List.id() => {
let zero = llvm_i32.const_zero();
let len = ctx
.build_gep_and_load(
arg.into_pointer_value(),
&[zero, llvm_i32.const_int(1, false)],
None,
)
.into_int_value();
ctx.builder.build_int_truncate_or_bit_cast(len, llvm_i32, "len").unwrap()
let arg = AnyObject { ty: arg_ty, value: arg };
let len: Instance<'ctx, Int<Int32>> = match &*ctx.unifier.get_ty(arg_ty) {
TypeEnum::TTuple { .. } => {
let tuple = TupleObject::from_object(ctx, arg);
tuple.len(generator, ctx).truncate_or_bit_cast(generator, ctx, Int32)
}
TypeEnum::TObj { obj_id, .. } if *obj_id == PrimDef::NDArray.id() => {
let llvm_usize = generator.get_size_type(ctx.ctx);
let arg = NDArrayValue::from_ptr_val(arg.into_pointer_value(), llvm_usize, None);
let ndims = arg.dim_sizes().size(ctx, generator);
ctx.make_assert(
generator,
ctx.builder
.build_int_compare(IntPredicate::NE, ndims, llvm_usize.const_zero(), "")
.unwrap(),
"0:TypeError",
"len() of unsized object",
[None, None, None],
ctx.current_loc,
);
let len = unsafe {
arg.dim_sizes().get_typed_unchecked(
ctx,
generator,
&llvm_usize.const_zero(),
None,
)
TypeEnum::TObj { obj_id, .. }
if *obj_id == ctx.primitives.ndarray.obj_id(&ctx.unifier).unwrap() =>
{
let ndarray = NDArrayObject::from_object(generator, ctx, arg);
ndarray.len(generator, ctx).truncate_or_bit_cast(generator, ctx, Int32)
}
TypeEnum::TObj { obj_id, .. }
if *obj_id == ctx.primitives.list.obj_id(&ctx.unifier).unwrap() =>
{
let list = ListObject::from_object(generator, ctx, arg);
list.len(generator, ctx).truncate_or_bit_cast(generator, ctx, Int32)
}
_ => unsupported_type(ctx, "len", &[arg_ty]),
};
ctx.builder.build_int_truncate_or_bit_cast(len, llvm_i32, "len").unwrap()
}
_ => codegen_unreachable!(ctx),
}
len.value
})
}

View File

@ -18,10 +18,13 @@ use super::{
},
llvm_intrinsics,
macros::codegen_unreachable,
model::*,
object::ndarray::{nditer::NDIter, NDArray},
stmt::gen_for_callback_incrementing,
CodeGenContext, CodeGenerator,
};
use crate::{symbol_resolver::SymbolResolver, typecheck::typedef::Type};
use function::FnCall;
#[must_use]
pub fn load_irrt<'ctx>(ctx: &'ctx Context, symbol_resolver: &dyn SymbolResolver) -> Module<'ctx> {
@ -950,3 +953,163 @@ pub fn call_ndarray_calc_broadcast_index<
Box::new(|_, v| v.into()),
)
}
// When [`TypeContext::size_type`] is 32-bits, the function name is "{fn_name}".
// When [`TypeContext::size_type`] is 64-bits, the function name is "{fn_name}64".
#[must_use]
pub fn get_sizet_dependent_function_name<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &CodeGenContext<'_, '_>,
name: &str,
) -> String {
let mut name = name.to_owned();
match generator.get_size_type(ctx.ctx).get_bit_width() {
32 => {}
64 => name.push_str("64"),
bit_width => {
panic!("Unsupported int type bit width {bit_width}, must be either 32-bits or 64-bits")
}
}
name
}
pub fn call_nac3_ndarray_util_assert_shape_no_negative<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndims: Instance<'ctx, Int<SizeT>>,
shape: Instance<'ctx, Ptr<Int<SizeT>>>,
) {
let name = get_sizet_dependent_function_name(
generator,
ctx,
"__nac3_ndarray_util_assert_shape_no_negative",
);
FnCall::builder(generator, ctx, &name).arg(ndims).arg(shape).returning_void();
}
pub fn call_nac3_ndarray_util_assert_output_shape_same<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndarray_ndims: Instance<'ctx, Int<SizeT>>,
ndarray_shape: Instance<'ctx, Ptr<Int<SizeT>>>,
output_ndims: Instance<'ctx, Int<SizeT>>,
output_shape: Instance<'ctx, Ptr<Int<SizeT>>>,
) {
let name = get_sizet_dependent_function_name(
generator,
ctx,
"__nac3_ndarray_util_assert_output_shape_same",
);
FnCall::builder(generator, ctx, &name)
.arg(ndarray_ndims)
.arg(ndarray_shape)
.arg(output_ndims)
.arg(output_shape)
.returning_void();
}
pub fn call_nac3_ndarray_size<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
) -> Instance<'ctx, Int<SizeT>> {
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_size");
FnCall::builder(generator, ctx, &name).arg(ndarray).returning_auto("size")
}
pub fn call_nac3_ndarray_nbytes<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
) -> Instance<'ctx, Int<SizeT>> {
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_nbytes");
FnCall::builder(generator, ctx, &name).arg(ndarray).returning_auto("nbytes")
}
pub fn call_nac3_ndarray_len<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
) -> Instance<'ctx, Int<SizeT>> {
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_len");
FnCall::builder(generator, ctx, &name).arg(ndarray).returning_auto("len")
}
pub fn call_nac3_ndarray_is_c_contiguous<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
) -> Instance<'ctx, Int<Bool>> {
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_is_c_contiguous");
FnCall::builder(generator, ctx, &name).arg(ndarray).returning_auto("is_c_contiguous")
}
pub fn call_nac3_ndarray_get_nth_pelement<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
index: Instance<'ctx, Int<SizeT>>,
) -> Instance<'ctx, Ptr<Int<Byte>>> {
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_get_nth_pelement");
FnCall::builder(generator, ctx, &name).arg(ndarray).arg(index).returning_auto("pelement")
}
pub fn call_nac3_ndarray_get_pelement_by_indices<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
indices: Instance<'ctx, Ptr<Int<SizeT>>>,
) -> Instance<'ctx, Ptr<Int<Byte>>> {
let name =
get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_get_pelement_by_indices");
FnCall::builder(generator, ctx, &name).arg(ndarray).arg(indices).returning_auto("pelement")
}
pub fn call_nac3_ndarray_set_strides_by_shape<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
) {
let name =
get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_set_strides_by_shape");
FnCall::builder(generator, ctx, &name).arg(ndarray).returning_void();
}
pub fn call_nac3_ndarray_copy_data<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
src_ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
dst_ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
) {
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_copy_data");
FnCall::builder(generator, ctx, &name).arg(src_ndarray).arg(dst_ndarray).returning_void();
}
pub fn call_nac3_nditer_initialize<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
iter: Instance<'ctx, Ptr<Struct<NDIter>>>,
ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
indices: Instance<'ctx, Ptr<Int<SizeT>>>,
) {
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_nditer_initialize");
FnCall::builder(generator, ctx, &name).arg(iter).arg(ndarray).arg(indices).returning_void();
}
pub fn call_nac3_nditer_has_element<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
iter: Instance<'ctx, Ptr<Struct<NDIter>>>,
) -> Instance<'ctx, Int<Bool>> {
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_nditer_has_element");
FnCall::builder(generator, ctx, &name).arg(iter).returning_auto("has_element")
}
pub fn call_nac3_nditer_next<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
iter: Instance<'ctx, Ptr<Struct<NDIter>>>,
) {
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_nditer_next");
FnCall::builder(generator, ctx, &name).arg(iter).returning_void();
}

View File

@ -29,14 +29,16 @@ use parking_lot::{Condvar, Mutex};
use nac3parser::ast::{Location, Stmt, StrRef};
use crate::{
codegen::classes::{ListType, NDArrayType, ProxyType, RangeType},
codegen::classes::{ListType, ProxyType, RangeType},
symbol_resolver::{StaticValue, SymbolResolver},
toplevel::{helper::PrimDef, numpy::unpack_ndarray_var_tys, TopLevelContext, TopLevelDef},
toplevel::{helper::PrimDef, TopLevelContext, TopLevelDef},
typecheck::{
type_inferencer::{CodeLocation, PrimitiveStore},
typedef::{CallId, FuncArg, Type, TypeEnum, Unifier},
},
};
use model::*;
use object::ndarray::NDArray;
pub mod builtin_fns;
pub mod classes;
@ -46,7 +48,9 @@ pub mod extern_fns;
mod generator;
pub mod irrt;
pub mod llvm_intrinsics;
pub mod model;
pub mod numpy;
pub mod object;
pub mod stmt;
#[cfg(test)]
@ -510,12 +514,7 @@ fn get_llvm_type<'ctx, G: CodeGenerator + ?Sized>(
}
TObj { obj_id, .. } if *obj_id == PrimDef::NDArray.id() => {
let (dtype, _) = unpack_ndarray_var_tys(unifier, ty);
let element_type = get_llvm_type(
ctx, module, generator, unifier, top_level, type_cache, dtype,
);
NDArrayType::new(generator, ctx, element_type).as_base_type().into()
Ptr(Struct(NDArray)).llvm_type(generator, ctx).as_basic_type_enum()
}
_ => unreachable!(

View File

@ -0,0 +1,41 @@
use inkwell::{
context::Context,
types::{BasicType, BasicTypeEnum},
values::BasicValueEnum,
};
use super::*;
use crate::codegen::CodeGenerator;
/// A [`Model`] of any [`BasicTypeEnum`].
///
/// Use this when it is infeasible to use model abstractions.
#[derive(Debug, Clone, Copy)]
pub struct Any<'ctx>(pub BasicTypeEnum<'ctx>);
impl<'ctx> Model<'ctx> for Any<'ctx> {
type Value = BasicValueEnum<'ctx>;
type Type = BasicTypeEnum<'ctx>;
fn llvm_type<G: CodeGenerator + ?Sized>(
&self,
_generator: &G,
_ctx: &'ctx Context,
) -> Self::Type {
self.0
}
fn check_type<T: BasicType<'ctx>, G: CodeGenerator + ?Sized>(
&self,
_generator: &mut G,
_ctx: &'ctx Context,
ty: T,
) -> Result<(), ModelError> {
let ty = ty.as_basic_type_enum();
if ty == self.0 {
Ok(())
} else {
Err(ModelError(format!("Expecting {}, but got {}", self.0, ty)))
}
}
}

View File

@ -0,0 +1,146 @@
use std::fmt;
use inkwell::{
context::Context,
types::{ArrayType, BasicType, BasicTypeEnum},
values::{ArrayValue, IntValue},
};
use super::*;
use crate::codegen::{CodeGenContext, CodeGenerator};
/// Trait for Rust structs identifying length values for [`Array`].
pub trait ArrayLen: fmt::Debug + Clone + Copy {
fn length(&self) -> u32;
}
/// A statically known length.
#[derive(Debug, Clone, Copy, Default)]
pub struct Len<const N: u32>;
/// A dynamically known length.
#[derive(Debug, Clone, Copy)]
pub struct AnyLen(pub u32);
impl<const N: u32> ArrayLen for Len<N> {
fn length(&self) -> u32 {
N
}
}
impl ArrayLen for AnyLen {
fn length(&self) -> u32 {
self.0
}
}
/// A Model for an [`ArrayType`].
///
/// `Len` should be of a [`LenKind`] and `Item` should be a of [`Model`].
#[derive(Debug, Clone, Copy, Default)]
pub struct Array<Len, Item> {
/// Length of this array.
pub len: Len,
/// [`Model`] of the array items.
pub item: Item,
}
impl<'ctx, Len: ArrayLen, Item: Model<'ctx>> Model<'ctx> for Array<Len, Item> {
type Value = ArrayValue<'ctx>;
type Type = ArrayType<'ctx>;
fn llvm_type<G: CodeGenerator + ?Sized>(
&self,
generator: &G,
ctx: &'ctx Context,
) -> Self::Type {
self.item.llvm_type(generator, ctx).array_type(self.len.length())
}
fn check_type<T: BasicType<'ctx>, G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &'ctx Context,
ty: T,
) -> Result<(), ModelError> {
let ty = ty.as_basic_type_enum();
let BasicTypeEnum::ArrayType(ty) = ty else {
return Err(ModelError(format!("Expecting ArrayType, but got {ty:?}")));
};
if ty.len() != self.len.length() {
return Err(ModelError(format!(
"Expecting ArrayType with size {}, but got an ArrayType with size {}",
ty.len(),
self.len.length()
)));
}
self.item
.check_type(generator, ctx, ty.get_element_type())
.map_err(|err| err.under_context("an ArrayType"))?;
Ok(())
}
}
impl<'ctx, Len: ArrayLen, Item: Model<'ctx>> Instance<'ctx, Ptr<Array<Len, Item>>> {
/// Get the pointer to the `i`-th (0-based) array element.
pub fn gep(
&self,
ctx: &CodeGenContext<'ctx, '_>,
i: IntValue<'ctx>,
) -> Instance<'ctx, Ptr<Item>> {
let zero = ctx.ctx.i32_type().const_zero();
let ptr = unsafe { ctx.builder.build_in_bounds_gep(self.value, &[zero, i], "").unwrap() };
unsafe { Ptr(self.model.0.item).believe_value(ptr) }
}
/// Like `gep` but `i` is a constant.
pub fn gep_const(&self, ctx: &CodeGenContext<'ctx, '_>, i: u64) -> Instance<'ctx, Ptr<Item>> {
assert!(
i < u64::from(self.model.0.len.length()),
"Index {i} is out of bounds. Array length = {}",
self.model.0.len.length()
);
let i = ctx.ctx.i32_type().const_int(i, false);
self.gep(ctx, i)
}
/// Convenience function equivalent to `.gep(...).load(...)`.
pub fn get<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
i: IntValue<'ctx>,
) -> Instance<'ctx, Item> {
self.gep(ctx, i).load(generator, ctx)
}
/// Like `get` but `i` is a constant.
pub fn get_const<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
i: u64,
) -> Instance<'ctx, Item> {
self.gep_const(ctx, i).load(generator, ctx)
}
/// Convenience function equivalent to `.gep(...).store(...)`.
pub fn set(
&self,
ctx: &CodeGenContext<'ctx, '_>,
i: IntValue<'ctx>,
value: Instance<'ctx, Item>,
) {
self.gep(ctx, i).store(ctx, value);
}
/// Like `set` but `i` is a constant.
pub fn set_const(&self, ctx: &CodeGenContext<'ctx, '_>, i: u64, value: Instance<'ctx, Item>) {
self.gep_const(ctx, i).store(ctx, value);
}
}

View File

@ -0,0 +1,207 @@
use std::fmt;
use inkwell::{context::Context, types::*, values::*};
use itertools::Itertools;
use super::*;
use crate::codegen::{CodeGenContext, CodeGenerator};
/// A error type for reporting any [`Model`]-related error (e.g., a [`BasicType`] mismatch).
#[derive(Debug, Clone)]
pub struct ModelError(pub String);
impl ModelError {
/// Append a context message to the error.
pub(super) fn under_context(mut self, context: &str) -> Self {
self.0.push_str(" ... in ");
self.0.push_str(context);
self
}
}
/// Trait for Rust structs identifying [`BasicType`]s in the context of a known [`CodeGenerator`] and [`CodeGenContext`].
///
/// For instance,
/// - [`Int<Int32>`] identifies an [`IntType`] with 32-bits.
/// - [`Int<SizeT>`] identifies an [`IntType`] with bit-width [`CodeGenerator::get_size_type`].
/// - [`Ptr<Int<SizeT>>`] identifies a [`PointerType`] that points to an [`IntType`] with bit-width [`CodeGenerator::get_size_type`].
/// - [`Int<AnyInt>`] identifies an [`IntType`] with bit-width of whatever is set in the [`AnyInt`] object.
/// - [`Any`] identifies a [`BasicType`] set in the [`Any`] object itself.
///
/// You can get the [`BasicType`] out of a model with [`Model::get_type`].
///
/// Furthermore, [`Instance<'ctx, M>`] is a simple structure that carries a [`BasicValue`] with [`BasicType`] identified by model `M`.
///
/// The main purpose of this abstraction is to have a more Rust type-safe way to use Inkwell and give type-hints for programmers.
///
/// ### Notes on `Default` trait
///
/// For some models like [`Int<Int32>`] or [`Int<SizeT>`], they have a [`Default`] trait since just by looking at their types, it is possible
/// to tell the [`BasicType`]s they are identifying.
///
/// This can be used to create strongly-typed interfaces accepting only values of a specific [`BasicType`] without having to worry about
/// writing debug assertions to check, for example, if the programmer has passed in an [`IntValue`] with the wrong bit-width.
/// ```ignore
/// fn give_me_i32_and_get_a_size_t_back<'ctx>(i32: Instance<'ctx, Int<Int32>>) -> Instance<'ctx, Int<SizeT>> {
/// // code...
/// }
/// ```
///
/// ### Notes on converting between Inkwell and model/ge.
///
/// Suppose you have an [`IntValue`], and you want to pass it into a function that takes a [`Instance<'ctx, Int<Int32>>`]. You can do use
/// [`Model::check_value`] or [`Model::believe_value`].
/// ```ignore
/// let my_value: IntValue<'ctx>;
///
/// let my_value = Int(Int32).check_value(my_value).unwrap(); // Panics if `my_value` is not 32-bit with a descriptive error message.
///
/// // or, if you are absolutely certain that `my_value` is 32-bit and doing extra checks is a waste of time:
/// let my_value = Int(Int32).believe_value(my_value);
/// ```
pub trait Model<'ctx>: fmt::Debug + Clone + Copy {
/// The [`BasicType`] *variant* this model is identifying.
type Type: BasicType<'ctx>;
/// The [`BasicValue`] type of the [`BasicType`] of this model.
type Value: BasicValue<'ctx> + TryFrom<BasicValueEnum<'ctx>>;
/// Return the [`BasicType`] of this model.
#[must_use]
fn llvm_type<G: CodeGenerator + ?Sized>(&self, generator: &G, ctx: &'ctx Context)
-> Self::Type;
/// Get the number of bytes of the [`BasicType`] of this model.
fn size_of<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &'ctx Context,
) -> IntValue<'ctx> {
self.llvm_type(generator, ctx).size_of().unwrap()
}
/// Check if a [`BasicType`] matches the [`BasicType`] of this model.
fn check_type<T: BasicType<'ctx>, G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &'ctx Context,
ty: T,
) -> Result<(), ModelError>;
/// Create an instance from a value.
///
/// # Safety
///
/// Caller must make sure the type of `value` and the type of this `model` are equivalent.
#[must_use]
unsafe fn believe_value(&self, value: Self::Value) -> Instance<'ctx, Self> {
Instance { model: *self, value }
}
/// Check if a [`BasicValue`]'s type is equivalent to the type of this model.
/// Wrap the [`BasicValue`] into an [`Instance`] if it is.
fn check_value<V: BasicValue<'ctx>, G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &'ctx Context,
value: V,
) -> Result<Instance<'ctx, Self>, ModelError> {
let value = value.as_basic_value_enum();
self.check_type(generator, ctx, value.get_type())
.map_err(|err| err.under_context(format!("the value {value:?}").as_str()))?;
let Ok(value) = Self::Value::try_from(value) else {
unreachable!("check_type() has bad implementation")
};
unsafe { Ok(self.believe_value(value)) }
}
// Allocate a value on the stack and return its pointer.
fn alloca<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
) -> Instance<'ctx, Ptr<Self>> {
let p = ctx.builder.build_alloca(self.llvm_type(generator, ctx.ctx), "").unwrap();
unsafe { Ptr(*self).believe_value(p) }
}
// Allocate an array on the stack and return its pointer.
fn array_alloca<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
len: IntValue<'ctx>,
) -> Instance<'ctx, Ptr<Self>> {
let p =
ctx.builder.build_array_alloca(self.llvm_type(generator, ctx.ctx), len, "").unwrap();
unsafe { Ptr(*self).believe_value(p) }
}
fn var_alloca<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&str>,
) -> Result<Instance<'ctx, Ptr<Self>>, String> {
let ty = self.llvm_type(generator, ctx.ctx).as_basic_type_enum();
let p = generator.gen_var_alloc(ctx, ty, name)?;
unsafe { Ok(Ptr(*self).believe_value(p)) }
}
fn array_var_alloca<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
len: IntValue<'ctx>,
name: Option<&'ctx str>,
) -> Result<Instance<'ctx, Ptr<Self>>, String> {
// TODO: Remove ArraySliceValue
let ty = self.llvm_type(generator, ctx.ctx).as_basic_type_enum();
let p = generator.gen_array_var_alloc(ctx, ty, len, name)?;
unsafe { Ok(Ptr(*self).believe_value(PointerValue::from(p))) }
}
/// Allocate a constant array.
fn const_array<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &'ctx Context,
values: &[Instance<'ctx, Self>],
) -> Instance<'ctx, Array<AnyLen, Self>> {
macro_rules! make {
($t:expr, $into_value:expr) => {
$t.const_array(
&values
.iter()
.map(|x| $into_value(x.value.as_basic_value_enum()))
.collect_vec(),
)
};
}
let value = match self.llvm_type(generator, ctx).as_basic_type_enum() {
BasicTypeEnum::ArrayType(t) => make!(t, BasicValueEnum::into_array_value),
BasicTypeEnum::IntType(t) => make!(t, BasicValueEnum::into_int_value),
BasicTypeEnum::FloatType(t) => make!(t, BasicValueEnum::into_float_value),
BasicTypeEnum::PointerType(t) => make!(t, BasicValueEnum::into_pointer_value),
BasicTypeEnum::StructType(t) => make!(t, BasicValueEnum::into_struct_value),
BasicTypeEnum::VectorType(t) => make!(t, BasicValueEnum::into_vector_value),
};
Array { len: AnyLen(values.len() as u32), item: *self }
.check_value(generator, ctx, value)
.unwrap()
}
}
#[derive(Debug, Clone, Copy)]
pub struct Instance<'ctx, M: Model<'ctx>> {
/// The model of this instance.
pub model: M,
/// The value of this instance.
///
/// It is guaranteed the [`BasicType`] of `value` is consistent with that of `model`.
pub value: M::Value,
}

View File

@ -0,0 +1,93 @@
use std::fmt;
use inkwell::{
context::Context,
types::{BasicType, FloatType},
values::FloatValue,
};
use super::*;
use crate::codegen::CodeGenerator;
pub trait FloatKind<'ctx>: fmt::Debug + Clone + Copy {
fn get_float_type<G: CodeGenerator + ?Sized>(
&self,
generator: &G,
ctx: &'ctx Context,
) -> FloatType<'ctx>;
}
#[derive(Debug, Clone, Copy, Default)]
pub struct Float32;
#[derive(Debug, Clone, Copy, Default)]
pub struct Float64;
impl<'ctx> FloatKind<'ctx> for Float32 {
fn get_float_type<G: CodeGenerator + ?Sized>(
&self,
_generator: &G,
ctx: &'ctx Context,
) -> FloatType<'ctx> {
ctx.f32_type()
}
}
impl<'ctx> FloatKind<'ctx> for Float64 {
fn get_float_type<G: CodeGenerator + ?Sized>(
&self,
_generator: &G,
ctx: &'ctx Context,
) -> FloatType<'ctx> {
ctx.f64_type()
}
}
#[derive(Debug, Clone, Copy)]
pub struct AnyFloat<'ctx>(FloatType<'ctx>);
impl<'ctx> FloatKind<'ctx> for AnyFloat<'ctx> {
fn get_float_type<G: CodeGenerator + ?Sized>(
&self,
_generator: &G,
_ctx: &'ctx Context,
) -> FloatType<'ctx> {
self.0
}
}
#[derive(Debug, Clone, Copy, Default)]
pub struct Float<N>(pub N);
impl<'ctx, N: FloatKind<'ctx>> Model<'ctx> for Float<N> {
type Value = FloatValue<'ctx>;
type Type = FloatType<'ctx>;
fn llvm_type<G: CodeGenerator + ?Sized>(
&self,
generator: &G,
ctx: &'ctx Context,
) -> Self::Type {
self.0.get_float_type(generator, ctx)
}
fn check_type<T: BasicType<'ctx>, G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &'ctx Context,
ty: T,
) -> Result<(), ModelError> {
let ty = ty.as_basic_type_enum();
let Ok(ty) = FloatType::try_from(ty) else {
return Err(ModelError(format!("Expecting FloatType, but got {ty:?}")));
};
let exp_ty = self.0.get_float_type(generator, ctx);
// TODO: Inkwell does not have get_bit_width for FloatType?
if ty != exp_ty {
return Err(ModelError(format!("Expecting {exp_ty:?}, but got {ty:?}")));
}
Ok(())
}
}

View File

@ -0,0 +1,121 @@
use inkwell::{
attributes::{Attribute, AttributeLoc},
types::{BasicMetadataTypeEnum, BasicType, FunctionType},
values::{AnyValue, BasicMetadataValueEnum, BasicValue, BasicValueEnum, CallSiteValue},
};
use itertools::Itertools;
use super::*;
use crate::codegen::{CodeGenContext, CodeGenerator};
#[derive(Debug, Clone, Copy)]
struct Arg<'ctx> {
ty: BasicMetadataTypeEnum<'ctx>,
val: BasicMetadataValueEnum<'ctx>,
}
/// A convenience structure to construct & call an LLVM function.
///
/// ### Usage
///
/// The syntax is like this:
/// ```ignore
/// let result = CallFunction::begin("my_function_name")
/// .attrs(...)
/// .arg(arg1)
/// .arg(arg2)
/// .arg(arg3)
/// .returning("my_function_result", Int32);
/// ```
///
/// The function `my_function_name` is called when `.returning()` (or its variants) is called, returning
/// the result as an `Instance<'ctx, Int<Int32>>`.
///
/// If `my_function_name` has not been declared in `ctx.module`, once `.returning()` is called, a function
/// declaration of `my_function_name` is added to `ctx.module`, where the [`FunctionType`] is deduced from
/// the argument types and returning type.
pub struct FnCall<'ctx, 'a, 'b, 'c, 'd, G: CodeGenerator + ?Sized> {
generator: &'d mut G,
ctx: &'b CodeGenContext<'ctx, 'a>,
/// Function name
name: &'c str,
/// Call arguments
args: Vec<Arg<'ctx>>,
/// LLVM function Attributes
attrs: Vec<&'static str>,
}
impl<'ctx, 'a, 'b, 'c, 'd, G: CodeGenerator + ?Sized> FnCall<'ctx, 'a, 'b, 'c, 'd, G> {
pub fn builder(generator: &'d mut G, ctx: &'b CodeGenContext<'ctx, 'a>, name: &'c str) -> Self {
FnCall { generator, ctx, name, args: Vec::new(), attrs: Vec::new() }
}
/// Push a list of LLVM function attributes to the function declaration.
#[must_use]
pub fn attrs(mut self, attrs: Vec<&'static str>) -> Self {
self.attrs = attrs;
self
}
/// Push a call argument to the function call.
#[allow(clippy::needless_pass_by_value)]
#[must_use]
pub fn arg<M: Model<'ctx>>(mut self, arg: Instance<'ctx, M>) -> Self {
let arg = Arg {
ty: arg.model.llvm_type(self.generator, self.ctx.ctx).as_basic_type_enum().into(),
val: arg.value.as_basic_value_enum().into(),
};
self.args.push(arg);
self
}
/// Call the function and expect the function to return a value of type of `return_model`.
#[must_use]
pub fn returning<M: Model<'ctx>>(self, name: &str, return_model: M) -> Instance<'ctx, M> {
let ret_ty = return_model.llvm_type(self.generator, self.ctx.ctx);
let ret = self.call(|tys| ret_ty.fn_type(tys, false), name);
let ret = BasicValueEnum::try_from(ret.as_any_value_enum()).unwrap(); // Must work
let ret = return_model.check_value(self.generator, self.ctx.ctx, ret).unwrap(); // Must work
ret
}
/// Like [`CallFunction::returning_`] but `return_model` is automatically inferred.
#[must_use]
pub fn returning_auto<M: Model<'ctx> + Default>(self, name: &str) -> Instance<'ctx, M> {
self.returning(name, M::default())
}
/// Call the function and expect the function to return a void-type.
pub fn returning_void(self) {
let ret_ty = self.ctx.ctx.void_type();
let _ = self.call(|tys| ret_ty.fn_type(tys, false), "");
}
fn call<F>(&self, make_fn_type: F, return_value_name: &str) -> CallSiteValue<'ctx>
where
F: FnOnce(&[BasicMetadataTypeEnum<'ctx>]) -> FunctionType<'ctx>,
{
// Get the LLVM function.
let func = self.ctx.module.get_function(self.name).unwrap_or_else(|| {
// Declare the function if it doesn't exist.
let tys = self.args.iter().map(|arg| arg.ty).collect_vec();
let func_type = make_fn_type(&tys);
let func = self.ctx.module.add_function(self.name, func_type, None);
for attr in &self.attrs {
func.add_attribute(
AttributeLoc::Function,
self.ctx.ctx.create_enum_attribute(Attribute::get_named_enum_kind_id(attr), 0),
);
}
func
});
let vals = self.args.iter().map(|arg| arg.val).collect_vec();
self.ctx.builder.build_call(func, &vals, return_value_name).unwrap()
}
}

View File

@ -0,0 +1,421 @@
use std::{cmp::Ordering, fmt};
use inkwell::{
context::Context,
types::{BasicType, IntType},
values::IntValue,
IntPredicate,
};
use super::*;
use crate::codegen::{CodeGenContext, CodeGenerator};
pub trait IntKind<'ctx>: fmt::Debug + Clone + Copy {
fn get_int_type<G: CodeGenerator + ?Sized>(
&self,
generator: &G,
ctx: &'ctx Context,
) -> IntType<'ctx>;
}
#[derive(Debug, Clone, Copy, Default)]
pub struct Bool;
#[derive(Debug, Clone, Copy, Default)]
pub struct Byte;
#[derive(Debug, Clone, Copy, Default)]
pub struct Int32;
#[derive(Debug, Clone, Copy, Default)]
pub struct Int64;
#[derive(Debug, Clone, Copy, Default)]
pub struct SizeT;
impl<'ctx> IntKind<'ctx> for Bool {
fn get_int_type<G: CodeGenerator + ?Sized>(
&self,
_generator: &G,
ctx: &'ctx Context,
) -> IntType<'ctx> {
ctx.bool_type()
}
}
impl<'ctx> IntKind<'ctx> for Byte {
fn get_int_type<G: CodeGenerator + ?Sized>(
&self,
_generator: &G,
ctx: &'ctx Context,
) -> IntType<'ctx> {
ctx.i8_type()
}
}
impl<'ctx> IntKind<'ctx> for Int32 {
fn get_int_type<G: CodeGenerator + ?Sized>(
&self,
_generator: &G,
ctx: &'ctx Context,
) -> IntType<'ctx> {
ctx.i32_type()
}
}
impl<'ctx> IntKind<'ctx> for Int64 {
fn get_int_type<G: CodeGenerator + ?Sized>(
&self,
_generator: &G,
ctx: &'ctx Context,
) -> IntType<'ctx> {
ctx.i64_type()
}
}
impl<'ctx> IntKind<'ctx> for SizeT {
fn get_int_type<G: CodeGenerator + ?Sized>(
&self,
generator: &G,
ctx: &'ctx Context,
) -> IntType<'ctx> {
generator.get_size_type(ctx)
}
}
#[derive(Debug, Clone, Copy)]
pub struct AnyInt<'ctx>(pub IntType<'ctx>);
impl<'ctx> IntKind<'ctx> for AnyInt<'ctx> {
fn get_int_type<G: CodeGenerator + ?Sized>(
&self,
_generator: &G,
_ctx: &'ctx Context,
) -> IntType<'ctx> {
self.0
}
}
#[derive(Debug, Clone, Copy, Default)]
pub struct Int<N>(pub N);
impl<'ctx, N: IntKind<'ctx>> Model<'ctx> for Int<N> {
type Value = IntValue<'ctx>;
type Type = IntType<'ctx>;
fn llvm_type<G: CodeGenerator + ?Sized>(
&self,
generator: &G,
ctx: &'ctx Context,
) -> Self::Type {
self.0.get_int_type(generator, ctx)
}
fn check_type<T: BasicType<'ctx>, G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &'ctx Context,
ty: T,
) -> Result<(), ModelError> {
let ty = ty.as_basic_type_enum();
let Ok(ty) = IntType::try_from(ty) else {
return Err(ModelError(format!("Expecting IntType, but got {ty:?}")));
};
let exp_ty = self.0.get_int_type(generator, ctx);
if ty.get_bit_width() != exp_ty.get_bit_width() {
return Err(ModelError(format!(
"Expecting IntType to have {} bit(s), but got {} bit(s)",
exp_ty.get_bit_width(),
ty.get_bit_width()
)));
}
Ok(())
}
}
impl<'ctx, N: IntKind<'ctx>> Int<N> {
pub fn const_int<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &'ctx Context,
value: u64,
sign_extend: bool,
) -> Instance<'ctx, Self> {
let value = self.llvm_type(generator, ctx).const_int(value, sign_extend);
unsafe { self.believe_value(value) }
}
pub fn const_0<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &'ctx Context,
) -> Instance<'ctx, Self> {
let value = self.llvm_type(generator, ctx).const_zero();
unsafe { self.believe_value(value) }
}
pub fn const_1<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &'ctx Context,
) -> Instance<'ctx, Self> {
self.const_int(generator, ctx, 1, false)
}
pub fn const_all_ones<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &'ctx Context,
) -> Instance<'ctx, Self> {
let value = self.llvm_type(generator, ctx).const_all_ones();
unsafe { self.believe_value(value) }
}
pub fn s_extend_or_bit_cast<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
value: IntValue<'ctx>,
) -> Instance<'ctx, Self> {
assert!(
value.get_type().get_bit_width()
<= self.0.get_int_type(generator, ctx.ctx).get_bit_width()
);
let value = ctx
.builder
.build_int_s_extend_or_bit_cast(value, self.llvm_type(generator, ctx.ctx), "")
.unwrap();
unsafe { self.believe_value(value) }
}
pub fn s_extend<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
value: IntValue<'ctx>,
) -> Instance<'ctx, Self> {
assert!(
value.get_type().get_bit_width()
< self.0.get_int_type(generator, ctx.ctx).get_bit_width()
);
let value =
ctx.builder.build_int_s_extend(value, self.llvm_type(generator, ctx.ctx), "").unwrap();
unsafe { self.believe_value(value) }
}
pub fn z_extend_or_bit_cast<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
value: IntValue<'ctx>,
) -> Instance<'ctx, Self> {
assert!(
value.get_type().get_bit_width()
<= self.0.get_int_type(generator, ctx.ctx).get_bit_width()
);
let value = ctx
.builder
.build_int_z_extend_or_bit_cast(value, self.llvm_type(generator, ctx.ctx), "")
.unwrap();
unsafe { self.believe_value(value) }
}
pub fn z_extend<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
value: IntValue<'ctx>,
) -> Instance<'ctx, Self> {
assert!(
value.get_type().get_bit_width()
< self.0.get_int_type(generator, ctx.ctx).get_bit_width()
);
let value =
ctx.builder.build_int_z_extend(value, self.llvm_type(generator, ctx.ctx), "").unwrap();
unsafe { self.believe_value(value) }
}
pub fn truncate_or_bit_cast<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
value: IntValue<'ctx>,
) -> Instance<'ctx, Self> {
assert!(
value.get_type().get_bit_width()
>= self.0.get_int_type(generator, ctx.ctx).get_bit_width()
);
let value = ctx
.builder
.build_int_truncate_or_bit_cast(value, self.llvm_type(generator, ctx.ctx), "")
.unwrap();
unsafe { self.believe_value(value) }
}
pub fn truncate<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
value: IntValue<'ctx>,
) -> Instance<'ctx, Self> {
assert!(
value.get_type().get_bit_width()
> self.0.get_int_type(generator, ctx.ctx).get_bit_width()
);
let value =
ctx.builder.build_int_truncate(value, self.llvm_type(generator, ctx.ctx), "").unwrap();
unsafe { self.believe_value(value) }
}
/// `sext` or `trunc` an int to this model's int type. Does nothing if equal bit-widths.
pub fn s_extend_or_truncate<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
value: IntValue<'ctx>,
) -> Instance<'ctx, Self> {
let their_width = value.get_type().get_bit_width();
let our_width = self.0.get_int_type(generator, ctx.ctx).get_bit_width();
match their_width.cmp(&our_width) {
Ordering::Less => self.s_extend(generator, ctx, value),
Ordering::Equal => unsafe { self.believe_value(value) },
Ordering::Greater => self.truncate(generator, ctx, value),
}
}
/// `zext` or `trunc` an int to this model's int type. Does nothing if equal bit-widths.
pub fn z_extend_or_truncate<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
value: IntValue<'ctx>,
) -> Instance<'ctx, Self> {
let their_width = value.get_type().get_bit_width();
let our_width = self.0.get_int_type(generator, ctx.ctx).get_bit_width();
match their_width.cmp(&our_width) {
Ordering::Less => self.z_extend(generator, ctx, value),
Ordering::Equal => unsafe { self.believe_value(value) },
Ordering::Greater => self.truncate(generator, ctx, value),
}
}
}
impl Int<Bool> {
#[must_use]
pub fn const_false<'ctx, G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &'ctx Context,
) -> Instance<'ctx, Self> {
self.const_int(generator, ctx, 0, false)
}
#[must_use]
pub fn const_true<'ctx, G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &'ctx Context,
) -> Instance<'ctx, Self> {
self.const_int(generator, ctx, 1, false)
}
}
impl<'ctx, N: IntKind<'ctx>> Instance<'ctx, Int<N>> {
pub fn s_extend_or_bit_cast<NewN: IntKind<'ctx>, G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
to_int_kind: NewN,
) -> Instance<'ctx, Int<NewN>> {
Int(to_int_kind).s_extend_or_bit_cast(generator, ctx, self.value)
}
pub fn s_extend<NewN: IntKind<'ctx>, G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
to_int_kind: NewN,
) -> Instance<'ctx, Int<NewN>> {
Int(to_int_kind).s_extend(generator, ctx, self.value)
}
pub fn z_extend_or_bit_cast<NewN: IntKind<'ctx>, G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
to_int_kind: NewN,
) -> Instance<'ctx, Int<NewN>> {
Int(to_int_kind).z_extend_or_bit_cast(generator, ctx, self.value)
}
pub fn z_extend<NewN: IntKind<'ctx>, G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
to_int_kind: NewN,
) -> Instance<'ctx, Int<NewN>> {
Int(to_int_kind).z_extend(generator, ctx, self.value)
}
pub fn truncate_or_bit_cast<NewN: IntKind<'ctx>, G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
to_int_kind: NewN,
) -> Instance<'ctx, Int<NewN>> {
Int(to_int_kind).truncate_or_bit_cast(generator, ctx, self.value)
}
pub fn truncate<NewN: IntKind<'ctx>, G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
to_int_kind: NewN,
) -> Instance<'ctx, Int<NewN>> {
Int(to_int_kind).truncate(generator, ctx, self.value)
}
pub fn s_extend_or_truncate<NewN: IntKind<'ctx>, G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
to_int_kind: NewN,
) -> Instance<'ctx, Int<NewN>> {
Int(to_int_kind).s_extend_or_truncate(generator, ctx, self.value)
}
pub fn z_extend_or_truncate<NewN: IntKind<'ctx>, G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
to_int_kind: NewN,
) -> Instance<'ctx, Int<NewN>> {
Int(to_int_kind).z_extend_or_truncate(generator, ctx, self.value)
}
#[must_use]
pub fn add(&self, ctx: &CodeGenContext<'ctx, '_>, other: Self) -> Self {
let value = ctx.builder.build_int_add(self.value, other.value, "").unwrap();
unsafe { self.model.believe_value(value) }
}
#[must_use]
pub fn sub(&self, ctx: &CodeGenContext<'ctx, '_>, other: Self) -> Self {
let value = ctx.builder.build_int_sub(self.value, other.value, "").unwrap();
unsafe { self.model.believe_value(value) }
}
#[must_use]
pub fn mul(&self, ctx: &CodeGenContext<'ctx, '_>, other: Self) -> Self {
let value = ctx.builder.build_int_mul(self.value, other.value, "").unwrap();
unsafe { self.model.believe_value(value) }
}
pub fn compare(
&self,
ctx: &CodeGenContext<'ctx, '_>,
op: IntPredicate,
other: Self,
) -> Instance<'ctx, Int<Bool>> {
let value = ctx.builder.build_int_compare(op, self.value, other.value, "").unwrap();
unsafe { Int(Bool).believe_value(value) }
}
}

View File

@ -0,0 +1,17 @@
mod any;
mod array;
mod core;
mod float;
pub mod function;
mod int;
mod ptr;
mod structure;
pub mod util;
pub use any::*;
pub use array::*;
pub use core::*;
pub use float::*;
pub use int::*;
pub use ptr::*;
pub use structure::*;

View File

@ -0,0 +1,213 @@
use inkwell::{
context::Context,
types::{BasicType, BasicTypeEnum, PointerType},
values::{IntValue, PointerValue},
AddressSpace,
};
use super::*;
use crate::codegen::{llvm_intrinsics::call_memcpy_generic, CodeGenContext, CodeGenerator};
/// A model for [`PointerType`].
///
/// `Item` is the element type this pointer is pointing to, and should be of a [`Model`].
///
// TODO: LLVM 15: `Item` is a Rust type-hint for the LLVM type of value the `.store()/.load()` family
// of functions return. If a truly opaque pointer is needed, tell the programmer to use `OpaquePtr`.
#[derive(Debug, Clone, Copy, Default)]
pub struct Ptr<Item>(pub Item);
/// An opaque pointer. Like [`Ptr`] but without any Rust type-hints about its element type.
///
/// `.load()/.store()` is not available for [`Instance`]s of opaque pointers.
pub type OpaquePtr = Ptr<()>;
// TODO: LLVM 15: `Item: Model<'ctx>` don't even need to be a model anymore. It will only be
// a type-hint for the `.load()/.store()` functions for the `pointee_ty`.
//
// See https://thedan64.github.io/inkwell/inkwell/builder/struct.Builder.html#method.build_load.
impl<'ctx, Item: Model<'ctx>> Model<'ctx> for Ptr<Item> {
type Value = PointerValue<'ctx>;
type Type = PointerType<'ctx>;
fn llvm_type<G: CodeGenerator + ?Sized>(
&self,
generator: &G,
ctx: &'ctx Context,
) -> Self::Type {
// TODO: LLVM 15: ctx.ptr_type(AddressSpace::default())
self.0.llvm_type(generator, ctx).ptr_type(AddressSpace::default())
}
fn check_type<T: BasicType<'ctx>, G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &'ctx Context,
ty: T,
) -> Result<(), ModelError> {
let ty = ty.as_basic_type_enum();
let Ok(ty) = PointerType::try_from(ty) else {
return Err(ModelError(format!("Expecting PointerType, but got {ty:?}")));
};
let elem_ty = ty.get_element_type();
let Ok(elem_ty) = BasicTypeEnum::try_from(elem_ty) else {
return Err(ModelError(format!(
"Expecting pointer element type to be a BasicTypeEnum, but got {elem_ty:?}"
)));
};
// TODO: inkwell `get_element_type()` will be deprecated.
// Remove the check for `get_element_type()` when the time comes.
self.0
.check_type(generator, ctx, elem_ty)
.map_err(|err| err.under_context("a PointerType"))?;
Ok(())
}
}
impl<'ctx, Item: Model<'ctx>> Ptr<Item> {
/// Return a ***constant*** nullptr.
pub fn nullptr<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &'ctx Context,
) -> Instance<'ctx, Ptr<Item>> {
let ptr = self.llvm_type(generator, ctx).const_null();
unsafe { self.believe_value(ptr) }
}
/// Cast a pointer into this model with [`inkwell::builder::Builder::build_pointer_cast`]
pub fn pointer_cast<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
ptr: PointerValue<'ctx>,
) -> Instance<'ctx, Ptr<Item>> {
// TODO: LLVM 15: Write in an impl where `Item` does not have to be `Model<'ctx>`.
// TODO: LLVM 15: This function will only have to be:
// ```
// return self.believe_value(ptr);
// ```
let t = self.llvm_type(generator, ctx.ctx);
let ptr = ctx.builder.build_pointer_cast(ptr, t, "").unwrap();
unsafe { self.believe_value(ptr) }
}
}
impl<'ctx, Item: Model<'ctx>> Instance<'ctx, Ptr<Item>> {
/// Offset the pointer by [`inkwell::builder::Builder::build_in_bounds_gep`].
#[must_use]
pub fn offset(
&self,
ctx: &CodeGenContext<'ctx, '_>,
offset: IntValue<'ctx>,
) -> Instance<'ctx, Ptr<Item>> {
let p = unsafe { ctx.builder.build_in_bounds_gep(self.value, &[offset], "").unwrap() };
unsafe { self.model.believe_value(p) }
}
/// Offset the pointer by [`inkwell::builder::Builder::build_in_bounds_gep`] by a constant offset.
#[must_use]
pub fn offset_const(
&self,
ctx: &CodeGenContext<'ctx, '_>,
offset: i64,
) -> Instance<'ctx, Ptr<Item>> {
let offset = ctx.ctx.i32_type().const_int(offset as u64, true);
self.offset(ctx, offset)
}
pub fn set_index(
&self,
ctx: &CodeGenContext<'ctx, '_>,
index: IntValue<'ctx>,
value: Instance<'ctx, Item>,
) {
self.offset(ctx, index).store(ctx, value);
}
pub fn set_index_const(
&self,
ctx: &CodeGenContext<'ctx, '_>,
index: i64,
value: Instance<'ctx, Item>,
) {
self.offset_const(ctx, index).store(ctx, value);
}
pub fn get_index<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
index: IntValue<'ctx>,
) -> Instance<'ctx, Item> {
self.offset(ctx, index).load(generator, ctx)
}
pub fn get_index_const<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
index: i64,
) -> Instance<'ctx, Item> {
self.offset_const(ctx, index).load(generator, ctx)
}
/// Load the value with [`inkwell::builder::Builder::build_load`].
pub fn load<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
) -> Instance<'ctx, Item> {
let value = ctx.builder.build_load(self.value, "").unwrap();
self.model.0.check_value(generator, ctx.ctx, value).unwrap() // If unwrap() panics, there is a logic error.
}
/// Store a value with [`inkwell::builder::Builder::build_store`].
pub fn store(&self, ctx: &CodeGenContext<'ctx, '_>, value: Instance<'ctx, Item>) {
ctx.builder.build_store(self.value, value.value).unwrap();
}
/// Return a casted pointer of element type `NewElement` with [`inkwell::builder::Builder::build_pointer_cast`].
pub fn pointer_cast<NewItem: Model<'ctx>, G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
new_item: NewItem,
) -> Instance<'ctx, Ptr<NewItem>> {
// TODO: LLVM 15: Write in an impl where `Item` does not have to be `Model<'ctx>`.
Ptr(new_item).pointer_cast(generator, ctx, self.value)
}
/// Check if the pointer is null with [`inkwell::builder::Builder::build_is_null`].
pub fn is_null(&self, ctx: &CodeGenContext<'ctx, '_>) -> Instance<'ctx, Int<Bool>> {
let value = ctx.builder.build_is_null(self.value, "").unwrap();
unsafe { Int(Bool).believe_value(value) }
}
/// Check if the pointer is not null with [`inkwell::builder::Builder::build_is_not_null`].
pub fn is_not_null(&self, ctx: &CodeGenContext<'ctx, '_>) -> Instance<'ctx, Int<Bool>> {
let value = ctx.builder.build_is_not_null(self.value, "").unwrap();
unsafe { Int(Bool).believe_value(value) }
}
/// `memcpy` from another pointer.
pub fn copy_from<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
source: Self,
num_items: IntValue<'ctx>,
) {
// Force extend `num_items` and `itemsize` to `i64` so their types would match.
let itemsize = self.model.size_of(generator, ctx.ctx);
let itemsize = Int(SizeT).z_extend_or_truncate(generator, ctx, itemsize);
let num_items = Int(SizeT).z_extend_or_truncate(generator, ctx, num_items);
let totalsize = itemsize.mul(ctx, num_items);
let is_volatile = ctx.ctx.bool_type().const_zero(); // is_volatile = false
call_memcpy_generic(ctx, self.value, source.value, totalsize.value, is_volatile);
}
}

View File

@ -0,0 +1,363 @@
use std::fmt;
use inkwell::{
context::Context,
types::{BasicType, BasicTypeEnum, StructType},
values::{BasicValueEnum, StructValue},
};
use super::*;
use crate::codegen::{CodeGenContext, CodeGenerator};
/// A traveral that traverses a Rust `struct` that is used to declare an LLVM's struct's field types.
pub trait FieldTraversal<'ctx> {
/// Output type of [`FieldTraversal::add`].
type Output<M>;
/// Traverse through the type of a declared field and do something with it.
///
/// * `name` - The cosmetic name of the LLVM field. Used for debugging.
/// * `model` - The [`Model`] representing the LLVM type of this field.
fn add<M: Model<'ctx>>(&mut self, name: &'static str, model: M) -> Self::Output<M>;
/// Like [`FieldTraversal::add`] but [`Model`] is automatically inferred from its [`Default`] trait.
fn add_auto<M: Model<'ctx> + Default>(&mut self, name: &'static str) -> Self::Output<M> {
self.add(name, M::default())
}
}
/// Descriptor of an LLVM struct field.
#[derive(Debug, Clone, Copy)]
pub struct GepField<M> {
/// The GEP index of this field. This is the index to use with `build_gep`.
pub gep_index: u32,
/// The cosmetic name of this field.
pub name: &'static str,
/// The [`Model`] of this field's type.
pub model: M,
}
/// A traversal to calculate the GEP index of fields.
pub struct GepFieldTraversal {
/// The current GEP index.
gep_index_counter: u32,
}
impl<'ctx> FieldTraversal<'ctx> for GepFieldTraversal {
type Output<M> = GepField<M>;
fn add<M: Model<'ctx>>(&mut self, name: &'static str, model: M) -> Self::Output<M> {
let gep_index = self.gep_index_counter;
self.gep_index_counter += 1;
Self::Output { gep_index, name, model }
}
}
/// A traversal to collect the field types of a struct.
///
/// This is used to collect field types and construct the LLVM struct type with [`Context::struct_type`].
struct TypeFieldTraversal<'ctx, 'a, G: CodeGenerator + ?Sized> {
generator: &'a G,
ctx: &'ctx Context,
/// The collected field types so far in exact order.
field_types: Vec<BasicTypeEnum<'ctx>>,
}
impl<'ctx, 'a, G: CodeGenerator + ?Sized> FieldTraversal<'ctx> for TypeFieldTraversal<'ctx, 'a, G> {
type Output<M> = (); // Checking types return nothing.
fn add<M: Model<'ctx>>(&mut self, _name: &'static str, model: M) -> Self::Output<M> {
let t = model.llvm_type(self.generator, self.ctx).as_basic_type_enum();
self.field_types.push(t);
}
}
/// A traversal to check the types of fields.
struct CheckTypeFieldTraversal<'ctx, 'a, G: CodeGenerator + ?Sized> {
generator: &'a mut G,
ctx: &'ctx Context,
/// The current GEP index, so we can tell the index of the field we are checking
/// and report the GEP index.
gep_index_counter: u32,
/// The [`StructType`] to check.
scrutinee: StructType<'ctx>,
/// The list of collected errors so far.
errors: Vec<ModelError>,
}
impl<'ctx, 'a, G: CodeGenerator + ?Sized> FieldTraversal<'ctx>
for CheckTypeFieldTraversal<'ctx, 'a, G>
{
type Output<M> = (); // Checking types return nothing.
fn add<M: Model<'ctx>>(&mut self, name: &'static str, model: M) -> Self::Output<M> {
let gep_index = self.gep_index_counter;
self.gep_index_counter += 1;
if let Some(t) = self.scrutinee.get_field_type_at_index(gep_index) {
if let Err(err) = model.check_type(self.generator, self.ctx, t) {
self.errors
.push(err.under_context(format!("field #{gep_index} '{name}'").as_str()));
}
}
// Otherwise, it will be caught by Struct's `check_type`.
}
}
/// A trait for Rust structs identifying LLVM structures.
///
/// ### Example
///
/// Suppose you want to define this structure:
/// ```c
/// template <typename T>
/// struct ContiguousNDArray {
/// size_t ndims;
/// size_t* shape;
/// T* data;
/// }
/// ```
///
/// This is how it should be done:
/// ```ignore
/// pub struct ContiguousNDArrayFields<'ctx, F: FieldTraversal<'ctx>, Item: Model<'ctx>> {
/// pub ndims: F::Out<Int<SizeT>>,
/// pub shape: F::Out<Ptr<Int<SizeT>>>,
/// pub data: F::Out<Ptr<Item>>,
/// }
///
/// /// An ndarray without strides and non-opaque `data` field in NAC3.
/// #[derive(Debug, Clone, Copy)]
/// pub struct ContiguousNDArray<M> {
/// /// [`Model`] of the items.
/// pub item: M,
/// }
///
/// impl<'ctx, Item: Model<'ctx>> StructKind<'ctx> for ContiguousNDArray<Item> {
/// type Fields<F: FieldTraversal<'ctx>> = ContiguousNDArrayFields<'ctx, F, Item>;
///
/// fn traverse_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F> {
/// // The order of `traversal.add*` is important
/// Self::Fields {
/// ndims: traversal.add_auto("ndims"),
/// shape: traversal.add_auto("shape"),
/// data: traversal.add("data", Ptr(self.item)),
/// }
/// }
/// }
/// ```
///
/// The [`FieldTraversal`] here is a mechanism to allow the fields of `ContiguousNDArrayFields` to be
/// traversed to do useful work such as:
///
/// - To create the [`StructType`] of `ContiguousNDArray` by collecting [`BasicType`]s of the fields.
/// - To enable the `.gep(ctx, |f| f.ndims).store(ctx, ...)` syntax.
///
/// Suppose now that you have defined `ContiguousNDArray` and you want to allocate a `ContiguousNDArray`
/// with dtype `float64` in LLVM, this is how you do it:
/// ```ignore
/// type F64NDArray = Struct<ContiguousNDArray<Float<Float64>>>; // Type alias for leaner documentation
/// let model: F64NDArray = Struct(ContigousNDArray { item: Float(Float64) });
/// let ndarray: Instance<'ctx, Ptr<F64NDArray>> = model.alloca(generator, ctx);
/// ```
///
/// ...and here is how you may manipulate/access `ndarray`:
///
/// (NOTE: some arguments have been omitted)
///
/// ```ignore
/// // Get `&ndarray->data`
/// ndarray.gep(|f| f.data); // type: Instance<'ctx, Ptr<Float<Float64>>>
///
/// // Get `ndarray->ndims`
/// ndarray.get(|f| f.ndims); // type: Instance<'ctx, Int<SizeT>>
///
/// // Get `&ndarray->ndims`
/// ndarray.gep(|f| f.ndims); // type: Instance<'ctx, Ptr<Int<SizeT>>>
///
/// // Get `ndarray->shape[0]`
/// ndarray.get(|f| f.shape).get_index_const(0); // Instance<'ctx, Int<SizeT>>
///
/// // Get `&ndarray->shape[2]`
/// ndarray.get(|f| f.shape).offset_const(2); // Instance<'ctx, Ptr<Int<SizeT>>>
///
/// // Do `ndarray->ndims = 3;`
/// let num_3 = Int(SizeT).const_int(3);
/// ndarray.set(|f| f.ndims, num_3);
/// ```
pub trait StructKind<'ctx>: fmt::Debug + Clone + Copy {
/// The associated fields of this struct.
type Fields<F: FieldTraversal<'ctx>>;
/// Traverse through all fields of this [`StructKind`].
///
/// Only used internally in this module for implementing other components.
fn iter_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F>;
/// Get a convenience structure to get a struct field's GEP index through its corresponding Rust field.
///
/// Only used internally in this module for implementing other components.
fn fields(&self) -> Self::Fields<GepFieldTraversal> {
self.iter_fields(&mut GepFieldTraversal { gep_index_counter: 0 })
}
/// Get the LLVM [`StructType`] of this [`StructKind`].
fn get_struct_type<G: CodeGenerator + ?Sized>(
&self,
generator: &G,
ctx: &'ctx Context,
) -> StructType<'ctx> {
let mut traversal = TypeFieldTraversal { generator, ctx, field_types: Vec::new() };
self.iter_fields(&mut traversal);
ctx.struct_type(&traversal.field_types, false)
}
}
/// A model for LLVM struct.
///
/// `S` should be of a [`StructKind`].
#[derive(Debug, Clone, Copy, Default)]
pub struct Struct<S>(pub S);
impl<'ctx, S: StructKind<'ctx>> Struct<S> {
/// Create a constant struct value from its fields.
///
/// This function also validates `fields` and panic when there is something wrong.
pub fn const_struct<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &'ctx Context,
fields: &[BasicValueEnum<'ctx>],
) -> Instance<'ctx, Self> {
// NOTE: There *could* have been a functor `F<M> = Instance<'ctx, M>` for `S::Fields<F>`
// to create a more user-friendly interface, but Rust's type system is not sophisticated enough
// and if you try doing that Rust would force you put lifetimes everywhere.
let val = ctx.const_struct(fields, false);
self.check_value(generator, ctx, val).unwrap()
}
}
impl<'ctx, S: StructKind<'ctx>> Model<'ctx> for Struct<S> {
type Value = StructValue<'ctx>;
type Type = StructType<'ctx>;
fn llvm_type<G: CodeGenerator + ?Sized>(
&self,
generator: &G,
ctx: &'ctx Context,
) -> Self::Type {
self.0.get_struct_type(generator, ctx)
}
fn check_type<T: BasicType<'ctx>, G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &'ctx Context,
ty: T,
) -> Result<(), ModelError> {
let ty = ty.as_basic_type_enum();
let Ok(ty) = StructType::try_from(ty) else {
return Err(ModelError(format!("Expecting StructType, but got {ty:?}")));
};
// Check each field individually.
let mut traversal = CheckTypeFieldTraversal {
generator,
ctx,
gep_index_counter: 0,
errors: Vec::new(),
scrutinee: ty,
};
self.0.iter_fields(&mut traversal);
// Check the number of fields.
let exp_num_fields = traversal.gep_index_counter;
let got_num_fields = u32::try_from(ty.get_field_types().len()).unwrap();
if exp_num_fields != got_num_fields {
return Err(ModelError(format!(
"Expecting StructType with {exp_num_fields} field(s), but got {got_num_fields}"
)));
}
if !traversal.errors.is_empty() {
// Currently, only the first error is reported.
return Err(traversal.errors[0].clone());
}
Ok(())
}
}
impl<'ctx, S: StructKind<'ctx>> Instance<'ctx, Struct<S>> {
/// Get a field with [`StructValue::get_field_at_index`].
pub fn get_field<G: CodeGenerator + ?Sized, M, GetField>(
&self,
generator: &mut G,
ctx: &'ctx Context,
get_field: GetField,
) -> Instance<'ctx, M>
where
M: Model<'ctx>,
GetField: FnOnce(S::Fields<GepFieldTraversal>) -> GepField<M>,
{
let field = get_field(self.model.0.fields());
let val = self.value.get_field_at_index(field.gep_index).unwrap();
field.model.check_value(generator, ctx, val).unwrap()
}
}
impl<'ctx, S: StructKind<'ctx>> Instance<'ctx, Ptr<Struct<S>>> {
/// Get a pointer to a field with [`Builder::build_in_bounds_gep`].
pub fn gep<M, GetField>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
get_field: GetField,
) -> Instance<'ctx, Ptr<M>>
where
M: Model<'ctx>,
GetField: FnOnce(S::Fields<GepFieldTraversal>) -> GepField<M>,
{
let field = get_field(self.model.0 .0.fields());
let llvm_i32 = ctx.ctx.i32_type();
let ptr = unsafe {
ctx.builder
.build_in_bounds_gep(
self.value,
&[llvm_i32.const_zero(), llvm_i32.const_int(u64::from(field.gep_index), false)],
field.name,
)
.unwrap()
};
unsafe { Ptr(field.model).believe_value(ptr) }
}
/// Convenience function equivalent to `.gep(...).load(...)`.
pub fn get<M, GetField, G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
get_field: GetField,
) -> Instance<'ctx, M>
where
M: Model<'ctx>,
GetField: FnOnce(S::Fields<GepFieldTraversal>) -> GepField<M>,
{
self.gep(ctx, get_field).load(generator, ctx)
}
/// Convenience function equivalent to `.gep(...).store(...)`.
pub fn set<M, GetField>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
get_field: GetField,
value: Instance<'ctx, M>,
) where
M: Model<'ctx>,
GetField: FnOnce(S::Fields<GepFieldTraversal>) -> GepField<M>,
{
self.gep(ctx, get_field).store(ctx, value);
}
}

View File

@ -0,0 +1,41 @@
use super::*;
use crate::codegen::{
stmt::{gen_for_callback_incrementing, BreakContinueHooks},
CodeGenContext, CodeGenerator,
};
/// Like [`gen_for_callback_incrementing`] with [`Model`] abstractions.
///
/// The value for `stop` is exclusive.
pub fn gen_for_model<'ctx, 'a, G, F, N>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, 'a>,
start: Instance<'ctx, Int<N>>,
stop: Instance<'ctx, Int<N>>,
step: Instance<'ctx, Int<N>>,
body: F,
) -> Result<(), String>
where
G: CodeGenerator + ?Sized,
F: FnOnce(
&mut G,
&mut CodeGenContext<'ctx, 'a>,
BreakContinueHooks<'ctx>,
Instance<'ctx, Int<N>>,
) -> Result<(), String>,
N: IntKind<'ctx> + Default,
{
let int_model = Int(N::default());
gen_for_callback_incrementing(
generator,
ctx,
None,
start.value,
(stop.value, false),
|g, ctx, hooks, i| {
let i = unsafe { int_model.believe_value(i) };
body(g, ctx, hooks, i)
},
step.value,
)
}

View File

@ -21,12 +21,16 @@ use crate::{
},
llvm_intrinsics::{self, call_memcpy_generic},
macros::codegen_unreachable,
object::{
any::AnyObject,
ndarray::{shape_util::parse_numpy_int_sequence, NDArrayObject},
},
stmt::{gen_for_callback_incrementing, gen_for_range_callback, gen_if_else_expr_callback},
CodeGenContext, CodeGenerator,
},
symbol_resolver::ValueEnum,
toplevel::{
helper::PrimDef,
helper::{extract_ndims, PrimDef},
numpy::{make_ndarray_ty, unpack_ndarray_var_tys},
DefinitionId,
},
@ -1743,8 +1747,13 @@ pub fn gen_ndarray_empty<'ctx>(
let shape_ty = fun.0.args[0].ty;
let shape_arg = args[0].1.clone().to_basic_value_enum(context, generator, shape_ty)?;
call_ndarray_empty_impl(generator, context, context.primitives.float, shape_arg)
.map(NDArrayValue::into)
let (dtype, ndims) = unpack_ndarray_var_tys(&mut context.unifier, fun.0.ret);
let ndims = extract_ndims(&context.unifier, ndims);
let shape = AnyObject { value: shape_arg, ty: shape_ty };
let (_, shape) = parse_numpy_int_sequence(generator, context, shape);
let ndarray = NDArrayObject::make_np_empty(generator, context, dtype, ndims, shape);
Ok(ndarray.instance.value)
}
/// Generates LLVM IR for `ndarray.zeros`.
@ -1761,8 +1770,13 @@ pub fn gen_ndarray_zeros<'ctx>(
let shape_ty = fun.0.args[0].ty;
let shape_arg = args[0].1.clone().to_basic_value_enum(context, generator, shape_ty)?;
call_ndarray_zeros_impl(generator, context, context.primitives.float, shape_arg)
.map(NDArrayValue::into)
let (dtype, ndims) = unpack_ndarray_var_tys(&mut context.unifier, fun.0.ret);
let ndims = extract_ndims(&context.unifier, ndims);
let shape = AnyObject { value: shape_arg, ty: shape_ty };
let (_, shape) = parse_numpy_int_sequence(generator, context, shape);
let ndarray = NDArrayObject::make_np_zeros(generator, context, dtype, ndims, shape);
Ok(ndarray.instance.value)
}
/// Generates LLVM IR for `ndarray.ones`.
@ -1779,8 +1793,13 @@ pub fn gen_ndarray_ones<'ctx>(
let shape_ty = fun.0.args[0].ty;
let shape_arg = args[0].1.clone().to_basic_value_enum(context, generator, shape_ty)?;
call_ndarray_ones_impl(generator, context, context.primitives.float, shape_arg)
.map(NDArrayValue::into)
let (dtype, ndims) = unpack_ndarray_var_tys(&mut context.unifier, fun.0.ret);
let ndims = extract_ndims(&context.unifier, ndims);
let shape = AnyObject { value: shape_arg, ty: shape_ty };
let (_, shape) = parse_numpy_int_sequence(generator, context, shape);
let ndarray = NDArrayObject::make_np_ones(generator, context, dtype, ndims, shape);
Ok(ndarray.instance.value)
}
/// Generates LLVM IR for `ndarray.full`.
@ -1800,8 +1819,14 @@ pub fn gen_ndarray_full<'ctx>(
let fill_value_arg =
args[1].1.clone().to_basic_value_enum(context, generator, fill_value_ty)?;
call_ndarray_full_impl(generator, context, fill_value_ty, shape_arg, fill_value_arg)
.map(NDArrayValue::into)
let (dtype, ndims) = unpack_ndarray_var_tys(&mut context.unifier, fun.0.ret);
let ndims = extract_ndims(&context.unifier, ndims);
let shape = AnyObject { value: shape_arg, ty: shape_ty };
let (_, shape) = parse_numpy_int_sequence(generator, context, shape);
let ndarray =
NDArrayObject::make_np_full(generator, context, dtype, ndims, shape, fill_value_arg);
Ok(ndarray.instance.value)
}
pub fn gen_ndarray_array<'ctx>(

View File

@ -0,0 +1,12 @@
use inkwell::values::BasicValueEnum;
use crate::typecheck::typedef::Type;
/// A NAC3 LLVM Python object of any type.
#[derive(Debug, Clone, Copy)]
pub struct AnyObject<'ctx> {
/// Typechecker type of the object.
pub ty: Type,
/// LLVM value of the object.
pub value: BasicValueEnum<'ctx>,
}

View File

@ -0,0 +1,75 @@
use super::any::AnyObject;
use crate::{
codegen::{model::*, CodeGenContext, CodeGenerator},
typecheck::typedef::{iter_type_vars, Type, TypeEnum},
};
/// Fields of [`List`]
pub struct ListFields<'ctx, F: FieldTraversal<'ctx>, Item: Model<'ctx>> {
/// Array pointer to content
pub items: F::Output<Ptr<Item>>,
/// Number of items in the array
pub len: F::Output<Int<SizeT>>,
}
/// A list in NAC3.
#[derive(Debug, Clone, Copy, Default)]
pub struct List<Item> {
/// Model of the list items
pub item: Item,
}
impl<'ctx, Item: Model<'ctx>> StructKind<'ctx> for List<Item> {
type Fields<F: FieldTraversal<'ctx>> = ListFields<'ctx, F, Item>;
fn iter_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F> {
Self::Fields {
items: traversal.add("items", Ptr(self.item)),
len: traversal.add_auto("len"),
}
}
}
/// A NAC3 Python List object.
#[derive(Debug, Clone, Copy)]
pub struct ListObject<'ctx> {
/// Typechecker type of the list items
pub item_type: Type,
pub instance: Instance<'ctx, Ptr<Struct<List<Any<'ctx>>>>>,
}
impl<'ctx> ListObject<'ctx> {
/// Create a [`ListObject`] from an LLVM value and its typechecker [`Type`].
pub fn from_object<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
object: AnyObject<'ctx>,
) -> Self {
// Check typechecker type and extract `item_type`
let item_type = match &*ctx.unifier.get_ty(object.ty) {
TypeEnum::TObj { obj_id, params, .. }
if *obj_id == ctx.primitives.list.obj_id(&ctx.unifier).unwrap() =>
{
iter_type_vars(params).next().unwrap().ty // Extract `item_type`
}
_ => {
panic!("Expecting type to be a list, but got {}", ctx.unifier.stringify(object.ty))
}
};
let plist = Ptr(Struct(List { item: Any(ctx.get_llvm_type(generator, item_type)) }));
// Create object
let value = plist.check_value(generator, ctx.ctx, object.value).unwrap();
ListObject { item_type, instance: value }
}
/// Get the `len()` of this list.
pub fn len<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> Instance<'ctx, Int<SizeT>> {
self.instance.get(generator, ctx, |f| f.len)
}
}

View File

@ -0,0 +1,4 @@
pub mod any;
pub mod list;
pub mod ndarray;
pub mod tuple;

View File

@ -0,0 +1,125 @@
use inkwell::values::BasicValueEnum;
use super::NDArrayObject;
use crate::{
codegen::{
irrt::call_nac3_ndarray_util_assert_shape_no_negative, model::*, CodeGenContext,
CodeGenerator,
},
typecheck::typedef::Type,
};
/// Get the zero value in `np.zeros()` of a `dtype`.
fn ndarray_zero_value<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
dtype: Type,
) -> BasicValueEnum<'ctx> {
if [ctx.primitives.int32, ctx.primitives.uint32]
.iter()
.any(|ty| ctx.unifier.unioned(dtype, *ty))
{
ctx.ctx.i32_type().const_zero().into()
} else if [ctx.primitives.int64, ctx.primitives.uint64]
.iter()
.any(|ty| ctx.unifier.unioned(dtype, *ty))
{
ctx.ctx.i64_type().const_zero().into()
} else if ctx.unifier.unioned(dtype, ctx.primitives.float) {
ctx.ctx.f64_type().const_zero().into()
} else if ctx.unifier.unioned(dtype, ctx.primitives.bool) {
ctx.ctx.bool_type().const_zero().into()
} else if ctx.unifier.unioned(dtype, ctx.primitives.str) {
ctx.gen_string(generator, "").into()
} else {
panic!("unrecognized dtype: {}", ctx.unifier.stringify(dtype));
}
}
/// Get the one value in `np.ones()` of a `dtype`.
fn ndarray_one_value<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
dtype: Type,
) -> BasicValueEnum<'ctx> {
if [ctx.primitives.int32, ctx.primitives.uint32]
.iter()
.any(|ty| ctx.unifier.unioned(dtype, *ty))
{
let is_signed = ctx.unifier.unioned(dtype, ctx.primitives.int32);
ctx.ctx.i32_type().const_int(1, is_signed).into()
} else if [ctx.primitives.int64, ctx.primitives.uint64]
.iter()
.any(|ty| ctx.unifier.unioned(dtype, *ty))
{
let is_signed = ctx.unifier.unioned(dtype, ctx.primitives.int64);
ctx.ctx.i64_type().const_int(1, is_signed).into()
} else if ctx.unifier.unioned(dtype, ctx.primitives.float) {
ctx.ctx.f64_type().const_float(1.0).into()
} else if ctx.unifier.unioned(dtype, ctx.primitives.bool) {
ctx.ctx.bool_type().const_int(1, false).into()
} else if ctx.unifier.unioned(dtype, ctx.primitives.str) {
ctx.gen_string(generator, "1").into()
} else {
panic!("unrecognized dtype: {}", ctx.unifier.stringify(dtype));
}
}
impl<'ctx> NDArrayObject<'ctx> {
/// Create an ndarray like `np.empty`.
pub fn make_np_empty<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
dtype: Type,
ndims: u64,
shape: Instance<'ctx, Ptr<Int<SizeT>>>,
) -> Self {
// Validate `shape`
let ndims_llvm = Int(SizeT).const_int(generator, ctx.ctx, ndims, false);
call_nac3_ndarray_util_assert_shape_no_negative(generator, ctx, ndims_llvm, shape);
let ndarray = NDArrayObject::alloca(generator, ctx, dtype, ndims);
ndarray.copy_shape_from_array(generator, ctx, shape);
ndarray.create_data(generator, ctx);
ndarray
}
/// Create an ndarray like `np.full`.
pub fn make_np_full<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
dtype: Type,
ndims: u64,
shape: Instance<'ctx, Ptr<Int<SizeT>>>,
fill_value: BasicValueEnum<'ctx>,
) -> Self {
let ndarray = NDArrayObject::make_np_empty(generator, ctx, dtype, ndims, shape);
ndarray.fill(generator, ctx, fill_value);
ndarray
}
/// Create an ndarray like `np.zero`.
pub fn make_np_zeros<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
dtype: Type,
ndims: u64,
shape: Instance<'ctx, Ptr<Int<SizeT>>>,
) -> Self {
let fill_value = ndarray_zero_value(generator, ctx, dtype);
NDArrayObject::make_np_full(generator, ctx, dtype, ndims, shape, fill_value)
}
/// Create an ndarray like `np.ones`.
pub fn make_np_ones<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
dtype: Type,
ndims: u64,
shape: Instance<'ctx, Ptr<Int<SizeT>>>,
) -> Self {
let fill_value = ndarray_one_value(generator, ctx, dtype);
NDArrayObject::make_np_full(generator, ctx, dtype, ndims, shape, fill_value)
}
}

View File

@ -0,0 +1,371 @@
use inkwell::{
context::Context,
types::BasicType,
values::{BasicValueEnum, PointerValue},
AddressSpace,
};
use super::any::AnyObject;
use crate::{
codegen::{
irrt::{
call_nac3_ndarray_copy_data, call_nac3_ndarray_get_nth_pelement,
call_nac3_ndarray_get_pelement_by_indices, call_nac3_ndarray_is_c_contiguous,
call_nac3_ndarray_len, call_nac3_ndarray_nbytes,
call_nac3_ndarray_set_strides_by_shape, call_nac3_ndarray_size,
},
model::*,
CodeGenContext, CodeGenerator,
},
toplevel::{helper::extract_ndims, numpy::unpack_ndarray_var_tys},
typecheck::typedef::Type,
};
pub mod factory;
pub mod nditer;
pub mod shape_util;
/// Fields of [`NDArray`]
pub struct NDArrayFields<'ctx, F: FieldTraversal<'ctx>> {
pub data: F::Output<Ptr<Int<Byte>>>,
pub itemsize: F::Output<Int<SizeT>>,
pub ndims: F::Output<Int<SizeT>>,
pub shape: F::Output<Ptr<Int<SizeT>>>,
pub strides: F::Output<Ptr<Int<SizeT>>>,
}
/// A strided ndarray in NAC3.
///
/// See IRRT implementation for details about its fields.
#[derive(Debug, Clone, Copy, Default)]
pub struct NDArray;
impl<'ctx> StructKind<'ctx> for NDArray {
type Fields<F: FieldTraversal<'ctx>> = NDArrayFields<'ctx, F>;
fn iter_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F> {
Self::Fields {
data: traversal.add_auto("data"),
itemsize: traversal.add_auto("itemsize"),
ndims: traversal.add_auto("ndims"),
shape: traversal.add_auto("shape"),
strides: traversal.add_auto("strides"),
}
}
}
/// A NAC3 Python ndarray object.
#[derive(Debug, Clone, Copy)]
pub struct NDArrayObject<'ctx> {
pub dtype: Type,
pub ndims: u64,
pub instance: Instance<'ctx, Ptr<Struct<NDArray>>>,
}
impl<'ctx> NDArrayObject<'ctx> {
/// Attempt to convert an [`AnyObject`] into an [`NDArrayObject`].
pub fn from_object<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
object: AnyObject<'ctx>,
) -> NDArrayObject<'ctx> {
let (dtype, ndims) = unpack_ndarray_var_tys(&mut ctx.unifier, object.ty);
let ndims = extract_ndims(&ctx.unifier, ndims);
let value = Ptr(Struct(NDArray)).check_value(generator, ctx.ctx, object.value).unwrap();
NDArrayObject { dtype, ndims, instance: value }
}
/// Get this ndarray's `ndims` as an LLVM constant.
pub fn ndims_llvm<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &'ctx Context,
) -> Instance<'ctx, Int<SizeT>> {
Int(SizeT).const_int(generator, ctx, self.ndims, false)
}
/// Allocate an ndarray on the stack given its `ndims` and `dtype`.
///
/// `shape` and `strides` will be automatically allocated onto the stack.
///
/// The returned ndarray's content will be:
/// - `data`: uninitialized.
/// - `itemsize`: set to the `sizeof()` of `dtype`.
/// - `ndims`: set to the value of `ndims`.
/// - `shape`: allocated with an array of length `ndims` with uninitialized values.
/// - `strides`: allocated with an array of length `ndims` with uninitialized values.
pub fn alloca<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
dtype: Type,
ndims: u64,
) -> Self {
let ndarray = Struct(NDArray).alloca(generator, ctx);
let itemsize = ctx.get_llvm_type(generator, dtype).size_of().unwrap();
let itemsize = Int(SizeT).z_extend_or_truncate(generator, ctx, itemsize);
ndarray.set(ctx, |f| f.itemsize, itemsize);
let ndims_val = Int(SizeT).const_int(generator, ctx.ctx, ndims, false);
ndarray.set(ctx, |f| f.ndims, ndims_val);
let shape = Int(SizeT).array_alloca(generator, ctx, ndims_val.value);
ndarray.set(ctx, |f| f.shape, shape);
let strides = Int(SizeT).array_alloca(generator, ctx, ndims_val.value);
ndarray.set(ctx, |f| f.strides, strides);
NDArrayObject { dtype, ndims, instance: ndarray }
}
/// Convenience function. Allocate an [`NDArrayObject`] with a statically known shape.
///
/// The returned [`NDArrayObject`]'s `data` and `strides` are uninitialized.
pub fn alloca_constant_shape<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
dtype: Type,
shape: &[u64],
) -> Self {
let ndarray = NDArrayObject::alloca(generator, ctx, dtype, shape.len() as u64);
// Write shape
let dst_shape = ndarray.instance.get(generator, ctx, |f| f.shape);
for (i, dim) in shape.iter().enumerate() {
let dim = Int(SizeT).const_int(generator, ctx.ctx, *dim, false);
dst_shape.offset_const(ctx, i64::try_from(i).unwrap()).store(ctx, dim);
}
ndarray
}
/// Convenience function. Allocate an [`NDArrayObject`] with a dynamically known shape.
///
/// The returned [`NDArrayObject`]'s `data` and `strides` are uninitialized.
pub fn alloca_dynamic_shape<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
dtype: Type,
shape: &[Instance<'ctx, Int<SizeT>>],
) -> Self {
let ndarray = NDArrayObject::alloca(generator, ctx, dtype, shape.len() as u64);
// Write shape
let dst_shape = ndarray.instance.get(generator, ctx, |f| f.shape);
for (i, dim) in shape.iter().enumerate() {
dst_shape.offset_const(ctx, i64::try_from(i).unwrap()).store(ctx, *dim);
}
ndarray
}
/// Initialize an ndarray's `data` by allocating a buffer on the stack.
/// The allocated data buffer is considered to be *owned* by the ndarray.
///
/// `strides` of the ndarray will also be updated with `set_strides_by_shape`.
///
/// `shape` and `itemsize` of the ndarray ***must*** be initialized first.
pub fn create_data<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) {
let nbytes = self.nbytes(generator, ctx);
let data = Int(Byte).array_alloca(generator, ctx, nbytes.value);
self.instance.set(ctx, |f| f.data, data);
self.set_strides_contiguous(generator, ctx);
}
/// Copy shape dimensions from an array.
pub fn copy_shape_from_array<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
shape: Instance<'ctx, Ptr<Int<SizeT>>>,
) {
let num_items = self.ndims_llvm(generator, ctx.ctx).value;
self.instance.get(generator, ctx, |f| f.shape).copy_from(generator, ctx, shape, num_items);
}
/// Copy shape dimensions from an ndarray.
/// Panics if `ndims` mismatches.
pub fn copy_shape_from_ndarray<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
src_ndarray: NDArrayObject<'ctx>,
) {
assert_eq!(self.ndims, src_ndarray.ndims);
let src_shape = src_ndarray.instance.get(generator, ctx, |f| f.shape);
self.copy_shape_from_array(generator, ctx, src_shape);
}
/// Copy strides dimensions from an array.
pub fn copy_strides_from_array<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
strides: Instance<'ctx, Ptr<Int<SizeT>>>,
) {
let num_items = self.ndims_llvm(generator, ctx.ctx).value;
self.instance
.get(generator, ctx, |f| f.strides)
.copy_from(generator, ctx, strides, num_items);
}
/// Copy strides dimensions from an ndarray.
/// Panics if `ndims` mismatches.
pub fn copy_strides_from_ndarray<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
src_ndarray: NDArrayObject<'ctx>,
) {
assert_eq!(self.ndims, src_ndarray.ndims);
let src_strides = src_ndarray.instance.get(generator, ctx, |f| f.strides);
self.copy_strides_from_array(generator, ctx, src_strides);
}
/// Get the `np.size()` of this ndarray.
pub fn size<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> Instance<'ctx, Int<SizeT>> {
call_nac3_ndarray_size(generator, ctx, self.instance)
}
/// Get the `ndarray.nbytes` of this ndarray.
pub fn nbytes<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> Instance<'ctx, Int<SizeT>> {
call_nac3_ndarray_nbytes(generator, ctx, self.instance)
}
/// Get the `len()` of this ndarray.
pub fn len<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> Instance<'ctx, Int<SizeT>> {
call_nac3_ndarray_len(generator, ctx, self.instance)
}
/// Check if this ndarray is C-contiguous.
///
/// See NumPy's `flags["C_CONTIGUOUS"]`: <https://numpy.org/doc/stable/reference/generated/numpy.ndarray.flags.html#numpy.ndarray.flags>
pub fn is_c_contiguous<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> Instance<'ctx, Int<Bool>> {
call_nac3_ndarray_is_c_contiguous(generator, ctx, self.instance)
}
/// Get the pointer to the n-th (0-based) element.
///
/// The returned pointer has the element type of the LLVM type of this ndarray's `dtype`.
pub fn get_nth_pelement<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
nth: Instance<'ctx, Int<SizeT>>,
) -> PointerValue<'ctx> {
let elem_ty = ctx.get_llvm_type(generator, self.dtype);
let p = call_nac3_ndarray_get_nth_pelement(generator, ctx, self.instance, nth);
ctx.builder
.build_pointer_cast(p.value, elem_ty.ptr_type(AddressSpace::default()), "")
.unwrap()
}
/// Get the n-th (0-based) scalar.
pub fn get_nth_scalar<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
nth: Instance<'ctx, Int<SizeT>>,
) -> AnyObject<'ctx> {
let ptr = self.get_nth_pelement(generator, ctx, nth);
let value = ctx.builder.build_load(ptr, "").unwrap();
AnyObject { ty: self.dtype, value }
}
/// Get the pointer to the element indexed by `indices`.
///
/// The returned pointer has the element type of the LLVM type of this ndarray's `dtype`.
pub fn get_pelement_by_indices<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
indices: Instance<'ctx, Ptr<Int<SizeT>>>,
) -> PointerValue<'ctx> {
let elem_ty = ctx.get_llvm_type(generator, self.dtype);
let p = call_nac3_ndarray_get_pelement_by_indices(generator, ctx, self.instance, indices);
ctx.builder
.build_pointer_cast(p.value, elem_ty.ptr_type(AddressSpace::default()), "")
.unwrap()
}
/// Get the scalar indexed by `indices`.
pub fn get_scalar_by_indices<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
indices: Instance<'ctx, Ptr<Int<SizeT>>>,
) -> AnyObject<'ctx> {
let ptr = self.get_pelement_by_indices(generator, ctx, indices);
let value = ctx.builder.build_load(ptr, "").unwrap();
AnyObject { ty: self.dtype, value }
}
/// Call [`call_nac3_ndarray_set_strides_by_shape`] on this ndarray to update `strides`.
///
/// Update the ndarray's strides to make the ndarray contiguous.
pub fn set_strides_contiguous<G: CodeGenerator + ?Sized>(
self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) {
call_nac3_ndarray_set_strides_by_shape(generator, ctx, self.instance);
}
/// Copy data from another ndarray.
///
/// This ndarray and `src` is that their `np.size()` should be the same. Their shapes
/// do not matter. The copying order is determined by how their flattened views look.
///
/// Panics if the `dtype`s of ndarrays are different.
pub fn copy_data_from<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
src: NDArrayObject<'ctx>,
) {
assert!(ctx.unifier.unioned(self.dtype, src.dtype), "self and src dtype should match");
call_nac3_ndarray_copy_data(generator, ctx, src.instance, self.instance);
}
/// Fill the ndarray with a scalar.
///
/// `fill_value` must have the same LLVM type as the `dtype` of this ndarray.
pub fn fill<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
value: BasicValueEnum<'ctx>,
) {
self.foreach(generator, ctx, |generator, ctx, _hooks, nditer| {
let p = nditer.get_pointer(generator, ctx);
ctx.builder.build_store(p, value).unwrap();
Ok(())
})
.unwrap();
}
}

View File

@ -0,0 +1,178 @@
use inkwell::{types::BasicType, values::PointerValue, AddressSpace};
use super::NDArrayObject;
use crate::codegen::{
irrt::{call_nac3_nditer_has_element, call_nac3_nditer_initialize, call_nac3_nditer_next},
model::*,
object::any::AnyObject,
stmt::{gen_for_callback, BreakContinueHooks},
CodeGenContext, CodeGenerator,
};
/// Fields of [`NDIter`]
pub struct NDIterFields<'ctx, F: FieldTraversal<'ctx>> {
pub ndims: F::Output<Int<SizeT>>,
pub shape: F::Output<Ptr<Int<SizeT>>>,
pub strides: F::Output<Ptr<Int<SizeT>>>,
pub indices: F::Output<Ptr<Int<SizeT>>>,
pub nth: F::Output<Int<SizeT>>,
pub element: F::Output<Ptr<Int<Byte>>>,
pub size: F::Output<Int<SizeT>>,
}
/// An IRRT helper structure used to iterate through an ndarray.
#[derive(Debug, Clone, Copy, Default)]
pub struct NDIter;
impl<'ctx> StructKind<'ctx> for NDIter {
type Fields<F: FieldTraversal<'ctx>> = NDIterFields<'ctx, F>;
fn iter_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F> {
Self::Fields {
ndims: traversal.add_auto("ndims"),
shape: traversal.add_auto("shape"),
strides: traversal.add_auto("strides"),
indices: traversal.add_auto("indices"),
nth: traversal.add_auto("nth"),
element: traversal.add_auto("element"),
size: traversal.add_auto("size"),
}
}
}
/// A helper structure with a convenient interface to interact with [`NDIter`].
#[derive(Debug, Clone)]
pub struct NDIterHandle<'ctx> {
instance: Instance<'ctx, Ptr<Struct<NDIter>>>,
/// The ndarray this [`NDIter`] to iterating over.
ndarray: NDArrayObject<'ctx>,
/// The current indices of [`NDIter`].
indices: Instance<'ctx, Ptr<Int<SizeT>>>,
}
impl<'ctx> NDIterHandle<'ctx> {
/// Allocate an [`NDIter`] that iterates through an ndarray.
pub fn new<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndarray: NDArrayObject<'ctx>,
) -> Self {
let nditer = Struct(NDIter).alloca(generator, ctx);
let ndims = ndarray.ndims_llvm(generator, ctx.ctx);
// The caller has the responsibility to allocate 'indices' for `NDIter`.
let indices = Int(SizeT).array_alloca(generator, ctx, ndims.value);
call_nac3_nditer_initialize(generator, ctx, nditer, ndarray.instance, indices);
NDIterHandle { ndarray, instance: nditer, indices }
}
/// Is the current iteration valid?
///
/// If true, then `element`, `indices` and `nth` contain details about the current element.
///
/// If `ndarray` is unsized, this returns true only for the first iteration.
/// If `ndarray` is 0-sized, this always returns false.
#[must_use]
pub fn has_element<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> Instance<'ctx, Int<Bool>> {
call_nac3_nditer_has_element(generator, ctx, self.instance)
}
/// Go to the next element. If `has_element()` is false, then this has undefined behavior.
///
/// If `ndarray` is unsized, this can only be called once.
/// If `ndarray` is 0-sized, this can never be called.
pub fn next<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) {
call_nac3_nditer_next(generator, ctx, self.instance);
}
/// Get pointer to the current element.
#[must_use]
pub fn get_pointer<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> PointerValue<'ctx> {
let elem_ty = ctx.get_llvm_type(generator, self.ndarray.dtype);
let p = self.instance.get(generator, ctx, |f| f.element);
ctx.builder
.build_pointer_cast(p.value, elem_ty.ptr_type(AddressSpace::default()), "element")
.unwrap()
}
/// Get the value of the current element.
#[must_use]
pub fn get_scalar<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> AnyObject<'ctx> {
let p = self.get_pointer(generator, ctx);
let value = ctx.builder.build_load(p, "value").unwrap();
AnyObject { ty: self.ndarray.dtype, value }
}
/// Get the index of the current element if this ndarray were a flat ndarray.
#[must_use]
pub fn get_index<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> Instance<'ctx, Int<SizeT>> {
self.instance.get(generator, ctx, |f| f.nth)
}
/// Get the indices of the current element.
#[must_use]
pub fn get_indices(&self) -> Instance<'ctx, Ptr<Int<SizeT>>> {
self.indices
}
}
impl<'ctx> NDArrayObject<'ctx> {
/// Iterate through every element in the ndarray.
///
/// `body` has access to [`BreakContinueHooks`] to short-circuit and [`NDIterHandle`] to
/// get properties of the current iteration (e.g., the current element, indices, etc.)
pub fn foreach<'a, G, F>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, 'a>,
body: F,
) -> Result<(), String>
where
G: CodeGenerator + ?Sized,
F: FnOnce(
&mut G,
&mut CodeGenContext<'ctx, 'a>,
BreakContinueHooks<'ctx>,
NDIterHandle<'ctx>,
) -> Result<(), String>,
{
gen_for_callback(
generator,
ctx,
Some("ndarray_foreach"),
|generator, ctx| Ok(NDIterHandle::new(generator, ctx, *self)),
|generator, ctx, nditer| Ok(nditer.has_element(generator, ctx).value),
|generator, ctx, hooks, nditer| body(generator, ctx, hooks, nditer),
|generator, ctx, nditer| {
nditer.next(generator, ctx);
Ok(())
},
)
}
}

View File

@ -0,0 +1,104 @@
use crate::{
codegen::{
model::*,
object::{any::AnyObject, list::ListObject, tuple::TupleObject},
CodeGenContext, CodeGenerator,
},
typecheck::typedef::TypeEnum,
};
use util::gen_for_model;
/// Parse a NumPy-like "int sequence" input and return the int sequence as an array and its length.
///
/// * `sequence` - The `sequence` parameter.
/// * `sequence_ty` - The typechecker type of `sequence`
///
/// The `sequence` argument type may only be one of the following:
/// 1. A list of `int32`; e.g., `np.empty([600, 800, 3])`
/// 2. A tuple of `int32`; e.g., `np.empty((600, 800, 3))`
/// 3. A scalar `int32`; e.g., `np.empty(3)`, this is functionally equivalent to `np.empty([3])`
///
/// All `int32` values will be sign-extended to `SizeT`.
pub fn parse_numpy_int_sequence<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
input_sequence: AnyObject<'ctx>,
) -> (Instance<'ctx, Int<SizeT>>, Instance<'ctx, Ptr<Int<SizeT>>>) {
let zero = Int(SizeT).const_0(generator, ctx.ctx);
let one = Int(SizeT).const_1(generator, ctx.ctx);
// The result `list` to return.
match &*ctx.unifier.get_ty(input_sequence.ty) {
TypeEnum::TObj { obj_id, .. }
if *obj_id == ctx.primitives.list.obj_id(&ctx.unifier).unwrap() =>
{
// 1. A list of `int32`; e.g., `np.empty([600, 800, 3])`
// Check `input_sequence`
let input_sequence = ListObject::from_object(generator, ctx, input_sequence);
let len = input_sequence.instance.get(generator, ctx, |f| f.len);
let result = Int(SizeT).array_alloca(generator, ctx, len.value);
// Load all the `int32`s from the input_sequence, cast them to `SizeT`, and store them into `result`
gen_for_model(generator, ctx, zero, len, one, |generator, ctx, _hooks, i| {
// Load the i-th int32 in the input sequence
let int = input_sequence
.instance
.get(generator, ctx, |f| f.items)
.get_index(generator, ctx, i.value)
.value
.into_int_value();
// Cast to SizeT
let int = Int(SizeT).s_extend_or_bit_cast(generator, ctx, int);
// Store
result.set_index(ctx, i.value, int);
Ok(())
})
.unwrap();
(len, result)
}
TypeEnum::TTuple { .. } => {
// 2. A tuple of ints; e.g., `np.empty((600, 800, 3))`
let input_sequence = TupleObject::from_object(ctx, input_sequence);
let len = input_sequence.len(generator, ctx);
let result = Int(SizeT).array_alloca(generator, ctx, len.value);
for i in 0..input_sequence.num_elements() {
// Get the i-th element off of the tuple and load it into `result`.
let int = input_sequence.index(ctx, i).value.into_int_value();
let int = Int(SizeT).s_extend_or_bit_cast(generator, ctx, int);
result.set_index_const(ctx, i64::try_from(i).unwrap(), int);
}
(len, result)
}
TypeEnum::TObj { obj_id, .. }
if *obj_id == ctx.primitives.int32.obj_id(&ctx.unifier).unwrap() =>
{
// 3. A scalar int; e.g., `np.empty(3)`, this is functionally equivalent to `np.empty([3])`
let input_int = input_sequence.value.into_int_value();
let len = Int(SizeT).const_1(generator, ctx.ctx);
let result = Int(SizeT).array_alloca(generator, ctx, len.value);
let int = Int(SizeT).s_extend_or_bit_cast(generator, ctx, input_int);
// Storing into result[0]
result.store(ctx, int);
(len, result)
}
_ => panic!(
"encountered unknown sequence type: {}",
ctx.unifier.stringify(input_sequence.ty)
),
}
}

View File

@ -0,0 +1,98 @@
use inkwell::values::StructValue;
use itertools::Itertools;
use super::any::AnyObject;
use crate::{
codegen::{model::*, CodeGenContext, CodeGenerator},
typecheck::typedef::{Type, TypeEnum},
};
/// A NAC3 tuple object.
///
/// NOTE: This struct has no copy trait.
#[derive(Debug, Clone)]
pub struct TupleObject<'ctx> {
/// The type of the tuple.
pub tys: Vec<Type>,
/// The underlying LLVM struct value of this tuple.
pub value: StructValue<'ctx>,
}
impl<'ctx> TupleObject<'ctx> {
pub fn from_object(ctx: &mut CodeGenContext<'ctx, '_>, object: AnyObject<'ctx>) -> Self {
// TODO: Keep `is_vararg_ctx` from TTuple?
// Sanity check on object type.
let TypeEnum::TTuple { ty: tys, .. } = &*ctx.unifier.get_ty(object.ty) else {
panic!(
"Expected type to be a TypeEnum::TTuple, got {}",
ctx.unifier.stringify(object.ty)
);
};
// Check number of fields
let value = object.value.into_struct_value();
let value_num_fields = value.get_type().count_fields() as usize;
assert!(
value_num_fields == tys.len(),
"Tuple type has {} item(s), but the LLVM struct value has {} field(s)",
tys.len(),
value_num_fields
);
TupleObject { tys: tys.clone(), value }
}
/// Convenience function. Create a [`TupleObject`] from an iterator of objects.
pub fn from_objects<I, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
objects: I,
) -> Self
where
I: IntoIterator<Item = AnyObject<'ctx>>,
{
let (values, tys): (Vec<_>, Vec<_>) =
objects.into_iter().map(|object| (object.value, object.ty)).unzip();
let llvm_tys = tys.iter().map(|ty| ctx.get_llvm_type(generator, *ty)).collect_vec();
let llvm_tuple_ty = ctx.ctx.struct_type(&llvm_tys, false);
let pllvm_tuple = ctx.builder.build_alloca(llvm_tuple_ty, "tuple").unwrap();
for (i, val) in values.into_iter().enumerate() {
let pval = ctx.builder.build_struct_gep(pllvm_tuple, i as u32, "value").unwrap();
ctx.builder.build_store(pval, val).unwrap();
}
let value = ctx.builder.build_load(pllvm_tuple, "").unwrap().into_struct_value();
TupleObject { tys, value }
}
#[must_use]
pub fn num_elements(&self) -> usize {
self.tys.len()
}
/// Get the `len()` of this tuple.
#[must_use]
pub fn len<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> Instance<'ctx, Int<SizeT>> {
Int(SizeT).const_int(generator, ctx.ctx, self.num_elements() as u64, false)
}
/// Get the `i`-th (0-based) object in this tuple.
pub fn index(&self, ctx: &mut CodeGenContext<'ctx, '_>, i: usize) -> AnyObject<'ctx> {
assert!(
i < self.num_elements(),
"Tuple object with length {} have index {i}",
self.num_elements()
);
let value = ctx.builder.build_extract_value(self.value, i as u32, "tuple[{i}]").unwrap();
let ty = self.tys[i];
AnyObject { ty, value }
}
}

View File

@ -1136,3 +1136,23 @@ pub fn arraylike_get_ndims(unifier: &mut Unifier, ty: Type) -> u64 {
_ => 0,
}
}
/// Extract an ndarray's `ndims` [type][`Type`] in `u64`. Panic if not possible.
/// The `ndims` must only contain 1 value.
#[must_use]
pub fn extract_ndims(unifier: &Unifier, ndims_ty: Type) -> u64 {
let ndims_ty_enum = unifier.get_ty_immutable(ndims_ty);
let TypeEnum::TLiteral { values, .. } = &*ndims_ty_enum else {
panic!("ndims_ty should be a TLiteral");
};
assert_eq!(values.len(), 1, "ndims_ty TLiteral should only contain 1 value");
let ndims = values[0].clone();
u64::try_from(ndims).unwrap()
}
/// Return an ndarray's `ndims` as a typechecker [`Type`] from its `u64` value.
pub fn create_ndims(unifier: &mut Unifier, ndims: u64) -> Type {
unifier.get_fresh_literal(vec![SymbolValue::U64(ndims)], None)
}