forked from M-Labs/nac3
1
0
Fork 0

standalone: add linalg methods and tests

This commit is contained in:
abdul124 2024-07-25 12:17:32 +08:00
parent 2242c5af43
commit d6a4d0a634
2 changed files with 122 additions and 0 deletions

View File

@ -5,6 +5,7 @@ import importlib.util
import importlib.machinery import importlib.machinery
import math import math
import numpy as np import numpy as np
import scipy as sp
import numpy.typing as npt import numpy.typing as npt
import pathlib import pathlib
@ -226,6 +227,19 @@ def patch(module):
module.sp_spec_j0 = special.j0 module.sp_spec_j0 = special.j0
module.sp_spec_j1 = special.j1 module.sp_spec_j1 = special.j1
# Linalg functions
module.np_dot = np.dot
module.np_linalg_matmul = np.matmul
module.np_linalg_cholesky = np.linalg.cholesky
module.np_linalg_qr = np.linalg.qr
module.np_linalg_svd = np.linalg.svd
module.np_linalg_inv = np.linalg.inv
module.np_linalg_pinv = np.linalg.pinv
module.sp_linalg_lu = lambda x: sp.linalg.lu(x, True)
module.sp_linalg_schur = sp.linalg.schur
module.sp_linalg_hessenberg = lambda x: sp.linalg.hessenberg(x, True)
def file_import(filename, prefix="file_import_"): def file_import(filename, prefix="file_import_"):
filename = pathlib.Path(filename) filename = pathlib.Path(filename)
modname = prefix + filename.stem modname = prefix + filename.stem

View File

@ -1429,6 +1429,104 @@ def test_ndarray_nextafter_broadcast_rhs_scalar():
output_ndarray_float_2(nextafter_x_zeros) output_ndarray_float_2(nextafter_x_zeros)
output_ndarray_float_2(nextafter_x_ones) output_ndarray_float_2(nextafter_x_ones)
def test_ndarray_dot():
x: ndarray[float, 1] = np_array([5.0, 1.0])
y: ndarray[float, 1] = np_array([5.0, 1.0])
z = np_dot(x, y)
output_ndarray_float_1(x)
output_ndarray_float_1(y)
output_float64(z)
def test_ndarray_linalg_matmul():
x: ndarray[float, 2] = np_array([[5.0, 1.0], [1.0, 4.0]])
y: ndarray[float, 2] = np_array([[5.0, 1.0], [1.0, 4.0]])
z = np_linalg_matmul(x, y)
m = np_argmax(z)
output_ndarray_float_2(x)
output_ndarray_float_2(y)
output_ndarray_float_2(z)
output_int64(m)
def test_ndarray_cholesky():
x: ndarray[float, 2] = np_array([[5.0, 1.0], [1.0, 4.0]])
y = np_linalg_cholesky(x)
output_ndarray_float_2(x)
output_ndarray_float_2(y)
def test_ndarray_qr():
x: ndarray[float, 2] = np_array([[-5.0, -1.0, 2.0], [-1.0, 4.0, 7.5], [-1.0, 8.0, -8.5]])
y, z = np_linalg_qr(x)
output_ndarray_float_2(x)
# QR Factorization is not unique and gives different results in numpy and nalgebra
# Reverting the decomposition to compare the initial arrays
a = np_linalg_matmul(y, z)
output_ndarray_float_2(a)
def test_ndarray_linalg_inv():
x: ndarray[float, 2] = np_array([[-5.0, -1.0, 2.0], [-1.0, 4.0, 7.5], [-1.0, 8.0, -8.5]])
y = np_linalg_inv(x)
output_ndarray_float_2(x)
output_ndarray_float_2(y)
def test_ndarray_pinv():
x: ndarray[float, 2] = np_array([[-5.0, -1.0, 2.0], [-1.0, 4.0, 7.5]])
y = np_linalg_pinv(x)
output_ndarray_float_2(x)
output_ndarray_float_2(y)
def test_ndarray_schur():
x: ndarray[float, 2] = np_array([[-5.0, -1.0, 2.0], [-1.0, 4.0, 7.5], [-1.0, 8.0, -8.5]])
t, z = sp_linalg_schur(x)
output_ndarray_float_2(x)
# Schur Factorization is not unique and gives different results in scipy and nalgebra
# Reverting the decomposition to compare the initial arrays
a = np_linalg_matmul(np_linalg_matmul(z, t), np_linalg_inv(z))
output_ndarray_float_2(a)
def test_ndarray_hessenberg():
x: ndarray[float, 2] = np_array([[-5.0, -1.0, 2.0], [-1.0, 4.0, 7.5], [-1.0, 5.0, 8.5]])
h, q = sp_linalg_hessenberg(x)
output_ndarray_float_2(x)
# Hessenberg Factorization is not unique and gives different results in scipy and nalgebra
# Reverting the decomposition to compare the initial arrays
a = np_linalg_matmul(np_linalg_matmul(q, h), np_linalg_inv(q))
output_ndarray_float_2(a)
def test_ndarray_lu():
x: ndarray[float, 2] = np_array([[-5.0, -1.0, 2.0], [-1.0, 4.0, 7.5]])
l, u = sp_linalg_lu(x)
output_ndarray_float_2(x)
output_ndarray_float_2(l)
output_ndarray_float_2(u)
def test_ndarray_svd():
w: ndarray[float, 2] = np_array([[-5.0, -1.0, 2.0], [-1.0, 4.0, 7.5], [-1.0, 8.0, -8.5]])
x, y, z = np_linalg_svd(w)
output_ndarray_float_2(w)
# SVD Factorization is not unique and gives different results in numpy and nalgebra
# Reverting the decomposition to compare the initial arrays
a = np_linalg_matmul(x, z)
output_ndarray_float_2(a)
output_ndarray_float_1(y)
def run() -> int32: def run() -> int32:
test_ndarray_ctor() test_ndarray_ctor()
test_ndarray_empty() test_ndarray_empty()
@ -1608,4 +1706,14 @@ def run() -> int32:
test_ndarray_nextafter_broadcast_lhs_scalar() test_ndarray_nextafter_broadcast_lhs_scalar()
test_ndarray_nextafter_broadcast_rhs_scalar() test_ndarray_nextafter_broadcast_rhs_scalar()
test_ndarray_dot()
test_ndarray_linalg_matmul()
test_ndarray_cholesky()
test_ndarray_qr()
test_ndarray_svd()
test_ndarray_linalg_inv()
test_ndarray_pinv()
test_ndarray_lu()
test_ndarray_schur()
test_ndarray_hessenberg()
return 0 return 0