forked from M-Labs/nac3
top level parse class base/generic
This commit is contained in:
parent
e176aa660d
commit
ba5bb78f11
|
@ -1,9 +1,11 @@
|
|||
use std::borrow::Borrow;
|
||||
use std::borrow::{Borrow, BorrowMut};
|
||||
use std::collections::HashSet;
|
||||
use std::{collections::HashMap, sync::Arc};
|
||||
|
||||
use super::typecheck::type_inferencer::PrimitiveStore;
|
||||
use super::typecheck::typedef::{SharedUnifier, Type, TypeEnum, Unifier};
|
||||
use crate::symbol_resolver::SymbolResolver;
|
||||
use crate::typecheck::typedef::{FunSignature, FuncArg};
|
||||
use inkwell::context::Context;
|
||||
use parking_lot::{Mutex, RwLock};
|
||||
use rustpython_parser::ast::{self, Stmt};
|
||||
|
@ -57,30 +59,31 @@ pub struct TopLevelContext {
|
|||
pub conetexts: Arc<RwLock<Vec<Mutex<Context>>>>,
|
||||
}
|
||||
|
||||
// like adding some info on top of the TopLevelDef for
|
||||
// later parsing the class bases, method, and function sigatures
|
||||
pub struct TopLevelDefInfo {
|
||||
// the definition entry
|
||||
def: TopLevelDef,
|
||||
// the entry in the top_level unifier
|
||||
ty: Type,
|
||||
// the ast submitted by applications, primitives and
|
||||
// class methods will have None value here
|
||||
ast: Option<ast::Stmt<()>>,
|
||||
}
|
||||
|
||||
pub struct TopLevelComposer {
|
||||
// list of top level definitions and their info
|
||||
pub definition_list: RwLock<Vec<TopLevelDefInfo>>,
|
||||
// list of top level definitions, same as top level context
|
||||
pub definition_list: Arc<RwLock<Vec<RwLock<TopLevelDef>>>>,
|
||||
// list of top level Type, the index is same as the field `definition_list`
|
||||
pub ty_list: RwLock<Vec<Type>>,
|
||||
// list of top level ast, the index is same as the field `definition_list` and `ty_list`
|
||||
pub ast_list: RwLock<Vec<Option<ast::Stmt<()>>>>,
|
||||
// start as a primitive unifier, will add more top_level defs inside
|
||||
pub unifier: RwLock<Unifier>,
|
||||
// primitive store
|
||||
pub primitives: PrimitiveStore,
|
||||
// start as a primitive unifier, will add more top_level defs inside
|
||||
pub unifier: Unifier,
|
||||
// mangled class method name to def_id
|
||||
pub class_method_to_def_id: HashMap<String, DefinitionId>,
|
||||
pub class_method_to_def_id: RwLock<HashMap<String, DefinitionId>>,
|
||||
}
|
||||
|
||||
impl TopLevelComposer {
|
||||
pub fn to_top_level_context(&self) -> TopLevelContext {
|
||||
TopLevelContext {
|
||||
definitions: self.definition_list.clone(),
|
||||
// FIXME: all the big unifier or?
|
||||
unifiers: Default::default(),
|
||||
conetexts: Default::default(),
|
||||
}
|
||||
}
|
||||
|
||||
fn name_mangling(mut class_name: String, method_name: &str) -> String {
|
||||
class_name.push_str(method_name);
|
||||
class_name
|
||||
|
@ -122,47 +125,43 @@ impl TopLevelComposer {
|
|||
/// resolver can later figure out primitive type definitions when passed a primitive type name
|
||||
pub fn new() -> (Vec<(String, DefinitionId, Type)>, Self) {
|
||||
let primitives = Self::make_primitives();
|
||||
// the def list including the entries of primitive info
|
||||
let definition_list: Vec<TopLevelDefInfo> = vec![
|
||||
TopLevelDefInfo {
|
||||
def: Self::make_top_level_class_def(0, None),
|
||||
ast: None,
|
||||
ty: primitives.0.int32,
|
||||
},
|
||||
TopLevelDefInfo {
|
||||
def: Self::make_top_level_class_def(1, None),
|
||||
ast: None,
|
||||
ty: primitives.0.int64,
|
||||
},
|
||||
TopLevelDefInfo {
|
||||
def: Self::make_top_level_class_def(2, None),
|
||||
ast: None,
|
||||
ty: primitives.0.float,
|
||||
},
|
||||
TopLevelDefInfo {
|
||||
def: Self::make_top_level_class_def(3, None),
|
||||
ast: None,
|
||||
ty: primitives.0.bool,
|
||||
},
|
||||
TopLevelDefInfo {
|
||||
def: Self::make_top_level_class_def(4, None),
|
||||
ast: None,
|
||||
ty: primitives.0.none,
|
||||
},
|
||||
|
||||
let top_level_def_list = vec![
|
||||
RwLock::new(Self::make_top_level_class_def(0, None)),
|
||||
RwLock::new(Self::make_top_level_class_def(1, None)),
|
||||
RwLock::new(Self::make_top_level_class_def(2, None)),
|
||||
RwLock::new(Self::make_top_level_class_def(3, None)),
|
||||
RwLock::new(Self::make_top_level_class_def(4, None)),
|
||||
];
|
||||
|
||||
let ast_list: Vec<Option<ast::Stmt<()>>> = vec![None, None, None, None, None];
|
||||
|
||||
let ty_list: Vec<Type> = vec![
|
||||
primitives.0.int32,
|
||||
primitives.0.int64,
|
||||
primitives.0.float,
|
||||
primitives.0.bool,
|
||||
primitives.0.none,
|
||||
];
|
||||
|
||||
let composer = TopLevelComposer {
|
||||
definition_list: definition_list.into(),
|
||||
definition_list: RwLock::new(top_level_def_list).into(),
|
||||
ty_list: RwLock::new(ty_list),
|
||||
ast_list: RwLock::new(ast_list),
|
||||
primitives: primitives.0,
|
||||
unifier: primitives.1,
|
||||
unifier: primitives.1.into(),
|
||||
class_method_to_def_id: Default::default(),
|
||||
};
|
||||
(vec![
|
||||
("int32".into(), DefinitionId(0), composer.primitives.int32),
|
||||
("int64".into(), DefinitionId(1), composer.primitives.int64),
|
||||
("float".into(), DefinitionId(2), composer.primitives.float),
|
||||
("bool".into(), DefinitionId(3), composer.primitives.bool),
|
||||
("none".into(), DefinitionId(4), composer.primitives.none),
|
||||
], composer)
|
||||
(
|
||||
vec![
|
||||
("int32".into(), DefinitionId(0), composer.primitives.int32),
|
||||
("int64".into(), DefinitionId(1), composer.primitives.int64),
|
||||
("float".into(), DefinitionId(2), composer.primitives.float),
|
||||
("bool".into(), DefinitionId(3), composer.primitives.bool),
|
||||
("none".into(), DefinitionId(4), composer.primitives.none),
|
||||
],
|
||||
composer,
|
||||
)
|
||||
}
|
||||
|
||||
/// already include the definition_id of itself inside the ancestors vector
|
||||
|
@ -202,23 +201,30 @@ impl TopLevelComposer {
|
|||
match &ast.node {
|
||||
ast::StmtKind::ClassDef { name, body, .. } => {
|
||||
let class_name = name.to_string();
|
||||
let mut def_list = self.definition_list.write();
|
||||
|
||||
let (mut def_list, mut ty_list, mut ast_list) =
|
||||
(self.definition_list.write(), self.ty_list.write(), self.ast_list.write());
|
||||
|
||||
// will be deleted after tested
|
||||
assert_eq!(ty_list.len(), def_list.len());
|
||||
assert_eq!(def_list.len(), ast_list.len());
|
||||
|
||||
let class_def_id = def_list.len();
|
||||
|
||||
// add the class to the unifier
|
||||
let ty = self.unifier.add_ty(TypeEnum::TObj {
|
||||
let ty = self.unifier.write().add_ty(TypeEnum::TObj {
|
||||
obj_id: DefinitionId(class_def_id),
|
||||
fields: Default::default(),
|
||||
params: Default::default(),
|
||||
});
|
||||
|
||||
// add the class to the definition list
|
||||
def_list.push(TopLevelDefInfo {
|
||||
def: Self::make_top_level_class_def(class_def_id, resolver.clone()),
|
||||
// NOTE: Temporarily none here since function body need to be read later
|
||||
ast: None,
|
||||
ty,
|
||||
});
|
||||
// add the class to the definition lists
|
||||
def_list
|
||||
.push(Self::make_top_level_class_def(class_def_id, resolver.clone()).into());
|
||||
ty_list.push(ty);
|
||||
// since later when registering class method, ast will still be used,
|
||||
// here push None temporarly, later will push the ast
|
||||
ast_list.push(None);
|
||||
|
||||
// parse class def body and register class methods into the def list
|
||||
// module's symbol resolver would not know the name of the class methods,
|
||||
|
@ -230,7 +236,7 @@ impl TopLevelComposer {
|
|||
let def_id = def_list.len();
|
||||
|
||||
// add to unifier
|
||||
let ty = self.unifier.add_ty(TypeEnum::TFunc(
|
||||
let ty = self.unifier.write().add_ty(TypeEnum::TFunc(
|
||||
crate::typecheck::typedef::FunSignature {
|
||||
args: Default::default(),
|
||||
ret: self.primitives.none,
|
||||
|
@ -239,60 +245,66 @@ impl TopLevelComposer {
|
|||
));
|
||||
|
||||
// add to the definition list
|
||||
def_list.push(TopLevelDefInfo {
|
||||
def: Self::make_top_level_function_def(fun_name.clone(), ty, resolver.clone()),
|
||||
ty,
|
||||
// since it is inside the class def body statments, the ast is None
|
||||
ast: None,
|
||||
});
|
||||
def_list.push(
|
||||
Self::make_top_level_function_def(
|
||||
fun_name.clone(),
|
||||
ty,
|
||||
resolver.clone(),
|
||||
)
|
||||
.into(),
|
||||
);
|
||||
ty_list.push(ty);
|
||||
// the ast of class method is in the class, push None in to the list here
|
||||
ast_list.push(None);
|
||||
|
||||
// class method, do not let the symbol manager manage it, use our own map
|
||||
self.class_method_to_def_id.insert(fun_name, DefinitionId(def_id));
|
||||
self.class_method_to_def_id.write().insert(fun_name, DefinitionId(def_id));
|
||||
|
||||
// if it is the contructor, special handling is needed. In the above
|
||||
// handling, we still add __init__ function to the class method
|
||||
if name == "__init__" {
|
||||
// FIXME: how can this later be fetched?
|
||||
def_list.push(TopLevelDefInfo {
|
||||
def: TopLevelDef::Initializer { class_id: DefinitionId(class_def_id) },
|
||||
// arbitary picked one for the constructor
|
||||
ty: self.primitives.none,
|
||||
// it is inside the class def body statments, so None
|
||||
ast: None,
|
||||
})
|
||||
// NOTE: how can this later be fetched?
|
||||
def_list.push(
|
||||
TopLevelDef::Initializer { class_id: DefinitionId(class_def_id) }
|
||||
.into(),
|
||||
);
|
||||
// arbitarily push one to make sure the index is correct
|
||||
ty_list.push(self.primitives.none);
|
||||
ast_list.push(None);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// move the ast to the entry of the class in the def_list
|
||||
def_list.get_mut(class_def_id).unwrap().ast = Some(ast);
|
||||
// move the ast to the entry of the class in the ast_list
|
||||
ast_list[class_def_id] = Some(ast);
|
||||
|
||||
// return
|
||||
Ok((class_name, DefinitionId(class_def_id), ty))
|
||||
},
|
||||
}
|
||||
|
||||
ast::StmtKind::FunctionDef { name, .. } => {
|
||||
let fun_name = name.to_string();
|
||||
|
||||
// add to the unifier
|
||||
let ty = self.unifier.add_ty(TypeEnum::TFunc(crate::typecheck::typedef::FunSignature {
|
||||
args: Default::default(),
|
||||
ret: self.primitives.none,
|
||||
vars: Default::default(),
|
||||
}));
|
||||
let ty = self.unifier.write().add_ty(TypeEnum::TFunc(
|
||||
crate::typecheck::typedef::FunSignature {
|
||||
args: Default::default(),
|
||||
ret: self.primitives.none,
|
||||
vars: Default::default(),
|
||||
},
|
||||
));
|
||||
|
||||
let (mut def_list, mut ty_list, mut ast_list) =
|
||||
(self.definition_list.write(), self.ty_list.write(), self.ast_list.write());
|
||||
// add to the definition list
|
||||
let mut def_list = self.definition_list.write();
|
||||
def_list.push(TopLevelDefInfo {
|
||||
def: Self::make_top_level_function_def(
|
||||
name.into(),
|
||||
self.primitives.none,
|
||||
resolver,
|
||||
),
|
||||
ast: Some(ast),
|
||||
ty,
|
||||
});
|
||||
def_list.push(
|
||||
Self::make_top_level_function_def(name.into(), self.primitives.none, resolver)
|
||||
.into(),
|
||||
);
|
||||
ty_list.push(ty);
|
||||
ast_list.push(Some(ast));
|
||||
|
||||
// return
|
||||
Ok((fun_name, DefinitionId(def_list.len() - 1), ty))
|
||||
}
|
||||
|
||||
|
@ -300,144 +312,269 @@ impl TopLevelComposer {
|
|||
}
|
||||
}
|
||||
|
||||
/// this should be called after all top level classes are registered, and will actually fill in those fields of the previous dummy one
|
||||
/// this should be called after all top level classes are registered, and
|
||||
/// will actually fill in those fields of the previous dummy one
|
||||
pub fn analyze_top_level(&mut self) -> Result<(), String> {
|
||||
for d in self.definition_list.write().iter_mut() {
|
||||
// only analyze those with ast, and class_method(ast in class def)
|
||||
if let Some(ast) = &d.ast {
|
||||
match &ast.node {
|
||||
ast::StmtKind::ClassDef {
|
||||
bases,
|
||||
body,
|
||||
let mut def_list = self.definition_list.write();
|
||||
let ty_list = self.ty_list.read();
|
||||
let ast_list = self.ast_list.read();
|
||||
let mut unifier = self.unifier.write();
|
||||
|
||||
for (def, ty, ast) in def_list
|
||||
.iter_mut()
|
||||
.zip(ty_list.iter())
|
||||
.zip(ast_list.iter())
|
||||
.map(|((x, y), z)| (x, y, z))
|
||||
.collect::<Vec<(&mut RwLock<TopLevelDef>, &Type, &Option<ast::Stmt<()>>)>>()
|
||||
{
|
||||
// only analyze those entries with ast, and class_method(whose ast in class def)
|
||||
match ast {
|
||||
Some(ast::Located{node: ast::StmtKind::ClassDef {
|
||||
bases,
|
||||
body,
|
||||
name: class_name,
|
||||
..
|
||||
}, .. }) => {
|
||||
// get the mutable reference of the entry in the
|
||||
// definition list, get the `TopLevelDef`
|
||||
let (
|
||||
def_ancestors,
|
||||
def_fields,
|
||||
def_methods,
|
||||
def_type_vars,
|
||||
resolver,
|
||||
) = if let TopLevelDef::Class {
|
||||
object_id: _,
|
||||
ancestors,
|
||||
fields,
|
||||
methods,
|
||||
type_vars,
|
||||
resolver: Some(resolver)
|
||||
} = def.get_mut() {
|
||||
(ancestors, fields, methods, type_vars, resolver.lock())
|
||||
} else { unreachable!() };
|
||||
|
||||
// try to get mutable reference of the entry in the
|
||||
// unification table, get the `TypeEnum`
|
||||
let type_enum = unifier.get_ty(*ty);
|
||||
let (
|
||||
enum_params,
|
||||
enum_fields
|
||||
) = if let TypeEnum::TObj {
|
||||
params,
|
||||
fields,
|
||||
..
|
||||
} => {
|
||||
// get the mutable reference of the entry in the definition list, get the `TopLevelDef`
|
||||
let (
|
||||
ancestors,
|
||||
fields,
|
||||
methods,
|
||||
type_vars,
|
||||
resolver,
|
||||
) = if let TopLevelDef::Class {
|
||||
object_id: _,
|
||||
ancestors,
|
||||
fields,
|
||||
methods,
|
||||
type_vars,
|
||||
resolver: Some(resolver)
|
||||
} = &mut d.def {
|
||||
(ancestors, fields, methods, type_vars, resolver.lock())
|
||||
} else { unreachable!() };
|
||||
} = type_enum.borrow() {
|
||||
(params, fields)
|
||||
} else { unreachable!() };
|
||||
|
||||
// try to get mutable reference of the entry in the unification table, get the `TypeEnum`
|
||||
let (params,
|
||||
fields
|
||||
) = if let TypeEnum::TObj {
|
||||
params,
|
||||
fields,
|
||||
..
|
||||
} = self.unifier.get_ty(d.ty).borrow() {
|
||||
(params, fields)
|
||||
} else { unreachable!() };
|
||||
|
||||
// ancestors and typevars associate with the class are analyzed by looking
|
||||
// into the `bases` ast node
|
||||
for b in bases {
|
||||
match &b.node {
|
||||
// typevars bounded to the class, only support things like `class A(Generic[T, V])`,
|
||||
// things like `class A(Generic[T, V, ImportedModule.T])` is not supported
|
||||
// i.e. only simple names are allowed in the subscript
|
||||
// should update the TopLevelDef::Class.typevars and the TypeEnum::TObj.params
|
||||
ast::ExprKind::Subscript {value, slice, ..} if {
|
||||
if let ast::ExprKind::Name {id, ..} = &value.node {
|
||||
id == "Generic"
|
||||
// ancestors and typevars associate with the class are analyzed by looking
|
||||
// into the `bases` ast node
|
||||
// `Generic` should only occur once, use this flag
|
||||
let mut generic_occured = false;
|
||||
// TODO: haven't check this yet
|
||||
let mut occured_type_var: HashSet<Type> = Default::default();
|
||||
// TODO: haven't check this yet
|
||||
let mut occured_base: HashSet<DefinitionId> = Default::default();
|
||||
for b in bases {
|
||||
match &b.node {
|
||||
// analyze typevars bounded to the class,
|
||||
// only support things like `class A(Generic[T, V])`,
|
||||
// things like `class A(Generic[T, V, ImportedModule.T])` is not supported
|
||||
// i.e. only simple names are allowed in the subscript
|
||||
// should update the TopLevelDef::Class.typevars and the TypeEnum::TObj.params
|
||||
ast::ExprKind::Subscript {value, slice, ..} if {
|
||||
// can only be `Generic[...]` and this can only appear once
|
||||
if let ast::ExprKind::Name { id, .. } = &value.node {
|
||||
if id == "Generic" {
|
||||
if !generic_occured {
|
||||
generic_occured = true;
|
||||
true
|
||||
} else {
|
||||
return Err("Only single Generic[...] or Protocol[...] can be in bases".into())
|
||||
}
|
||||
} else { false }
|
||||
} => {
|
||||
match &slice.node {
|
||||
// `class Foo(Generic[T, V, P]):`
|
||||
ast::ExprKind::Tuple {elts, ..} => {
|
||||
for e in elts {
|
||||
// let ty_def_id = resolver.
|
||||
}
|
||||
},
|
||||
} else { false }
|
||||
} => {
|
||||
match &slice.node {
|
||||
// `class Foo(Generic[T, V, P]):` multiple element inside the subscript
|
||||
ast::ExprKind::Tuple {elts, ..} => {
|
||||
let tys = elts
|
||||
.iter()
|
||||
.map(|x| {resolver.parse_type_annotation(
|
||||
&self.to_top_level_context(),
|
||||
unifier.borrow_mut(),
|
||||
&self.primitives,
|
||||
x)})
|
||||
.collect::<Result<Vec<_>, _>>()?;
|
||||
|
||||
// `class Foo(Generic[T]):`
|
||||
ast::ExprKind::Name {id, ..} => {
|
||||
// the def_list
|
||||
// type_vars.push(resolver.get_symbol_type(id).ok_or_else(|| "unknown type variable".to_string())?); FIXME:
|
||||
unimplemented!()
|
||||
},
|
||||
let ty_var_ids = tys
|
||||
.iter()
|
||||
.map(|t| unifier.get_ty(*t))
|
||||
.collect::<Vec<_>>()
|
||||
.iter()
|
||||
.map(|x| {
|
||||
let x = x.as_ref();
|
||||
if let TypeEnum::TVar {id, ..} = x {
|
||||
Ok(*id)
|
||||
} else {
|
||||
Err("Expect type variabls here".to_string())
|
||||
}
|
||||
})
|
||||
.collect::<Result<Vec<_>, _>>()?;
|
||||
|
||||
_ => return Err("not supported, only simple names are allowed in the subscript".into())
|
||||
// write to TypeEnum
|
||||
for (id, ty) in ty_var_ids.iter().zip(tys.iter()) {
|
||||
enum_params.borrow_mut().insert(*id, *ty);
|
||||
}
|
||||
|
||||
// write to TopLevelDef
|
||||
for ty in tys{
|
||||
def_type_vars.push(ty)
|
||||
}
|
||||
},
|
||||
|
||||
// `class Foo(Generic[T]):`, only single element
|
||||
_ => {
|
||||
let ty = resolver.parse_type_annotation(
|
||||
&self.to_top_level_context(),
|
||||
unifier.borrow_mut(),
|
||||
&self.primitives,
|
||||
&slice
|
||||
)?;
|
||||
|
||||
let ty_var_id = if let TypeEnum::TVar { id, .. } = unifier
|
||||
.get_ty(ty)
|
||||
.as_ref() { *id } else {
|
||||
return Err("Expect type variabls here".to_string())
|
||||
};
|
||||
|
||||
// write to TypeEnum
|
||||
enum_params.borrow_mut().insert(ty_var_id, ty);
|
||||
|
||||
// write to TopLevelDef
|
||||
def_type_vars.push(ty);
|
||||
},
|
||||
};
|
||||
}
|
||||
|
||||
// analyze base classes, which is possible in
|
||||
// other cases, we parse for the base class
|
||||
_ => {
|
||||
let ty = resolver.parse_type_annotation(
|
||||
&self.to_top_level_context(),
|
||||
unifier.borrow_mut(),
|
||||
&self.primitives,
|
||||
b
|
||||
)?;
|
||||
|
||||
let obj_def_id = if let TypeEnum::TObj { obj_id, .. } = unifier
|
||||
.get_ty(ty)
|
||||
.as_ref() {
|
||||
*obj_id
|
||||
} else {
|
||||
return Err("Expect concrete classes/types here".into())
|
||||
};
|
||||
},
|
||||
|
||||
/* // base class, name directly available inside the
|
||||
// module, can use this module's symbol resolver
|
||||
ast::ExprKind::Name {id, ..} => {
|
||||
// let def_id = resolver.get_identifier_def(id); FIXME:
|
||||
// the definition list
|
||||
// ancestors.push(def_id);
|
||||
},
|
||||
|
||||
// base class, things can be like `class A(BaseModule.Base)`, here we have to get the
|
||||
// symbol resolver of the module `BaseModule`?
|
||||
ast::ExprKind::Attribute {value, attr, ..} => {
|
||||
if let ast::ExprKind::Name {id, ..} = &value.node {
|
||||
// if let Some(base_module_resolver) = resolver.get_module_resolver(id) {
|
||||
// let def_id = base_module_resolver.get_identifier_def(attr);
|
||||
// // the definition list
|
||||
// ancestors.push(def_id);
|
||||
// } else { return Err("unkown imported module".into()) } FIXME:
|
||||
} else { return Err("unkown imported module".into()) }
|
||||
},
|
||||
|
||||
// `class Foo(ImportedModule.A[int, bool])`, A is a class with associated type variables
|
||||
ast::ExprKind::Subscript {value, slice, ..} => {
|
||||
unimplemented!()
|
||||
}, */
|
||||
|
||||
// base class is possible in other cases, we parse for thr base class
|
||||
_ => return Err("not supported".into())
|
||||
// write to TopLevelDef
|
||||
def_ancestors.push(obj_def_id);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// class method and field are analyzed by
|
||||
// looking into the class body ast node
|
||||
for stmt in body {
|
||||
if let ast::StmtKind::FunctionDef {
|
||||
name,
|
||||
args,
|
||||
body,
|
||||
returns,
|
||||
..
|
||||
} = &stmt.node {
|
||||
// class method and field are analyzed by
|
||||
// looking into the class body ast node
|
||||
// NOTE: should consider parents' method and fields(check re-def and add),
|
||||
// but we do it later we go over these again after we finish analyze the
|
||||
// fields/methods as declared in the ast
|
||||
// method with same name should not occur twice, so use this
|
||||
let defined_method: HashSet<String> = Default::default();
|
||||
for stmt in body {
|
||||
if let ast::StmtKind::FunctionDef {
|
||||
name,
|
||||
args,
|
||||
body,
|
||||
returns,
|
||||
..
|
||||
} = &stmt.node {
|
||||
// build type enum, need FunSignature {args, vars, ret}
|
||||
// args. Now only args with no default TODO: other kinds of args
|
||||
let func_args = args.args
|
||||
.iter()
|
||||
.map(|x| -> Result<FuncArg, String> {
|
||||
Ok(FuncArg {
|
||||
name: x.node.arg.clone(),
|
||||
ty: resolver.parse_type_annotation(
|
||||
&self.to_top_level_context(),
|
||||
unifier.borrow_mut(),
|
||||
&self.primitives,
|
||||
x
|
||||
.node
|
||||
.annotation
|
||||
.as_ref()
|
||||
.ok_or_else(|| "type annotations required for function parameters".to_string())?
|
||||
)?,
|
||||
default_value: None
|
||||
})
|
||||
})
|
||||
.collect::<Result<Vec<FuncArg>, _>>()?;
|
||||
// vars. find TypeVars used in the argument type annotation
|
||||
let func_vars = func_args
|
||||
.iter()
|
||||
.filter_map(|FuncArg { ty, .. } | {
|
||||
if let TypeEnum::TVar { id, .. } = unifier.get_ty(*ty).as_ref() {
|
||||
Some((*id, *ty))
|
||||
} else { None }
|
||||
})
|
||||
.collect::<HashMap<u32, Type>>();
|
||||
// return type
|
||||
let func_ret = resolver
|
||||
.parse_type_annotation(
|
||||
&self.to_top_level_context(),
|
||||
unifier.borrow_mut(),
|
||||
&self.primitives,
|
||||
returns
|
||||
.as_ref()
|
||||
.ok_or_else(|| "return type annotations required here".to_string())?
|
||||
.as_ref(),
|
||||
)?;
|
||||
// build the TypeEnum
|
||||
let func_ty = TypeEnum::TFunc(FunSignature {
|
||||
args: func_args,
|
||||
vars: func_vars,
|
||||
ret: func_ret
|
||||
});
|
||||
// TODO: write to the TypeEnum and Def_list
|
||||
|
||||
} else { }
|
||||
|
||||
|
||||
if name == "__init__" {
|
||||
// special for constructor, need to look into the fields
|
||||
// TODO: look into the function body and see
|
||||
}
|
||||
} else {
|
||||
// do nothing. we do not care about things like this?
|
||||
// class A:
|
||||
// a = 3
|
||||
// b = [2, 3]
|
||||
|
||||
|
||||
}
|
||||
},
|
||||
|
||||
// top level function definition
|
||||
ast::StmtKind::FunctionDef {
|
||||
name,
|
||||
args,
|
||||
body,
|
||||
returns,
|
||||
..
|
||||
} => {
|
||||
unimplemented!()
|
||||
}
|
||||
},
|
||||
|
||||
node => {
|
||||
return Err("only expect function and class definitions to be submitted here to be analyzed".into())
|
||||
}
|
||||
// top level function definition
|
||||
Some(ast::Located{node: ast::StmtKind::FunctionDef {
|
||||
name,
|
||||
args,
|
||||
body,
|
||||
returns,
|
||||
..
|
||||
}, .. }) => {
|
||||
// TODO:
|
||||
unimplemented!()
|
||||
}
|
||||
|
||||
// only expect class def and function def ast
|
||||
_ => return Err("only expect function and class definitions to be submitted here to be analyzed".into())
|
||||
}
|
||||
}
|
||||
Ok(())
|
||||
|
|
Loading…
Reference in New Issue