forked from M-Labs/nac3
1
0
Fork 0

top level: top level function type var handled

top level: class methods/fields type var handling
This commit is contained in:
ychenfo 2021-08-26 15:24:04 +08:00
parent 935e7410fd
commit 018d6643e1
2 changed files with 170 additions and 58 deletions

View File

@ -526,8 +526,10 @@ impl TopLevelComposer {
for type_ann in type_var_occured_in_base {
if let TypeAnnotation::TypeVarKind(id, ty) = type_ann {
for (ty_id, class_typvar_ty) in class_type_vars.iter() {
if id == *ty_id {
// if they refer to the same top level defined type var, we unify them together
if id == *ty_id {
// assert to make sure
assert!(matches!(self.unifier.get_ty(ty).as_ref(), TypeEnum::TVar{ .. }));
self.unifier.unify(ty, *class_typvar_ty)?;
}
}
@ -560,6 +562,7 @@ impl TopLevelComposer {
let def_ast_list = &self.definition_ast_list;
let mut type_var_to_concrete_def: HashMap<Type, TypeAnnotation> = HashMap::new();
for (class_def, class_ast) in def_ast_list {
Self::analyze_single_class(
class_def.clone(),
@ -597,17 +600,17 @@ impl TopLevelComposer {
let function_ast = if let Some(function_ast) = function_ast {
function_ast
} else {
// no ast, class method, continue
continue;
};
if let TopLevelDef::Function { signature: dummy_ty, resolver, .. } = function_def {
if let ast::StmtKind::FunctionDef { args, returns, .. } = &function_ast.node {
let resolver = resolver.as_ref();
let resolver = resolver.unwrap();
let resolver = resolver.deref();
let function_resolver = resolver.deref();
// occured type vars should not be handled separately
// TODO: type vars occured as applications of generic classes is not handled
let mut occured_type_var: HashMap<u32, Type> = HashMap::new();
let mut function_var_map: HashMap<u32, Type> = HashMap::new();
let arg_types = {
@ -633,27 +636,55 @@ impl TopLevelComposer {
})?
.as_ref();
let mut ty = function_resolver.parse_type_annotation(
let type_annotation = parse_ast_to_type_annotation_kinds(
resolver,
temp_def_list.as_slice(),
unifier,
primitives_store,
annotation,
annotation
)?;
if let TypeEnum::TVar { id, .. } =
unifier.get_ty(ty).as_ref()
{
if let Some(occured_ty) = occured_type_var.get(id) {
// if already occured
ty = *occured_ty;
let ty = get_type_from_type_annotation_kinds(
temp_def_list.as_ref(),
unifier,
primitives_store,
&type_annotation
)?;
// if there are same type variables appears, we only need to copy them once
let type_vars_within =
get_type_var_contained_in_type_annotation(&type_annotation)
.into_iter()
.map(|x| {
if let TypeAnnotation::TypeVarKind(id, ty) = x {
// assert here to make sure the ty is TypeEnum::TVar
assert!(matches!(unifier.get_ty(ty).as_ref(), TypeEnum::TVar{ .. }));
(id, ty)
} else {
// if not, create a duplicate
let ty_copy = duplicate_type_var(unifier, ty);
ty = ty_copy.0;
occured_type_var.insert(*id, ty);
function_var_map.insert(ty_copy.1, ty_copy.0);
unreachable!("must be type var annotation kind")
}
})
.collect_vec();
for (top_level_var_id, ty) in type_vars_within {
if let Some(occured_ty) = occured_type_var.get(&top_level_var_id) {
// if already occured, we unify this two duplicated
// type var of the same top level type var
unifier.unify(ty, *occured_ty)?;
} else {
// if not, put it into the occured type var hashmap,
// since parse_ast_to_type_var already duplicated it
// we do not need to duplicate it again
occured_type_var.insert(top_level_var_id, ty);
// the type var map to it self
if let TypeEnum::TVar { id: self_id, .. } = unifier.get_ty(ty).as_ref() {
function_var_map.insert(*self_id, ty);
} else {
unreachable!("must be type var");
}
}
}
// TODO: default value?
Ok(FuncArg {
name: x.node.arg.clone(),
ty,
@ -663,18 +694,40 @@ impl TopLevelComposer {
.collect::<Result<Vec<_>, _>>()?
};
let return_ty = {
let return_ty_annotation = {
let return_annotation = returns
.as_ref()
.ok_or_else(|| "function return type needed".to_string())?
.as_ref();
function_resolver.parse_type_annotation(
temp_def_list.as_slice(),
parse_ast_to_type_annotation_kinds(resolver, &temp_def_list, unifier, primitives_store, return_annotation)?
};
let return_ty =
get_type_from_type_annotation_kinds(
&temp_def_list,
unifier,
primitives_store,
return_annotation,
)?
};
&return_ty_annotation
)?;
let type_vars_within =
get_type_var_contained_in_type_annotation(&return_ty_annotation)
.into_iter()
.map(|x|
if let TypeAnnotation::TypeVarKind(id, ty) = x {
(id, ty)
} else {
unreachable!("must be type var here")
}
)
.collect_vec();
for (top_level_var_id, ty) in type_vars_within {
if let Some(existing_ty) = occured_type_var.get(&top_level_var_id) {
// should not return err here
unifier.unify(ty, *existing_ty)?;
} else {
occured_type_var.insert(top_level_var_id, ty);
}
}
let function_ty = unifier.add_ty(TypeEnum::TFunc(
FunSignature { args: arg_types, ret: return_ty, vars: function_var_map }
@ -745,7 +798,7 @@ impl TopLevelComposer {
unreachable!("here must be class def ast");
};
let class_resolver = class_resolver.as_ref().unwrap();
let class_resolver = class_resolver;
let class_resolver = class_resolver.as_ref();
for b in class_body_ast {
if let ast::StmtKind::FunctionDef { args, returns, name, body, .. } = &b.node {
@ -756,7 +809,7 @@ impl TopLevelComposer {
// while tracking the type var associated with class
// TODO: type vars occured as applications of generic classes is not handled
let mut method_var_map: HashMap<u32, Type> = HashMap::new();
let arg_type: Vec<FuncArg> = {
let arg_types: Vec<FuncArg> = {
// check method parameters cannot have same name
let mut defined_paramter_name: HashSet<String> = HashSet::new();
let have_unique_fuction_parameter_name =
@ -786,36 +839,55 @@ impl TopLevelComposer {
};
// handle to differentiate type vars that are
// asscosiated with the class and that are not
// TODO: type vars occured as applications of generic classes is not handled
if let TypeAnnotation::TypeVarKind(id, ty) = &type_ann {
let associated = class_type_vars_def
.iter()
.filter(|(class_type_var_id, _)| *class_type_var_id == *id)
.collect_vec();
match associated.len() {
// 0, do nothing, this is not a type var
// associated with the method's class
// TODO: but this type var can occur multiple times in this
// method's param list, still need to keep track of type vars
// associated with this function
0 => {}
// is type var associated with class, do the unification here
1 => {
unifier.unify(*ty, associated[0].1)?;
}
_ => {
unreachable!("there should not be duplicate type var");
let type_vars_within = get_type_var_contained_in_type_annotation(&type_ann);
for type_var_within in type_vars_within {
if let TypeAnnotation::TypeVarKind(top_level_id, ty) = type_var_within {
for (class_type_var_top_level_id, class_type_var_ty) in class_type_vars_def.iter() {
if top_level_id == *class_type_var_top_level_id {
unifier.unify(ty, *class_type_var_ty)?;
}
}
// just insert the id and ty of self
// since the function is not instantiated yet
if let TypeEnum::TVar { id, .. } = unifier.get_ty(*ty).as_ref() {
method_var_map.insert(*id, *ty);
// note that this has to be done after the unify step between the common type vars
// between the method and the class(unify of type variables associated with class)
// since after unification, the var_id will change.
method_var_map.insert()
} else {
unreachable!("must be type var")
unreachable!("must be type var annotation");
}
}
// if let TypeAnnotation::TypeVarKind(id, ty) = &type_ann {
// let associated = class_type_vars_def
// .iter()
// .filter(|(class_type_var_id, _)| *class_type_var_id == *id)
// .collect_vec();
// match associated.len() {
// // 0, do nothing, this is not a type var
// // associated with the method's class
// // TODO: but this type var can occur multiple times in this
// // method's param list, still need to keep track of type vars
// // associated with this function
// 0 => {}
// // is type var associated with class, do the unification here
// 1 => {
// unifier.unify(*ty, associated[0].1)?;
// }
// _ => {
// unreachable!("there should not be duplicate type var");
// }
// }
// // just insert the id and ty of self
// // since the function is not instantiated yet
// if let TypeEnum::TVar { id, .. } = unifier.get_ty(*ty).as_ref() {
// method_var_map.insert(*id, *ty);
// } else {
// unreachable!("must be type var")
// }
// }
let dummy_func_arg = FuncArg {
name,
ty: unifier.get_fresh_var().0,
@ -876,7 +948,7 @@ impl TopLevelComposer {
};
let method_type = unifier.add_ty(TypeEnum::TFunc(
FunSignature { args: arg_type, ret: ret_type, vars: method_var_map }.into(),
FunSignature { args: arg_types, ret: ret_type, vars: method_var_map }.into(),
));
// unify now since function type is not in type annotation define
// which is fine since type within method_type will be subst later
@ -959,4 +1031,31 @@ impl TopLevelComposer {
result.push(child);
result
}
/// handle the method function types (especially the type vars things)
/// arg: ast node Arguments, contains lists of various kinds of function parameters, now only deal with arg.arg
/// resolver: the resolver of the corresponding top_level_function/class
/// class_type_vars: if is class method, this is the reference to the field: TopLevelDef::Class.type_vars \
/// \
/// return a tuple of three:
/// 0. vector of FuncArg which is used to construct the FunSignature
/// 1. Hashmap of occured type vars for later analyze the return type
/// 2. Hashmap of the function type var map to build the FunSignature
fn analyze_function_args_type(
arg: &ast::Arguments,
resolver: &(dyn SymbolResolver + Send + Sync),
class_type_vars: Option<&[(u32, Type)]>
) -> (Vec<FuncArg>, HashMap<u32, Type>, HashMap<u32, Type>) {
let mut occured_type_var: HashMap<u32, Type> = HashMap::new();
let mut function_var_map: HashMap<u32, Type> = HashMap::new();
// the type var of the class is essentially the occured_type_def
if let Some(class_type_vars) = class_type_vars {
occured_type_var.extend(class_type_vars.into_iter());
}
unimplemented!()
}
}

View File

@ -21,6 +21,7 @@ pub enum TypeAnnotation {
TypeVarKind(u32, Type),
}
/// if is typevar, this function will make a copy of it
pub fn parse_ast_to_type_annotation_kinds<T>(
resolver: &Box<dyn SymbolResolver + Send + Sync>,
top_level_defs: &[Arc<RwLock<TopLevelDef>>],
@ -58,8 +59,8 @@ pub fn parse_ast_to_type_annotation_kinds<T>(
// but record the var_id of the original type var
// returned by symbol resolver
Ok(TypeAnnotation::TypeVarKind(
// this id is the id of the top level type var
*id,
// TODO: maybe not duplicate will also be fine here?
duplicate_type_var(unifier, ty).0
))
} else {
@ -143,6 +144,7 @@ pub fn parse_ast_to_type_annotation_kinds<T>(
}
}
/// if is typeannotation::tvar, this function will NOT make a copy of it
pub fn get_type_from_type_annotation_kinds(
top_level_defs: &[Arc<RwLock<TopLevelDef>>],
unifier: &mut Unifier,
@ -245,8 +247,19 @@ pub fn duplicate_type_var(
/// class A(Generic[T, V]):
/// def fun(self):
/// ```
/// the type of `self` should be equivalent to `A[T, V]`, where `T`, `V`
/// considered to be type variables associated with the class
/// the type of `self` should be similar to `A[T, V]`, where `T`, `V`
/// considered to be type variables associated with the class \
/// \
/// But note that here we do not make a duplication of `T`, `V`, we direclty
/// use them as they are in the TopLevelDef::Class since those in the
/// TopLevelDef::Class.type_vars will be substitute later when seeing applications/instantiations
/// the Type of their fields and methods will also be subst when application/instantiation \
/// \
/// Note this implicit self type is different with seeing `A[T, V]` explicitly outside
/// the class def ast body, where it is a new instantiation of the generic class `A`,
/// but equivalent to seeing `A[T, V]` inside the class def body ast, where although we
/// create copies of `T` and `V`, we will find them out as occured type vars in the analyze_class()
/// and unify them with the class generic `T`, `V`
pub fn make_self_type_annotation(
top_level_defs: &[Arc<RwLock<TopLevelDef>>],
def_id: DefinitionId,
@ -263,10 +276,9 @@ pub fn make_self_type_annotation(
id: def_id,
params: type_vars
.iter()
.map(|(var_id, ty)| TypeAnnotation::TypeVarKind(
*var_id,
duplicate_type_var(unifier, *ty).0
))
// note here the var_id also points to the var_id of
// the top level defined type var's var id
.map(|(var_id, ty)| TypeAnnotation::TypeVarKind(*var_id, *ty))
.collect_vec()
})
} else {
@ -276,6 +288,7 @@ pub fn make_self_type_annotation(
/// get all the occurences of type vars contained in a type annotation
/// e.g. `A[int, B[T], V]` => [T, V]
/// this function will not make a duplicate of type var
pub fn get_type_var_contained_in_type_annotation(ann: &TypeAnnotation) -> Vec<TypeAnnotation> {
let mut result: Vec<TypeAnnotation> = Vec::new();
match ann {