forked from M-Labs/nac3
core/ndstrides: implement np_dot() for scalars and 1D
This commit is contained in:
parent
c93f05f74b
commit
4baf1c64ed
|
@ -15,9 +15,12 @@ use crate::{
|
|||
model::*,
|
||||
object::{
|
||||
any::AnyObject,
|
||||
ndarray::{shape_util::parse_numpy_int_sequence, NDArrayObject},
|
||||
ndarray::{nditer::NDIterHandle, shape_util::parse_numpy_int_sequence, NDArrayObject},
|
||||
},
|
||||
stmt::{
|
||||
gen_for_callback, gen_for_callback_incrementing, gen_for_range_callback,
|
||||
gen_if_else_expr_callback,
|
||||
},
|
||||
stmt::{gen_for_callback_incrementing, gen_for_range_callback, gen_if_else_expr_callback},
|
||||
CodeGenContext, CodeGenerator,
|
||||
},
|
||||
symbol_resolver::ValueEnum,
|
||||
|
@ -1705,77 +1708,88 @@ pub fn ndarray_dot<'ctx, G: CodeGenerator + ?Sized>(
|
|||
) -> Result<BasicValueEnum<'ctx>, String> {
|
||||
const FN_NAME: &str = "ndarray_dot";
|
||||
let (x1_ty, x1) = x1;
|
||||
let (_, x2) = x2;
|
||||
|
||||
let llvm_usize = generator.get_size_type(ctx.ctx);
|
||||
let (x2_ty, x2) = x2;
|
||||
|
||||
match (x1, x2) {
|
||||
(BasicValueEnum::PointerValue(n1), BasicValueEnum::PointerValue(n2)) => {
|
||||
let n1 = NDArrayValue::from_ptr_val(n1, llvm_usize, None);
|
||||
let n2 = NDArrayValue::from_ptr_val(n2, llvm_usize, None);
|
||||
(BasicValueEnum::PointerValue(_), BasicValueEnum::PointerValue(_)) => {
|
||||
let a = AnyObject { ty: x1_ty, value: x1 };
|
||||
let b = AnyObject { ty: x2_ty, value: x2 };
|
||||
|
||||
let n1_sz = call_ndarray_calc_size(generator, ctx, &n1.dim_sizes(), (None, None));
|
||||
let n2_sz = call_ndarray_calc_size(generator, ctx, &n1.dim_sizes(), (None, None));
|
||||
let a = NDArrayObject::from_object(generator, ctx, a);
|
||||
let b = NDArrayObject::from_object(generator, ctx, b);
|
||||
|
||||
// TODO: General `np.dot()` https://numpy.org/doc/stable/reference/generated/numpy.dot.html.
|
||||
assert_eq!(a.ndims, 1);
|
||||
assert_eq!(b.ndims, 1);
|
||||
let common_dtype = a.dtype;
|
||||
|
||||
// Check shapes.
|
||||
let a_size = a.size(generator, ctx);
|
||||
let b_size = b.size(generator, ctx);
|
||||
let same_shape = a_size.compare(ctx, IntPredicate::EQ, b_size);
|
||||
ctx.make_assert(
|
||||
generator,
|
||||
ctx.builder.build_int_compare(IntPredicate::EQ, n1_sz, n2_sz, "").unwrap(),
|
||||
same_shape.value,
|
||||
"0:ValueError",
|
||||
"shapes ({0}), ({1}) not aligned",
|
||||
[Some(n1_sz), Some(n2_sz), None],
|
||||
"shapes ({0},) and ({1},) not aligned: {0} (dim 0) != {1} (dim 1)",
|
||||
[Some(a_size.value), Some(b_size.value), None],
|
||||
ctx.current_loc,
|
||||
);
|
||||
|
||||
let identity =
|
||||
unsafe { n1.data().get_unchecked(ctx, generator, &llvm_usize.const_zero(), None) };
|
||||
let acc = ctx.builder.build_alloca(identity.get_type(), "").unwrap();
|
||||
ctx.builder.build_store(acc, identity.get_type().const_zero()).unwrap();
|
||||
let dtype_llvm = ctx.get_llvm_type(generator, common_dtype);
|
||||
|
||||
gen_for_callback_incrementing(
|
||||
let result = ctx.builder.build_alloca(dtype_llvm, "np_dot_result").unwrap();
|
||||
ctx.builder.build_store(result, dtype_llvm.const_zero()).unwrap();
|
||||
|
||||
// Do dot product.
|
||||
gen_for_callback(
|
||||
generator,
|
||||
ctx,
|
||||
None,
|
||||
llvm_usize.const_zero(),
|
||||
(n1_sz, false),
|
||||
|generator, ctx, _, idx| {
|
||||
let elem1 = unsafe { n1.data().get_unchecked(ctx, generator, &idx, None) };
|
||||
let elem2 = unsafe { n2.data().get_unchecked(ctx, generator, &idx, None) };
|
||||
Some("np_dot"),
|
||||
|generator, ctx| {
|
||||
let a_iter = NDIterHandle::new(generator, ctx, a);
|
||||
let b_iter = NDIterHandle::new(generator, ctx, b);
|
||||
Ok((a_iter, b_iter))
|
||||
},
|
||||
|generator, ctx, (a_iter, _b_iter)| {
|
||||
// Only a_iter drives the condition, b_iter should have the same status.
|
||||
Ok(a_iter.has_element(generator, ctx).value)
|
||||
},
|
||||
|generator, ctx, _hooks, (a_iter, b_iter)| {
|
||||
let a_scalar = a_iter.get_scalar(generator, ctx).value;
|
||||
let b_scalar = b_iter.get_scalar(generator, ctx).value;
|
||||
|
||||
let product = match elem1 {
|
||||
BasicValueEnum::IntValue(e1) => ctx
|
||||
.builder
|
||||
.build_int_mul(e1, elem2.into_int_value(), "")
|
||||
.unwrap()
|
||||
.as_basic_value_enum(),
|
||||
BasicValueEnum::FloatValue(e1) => ctx
|
||||
.builder
|
||||
.build_float_mul(e1, elem2.into_float_value(), "")
|
||||
.unwrap()
|
||||
.as_basic_value_enum(),
|
||||
_ => codegen_unreachable!(ctx),
|
||||
let old_result = ctx.builder.build_load(result, "").unwrap();
|
||||
let new_result: BasicValueEnum<'ctx> = match old_result {
|
||||
BasicValueEnum::IntValue(old_result) => {
|
||||
let a_scalar = a_scalar.into_int_value();
|
||||
let b_scalar = b_scalar.into_int_value();
|
||||
let x = ctx.builder.build_int_mul(a_scalar, b_scalar, "").unwrap();
|
||||
ctx.builder.build_int_add(old_result, x, "").unwrap().into()
|
||||
}
|
||||
BasicValueEnum::FloatValue(old_result) => {
|
||||
let a_scalar = a_scalar.into_float_value();
|
||||
let b_scalar = b_scalar.into_float_value();
|
||||
let x = ctx.builder.build_float_mul(a_scalar, b_scalar, "").unwrap();
|
||||
ctx.builder.build_float_add(old_result, x, "").unwrap().into()
|
||||
}
|
||||
_ => {
|
||||
panic!("Unrecognized dtype: {}", ctx.unifier.stringify(common_dtype));
|
||||
}
|
||||
};
|
||||
let acc_val = ctx.builder.build_load(acc, "").unwrap();
|
||||
let acc_val = match acc_val {
|
||||
BasicValueEnum::IntValue(e1) => ctx
|
||||
.builder
|
||||
.build_int_add(e1, product.into_int_value(), "")
|
||||
.unwrap()
|
||||
.as_basic_value_enum(),
|
||||
BasicValueEnum::FloatValue(e1) => ctx
|
||||
.builder
|
||||
.build_float_add(e1, product.into_float_value(), "")
|
||||
.unwrap()
|
||||
.as_basic_value_enum(),
|
||||
_ => codegen_unreachable!(ctx),
|
||||
};
|
||||
ctx.builder.build_store(acc, acc_val).unwrap();
|
||||
|
||||
ctx.builder.build_store(result, new_result).unwrap();
|
||||
Ok(())
|
||||
},
|
||||
llvm_usize.const_int(1, false),
|
||||
)?;
|
||||
let acc_val = ctx.builder.build_load(acc, "").unwrap();
|
||||
Ok(acc_val)
|
||||
|generator, ctx, (a_iter, b_iter)| {
|
||||
a_iter.next(generator, ctx);
|
||||
b_iter.next(generator, ctx);
|
||||
Ok(())
|
||||
},
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
Ok(ctx.builder.build_load(result, "").unwrap())
|
||||
}
|
||||
(BasicValueEnum::IntValue(e1), BasicValueEnum::IntValue(e2)) => {
|
||||
Ok(ctx.builder.build_int_mul(e1, e2, "").unwrap().as_basic_value_enum())
|
||||
|
|
|
@ -2078,10 +2078,12 @@ impl<'a> BuiltinBuilder<'a> {
|
|||
Box::new(move |ctx, _, fun, args, generator| {
|
||||
let x1_ty = fun.0.args[0].ty;
|
||||
let x1_val = args[0].1.clone().to_basic_value_enum(ctx, generator, x1_ty)?;
|
||||
|
||||
let x2_ty = fun.0.args[1].ty;
|
||||
let x2_val = args[1].1.clone().to_basic_value_enum(ctx, generator, x2_ty)?;
|
||||
|
||||
Ok(Some(ndarray_dot(generator, ctx, (x1_ty, x1_val), (x2_ty, x2_val))?))
|
||||
let result = ndarray_dot(generator, ctx, (x1_ty, x1_val), (x2_ty, x2_val))?;
|
||||
Ok(Some(result))
|
||||
}),
|
||||
),
|
||||
|
||||
|
|
Loading…
Reference in New Issue