forked from M-Labs/nac3
1
0
Fork 0

standalone/ndarray: improve {reshape,broadcast_to,transpose} tests

Print their shapes and exhaustively print all contents.
This commit is contained in:
lyken 2024-08-25 00:39:42 +08:00
parent ca896da1fa
commit 9b2e933405
No known key found for this signature in database
GPG Key ID: 3BD5FC6AC8325DD8
1 changed files with 39 additions and 3 deletions

View File

@ -204,29 +204,65 @@ def test_ndarray_transpose():
y = np_transpose(x) y = np_transpose(x)
z = np_transpose(y) z = np_transpose(y)
output_int32(np_shape(x)[0])
output_int32(np_shape(x)[1])
output_ndarray_float_2(x) output_ndarray_float_2(x)
output_int32(np_shape(y)[0])
output_int32(np_shape(y)[1])
output_ndarray_float_2(y) output_ndarray_float_2(y)
output_int32(np_shape(z)[0])
output_int32(np_shape(z)[1])
output_ndarray_float_2(z)
def test_ndarray_reshape(): def test_ndarray_reshape():
w: ndarray[float, 1] = np_array([1., 2., 3., 4., 5., 6., 7., 8., 9., 10.]) w: ndarray[float, 1] = np_array([1., 2., 3., 4., 5., 6., 7., 8., 9., 10.])
x = np_reshape(w, (1, 2, 1, -1)) x = np_reshape(w, (1, 2, 1, -1))
y = np_reshape(x, [2, -1]) y = np_reshape(x, [2, -1])
z = np_reshape(y, 10) z = np_reshape(y, 10)
output_int32(np_shape(w)[0])
output_ndarray_float_1(w)
output_int32(np_shape(x)[0])
output_int32(np_shape(x)[1])
output_int32(np_shape(x)[2])
output_int32(np_shape(x)[3])
output_ndarray_float_4(x)
output_int32(np_shape(y)[0])
output_int32(np_shape(y)[1])
output_ndarray_float_2(y)
output_int32(np_shape(z)[0])
output_ndarray_float_1(z)
x1: ndarray[int32, 1] = np_array([1, 2, 3, 4]) x1: ndarray[int32, 1] = np_array([1, 2, 3, 4])
x2: ndarray[int32, 2] = np_reshape(x1, (2, 2)) x2: ndarray[int32, 2] = np_reshape(x1, (2, 2))
output_ndarray_float_1(w) output_int32(np_shape(x1)[0])
output_ndarray_float_2(y) output_ndarray_int32_1(x1)
output_ndarray_float_1(z)
output_int32(np_shape(x2)[0])
output_int32(np_shape(x2)[1])
output_ndarray_int32_2(x2)
def test_ndarray_broadcast_to(): def test_ndarray_broadcast_to():
xs = np_array([1.0, 2.0, 3.0]) xs = np_array([1.0, 2.0, 3.0])
ys = np_broadcast_to(xs, (1, 3)) ys = np_broadcast_to(xs, (1, 3))
zs = np_broadcast_to(ys, (2, 4, 3)) zs = np_broadcast_to(ys, (2, 4, 3))
output_int32(np_shape(xs)[0])
output_ndarray_float_1(xs) output_ndarray_float_1(xs)
output_int32(np_shape(ys)[0])
output_int32(np_shape(ys)[1])
output_ndarray_float_2(ys) output_ndarray_float_2(ys)
output_int32(np_shape(zs)[0])
output_int32(np_shape(zs)[1])
output_int32(np_shape(zs)[2])
output_ndarray_float_3(zs) output_ndarray_float_3(zs)
def test_ndarray_subscript_assignment(): def test_ndarray_subscript_assignment():