forked from M-Labs/nac3
3601 lines
146 KiB
Rust
3601 lines
146 KiB
Rust
use std::{
|
|
cmp::min,
|
|
collections::HashMap,
|
|
convert::TryInto,
|
|
iter::{once, repeat, repeat_with, zip},
|
|
};
|
|
|
|
use inkwell::{
|
|
attributes::{Attribute, AttributeLoc},
|
|
types::{AnyType, BasicType, BasicTypeEnum},
|
|
values::{BasicValueEnum, CallSiteValue, FunctionValue, IntValue, PointerValue, StructValue},
|
|
AddressSpace, IntPredicate, OptimizationLevel,
|
|
};
|
|
use itertools::{chain, izip, Either, Itertools};
|
|
|
|
use nac3parser::ast::{
|
|
self, Boolop, Cmpop, Comprehension, Constant, Expr, ExprKind, Location, Operator, StrRef,
|
|
Unaryop,
|
|
};
|
|
|
|
use super::{
|
|
concrete_type::{ConcreteFuncArg, ConcreteTypeEnum, ConcreteTypeStore},
|
|
gen_in_range_check, get_llvm_abi_type, get_llvm_type, get_va_count_arg_name,
|
|
irrt::*,
|
|
llvm_intrinsics::{
|
|
call_expect, call_float_floor, call_float_pow, call_float_powi, call_int_smax,
|
|
call_int_umin, call_memcpy_generic,
|
|
},
|
|
macros::codegen_unreachable,
|
|
need_sret, numpy,
|
|
stmt::{
|
|
gen_for_callback_incrementing, gen_if_callback, gen_if_else_expr_callback, gen_raise,
|
|
gen_var,
|
|
},
|
|
types::ListType,
|
|
values::{
|
|
ndarray::NDArrayValue, ArrayLikeIndexer, ArrayLikeValue, ListValue, ProxyValue, RangeValue,
|
|
TypedArrayLikeAccessor, UntypedArrayLikeAccessor,
|
|
},
|
|
CodeGenContext, CodeGenTask, CodeGenerator,
|
|
};
|
|
use crate::{
|
|
symbol_resolver::{SymbolValue, ValueEnum},
|
|
toplevel::{
|
|
helper::PrimDef,
|
|
numpy::{make_ndarray_ty, unpack_ndarray_var_tys},
|
|
DefinitionId, TopLevelDef,
|
|
},
|
|
typecheck::{
|
|
magic_methods::{Binop, BinopVariant, HasOpInfo},
|
|
typedef::{FunSignature, FuncArg, Type, TypeEnum, TypeVarId, Unifier, VarMap},
|
|
},
|
|
};
|
|
|
|
pub fn get_subst_key(
|
|
unifier: &mut Unifier,
|
|
obj: Option<Type>,
|
|
fun_vars: &VarMap,
|
|
filter: Option<&Vec<TypeVarId>>,
|
|
) -> String {
|
|
let mut vars = obj
|
|
.map(|ty| {
|
|
let TypeEnum::TObj { params, .. } = &*unifier.get_ty(ty) else { unreachable!() };
|
|
params.clone()
|
|
})
|
|
.unwrap_or_default();
|
|
vars.extend(fun_vars);
|
|
let sorted = vars.keys().filter(|id| filter.map_or(true, |v| v.contains(id))).sorted();
|
|
sorted
|
|
.map(|id| {
|
|
unifier.internal_stringify(
|
|
vars[id],
|
|
&mut |id| id.to_string(),
|
|
&mut |id| id.to_string(),
|
|
&mut None,
|
|
)
|
|
})
|
|
.join(", ")
|
|
}
|
|
|
|
impl<'ctx, 'a> CodeGenContext<'ctx, 'a> {
|
|
/// Builds a sequence of `getelementptr` and `load` instructions which stores the value of a
|
|
/// struct field into an LLVM value.
|
|
pub fn build_gep_and_load(
|
|
&mut self,
|
|
ptr: PointerValue<'ctx>,
|
|
index: &[IntValue<'ctx>],
|
|
name: Option<&str>,
|
|
) -> BasicValueEnum<'ctx> {
|
|
let gep = unsafe { self.builder.build_gep(ptr, index, "") }.unwrap();
|
|
self.builder.build_load(gep, name.unwrap_or_default()).unwrap()
|
|
}
|
|
|
|
/// Builds a sequence of `getelementptr inbounds` and `load` instructions which stores the value
|
|
/// of a struct field into an LLVM value.
|
|
///
|
|
/// Any out-of-bounds accesses to `ptr` will return in a `poison` value.
|
|
pub fn build_in_bounds_gep_and_load(
|
|
&mut self,
|
|
ptr: PointerValue<'ctx>,
|
|
index: &[IntValue<'ctx>],
|
|
name: Option<&str>,
|
|
) -> BasicValueEnum<'ctx> {
|
|
let gep = unsafe { self.builder.build_in_bounds_gep(ptr, index, "") }.unwrap();
|
|
self.builder.build_load(gep, name.unwrap_or_default()).unwrap()
|
|
}
|
|
|
|
fn get_subst_key(
|
|
&mut self,
|
|
obj: Option<Type>,
|
|
fun: &FunSignature,
|
|
filter: Option<&Vec<TypeVarId>>,
|
|
) -> String {
|
|
get_subst_key(&mut self.unifier, obj, &fun.vars, filter)
|
|
}
|
|
|
|
/// Checks the field and attributes of classes
|
|
/// Returns the index of attr in class fields otherwise returns the attribute value
|
|
pub fn get_attr_index(&mut self, ty: Type, attr: StrRef) -> (usize, Option<Constant>) {
|
|
let obj_id = match &*self.unifier.get_ty(ty) {
|
|
TypeEnum::TObj { obj_id, .. } => *obj_id,
|
|
// we cannot have other types, virtual type should be handled by function calls
|
|
_ => codegen_unreachable!(self),
|
|
};
|
|
let def = &self.top_level.definitions.read()[obj_id.0];
|
|
let (index, value) = if let TopLevelDef::Class { fields, attributes, .. } = &*def.read() {
|
|
if let Some(field_index) = fields.iter().find_position(|x| x.0 == attr) {
|
|
(field_index.0, None)
|
|
} else {
|
|
let attribute_index = attributes.iter().find_position(|x| x.0 == attr).unwrap();
|
|
(attribute_index.0, Some(attribute_index.1 .2.clone()))
|
|
}
|
|
} else {
|
|
codegen_unreachable!(self)
|
|
};
|
|
(index, value)
|
|
}
|
|
|
|
pub fn get_attr_index_object(&mut self, ty: Type, attr: StrRef) -> usize {
|
|
match &*self.unifier.get_ty(ty) {
|
|
TypeEnum::TObj { fields, .. } => {
|
|
fields.iter().find_position(|x| *x.0 == attr).unwrap().0
|
|
}
|
|
_ => codegen_unreachable!(self),
|
|
}
|
|
}
|
|
|
|
pub fn gen_symbol_val<G: CodeGenerator + ?Sized>(
|
|
&mut self,
|
|
generator: &mut G,
|
|
val: &SymbolValue,
|
|
ty: Type,
|
|
) -> BasicValueEnum<'ctx> {
|
|
match val {
|
|
SymbolValue::I32(v) => self.ctx.i32_type().const_int(*v as u64, true).into(),
|
|
SymbolValue::I64(v) => self.ctx.i64_type().const_int(*v as u64, true).into(),
|
|
SymbolValue::U32(v) => self.ctx.i32_type().const_int(u64::from(*v), false).into(),
|
|
SymbolValue::U64(v) => self.ctx.i64_type().const_int(*v, false).into(),
|
|
SymbolValue::Bool(v) => self.ctx.i8_type().const_int(u64::from(*v), true).into(),
|
|
SymbolValue::Double(v) => self.ctx.f64_type().const_float(*v).into(),
|
|
SymbolValue::Str(v) => {
|
|
let str_ptr = self
|
|
.builder
|
|
.build_global_string_ptr(v, "const")
|
|
.map(|v| v.as_pointer_value().into())
|
|
.unwrap();
|
|
let size = generator.get_size_type(self.ctx).const_int(v.len() as u64, false);
|
|
let ty = self.get_llvm_type(generator, self.primitives.str).into_struct_type();
|
|
ty.const_named_struct(&[str_ptr, size.into()]).into()
|
|
}
|
|
SymbolValue::Tuple(ls) => {
|
|
let vals = ls.iter().map(|v| self.gen_symbol_val(generator, v, ty)).collect_vec();
|
|
let fields = vals.iter().map(BasicValueEnum::get_type).collect_vec();
|
|
let ty = self.ctx.struct_type(&fields, false);
|
|
let ptr = gen_var(self, ty.into(), Some("tuple")).unwrap();
|
|
let zero = self.ctx.i32_type().const_zero();
|
|
unsafe {
|
|
for (i, val) in vals.into_iter().enumerate() {
|
|
let p = self
|
|
.builder
|
|
.build_in_bounds_gep(
|
|
ptr,
|
|
&[zero, self.ctx.i32_type().const_int(i as u64, false)],
|
|
"elemptr",
|
|
)
|
|
.unwrap();
|
|
self.builder.build_store(p, val).unwrap();
|
|
}
|
|
}
|
|
self.builder.build_load(ptr, "tup_val").unwrap()
|
|
}
|
|
SymbolValue::OptionSome(v) => {
|
|
let ty = match self.unifier.get_ty_immutable(ty).as_ref() {
|
|
TypeEnum::TObj { obj_id, params, .. }
|
|
if *obj_id == self.primitives.option.obj_id(&self.unifier).unwrap() =>
|
|
{
|
|
*params.iter().next().unwrap().1
|
|
}
|
|
_ => codegen_unreachable!(self, "must be option type"),
|
|
};
|
|
let val = self.gen_symbol_val(generator, v, ty);
|
|
let ptr = generator
|
|
.gen_var_alloc(self, val.get_type(), Some("default_opt_some"))
|
|
.unwrap();
|
|
self.builder.build_store(ptr, val).unwrap();
|
|
ptr.into()
|
|
}
|
|
SymbolValue::OptionNone => {
|
|
let ty = match self.unifier.get_ty_immutable(ty).as_ref() {
|
|
TypeEnum::TObj { obj_id, params, .. }
|
|
if *obj_id == self.primitives.option.obj_id(&self.unifier).unwrap() =>
|
|
{
|
|
*params.iter().next().unwrap().1
|
|
}
|
|
_ => codegen_unreachable!(self, "must be option type"),
|
|
};
|
|
let actual_ptr_type =
|
|
self.get_llvm_type(generator, ty).ptr_type(AddressSpace::default());
|
|
actual_ptr_type.const_null().into()
|
|
}
|
|
}
|
|
}
|
|
|
|
/// See [`get_llvm_type`].
|
|
pub fn get_llvm_type<G: CodeGenerator + ?Sized>(
|
|
&mut self,
|
|
generator: &G,
|
|
ty: Type,
|
|
) -> BasicTypeEnum<'ctx> {
|
|
get_llvm_type(
|
|
self.ctx,
|
|
&self.module,
|
|
generator,
|
|
&mut self.unifier,
|
|
self.top_level,
|
|
&mut self.type_cache,
|
|
ty,
|
|
)
|
|
}
|
|
|
|
/// See [`get_llvm_abi_type`].
|
|
pub fn get_llvm_abi_type<G: CodeGenerator + ?Sized>(
|
|
&mut self,
|
|
generator: &G,
|
|
ty: Type,
|
|
) -> BasicTypeEnum<'ctx> {
|
|
get_llvm_abi_type(
|
|
self.ctx,
|
|
&self.module,
|
|
generator,
|
|
&mut self.unifier,
|
|
self.top_level,
|
|
&mut self.type_cache,
|
|
&self.primitives,
|
|
ty,
|
|
)
|
|
}
|
|
|
|
/// Generates an LLVM variable for a [constant value][value] with a given [type][ty].
|
|
pub fn gen_const<G: CodeGenerator + ?Sized>(
|
|
&mut self,
|
|
generator: &mut G,
|
|
value: &Constant,
|
|
ty: Type,
|
|
) -> Option<BasicValueEnum<'ctx>> {
|
|
match value {
|
|
Constant::Bool(v) => {
|
|
assert!(self.unifier.unioned(ty, self.primitives.bool));
|
|
let ty = self.ctx.i8_type();
|
|
Some(ty.const_int(u64::from(*v), false).into())
|
|
}
|
|
Constant::Int(val) => {
|
|
let ty = if self.unifier.unioned(ty, self.primitives.int32)
|
|
|| self.unifier.unioned(ty, self.primitives.uint32)
|
|
{
|
|
self.ctx.i32_type()
|
|
} else if self.unifier.unioned(ty, self.primitives.int64)
|
|
|| self.unifier.unioned(ty, self.primitives.uint64)
|
|
{
|
|
self.ctx.i64_type()
|
|
} else {
|
|
codegen_unreachable!(self)
|
|
};
|
|
Some(ty.const_int(*val as u64, false).into())
|
|
}
|
|
Constant::Float(v) => {
|
|
assert!(self.unifier.unioned(ty, self.primitives.float));
|
|
let ty = self.ctx.f64_type();
|
|
Some(ty.const_float(*v).into())
|
|
}
|
|
Constant::Tuple(v) => {
|
|
let ty = self.unifier.get_ty(ty);
|
|
let (types, is_vararg_ctx) = if let TypeEnum::TTuple { ty, is_vararg_ctx } = &*ty {
|
|
(ty.clone(), *is_vararg_ctx)
|
|
} else {
|
|
codegen_unreachable!(self)
|
|
};
|
|
let values = zip(types, v.iter())
|
|
.map_while(|(ty, v)| self.gen_const(generator, v, ty))
|
|
.collect_vec();
|
|
|
|
if is_vararg_ctx || values.len() == v.len() {
|
|
let types = values.iter().map(BasicValueEnum::get_type).collect_vec();
|
|
let ty = self.ctx.struct_type(&types, false);
|
|
Some(ty.const_named_struct(&values).into())
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
Constant::Str(v) => {
|
|
assert!(self.unifier.unioned(ty, self.primitives.str));
|
|
if let Some(v) = self.const_strings.get(v) {
|
|
Some(*v)
|
|
} else {
|
|
let str_ptr = self
|
|
.builder
|
|
.build_global_string_ptr(v, "const")
|
|
.map(|v| v.as_pointer_value().into())
|
|
.unwrap();
|
|
let size = generator.get_size_type(self.ctx).const_int(v.len() as u64, false);
|
|
let ty = self.get_llvm_type(generator, self.primitives.str);
|
|
let val =
|
|
ty.into_struct_type().const_named_struct(&[str_ptr, size.into()]).into();
|
|
self.const_strings.insert(v.to_string(), val);
|
|
Some(val)
|
|
}
|
|
}
|
|
Constant::Ellipsis => {
|
|
let msg = self.gen_string(generator, "NotImplementedError");
|
|
|
|
self.raise_exn(
|
|
generator,
|
|
"0:NotImplementedError",
|
|
msg.into(),
|
|
[None, None, None],
|
|
self.current_loc,
|
|
);
|
|
|
|
None
|
|
}
|
|
_ => codegen_unreachable!(self),
|
|
}
|
|
}
|
|
|
|
/// Generates a binary operation `op` between two integral operands `lhs` and `rhs`.
|
|
pub fn gen_int_ops<G: CodeGenerator + ?Sized>(
|
|
&mut self,
|
|
generator: &mut G,
|
|
op: Operator,
|
|
lhs: BasicValueEnum<'ctx>,
|
|
rhs: BasicValueEnum<'ctx>,
|
|
signed: bool,
|
|
) -> BasicValueEnum<'ctx> {
|
|
let (BasicValueEnum::IntValue(lhs), BasicValueEnum::IntValue(rhs)) = (lhs, rhs) else {
|
|
codegen_unreachable!(self)
|
|
};
|
|
let float = self.ctx.f64_type();
|
|
match (op, signed) {
|
|
(Operator::Add, _) => {
|
|
self.builder.build_int_add(lhs, rhs, "add").map(Into::into).unwrap()
|
|
}
|
|
(Operator::Sub, _) => {
|
|
self.builder.build_int_sub(lhs, rhs, "sub").map(Into::into).unwrap()
|
|
}
|
|
(Operator::Mult, _) => {
|
|
self.builder.build_int_mul(lhs, rhs, "mul").map(Into::into).unwrap()
|
|
}
|
|
(Operator::Div, true) => {
|
|
let left = self.builder.build_signed_int_to_float(lhs, float, "i2f").unwrap();
|
|
let right = self.builder.build_signed_int_to_float(rhs, float, "i2f").unwrap();
|
|
self.builder.build_float_div(left, right, "fdiv").map(Into::into).unwrap()
|
|
}
|
|
(Operator::Div, false) => {
|
|
let left = self.builder.build_unsigned_int_to_float(lhs, float, "i2f").unwrap();
|
|
let right = self.builder.build_unsigned_int_to_float(rhs, float, "i2f").unwrap();
|
|
self.builder.build_float_div(left, right, "fdiv").map(Into::into).unwrap()
|
|
}
|
|
(Operator::Mod, true) => {
|
|
self.builder.build_int_signed_rem(lhs, rhs, "mod").map(Into::into).unwrap()
|
|
}
|
|
(Operator::Mod, false) => {
|
|
self.builder.build_int_unsigned_rem(lhs, rhs, "mod").map(Into::into).unwrap()
|
|
}
|
|
(Operator::BitOr, _) => self.builder.build_or(lhs, rhs, "or").map(Into::into).unwrap(),
|
|
(Operator::BitXor, _) => {
|
|
self.builder.build_xor(lhs, rhs, "xor").map(Into::into).unwrap()
|
|
}
|
|
(Operator::BitAnd, _) => {
|
|
self.builder.build_and(lhs, rhs, "and").map(Into::into).unwrap()
|
|
}
|
|
|
|
// Sign-ness of bitshift operators are always determined by the left operand
|
|
(Operator::LShift | Operator::RShift, signed) => {
|
|
// RHS operand is always 32 bits
|
|
assert_eq!(rhs.get_type().get_bit_width(), 32);
|
|
|
|
let common_type = lhs.get_type();
|
|
let rhs = if common_type.get_bit_width() > 32 {
|
|
if signed {
|
|
self.builder.build_int_s_extend(rhs, common_type, "").unwrap()
|
|
} else {
|
|
self.builder.build_int_z_extend(rhs, common_type, "").unwrap()
|
|
}
|
|
} else {
|
|
rhs
|
|
};
|
|
|
|
let rhs_gez = self
|
|
.builder
|
|
.build_int_compare(IntPredicate::SGE, rhs, common_type.const_zero(), "")
|
|
.unwrap();
|
|
self.make_assert(
|
|
generator,
|
|
rhs_gez,
|
|
"ValueError",
|
|
"negative shift count",
|
|
[None, None, None],
|
|
self.current_loc,
|
|
);
|
|
|
|
match op {
|
|
Operator::LShift => {
|
|
self.builder.build_left_shift(lhs, rhs, "lshift").map(Into::into).unwrap()
|
|
}
|
|
Operator::RShift => self
|
|
.builder
|
|
.build_right_shift(lhs, rhs, signed, "rshift")
|
|
.map(Into::into)
|
|
.unwrap(),
|
|
_ => codegen_unreachable!(self),
|
|
}
|
|
}
|
|
|
|
(Operator::FloorDiv, true) => {
|
|
self.builder.build_int_signed_div(lhs, rhs, "floordiv").map(Into::into).unwrap()
|
|
}
|
|
(Operator::FloorDiv, false) => {
|
|
self.builder.build_int_unsigned_div(lhs, rhs, "floordiv").map(Into::into).unwrap()
|
|
}
|
|
(Operator::Pow, s) => integer_power(generator, self, lhs, rhs, s).into(),
|
|
// special implementation?
|
|
(Operator::MatMult, _) => codegen_unreachable!(self),
|
|
}
|
|
}
|
|
|
|
/// Generates a binary operation `op` between two floating-point operands `lhs` and `rhs`.
|
|
pub fn gen_float_ops(
|
|
&mut self,
|
|
op: Operator,
|
|
lhs: BasicValueEnum<'ctx>,
|
|
rhs: BasicValueEnum<'ctx>,
|
|
) -> BasicValueEnum<'ctx> {
|
|
let (BasicValueEnum::FloatValue(lhs), BasicValueEnum::FloatValue(rhs)) = (lhs, rhs) else {
|
|
codegen_unreachable!(
|
|
self,
|
|
"Expected (FloatValue, FloatValue), got ({}, {})",
|
|
lhs.get_type(),
|
|
rhs.get_type()
|
|
)
|
|
};
|
|
match op {
|
|
Operator::Add => {
|
|
self.builder.build_float_add(lhs, rhs, "fadd").map(Into::into).unwrap()
|
|
}
|
|
Operator::Sub => {
|
|
self.builder.build_float_sub(lhs, rhs, "fsub").map(Into::into).unwrap()
|
|
}
|
|
Operator::Mult => {
|
|
self.builder.build_float_mul(lhs, rhs, "fmul").map(Into::into).unwrap()
|
|
}
|
|
Operator::Div => {
|
|
self.builder.build_float_div(lhs, rhs, "fdiv").map(Into::into).unwrap()
|
|
}
|
|
Operator::Mod => {
|
|
self.builder.build_float_rem(lhs, rhs, "fmod").map(Into::into).unwrap()
|
|
}
|
|
Operator::FloorDiv => {
|
|
let div = self.builder.build_float_div(lhs, rhs, "fdiv").unwrap();
|
|
call_float_floor(self, div, Some("floor")).into()
|
|
}
|
|
Operator::Pow => call_float_pow(self, lhs, rhs, Some("f_pow")).into(),
|
|
// special implementation?
|
|
_ => unimplemented!(),
|
|
}
|
|
}
|
|
|
|
pub fn build_call_or_invoke(
|
|
&mut self,
|
|
fun: FunctionValue<'ctx>,
|
|
params: &[BasicValueEnum<'ctx>],
|
|
call_name: &str,
|
|
) -> Option<BasicValueEnum<'ctx>> {
|
|
let mut loc_params: Vec<BasicValueEnum<'ctx>> = Vec::new();
|
|
let mut return_slot = None;
|
|
|
|
let loc = self.debug_info.0.create_debug_location(
|
|
self.ctx,
|
|
self.current_loc.row as u32,
|
|
self.current_loc.column as u32,
|
|
self.debug_info.2,
|
|
None,
|
|
);
|
|
self.builder.set_current_debug_location(loc);
|
|
|
|
if fun.count_params() > 0 {
|
|
let sret_id = Attribute::get_named_enum_kind_id("sret");
|
|
let byref_id = Attribute::get_named_enum_kind_id("byref");
|
|
let byval_id = Attribute::get_named_enum_kind_id("byval");
|
|
|
|
let offset = if fun.get_enum_attribute(AttributeLoc::Param(0), sret_id).is_some() {
|
|
return_slot = Some(
|
|
self.builder
|
|
.build_alloca(
|
|
fun.get_type().get_param_types()[0]
|
|
.into_pointer_type()
|
|
.get_element_type()
|
|
.into_struct_type(),
|
|
call_name,
|
|
)
|
|
.unwrap(),
|
|
);
|
|
loc_params.push((*return_slot.as_ref().unwrap()).into());
|
|
1
|
|
} else {
|
|
0
|
|
};
|
|
for (i, param) in params.iter().enumerate() {
|
|
let loc = AttributeLoc::Param((i + offset) as u32);
|
|
if fun.get_enum_attribute(loc, byref_id).is_some()
|
|
|| fun.get_enum_attribute(loc, byval_id).is_some()
|
|
{
|
|
// lazy update
|
|
if loc_params.is_empty() {
|
|
loc_params.extend(params[0..i + offset].iter().copied());
|
|
}
|
|
let slot = gen_var(self, param.get_type(), Some(call_name)).unwrap();
|
|
loc_params.push(slot.into());
|
|
self.builder.build_store(slot, *param).unwrap();
|
|
} else if !loc_params.is_empty() {
|
|
loc_params.push(*param);
|
|
}
|
|
}
|
|
}
|
|
|
|
let params = if loc_params.is_empty() { params } else { &loc_params };
|
|
let params = fun
|
|
.get_type()
|
|
.get_param_types()
|
|
.into_iter()
|
|
.map(Some)
|
|
.chain(repeat(None))
|
|
.zip(params.iter())
|
|
.map(|(ty, val)| match (ty, val.get_type()) {
|
|
(Some(BasicTypeEnum::PointerType(arg_ty)), BasicTypeEnum::PointerType(val_ty))
|
|
if {
|
|
ty.unwrap() != val.get_type()
|
|
&& arg_ty.get_element_type().is_struct_type()
|
|
&& val_ty.get_element_type().is_struct_type()
|
|
} =>
|
|
{
|
|
self.builder.build_bit_cast(*val, arg_ty, "call_arg_cast").unwrap()
|
|
}
|
|
_ => *val,
|
|
})
|
|
.collect_vec();
|
|
|
|
let result = if let Some(target) = self.unwind_target {
|
|
let current = self.builder.get_insert_block().unwrap().get_parent().unwrap();
|
|
let then_block = self.ctx.append_basic_block(current, &format!("after.{call_name}"));
|
|
let result = self
|
|
.builder
|
|
.build_invoke(fun, ¶ms, then_block, target, call_name)
|
|
.map(CallSiteValue::try_as_basic_value)
|
|
.map(Either::left)
|
|
.unwrap();
|
|
self.builder.position_at_end(then_block);
|
|
result
|
|
} else {
|
|
let param: Vec<_> = params.iter().map(|v| (*v).into()).collect();
|
|
self.builder
|
|
.build_call(fun, ¶m, call_name)
|
|
.map(CallSiteValue::try_as_basic_value)
|
|
.map(Either::left)
|
|
.unwrap()
|
|
};
|
|
|
|
if let Some(slot) = return_slot {
|
|
Some(self.builder.build_load(slot, call_name).unwrap())
|
|
} else {
|
|
result
|
|
}
|
|
}
|
|
|
|
/// Helper function for generating a LLVM variable storing a [String].
|
|
pub fn gen_string<G, S>(&mut self, generator: &mut G, s: S) -> StructValue<'ctx>
|
|
where
|
|
G: CodeGenerator + ?Sized,
|
|
S: Into<String>,
|
|
{
|
|
self.gen_const(generator, &Constant::Str(s.into()), self.primitives.str)
|
|
.map(BasicValueEnum::into_struct_value)
|
|
.unwrap()
|
|
}
|
|
|
|
pub fn raise_exn<G: CodeGenerator + ?Sized>(
|
|
&mut self,
|
|
generator: &mut G,
|
|
name: &str,
|
|
msg: BasicValueEnum<'ctx>,
|
|
params: [Option<IntValue<'ctx>>; 3],
|
|
loc: Location,
|
|
) {
|
|
let zelf = if let Some(exception_val) = self.exception_val {
|
|
exception_val
|
|
} else {
|
|
let ty = self.get_llvm_type(generator, self.primitives.exception).into_pointer_type();
|
|
let zelf_ty: BasicTypeEnum = ty.get_element_type().into_struct_type().into();
|
|
let zelf = generator.gen_var_alloc(self, zelf_ty, Some("exn")).unwrap();
|
|
*self.exception_val.insert(zelf)
|
|
};
|
|
let int32 = self.ctx.i32_type();
|
|
let zero = int32.const_zero();
|
|
unsafe {
|
|
let id_ptr = self.builder.build_in_bounds_gep(zelf, &[zero, zero], "exn.id").unwrap();
|
|
let id = self.resolver.get_string_id(name);
|
|
self.builder.build_store(id_ptr, int32.const_int(id as u64, false)).unwrap();
|
|
let ptr = self
|
|
.builder
|
|
.build_in_bounds_gep(zelf, &[zero, int32.const_int(5, false)], "exn.msg")
|
|
.unwrap();
|
|
self.builder.build_store(ptr, msg).unwrap();
|
|
let i64_zero = self.ctx.i64_type().const_zero();
|
|
for (i, attr_ind) in [6, 7, 8].iter().enumerate() {
|
|
let ptr = self
|
|
.builder
|
|
.build_in_bounds_gep(
|
|
zelf,
|
|
&[zero, int32.const_int(*attr_ind, false)],
|
|
"exn.param",
|
|
)
|
|
.unwrap();
|
|
let val = params[i].map_or(i64_zero, |v| {
|
|
self.builder.build_int_s_extend(v, self.ctx.i64_type(), "sext").unwrap()
|
|
});
|
|
self.builder.build_store(ptr, val).unwrap();
|
|
}
|
|
}
|
|
gen_raise(generator, self, Some(&zelf.into()), loc);
|
|
}
|
|
|
|
pub fn make_assert<G: CodeGenerator + ?Sized>(
|
|
&mut self,
|
|
generator: &mut G,
|
|
cond: IntValue<'ctx>,
|
|
err_name: &str,
|
|
err_msg: &str,
|
|
params: [Option<IntValue<'ctx>>; 3],
|
|
loc: Location,
|
|
) {
|
|
let err_msg = self.gen_string(generator, err_msg);
|
|
self.make_assert_impl(generator, cond, err_name, err_msg.into(), params, loc);
|
|
}
|
|
|
|
pub fn make_assert_impl<G: CodeGenerator + ?Sized>(
|
|
&mut self,
|
|
generator: &mut G,
|
|
cond: IntValue<'ctx>,
|
|
err_name: &str,
|
|
err_msg: BasicValueEnum<'ctx>,
|
|
params: [Option<IntValue<'ctx>>; 3],
|
|
loc: Location,
|
|
) {
|
|
let i1 = self.ctx.bool_type();
|
|
let i1_true = i1.const_all_ones();
|
|
// we assume that the condition is most probably true, so the normal path is the most
|
|
// probable path
|
|
// even if this assumption is violated, it does not matter as exception unwinding is
|
|
// slow anyway...
|
|
let cond = call_expect(self, cond, i1_true, Some("expect"));
|
|
let current_bb = self.builder.get_insert_block().unwrap();
|
|
let current_fun = current_bb.get_parent().unwrap();
|
|
let then_block = self.ctx.insert_basic_block_after(current_bb, "succ");
|
|
let exn_block = self.ctx.append_basic_block(current_fun, "fail");
|
|
self.builder.build_conditional_branch(cond, then_block, exn_block).unwrap();
|
|
self.builder.position_at_end(exn_block);
|
|
self.raise_exn(generator, err_name, err_msg, params, loc);
|
|
self.builder.position_at_end(then_block);
|
|
}
|
|
}
|
|
|
|
/// See [`CodeGenerator::gen_constructor`].
|
|
pub fn gen_constructor<'ctx, 'a, G: CodeGenerator>(
|
|
generator: &mut G,
|
|
ctx: &mut CodeGenContext<'ctx, 'a>,
|
|
signature: &FunSignature,
|
|
def: &TopLevelDef,
|
|
params: Vec<(Option<StrRef>, ValueEnum<'ctx>)>,
|
|
) -> Result<BasicValueEnum<'ctx>, String> {
|
|
let TopLevelDef::Class { methods, .. } = def else { codegen_unreachable!(ctx) };
|
|
|
|
// TODO: what about other fields that require alloca?
|
|
let fun_id = methods.iter().find(|method| method.0 == "__init__".into()).map(|method| method.2);
|
|
let ty = ctx.get_llvm_type(generator, signature.ret).into_pointer_type();
|
|
let zelf_ty: BasicTypeEnum = ty.get_element_type().try_into().unwrap();
|
|
let zelf: BasicValueEnum<'ctx> =
|
|
ctx.builder.build_alloca(zelf_ty, "alloca").map(Into::into).unwrap();
|
|
// call `__init__` if there is one
|
|
if let Some(fun_id) = fun_id {
|
|
let mut sign = signature.clone();
|
|
sign.ret = ctx.primitives.none;
|
|
generator.gen_call(ctx, Some((signature.ret, zelf.into())), (&sign, fun_id), params)?;
|
|
}
|
|
Ok(zelf)
|
|
}
|
|
|
|
/// See [`CodeGenerator::gen_func_instance`].
|
|
pub fn gen_func_instance<'ctx>(
|
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
obj: &Option<(Type, ValueEnum<'ctx>)>,
|
|
fun: (&FunSignature, &mut TopLevelDef, String),
|
|
id: usize,
|
|
) -> Result<String, String> {
|
|
let (
|
|
sign,
|
|
TopLevelDef::Function {
|
|
name, instance_to_symbol, instance_to_stmt, var_id, resolver, ..
|
|
},
|
|
key,
|
|
) = fun
|
|
else {
|
|
codegen_unreachable!(ctx)
|
|
};
|
|
|
|
if let Some(sym) = instance_to_symbol.get(&key) {
|
|
return Ok(sym.clone());
|
|
}
|
|
let symbol = format!("{}.{}", name, instance_to_symbol.len());
|
|
instance_to_symbol.insert(key, symbol.clone());
|
|
let mut filter = var_id.clone();
|
|
if let Some((obj_ty, _)) = &obj {
|
|
if let TypeEnum::TObj { params, .. } = &*ctx.unifier.get_ty(*obj_ty) {
|
|
filter.extend(params.keys());
|
|
}
|
|
}
|
|
let key = ctx.get_subst_key(obj.as_ref().map(|a| a.0), sign, Some(&filter));
|
|
let instance = instance_to_stmt.get(&key).unwrap();
|
|
|
|
let mut store = ConcreteTypeStore::new();
|
|
let mut cache = HashMap::new();
|
|
|
|
let subst = sign
|
|
.vars
|
|
.iter()
|
|
.map(|(id, ty)| {
|
|
(
|
|
*instance.subst.get(id).unwrap(),
|
|
store.from_unifier_type(&mut ctx.unifier, &ctx.primitives, *ty, &mut cache),
|
|
)
|
|
})
|
|
.collect();
|
|
|
|
let mut signature = store.from_signature(&mut ctx.unifier, &ctx.primitives, sign, &mut cache);
|
|
let ConcreteTypeEnum::TFunc { args, .. } = &mut signature else { codegen_unreachable!(ctx) };
|
|
|
|
if let Some(obj) = &obj {
|
|
let zelf = store.from_unifier_type(&mut ctx.unifier, &ctx.primitives, obj.0, &mut cache);
|
|
|
|
args.insert(
|
|
0,
|
|
ConcreteFuncArg {
|
|
name: "self".into(),
|
|
ty: zelf,
|
|
default_value: None,
|
|
is_vararg: false,
|
|
},
|
|
);
|
|
}
|
|
|
|
if let Some(vararg_arg) = sign.args.iter().find(|arg| arg.is_vararg) {
|
|
let va_count_arg = get_va_count_arg_name(vararg_arg.name);
|
|
|
|
args.insert(
|
|
args.len() - 1,
|
|
ConcreteFuncArg {
|
|
name: va_count_arg,
|
|
ty: store.from_unifier_type(
|
|
&mut ctx.unifier,
|
|
&ctx.primitives,
|
|
ctx.primitives.usize(),
|
|
&mut cache,
|
|
),
|
|
default_value: None,
|
|
is_vararg: false,
|
|
},
|
|
);
|
|
}
|
|
|
|
let signature = store.add_cty(signature);
|
|
|
|
ctx.registry.add_task(CodeGenTask {
|
|
symbol_name: symbol.clone(),
|
|
body: instance.body.clone(),
|
|
resolver: resolver.as_ref().unwrap().clone(),
|
|
calls: instance.calls.clone(),
|
|
subst,
|
|
signature,
|
|
store,
|
|
unifier_index: instance.unifier_id,
|
|
id,
|
|
});
|
|
Ok(symbol)
|
|
}
|
|
|
|
/// See [`CodeGenerator::gen_call`].
|
|
pub fn gen_call<'ctx, G: CodeGenerator>(
|
|
generator: &mut G,
|
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
obj: Option<(Type, ValueEnum<'ctx>)>,
|
|
fun: (&FunSignature, DefinitionId),
|
|
params: Vec<(Option<StrRef>, ValueEnum<'ctx>)>,
|
|
) -> Result<Option<BasicValueEnum<'ctx>>, String> {
|
|
let llvm_usize = generator.get_size_type(ctx.ctx);
|
|
|
|
let definition = ctx.top_level.definitions.read().get(fun.1 .0).cloned().unwrap();
|
|
let id;
|
|
let key;
|
|
let param_vals;
|
|
let is_extern;
|
|
let vararg_arg;
|
|
|
|
// Ensure that the function object only contains up to 1 vararg parameter
|
|
debug_assert!(fun.0.args.iter().filter(|arg| arg.is_vararg).count() <= 1);
|
|
|
|
let symbol = {
|
|
// make sure this lock guard is dropped at the end of this scope...
|
|
let def = definition.read();
|
|
match &*def {
|
|
TopLevelDef::Function {
|
|
instance_to_symbol,
|
|
instance_to_stmt,
|
|
codegen_callback,
|
|
..
|
|
} => {
|
|
if let Some(callback) = codegen_callback {
|
|
return callback.run(ctx, obj, fun, params, generator);
|
|
}
|
|
is_extern = instance_to_stmt.is_empty();
|
|
vararg_arg = fun.0.args.iter().find(|arg| arg.is_vararg);
|
|
let old_key = ctx.get_subst_key(obj.as_ref().map(|a| a.0), fun.0, None);
|
|
let mut keys = fun.0.args.clone();
|
|
let mut mapping = HashMap::<_, Vec<ValueEnum>>::new();
|
|
|
|
for (key, value) in params {
|
|
// Find the matching argument
|
|
let matching_param = fun
|
|
.0
|
|
.args
|
|
.iter()
|
|
.find_or_last(|p| key.is_some_and(|k| k == p.name))
|
|
.unwrap();
|
|
if matching_param.is_vararg {
|
|
if key.is_none() && !keys.is_empty() {
|
|
keys.remove(0);
|
|
}
|
|
|
|
// vararg is lowered into two arguments - va_count and `...`
|
|
// Handle va_count first, for each argument encountered we increment it by 1
|
|
let va_count = get_va_count_arg_name(matching_param.name);
|
|
if let Some(params) = mapping.get_mut(&va_count) {
|
|
debug_assert_eq!(params.len(), 1);
|
|
|
|
let param = params[0]
|
|
.clone()
|
|
.to_basic_value_enum(ctx, generator, ctx.primitives.usize())?
|
|
.into_int_value();
|
|
params[0] = param.const_add(llvm_usize.const_int(1, false)).into();
|
|
} else {
|
|
mapping.insert(va_count, vec![llvm_usize.const_int(1, false).into()]);
|
|
}
|
|
|
|
if let Some(param) = mapping.get_mut(&matching_param.name) {
|
|
param.push(value);
|
|
} else {
|
|
mapping.insert(key.unwrap_or(matching_param.name), vec![value]);
|
|
}
|
|
} else {
|
|
mapping.insert(key.unwrap_or_else(|| keys.remove(0).name), vec![value]);
|
|
}
|
|
}
|
|
|
|
// default value handling
|
|
for k in keys {
|
|
if mapping.contains_key(&k.name) {
|
|
continue;
|
|
}
|
|
|
|
if k.is_vararg {
|
|
mapping.insert(
|
|
get_va_count_arg_name(k.name),
|
|
vec![llvm_usize.const_zero().into()],
|
|
);
|
|
|
|
mapping.insert(k.name, Vec::default());
|
|
} else {
|
|
mapping.insert(
|
|
k.name,
|
|
vec![ctx
|
|
.gen_symbol_val(generator, &k.default_value.unwrap(), k.ty)
|
|
.into()],
|
|
);
|
|
}
|
|
}
|
|
|
|
// reorder the parameters
|
|
let mut real_params = fun
|
|
.0
|
|
.args
|
|
.iter()
|
|
.map(|arg| (mapping.remove(&arg.name).unwrap(), arg.ty))
|
|
.collect_vec();
|
|
if let Some(obj) = &obj {
|
|
real_params.insert(0, (vec![obj.1.clone()], obj.0));
|
|
}
|
|
if let Some(vararg) = vararg_arg {
|
|
let vararg_arg_name = get_va_count_arg_name(vararg.name);
|
|
|
|
real_params.insert(
|
|
real_params.len() - 1,
|
|
(mapping[&vararg_arg_name].clone(), ctx.primitives.usize()),
|
|
);
|
|
}
|
|
|
|
let static_params = real_params
|
|
.iter()
|
|
.enumerate()
|
|
.filter_map(|(i, (v, _))| {
|
|
if v.len() != 1 {
|
|
None
|
|
} else if let ValueEnum::Static(s) = &v[0] {
|
|
Some((i, s.clone()))
|
|
} else {
|
|
None
|
|
}
|
|
})
|
|
.collect_vec();
|
|
id = {
|
|
let ids = static_params
|
|
.iter()
|
|
.map(|(i, v)| (*i, v.get_unique_identifier()))
|
|
.collect_vec();
|
|
let mut store = ctx.static_value_store.lock();
|
|
if let Some(index) = store.lookup.get(&ids) {
|
|
*index
|
|
} else {
|
|
let length = store.store.len();
|
|
store.lookup.insert(ids, length);
|
|
store.store.push(static_params.into_iter().collect());
|
|
length
|
|
}
|
|
};
|
|
// special case: extern functions
|
|
key = if instance_to_stmt.is_empty() {
|
|
String::new()
|
|
} else {
|
|
format!("{id}:{old_key}")
|
|
};
|
|
param_vals = real_params
|
|
.into_iter()
|
|
.map(|(ps, t)| {
|
|
ps.into_iter().map(|p| p.to_basic_value_enum(ctx, generator, t)).collect()
|
|
})
|
|
.collect::<Result<Vec<Vec<_>>, _>>()?
|
|
.into_iter()
|
|
.flatten()
|
|
.collect::<Vec<_>>();
|
|
instance_to_symbol.get(&key).cloned().ok_or_else(String::new)
|
|
}
|
|
TopLevelDef::Class { .. } => {
|
|
return Ok(Some(generator.gen_constructor(ctx, fun.0, &def, params)?))
|
|
}
|
|
TopLevelDef::Variable { .. } => unreachable!(),
|
|
}
|
|
}
|
|
.or_else(|_: String| {
|
|
generator.gen_func_instance(ctx, obj.clone(), (fun.0, &mut *definition.write(), key), id)
|
|
})?;
|
|
let fun_val = ctx.module.get_function(&symbol).unwrap_or_else(|| {
|
|
let mut args = fun.0.args.clone();
|
|
if let Some(obj) = &obj {
|
|
args.insert(
|
|
0,
|
|
FuncArg { name: "self".into(), ty: obj.0, default_value: None, is_vararg: false },
|
|
);
|
|
}
|
|
let ret_type = if ctx.unifier.unioned(fun.0.ret, ctx.primitives.none) {
|
|
None
|
|
} else {
|
|
Some(ctx.get_llvm_abi_type(generator, fun.0.ret))
|
|
};
|
|
let has_sret = ret_type.map_or(false, |ret_type| need_sret(ret_type));
|
|
let mut byrefs = Vec::new();
|
|
let mut params = args
|
|
.iter()
|
|
.enumerate()
|
|
.filter(|(_, arg)| !arg.is_vararg)
|
|
.map(|(i, arg)| {
|
|
match ctx.get_llvm_abi_type(generator, arg.ty) {
|
|
BasicTypeEnum::StructType(ty) if is_extern => {
|
|
byrefs.push((i, ty));
|
|
ty.ptr_type(AddressSpace::default()).into()
|
|
}
|
|
x => x,
|
|
}
|
|
.into()
|
|
})
|
|
.collect_vec();
|
|
if has_sret {
|
|
params.insert(0, ret_type.unwrap().ptr_type(AddressSpace::default()).into());
|
|
}
|
|
let is_vararg = args.iter().any(|arg| arg.is_vararg);
|
|
if is_vararg {
|
|
params.push(generator.get_size_type(ctx.ctx).into());
|
|
}
|
|
let fun_ty = match ret_type {
|
|
Some(ret_type) if !has_sret => ret_type.fn_type(¶ms, is_vararg),
|
|
_ => ctx.ctx.void_type().fn_type(¶ms, is_vararg),
|
|
};
|
|
let fun_val = ctx.module.add_function(&symbol, fun_ty, None);
|
|
let offset = if has_sret {
|
|
fun_val.add_attribute(
|
|
AttributeLoc::Param(0),
|
|
ctx.ctx.create_type_attribute(
|
|
Attribute::get_named_enum_kind_id("sret"),
|
|
ret_type.unwrap().as_any_type_enum(),
|
|
),
|
|
);
|
|
1
|
|
} else {
|
|
0
|
|
};
|
|
|
|
// The attribute ID used to mark arguments of a structure type.
|
|
// Structure-Typed parameters of extern functions must **not** be marked as `byval`, as
|
|
// `byval` explicitly specifies that the argument is to be passed on the stack, which breaks
|
|
// on most ABIs where the first several arguments are expected to be passed in registers.
|
|
let passing_attr_id =
|
|
Attribute::get_named_enum_kind_id(if is_extern { "byref" } else { "byval" });
|
|
for (i, ty) in byrefs {
|
|
fun_val.add_attribute(
|
|
AttributeLoc::Param((i as u32) + offset),
|
|
ctx.ctx.create_type_attribute(passing_attr_id, ty.as_any_type_enum()),
|
|
);
|
|
}
|
|
fun_val
|
|
});
|
|
|
|
// Convert boolean parameter values into i1
|
|
let vararg_ty = vararg_arg.map(|vararg| ctx.get_llvm_abi_type(generator, vararg.ty));
|
|
let param_vals = fun_val
|
|
.get_params()
|
|
.iter()
|
|
.map(BasicValueEnum::get_type)
|
|
.chain(repeat_with(|| vararg_ty.unwrap()))
|
|
.zip(param_vals)
|
|
.map(|(p, v)| {
|
|
if p.is_int_type() && v.is_int_value() {
|
|
let expected_ty = p.into_int_type();
|
|
let param_val = v.into_int_value();
|
|
|
|
if expected_ty.get_bit_width() == 1 && param_val.get_type().get_bit_width() != 1 {
|
|
generator.bool_to_i1(ctx, param_val)
|
|
} else {
|
|
param_val
|
|
}
|
|
.into()
|
|
} else {
|
|
v
|
|
}
|
|
})
|
|
.collect_vec();
|
|
|
|
Ok(ctx.build_call_or_invoke(fun_val, ¶m_vals, "call"))
|
|
}
|
|
|
|
/// Generates three LLVM variables representing the start, stop, and step values of a [range] class
|
|
/// respectively.
|
|
pub fn destructure_range<'ctx>(
|
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
range: RangeValue<'ctx>,
|
|
) -> (IntValue<'ctx>, IntValue<'ctx>, IntValue<'ctx>) {
|
|
let start = range.load_start(ctx, None);
|
|
let end = range.load_end(ctx, None);
|
|
let step = range.load_step(ctx, None);
|
|
(start, end, step)
|
|
}
|
|
|
|
/// Allocates a List structure with the given [type][ty] and [length]. The name of the resulting
|
|
/// LLVM value is `{name}.addr`, or `list.addr` if [name] is not specified.
|
|
///
|
|
/// Setting `ty` to [`None`] implies that the list is empty **and** does not have a known element
|
|
/// type, and will therefore set the `list.data` type as `size_t*`. It is undefined behavior to
|
|
/// generate a sized list with an unknown element type.
|
|
pub fn allocate_list<'ctx, G: CodeGenerator + ?Sized>(
|
|
generator: &mut G,
|
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
ty: Option<BasicTypeEnum<'ctx>>,
|
|
length: IntValue<'ctx>,
|
|
name: Option<&'ctx str>,
|
|
) -> ListValue<'ctx> {
|
|
let llvm_usize = generator.get_size_type(ctx.ctx);
|
|
let llvm_elem_ty = ty.unwrap_or(llvm_usize.into());
|
|
|
|
// List structure; type { ty*, size_t }
|
|
let arr_ty = ListType::new(generator, ctx.ctx, llvm_elem_ty);
|
|
let list = arr_ty.alloca(generator, ctx, name);
|
|
|
|
let length = ctx.builder.build_int_z_extend(length, llvm_usize, "").unwrap();
|
|
list.store_size(ctx, generator, length);
|
|
list.create_data(ctx, llvm_elem_ty, None);
|
|
|
|
list
|
|
}
|
|
|
|
/// Generates LLVM IR for a [list comprehension expression][expr].
|
|
pub fn gen_comprehension<'ctx, G: CodeGenerator>(
|
|
generator: &mut G,
|
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
expr: &Expr<Option<Type>>,
|
|
) -> Result<Option<BasicValueEnum<'ctx>>, String> {
|
|
let ExprKind::ListComp { elt, generators } = &expr.node else { codegen_unreachable!(ctx) };
|
|
|
|
let current = ctx.builder.get_insert_block().unwrap().get_parent().unwrap();
|
|
|
|
let init_bb = ctx.ctx.append_basic_block(current, "listcomp.init");
|
|
let test_bb = ctx.ctx.append_basic_block(current, "listcomp.test");
|
|
let body_bb = ctx.ctx.append_basic_block(current, "listcomp.body");
|
|
let cont_bb = ctx.ctx.append_basic_block(current, "listcomp.cont");
|
|
|
|
ctx.builder.build_unconditional_branch(init_bb).unwrap();
|
|
|
|
ctx.builder.position_at_end(init_bb);
|
|
|
|
let Comprehension { target, iter, ifs, .. } = &generators[0];
|
|
|
|
let iter_ty = iter.custom.unwrap();
|
|
let iter_val = if let Some(v) = generator.gen_expr(ctx, iter)? {
|
|
v.to_basic_value_enum(ctx, generator, iter_ty)?
|
|
} else {
|
|
for bb in [test_bb, body_bb, cont_bb] {
|
|
ctx.builder.position_at_end(bb);
|
|
ctx.builder.build_unreachable().unwrap();
|
|
}
|
|
|
|
return Ok(None);
|
|
};
|
|
let int32 = ctx.ctx.i32_type();
|
|
let size_t = generator.get_size_type(ctx.ctx);
|
|
let zero_size_t = size_t.const_zero();
|
|
let zero_32 = int32.const_zero();
|
|
|
|
let index = generator.gen_var_alloc(ctx, size_t.into(), Some("index.addr"))?;
|
|
ctx.builder.build_store(index, zero_size_t).unwrap();
|
|
|
|
let elem_ty = ctx.get_llvm_type(generator, elt.custom.unwrap());
|
|
let list;
|
|
|
|
match &*ctx.unifier.get_ty(iter_ty) {
|
|
TypeEnum::TObj { obj_id, .. }
|
|
if *obj_id == ctx.primitives.range.obj_id(&ctx.unifier).unwrap() =>
|
|
{
|
|
let iter_val =
|
|
RangeValue::from_pointer_value(iter_val.into_pointer_value(), Some("range"));
|
|
let (start, stop, step) = destructure_range(ctx, iter_val);
|
|
let diff = ctx.builder.build_int_sub(stop, start, "diff").unwrap();
|
|
// add 1 to the length as the value is rounded to zero
|
|
// the length may be 1 more than the actual length if the division is exact, but the
|
|
// length is a upper bound only anyway so it does not matter.
|
|
let length = ctx.builder.build_int_signed_div(diff, step, "div").unwrap();
|
|
let length =
|
|
ctx.builder.build_int_add(length, int32.const_int(1, false), "add1").unwrap();
|
|
// in case length is non-positive
|
|
let is_valid =
|
|
ctx.builder.build_int_compare(IntPredicate::SGT, length, zero_32, "check").unwrap();
|
|
|
|
let list_alloc_size = ctx
|
|
.builder
|
|
.build_select(
|
|
is_valid,
|
|
ctx.builder
|
|
.build_int_z_extend_or_bit_cast(length, size_t, "z_ext_len")
|
|
.unwrap(),
|
|
zero_size_t,
|
|
"listcomp.alloc_size",
|
|
)
|
|
.unwrap();
|
|
list = allocate_list(
|
|
generator,
|
|
ctx,
|
|
Some(elem_ty),
|
|
list_alloc_size.into_int_value(),
|
|
Some("listcomp.addr"),
|
|
);
|
|
|
|
let i = generator.gen_store_target(ctx, target, Some("i.addr"))?.unwrap();
|
|
ctx.builder
|
|
.build_store(i, ctx.builder.build_int_sub(start, step, "start_init").unwrap())
|
|
.unwrap();
|
|
|
|
ctx.builder
|
|
.build_conditional_branch(
|
|
gen_in_range_check(ctx, start, stop, step),
|
|
test_bb,
|
|
cont_bb,
|
|
)
|
|
.unwrap();
|
|
|
|
ctx.builder.position_at_end(test_bb);
|
|
// add and test
|
|
let tmp = ctx
|
|
.builder
|
|
.build_int_add(
|
|
ctx.builder.build_load(i, "i").map(BasicValueEnum::into_int_value).unwrap(),
|
|
step,
|
|
"start_loop",
|
|
)
|
|
.unwrap();
|
|
ctx.builder.build_store(i, tmp).unwrap();
|
|
ctx.builder
|
|
.build_conditional_branch(
|
|
gen_in_range_check(ctx, tmp, stop, step),
|
|
body_bb,
|
|
cont_bb,
|
|
)
|
|
.unwrap();
|
|
|
|
ctx.builder.position_at_end(body_bb);
|
|
}
|
|
TypeEnum::TObj { obj_id, .. }
|
|
if *obj_id == ctx.primitives.list.obj_id(&ctx.unifier).unwrap() =>
|
|
{
|
|
let length = ctx
|
|
.build_gep_and_load(
|
|
iter_val.into_pointer_value(),
|
|
&[zero_size_t, int32.const_int(1, false)],
|
|
Some("length"),
|
|
)
|
|
.into_int_value();
|
|
list = allocate_list(generator, ctx, Some(elem_ty), length, Some("listcomp"));
|
|
|
|
let counter = generator.gen_var_alloc(ctx, size_t.into(), Some("counter.addr"))?;
|
|
// counter = -1
|
|
ctx.builder.build_store(counter, size_t.const_all_ones()).unwrap();
|
|
ctx.builder.build_unconditional_branch(test_bb).unwrap();
|
|
|
|
ctx.builder.position_at_end(test_bb);
|
|
let tmp =
|
|
ctx.builder.build_load(counter, "i").map(BasicValueEnum::into_int_value).unwrap();
|
|
let tmp = ctx.builder.build_int_add(tmp, size_t.const_int(1, false), "inc").unwrap();
|
|
ctx.builder.build_store(counter, tmp).unwrap();
|
|
let cmp = ctx.builder.build_int_compare(IntPredicate::SLT, tmp, length, "cmp").unwrap();
|
|
ctx.builder.build_conditional_branch(cmp, body_bb, cont_bb).unwrap();
|
|
|
|
ctx.builder.position_at_end(body_bb);
|
|
let arr_ptr = ctx
|
|
.build_gep_and_load(
|
|
iter_val.into_pointer_value(),
|
|
&[zero_size_t, zero_32],
|
|
Some("arr.addr"),
|
|
)
|
|
.into_pointer_value();
|
|
let val = ctx.build_gep_and_load(arr_ptr, &[tmp], Some("val"));
|
|
generator.gen_assign(ctx, target, val.into(), elt.custom.unwrap())?;
|
|
}
|
|
_ => {
|
|
panic!(
|
|
"unsupported list comprehension iterator type: {}",
|
|
ctx.unifier.stringify(iter_ty)
|
|
);
|
|
}
|
|
}
|
|
|
|
// Emits the content of `cont_bb`
|
|
let emit_cont_bb =
|
|
|ctx: &CodeGenContext<'ctx, '_>, generator: &dyn CodeGenerator, list: ListValue<'ctx>| {
|
|
ctx.builder.position_at_end(cont_bb);
|
|
list.store_size(
|
|
ctx,
|
|
generator,
|
|
ctx.builder.build_load(index, "index").map(BasicValueEnum::into_int_value).unwrap(),
|
|
);
|
|
};
|
|
|
|
for cond in ifs {
|
|
let result = if let Some(v) = generator.gen_expr(ctx, cond)? {
|
|
v.to_basic_value_enum(ctx, generator, cond.custom.unwrap())?.into_int_value()
|
|
} else {
|
|
// Bail if the predicate is an ellipsis - Emit cont_bb contents in case the
|
|
// no element matches the predicate
|
|
emit_cont_bb(ctx, generator, list);
|
|
|
|
return Ok(None);
|
|
};
|
|
let result = generator.bool_to_i1(ctx, result);
|
|
let succ = ctx.ctx.append_basic_block(current, "then");
|
|
ctx.builder.build_conditional_branch(result, succ, test_bb).unwrap();
|
|
|
|
ctx.builder.position_at_end(succ);
|
|
}
|
|
|
|
let Some(elem) = generator.gen_expr(ctx, elt)? else {
|
|
// Similarly, bail if the generator expression is an ellipsis, but keep cont_bb contents
|
|
emit_cont_bb(ctx, generator, list);
|
|
|
|
return Ok(None);
|
|
};
|
|
let i = ctx.builder.build_load(index, "i").map(BasicValueEnum::into_int_value).unwrap();
|
|
let elem_ptr =
|
|
unsafe { list.data().ptr_offset_unchecked(ctx, generator, &i, Some("elem_ptr")) };
|
|
let val = elem.to_basic_value_enum(ctx, generator, elt.custom.unwrap())?;
|
|
ctx.builder.build_store(elem_ptr, val).unwrap();
|
|
ctx.builder
|
|
.build_store(
|
|
index,
|
|
ctx.builder.build_int_add(i, size_t.const_int(1, false), "inc").unwrap(),
|
|
)
|
|
.unwrap();
|
|
ctx.builder.build_unconditional_branch(test_bb).unwrap();
|
|
|
|
emit_cont_bb(ctx, generator, list);
|
|
|
|
Ok(Some(list.as_base_value().into()))
|
|
}
|
|
|
|
/// Generates LLVM IR for a binary operator expression using the [`Type`] and
|
|
/// [LLVM value][`BasicValueEnum`] of the operands.
|
|
pub fn gen_binop_expr_with_values<'ctx, G: CodeGenerator>(
|
|
generator: &mut G,
|
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
left: (&Option<Type>, BasicValueEnum<'ctx>),
|
|
op: Binop,
|
|
right: (&Option<Type>, BasicValueEnum<'ctx>),
|
|
loc: Location,
|
|
) -> Result<Option<ValueEnum<'ctx>>, String> {
|
|
let (left_ty, left_val) = left;
|
|
let (right_ty, right_val) = right;
|
|
|
|
let ty1 = ctx.unifier.get_representative(left_ty.unwrap());
|
|
let ty2 = ctx.unifier.get_representative(right_ty.unwrap());
|
|
|
|
// we can directly compare the types, because we've got their representatives
|
|
// which would be unchanged until further unification, which we would never do
|
|
// when doing code generation for function instances
|
|
if ty1 == ty2 && [ctx.primitives.int32, ctx.primitives.int64].contains(&ty1) {
|
|
Ok(Some(ctx.gen_int_ops(generator, op.base, left_val, right_val, true).into()))
|
|
} else if ty1 == ty2 && [ctx.primitives.uint32, ctx.primitives.uint64].contains(&ty1) {
|
|
Ok(Some(ctx.gen_int_ops(generator, op.base, left_val, right_val, false).into()))
|
|
} else if [Operator::LShift, Operator::RShift].contains(&op.base) {
|
|
let signed = [ctx.primitives.int32, ctx.primitives.int64].contains(&ty1);
|
|
Ok(Some(ctx.gen_int_ops(generator, op.base, left_val, right_val, signed).into()))
|
|
} else if ty1 == ty2 && ctx.primitives.float == ty1 {
|
|
Ok(Some(ctx.gen_float_ops(op.base, left_val, right_val).into()))
|
|
} else if ty1 == ctx.primitives.float && ty2 == ctx.primitives.int32 {
|
|
// Pow is the only operator that would pass typecheck between float and int
|
|
assert_eq!(op.base, Operator::Pow);
|
|
let res = call_float_powi(
|
|
ctx,
|
|
left_val.into_float_value(),
|
|
right_val.into_int_value(),
|
|
Some("f_pow_i"),
|
|
);
|
|
Ok(Some(res.into()))
|
|
} else if ty1.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::List.id())
|
|
|| ty2.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::List.id())
|
|
{
|
|
let llvm_usize = generator.get_size_type(ctx.ctx);
|
|
|
|
if op.variant == BinopVariant::AugAssign {
|
|
todo!("Augmented assignment operators not implemented for lists")
|
|
}
|
|
|
|
match op.base {
|
|
Operator::Add => {
|
|
debug_assert_eq!(ty1.obj_id(&ctx.unifier), Some(PrimDef::List.id()));
|
|
debug_assert_eq!(ty2.obj_id(&ctx.unifier), Some(PrimDef::List.id()));
|
|
|
|
let elem_ty1 =
|
|
if let TypeEnum::TObj { params, .. } = &*ctx.unifier.get_ty_immutable(ty1) {
|
|
ctx.unifier.get_representative(*params.iter().next().unwrap().1)
|
|
} else {
|
|
codegen_unreachable!(ctx)
|
|
};
|
|
let elem_ty2 =
|
|
if let TypeEnum::TObj { params, .. } = &*ctx.unifier.get_ty_immutable(ty2) {
|
|
ctx.unifier.get_representative(*params.iter().next().unwrap().1)
|
|
} else {
|
|
codegen_unreachable!(ctx)
|
|
};
|
|
debug_assert!(ctx.unifier.unioned(elem_ty1, elem_ty2));
|
|
|
|
let llvm_elem_ty = ctx.get_llvm_type(generator, elem_ty1);
|
|
let sizeof_elem = llvm_elem_ty.size_of().unwrap();
|
|
|
|
let lhs =
|
|
ListValue::from_pointer_value(left_val.into_pointer_value(), llvm_usize, None);
|
|
let rhs =
|
|
ListValue::from_pointer_value(right_val.into_pointer_value(), llvm_usize, None);
|
|
|
|
let size = ctx
|
|
.builder
|
|
.build_int_add(lhs.load_size(ctx, None), rhs.load_size(ctx, None), "")
|
|
.unwrap();
|
|
|
|
let new_list = allocate_list(generator, ctx, Some(llvm_elem_ty), size, None);
|
|
|
|
let lhs_size = ctx
|
|
.builder
|
|
.build_int_z_extend_or_bit_cast(
|
|
lhs.load_size(ctx, None),
|
|
sizeof_elem.get_type(),
|
|
"",
|
|
)
|
|
.unwrap();
|
|
let lhs_len = ctx.builder.build_int_mul(lhs_size, sizeof_elem, "").unwrap();
|
|
|
|
let rhs_size = ctx
|
|
.builder
|
|
.build_int_z_extend_or_bit_cast(
|
|
rhs.load_size(ctx, None),
|
|
sizeof_elem.get_type(),
|
|
"",
|
|
)
|
|
.unwrap();
|
|
let rhs_len = ctx.builder.build_int_mul(rhs_size, sizeof_elem, "").unwrap();
|
|
|
|
let list_ptr = new_list.data().base_ptr(ctx, generator);
|
|
call_memcpy_generic(
|
|
ctx,
|
|
list_ptr,
|
|
lhs.data().base_ptr(ctx, generator),
|
|
lhs_len,
|
|
ctx.ctx.bool_type().const_zero(),
|
|
);
|
|
|
|
let list_ptr = unsafe {
|
|
new_list.data().ptr_offset_unchecked(
|
|
ctx,
|
|
generator,
|
|
&lhs.load_size(ctx, None),
|
|
None,
|
|
)
|
|
};
|
|
call_memcpy_generic(
|
|
ctx,
|
|
list_ptr,
|
|
rhs.data().base_ptr(ctx, generator),
|
|
rhs_len,
|
|
ctx.ctx.bool_type().const_zero(),
|
|
);
|
|
|
|
Ok(Some(new_list.as_base_value().into()))
|
|
}
|
|
|
|
Operator::Mult => {
|
|
let (elem_ty, list_val, int_val) =
|
|
if ty1.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::List.id()) {
|
|
let elem_ty = if let TypeEnum::TObj { params, .. } =
|
|
&*ctx.unifier.get_ty_immutable(ty1)
|
|
{
|
|
*params.iter().next().unwrap().1
|
|
} else {
|
|
codegen_unreachable!(ctx)
|
|
};
|
|
|
|
(elem_ty, left_val, right_val)
|
|
} else if ty2.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::List.id()) {
|
|
let elem_ty = if let TypeEnum::TObj { params, .. } =
|
|
&*ctx.unifier.get_ty_immutable(ty2)
|
|
{
|
|
*params.iter().next().unwrap().1
|
|
} else {
|
|
codegen_unreachable!(ctx)
|
|
};
|
|
|
|
(elem_ty, right_val, left_val)
|
|
} else {
|
|
codegen_unreachable!(ctx)
|
|
};
|
|
let list_val =
|
|
ListValue::from_pointer_value(list_val.into_pointer_value(), llvm_usize, None);
|
|
let int_val = ctx
|
|
.builder
|
|
.build_int_s_extend(int_val.into_int_value(), llvm_usize, "")
|
|
.unwrap();
|
|
// [...] * (i where i < 0) => []
|
|
let int_val = call_int_smax(ctx, int_val, llvm_usize.const_zero(), None);
|
|
|
|
let elem_llvm_ty = ctx.get_llvm_type(generator, elem_ty);
|
|
let sizeof_elem = elem_llvm_ty.size_of().unwrap();
|
|
|
|
let new_list = allocate_list(
|
|
generator,
|
|
ctx,
|
|
Some(elem_llvm_ty),
|
|
ctx.builder.build_int_mul(list_val.load_size(ctx, None), int_val, "").unwrap(),
|
|
None,
|
|
);
|
|
|
|
gen_for_callback_incrementing(
|
|
generator,
|
|
ctx,
|
|
None,
|
|
llvm_usize.const_zero(),
|
|
(int_val, false),
|
|
|generator, ctx, _, i| {
|
|
let offset = ctx
|
|
.builder
|
|
.build_int_mul(i, list_val.load_size(ctx, None), "")
|
|
.unwrap();
|
|
let ptr = unsafe {
|
|
new_list.data().ptr_offset_unchecked(ctx, generator, &offset, None)
|
|
};
|
|
|
|
let list_size = ctx
|
|
.builder
|
|
.build_int_z_extend_or_bit_cast(
|
|
list_val.load_size(ctx, None),
|
|
sizeof_elem.get_type(),
|
|
"",
|
|
)
|
|
.unwrap();
|
|
|
|
let memcpy_sz =
|
|
ctx.builder.build_int_mul(list_size, sizeof_elem, "").unwrap();
|
|
|
|
call_memcpy_generic(
|
|
ctx,
|
|
ptr,
|
|
list_val.data().base_ptr(ctx, generator),
|
|
memcpy_sz,
|
|
ctx.ctx.bool_type().const_zero(),
|
|
);
|
|
|
|
Ok(())
|
|
},
|
|
llvm_usize.const_int(1, false),
|
|
)?;
|
|
|
|
Ok(Some(new_list.as_base_value().into()))
|
|
}
|
|
|
|
_ => todo!("Operator not supported"),
|
|
}
|
|
} else if ty1.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id())
|
|
|| ty2.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id())
|
|
{
|
|
let llvm_usize = generator.get_size_type(ctx.ctx);
|
|
|
|
let is_ndarray1 = ty1.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id());
|
|
let is_ndarray2 = ty2.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id());
|
|
|
|
if is_ndarray1 && is_ndarray2 {
|
|
let (ndarray_dtype1, _) = unpack_ndarray_var_tys(&mut ctx.unifier, ty1);
|
|
let (ndarray_dtype2, _) = unpack_ndarray_var_tys(&mut ctx.unifier, ty2);
|
|
|
|
assert!(ctx.unifier.unioned(ndarray_dtype1, ndarray_dtype2));
|
|
|
|
let llvm_ndarray_dtype1 = ctx.get_llvm_type(generator, ndarray_dtype1);
|
|
let llvm_ndarray_dtype2 = ctx.get_llvm_type(generator, ndarray_dtype2);
|
|
|
|
let left_val = NDArrayValue::from_pointer_value(
|
|
left_val.into_pointer_value(),
|
|
llvm_ndarray_dtype1,
|
|
llvm_usize,
|
|
None,
|
|
);
|
|
let right_val = NDArrayValue::from_pointer_value(
|
|
right_val.into_pointer_value(),
|
|
llvm_ndarray_dtype2,
|
|
llvm_usize,
|
|
None,
|
|
);
|
|
|
|
let res = if op.base == Operator::MatMult {
|
|
// MatMult is the only binop which is not an elementwise op
|
|
numpy::ndarray_matmul_2d(
|
|
generator,
|
|
ctx,
|
|
ndarray_dtype1,
|
|
match op.variant {
|
|
BinopVariant::Normal => None,
|
|
BinopVariant::AugAssign => Some(left_val),
|
|
},
|
|
left_val,
|
|
right_val,
|
|
)?
|
|
} else {
|
|
numpy::ndarray_elementwise_binop_impl(
|
|
generator,
|
|
ctx,
|
|
ndarray_dtype1,
|
|
match op.variant {
|
|
BinopVariant::Normal => None,
|
|
BinopVariant::AugAssign => Some(left_val),
|
|
},
|
|
(ty1, left_val.as_base_value().into(), false),
|
|
(ty2, right_val.as_base_value().into(), false),
|
|
|generator, ctx, (lhs, rhs)| {
|
|
gen_binop_expr_with_values(
|
|
generator,
|
|
ctx,
|
|
(&Some(ndarray_dtype1), lhs),
|
|
op,
|
|
(&Some(ndarray_dtype2), rhs),
|
|
ctx.current_loc,
|
|
)?
|
|
.unwrap()
|
|
.to_basic_value_enum(
|
|
ctx,
|
|
generator,
|
|
ndarray_dtype1,
|
|
)
|
|
},
|
|
)?
|
|
};
|
|
|
|
Ok(Some(res.as_base_value().into()))
|
|
} else {
|
|
let (ndarray_dtype, _) =
|
|
unpack_ndarray_var_tys(&mut ctx.unifier, if is_ndarray1 { ty1 } else { ty2 });
|
|
let llvm_ndarray_dtype = ctx.get_llvm_type(generator, ndarray_dtype);
|
|
let ndarray_val = NDArrayValue::from_pointer_value(
|
|
if is_ndarray1 { left_val } else { right_val }.into_pointer_value(),
|
|
llvm_ndarray_dtype,
|
|
llvm_usize,
|
|
None,
|
|
);
|
|
let res = numpy::ndarray_elementwise_binop_impl(
|
|
generator,
|
|
ctx,
|
|
ndarray_dtype,
|
|
match op.variant {
|
|
BinopVariant::Normal => None,
|
|
BinopVariant::AugAssign => Some(ndarray_val),
|
|
},
|
|
(ty1, left_val, !is_ndarray1),
|
|
(ty2, right_val, !is_ndarray2),
|
|
|generator, ctx, (lhs, rhs)| {
|
|
gen_binop_expr_with_values(
|
|
generator,
|
|
ctx,
|
|
(&Some(ndarray_dtype), lhs),
|
|
op,
|
|
(&Some(ndarray_dtype), rhs),
|
|
ctx.current_loc,
|
|
)?
|
|
.unwrap()
|
|
.to_basic_value_enum(ctx, generator, ndarray_dtype)
|
|
},
|
|
)?;
|
|
|
|
Ok(Some(res.as_base_value().into()))
|
|
}
|
|
} else {
|
|
let left_ty_enum = ctx.unifier.get_ty_immutable(left_ty.unwrap());
|
|
let TypeEnum::TObj { fields, obj_id, .. } = left_ty_enum.as_ref() else {
|
|
codegen_unreachable!(ctx, "must be tobj")
|
|
};
|
|
let (op_name, id) = {
|
|
let normal_method_name = Binop::normal(op.base).op_info().method_name;
|
|
let assign_method_name = Binop::aug_assign(op.base).op_info().method_name;
|
|
|
|
// if is aug_assign, try aug_assign operator first
|
|
if op.variant == BinopVariant::AugAssign
|
|
&& fields.contains_key(&assign_method_name.into())
|
|
{
|
|
(assign_method_name.into(), *obj_id)
|
|
} else {
|
|
(normal_method_name.into(), *obj_id)
|
|
}
|
|
};
|
|
|
|
let signature = if let Some(call) = ctx.calls.get(&loc.into()) {
|
|
ctx.unifier.get_call_signature(*call).unwrap()
|
|
} else {
|
|
let left_enum_ty = ctx.unifier.get_ty_immutable(left_ty.unwrap());
|
|
let TypeEnum::TObj { fields, .. } = left_enum_ty.as_ref() else {
|
|
codegen_unreachable!(ctx, "must be tobj")
|
|
};
|
|
|
|
let fn_ty = fields.get(&op_name).unwrap().0;
|
|
let fn_ty_enum = ctx.unifier.get_ty_immutable(fn_ty);
|
|
let TypeEnum::TFunc(sig) = fn_ty_enum.as_ref() else { codegen_unreachable!(ctx) };
|
|
|
|
sig.clone()
|
|
};
|
|
let fun_id = {
|
|
let defs = ctx.top_level.definitions.read();
|
|
let obj_def = defs.get(id.0).unwrap().read();
|
|
let TopLevelDef::Class { methods, .. } = &*obj_def else { codegen_unreachable!(ctx) };
|
|
|
|
methods.iter().find(|method| method.0 == op_name).unwrap().2
|
|
};
|
|
generator
|
|
.gen_call(
|
|
ctx,
|
|
Some((left_ty.unwrap(), left_val.into())),
|
|
(&signature, fun_id),
|
|
vec![(None, right_val.into())],
|
|
)
|
|
.map(|f| f.map(Into::into))
|
|
}
|
|
}
|
|
|
|
/// Generates LLVM IR for a binary operator expression.
|
|
///
|
|
/// * `left` - The left-hand side of the binary operator.
|
|
/// * `op` - The operator applied on the operands.
|
|
/// * `right` - The right-hand side of the binary operator.
|
|
/// * `loc` - The location of the full expression.
|
|
/// * `is_aug_assign` - Whether the binary operator expression is also an assignment operator.
|
|
pub fn gen_binop_expr<'ctx, G: CodeGenerator>(
|
|
generator: &mut G,
|
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
left: &Expr<Option<Type>>,
|
|
op: Binop,
|
|
right: &Expr<Option<Type>>,
|
|
loc: Location,
|
|
) -> Result<Option<ValueEnum<'ctx>>, String> {
|
|
let left_val = if let Some(v) = generator.gen_expr(ctx, left)? {
|
|
v.to_basic_value_enum(ctx, generator, left.custom.unwrap())?
|
|
} else {
|
|
return Ok(None);
|
|
};
|
|
let right_val = if let Some(v) = generator.gen_expr(ctx, right)? {
|
|
v.to_basic_value_enum(ctx, generator, right.custom.unwrap())?
|
|
} else {
|
|
return Ok(None);
|
|
};
|
|
|
|
gen_binop_expr_with_values(
|
|
generator,
|
|
ctx,
|
|
(&left.custom, left_val),
|
|
op,
|
|
(&right.custom, right_val),
|
|
loc,
|
|
)
|
|
}
|
|
|
|
/// Generates LLVM IR for a unary operator expression using the [`Type`] and
|
|
/// [LLVM value][`BasicValueEnum`] of the operands.
|
|
pub fn gen_unaryop_expr_with_values<'ctx, G: CodeGenerator>(
|
|
generator: &mut G,
|
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
op: ast::Unaryop,
|
|
operand: (&Option<Type>, BasicValueEnum<'ctx>),
|
|
) -> Result<Option<ValueEnum<'ctx>>, String> {
|
|
let (ty, val) = operand;
|
|
let ty = ctx.unifier.get_representative(ty.unwrap());
|
|
|
|
Ok(Some(if ty == ctx.primitives.bool {
|
|
let val = val.into_int_value();
|
|
if op == ast::Unaryop::Not {
|
|
let not = ctx.builder.build_not(val, "not").unwrap();
|
|
let not_bool =
|
|
ctx.builder.build_and(not, not.get_type().const_int(1, false), "").unwrap();
|
|
|
|
not_bool.into()
|
|
} else {
|
|
let llvm_i32 = ctx.ctx.i32_type();
|
|
|
|
gen_unaryop_expr_with_values(
|
|
generator,
|
|
ctx,
|
|
op,
|
|
(
|
|
&Some(ctx.primitives.int32),
|
|
ctx.builder.build_int_z_extend(val, llvm_i32, "").map(Into::into).unwrap(),
|
|
),
|
|
)?
|
|
.unwrap()
|
|
}
|
|
} else if [
|
|
ctx.primitives.int32,
|
|
ctx.primitives.int64,
|
|
ctx.primitives.uint32,
|
|
ctx.primitives.uint64,
|
|
]
|
|
.contains(&ty)
|
|
{
|
|
let val = val.into_int_value();
|
|
match op {
|
|
ast::Unaryop::USub => ctx.builder.build_int_neg(val, "neg").map(Into::into).unwrap(),
|
|
ast::Unaryop::Invert => ctx.builder.build_not(val, "not").map(Into::into).unwrap(),
|
|
ast::Unaryop::Not => ctx
|
|
.builder
|
|
.build_int_compare(
|
|
inkwell::IntPredicate::EQ,
|
|
val,
|
|
val.get_type().const_zero(),
|
|
"not",
|
|
)
|
|
.map(Into::into)
|
|
.unwrap(),
|
|
ast::Unaryop::UAdd => val.into(),
|
|
}
|
|
} else if ty == ctx.primitives.float {
|
|
let val = val.into_float_value();
|
|
match op {
|
|
ast::Unaryop::USub => ctx.builder.build_float_neg(val, "neg").map(Into::into).unwrap(),
|
|
ast::Unaryop::Not => ctx
|
|
.builder
|
|
.build_float_compare(
|
|
inkwell::FloatPredicate::OEQ,
|
|
val,
|
|
val.get_type().const_zero(),
|
|
"not",
|
|
)
|
|
.map(Into::into)
|
|
.unwrap(),
|
|
_ => val.into(),
|
|
}
|
|
} else if ty.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id()) {
|
|
let llvm_usize = generator.get_size_type(ctx.ctx);
|
|
let (ndarray_dtype, _) = unpack_ndarray_var_tys(&mut ctx.unifier, ty);
|
|
let llvm_ndarray_dtype = ctx.get_llvm_type(generator, ndarray_dtype);
|
|
|
|
let val = NDArrayValue::from_pointer_value(
|
|
val.into_pointer_value(),
|
|
llvm_ndarray_dtype,
|
|
llvm_usize,
|
|
None,
|
|
);
|
|
|
|
// ndarray uses `~` rather than `not` to perform elementwise inversion, convert it before
|
|
// passing it to the elementwise codegen function
|
|
let op = if ndarray_dtype.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::Bool.id()) {
|
|
if op == ast::Unaryop::Invert {
|
|
ast::Unaryop::Not
|
|
} else {
|
|
codegen_unreachable!(
|
|
ctx,
|
|
"ufunc {} not supported for ndarray[bool, N]",
|
|
op.op_info().method_name,
|
|
)
|
|
}
|
|
} else {
|
|
op
|
|
};
|
|
|
|
let res = numpy::ndarray_elementwise_unaryop_impl(
|
|
generator,
|
|
ctx,
|
|
ndarray_dtype,
|
|
None,
|
|
val,
|
|
|generator, ctx, val| {
|
|
gen_unaryop_expr_with_values(generator, ctx, op, (&Some(ndarray_dtype), val))?
|
|
.unwrap()
|
|
.to_basic_value_enum(ctx, generator, ndarray_dtype)
|
|
},
|
|
)?;
|
|
|
|
res.as_base_value().into()
|
|
} else {
|
|
unimplemented!()
|
|
}))
|
|
}
|
|
|
|
/// Generates LLVM IR for a unary operator expression.
|
|
///
|
|
/// * `op` - The operator applied on the operand.
|
|
/// * `operand` - The unary operand.
|
|
pub fn gen_unaryop_expr<'ctx, G: CodeGenerator>(
|
|
generator: &mut G,
|
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
op: ast::Unaryop,
|
|
operand: &Expr<Option<Type>>,
|
|
) -> Result<Option<ValueEnum<'ctx>>, String> {
|
|
let val = if let Some(v) = generator.gen_expr(ctx, operand)? {
|
|
v.to_basic_value_enum(ctx, generator, operand.custom.unwrap())?
|
|
} else {
|
|
return Ok(None);
|
|
};
|
|
|
|
gen_unaryop_expr_with_values(generator, ctx, op, (&operand.custom, val))
|
|
}
|
|
|
|
/// Generates LLVM IR for a comparison operator expression using the [`Type`] and
|
|
/// [LLVM value][`BasicValueEnum`] of the operands.
|
|
pub fn gen_cmpop_expr_with_values<'ctx, G: CodeGenerator>(
|
|
generator: &mut G,
|
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
left: (Option<Type>, BasicValueEnum<'ctx>),
|
|
ops: &[ast::Cmpop],
|
|
comparators: &[(Option<Type>, BasicValueEnum<'ctx>)],
|
|
) -> Result<Option<ValueEnum<'ctx>>, String> {
|
|
debug_assert_eq!(comparators.len(), ops.len());
|
|
|
|
if comparators.len() == 1 {
|
|
let left_ty = ctx.unifier.get_representative(left.0.unwrap());
|
|
let right_ty = ctx.unifier.get_representative(comparators[0].0.unwrap());
|
|
|
|
if left_ty.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id())
|
|
|| right_ty.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id())
|
|
{
|
|
let llvm_usize = generator.get_size_type(ctx.ctx);
|
|
|
|
let (Some(left_ty), lhs) = left else { codegen_unreachable!(ctx) };
|
|
let (Some(right_ty), rhs) = comparators[0] else { codegen_unreachable!(ctx) };
|
|
let op = ops[0];
|
|
|
|
let is_ndarray1 =
|
|
left_ty.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id());
|
|
let is_ndarray2 =
|
|
right_ty.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id());
|
|
|
|
return if is_ndarray1 && is_ndarray2 {
|
|
let (ndarray_dtype1, _) = unpack_ndarray_var_tys(&mut ctx.unifier, left_ty);
|
|
let (ndarray_dtype2, _) = unpack_ndarray_var_tys(&mut ctx.unifier, right_ty);
|
|
|
|
assert!(ctx.unifier.unioned(ndarray_dtype1, ndarray_dtype2));
|
|
|
|
let llvm_ndarray_dtype1 = ctx.get_llvm_type(generator, ndarray_dtype1);
|
|
|
|
let left_val = NDArrayValue::from_pointer_value(
|
|
lhs.into_pointer_value(),
|
|
llvm_ndarray_dtype1,
|
|
llvm_usize,
|
|
None,
|
|
);
|
|
let res = numpy::ndarray_elementwise_binop_impl(
|
|
generator,
|
|
ctx,
|
|
ctx.primitives.bool,
|
|
None,
|
|
(left_ty, left_val.as_base_value().into(), false),
|
|
(right_ty, rhs, false),
|
|
|generator, ctx, (lhs, rhs)| {
|
|
let val = gen_cmpop_expr_with_values(
|
|
generator,
|
|
ctx,
|
|
(Some(ndarray_dtype1), lhs),
|
|
&[op],
|
|
&[(Some(ndarray_dtype2), rhs)],
|
|
)?
|
|
.unwrap()
|
|
.to_basic_value_enum(
|
|
ctx,
|
|
generator,
|
|
ctx.primitives.bool,
|
|
)?;
|
|
|
|
Ok(generator.bool_to_i8(ctx, val.into_int_value()).into())
|
|
},
|
|
)?;
|
|
|
|
Ok(Some(res.as_base_value().into()))
|
|
} else {
|
|
let (ndarray_dtype, _) = unpack_ndarray_var_tys(
|
|
&mut ctx.unifier,
|
|
if is_ndarray1 { left_ty } else { right_ty },
|
|
);
|
|
let res = numpy::ndarray_elementwise_binop_impl(
|
|
generator,
|
|
ctx,
|
|
ctx.primitives.bool,
|
|
None,
|
|
(left_ty, lhs, !is_ndarray1),
|
|
(right_ty, rhs, !is_ndarray2),
|
|
|generator, ctx, (lhs, rhs)| {
|
|
let val = gen_cmpop_expr_with_values(
|
|
generator,
|
|
ctx,
|
|
(Some(ndarray_dtype), lhs),
|
|
&[op],
|
|
&[(Some(ndarray_dtype), rhs)],
|
|
)?
|
|
.unwrap()
|
|
.to_basic_value_enum(
|
|
ctx,
|
|
generator,
|
|
ctx.primitives.bool,
|
|
)?;
|
|
|
|
Ok(generator.bool_to_i8(ctx, val.into_int_value()).into())
|
|
},
|
|
)?;
|
|
|
|
Ok(Some(res.as_base_value().into()))
|
|
};
|
|
}
|
|
}
|
|
|
|
let cmp_val = izip!(chain(once(&left), comparators.iter()), comparators.iter(), ops.iter(),)
|
|
.fold(Ok(None), |prev: Result<Option<_>, String>, (lhs, rhs, op)| {
|
|
let (left_ty, lhs) = lhs;
|
|
let (right_ty, rhs) = rhs;
|
|
|
|
let left_ty = ctx.unifier.get_representative(left_ty.unwrap());
|
|
let right_ty = ctx.unifier.get_representative(right_ty.unwrap());
|
|
|
|
let current = if [
|
|
ctx.primitives.int32,
|
|
ctx.primitives.int64,
|
|
ctx.primitives.uint32,
|
|
ctx.primitives.uint64,
|
|
ctx.primitives.bool,
|
|
]
|
|
.contains(&left_ty)
|
|
{
|
|
assert!(ctx.unifier.unioned(left_ty, right_ty));
|
|
|
|
let use_unsigned_ops =
|
|
[ctx.primitives.uint32, ctx.primitives.uint64].contains(&left_ty);
|
|
|
|
let lhs = lhs.into_int_value();
|
|
let rhs = rhs.into_int_value();
|
|
|
|
let op = match op {
|
|
ast::Cmpop::Eq | ast::Cmpop::Is => IntPredicate::EQ,
|
|
ast::Cmpop::NotEq => IntPredicate::NE,
|
|
_ if left_ty == ctx.primitives.bool => codegen_unreachable!(ctx),
|
|
ast::Cmpop::Lt => {
|
|
if use_unsigned_ops {
|
|
IntPredicate::ULT
|
|
} else {
|
|
IntPredicate::SLT
|
|
}
|
|
}
|
|
ast::Cmpop::LtE => {
|
|
if use_unsigned_ops {
|
|
IntPredicate::ULE
|
|
} else {
|
|
IntPredicate::SLE
|
|
}
|
|
}
|
|
ast::Cmpop::Gt => {
|
|
if use_unsigned_ops {
|
|
IntPredicate::UGT
|
|
} else {
|
|
IntPredicate::SGT
|
|
}
|
|
}
|
|
ast::Cmpop::GtE => {
|
|
if use_unsigned_ops {
|
|
IntPredicate::UGE
|
|
} else {
|
|
IntPredicate::SGE
|
|
}
|
|
}
|
|
_ => codegen_unreachable!(ctx),
|
|
};
|
|
|
|
ctx.builder.build_int_compare(op, lhs, rhs, "cmp").unwrap()
|
|
} else if left_ty == ctx.primitives.float {
|
|
assert!(ctx.unifier.unioned(left_ty, right_ty));
|
|
|
|
let lhs = lhs.into_float_value();
|
|
let rhs = rhs.into_float_value();
|
|
|
|
let op = match op {
|
|
ast::Cmpop::Eq | ast::Cmpop::Is => inkwell::FloatPredicate::OEQ,
|
|
ast::Cmpop::NotEq => inkwell::FloatPredicate::ONE,
|
|
ast::Cmpop::Lt => inkwell::FloatPredicate::OLT,
|
|
ast::Cmpop::LtE => inkwell::FloatPredicate::OLE,
|
|
ast::Cmpop::Gt => inkwell::FloatPredicate::OGT,
|
|
ast::Cmpop::GtE => inkwell::FloatPredicate::OGE,
|
|
_ => codegen_unreachable!(ctx),
|
|
};
|
|
ctx.builder.build_float_compare(op, lhs, rhs, "cmp").unwrap()
|
|
} else if left_ty == ctx.primitives.str {
|
|
assert!(ctx.unifier.unioned(left_ty, right_ty));
|
|
|
|
let llvm_i1 = ctx.ctx.bool_type();
|
|
let llvm_i32 = ctx.ctx.i32_type();
|
|
let llvm_usize = generator.get_size_type(ctx.ctx);
|
|
|
|
let lhs = lhs.into_struct_value();
|
|
let rhs = rhs.into_struct_value();
|
|
|
|
let plhs = generator.gen_var_alloc(ctx, lhs.get_type().into(), None).unwrap();
|
|
ctx.builder.build_store(plhs, lhs).unwrap();
|
|
let prhs = generator.gen_var_alloc(ctx, lhs.get_type().into(), None).unwrap();
|
|
ctx.builder.build_store(prhs, rhs).unwrap();
|
|
|
|
let lhs_len = ctx.build_in_bounds_gep_and_load(
|
|
plhs,
|
|
&[llvm_i32.const_zero(), llvm_i32.const_int(1, false)],
|
|
None,
|
|
).into_int_value();
|
|
let rhs_len = ctx.build_in_bounds_gep_and_load(
|
|
prhs,
|
|
&[llvm_i32.const_zero(), llvm_i32.const_int(1, false)],
|
|
None,
|
|
).into_int_value();
|
|
|
|
let len = call_int_umin(ctx, lhs_len, rhs_len, None);
|
|
|
|
let current_bb = ctx.builder.get_insert_block().unwrap();
|
|
let post_foreach_cmp = ctx.ctx.insert_basic_block_after(current_bb, "foreach.cmp.end");
|
|
|
|
ctx.builder.position_at_end(post_foreach_cmp);
|
|
let cmp_phi = ctx.builder.build_phi(llvm_i1, "").unwrap();
|
|
ctx.builder.position_at_end(current_bb);
|
|
|
|
gen_for_callback_incrementing(
|
|
generator,
|
|
ctx,
|
|
None,
|
|
llvm_usize.const_zero(),
|
|
(len, false),
|
|
|generator, ctx, _, i| {
|
|
let lhs_char = {
|
|
let plhs_data = ctx.build_in_bounds_gep_and_load(
|
|
plhs,
|
|
&[llvm_i32.const_zero(), llvm_i32.const_zero()],
|
|
None,
|
|
).into_pointer_value();
|
|
|
|
ctx.build_in_bounds_gep_and_load(
|
|
plhs_data,
|
|
&[i],
|
|
None
|
|
).into_int_value()
|
|
};
|
|
let rhs_char = {
|
|
let prhs_data = ctx.build_in_bounds_gep_and_load(
|
|
prhs,
|
|
&[llvm_i32.const_zero(), llvm_i32.const_zero()],
|
|
None,
|
|
).into_pointer_value();
|
|
|
|
ctx.build_in_bounds_gep_and_load(
|
|
prhs_data,
|
|
&[i],
|
|
None
|
|
).into_int_value()
|
|
};
|
|
|
|
gen_if_callback(
|
|
generator,
|
|
ctx,
|
|
|_, ctx| {
|
|
Ok(ctx.builder.build_int_compare(IntPredicate::NE, lhs_char, rhs_char, "").unwrap())
|
|
},
|
|
|_, ctx| {
|
|
let bb = ctx.builder.get_insert_block().unwrap();
|
|
cmp_phi.add_incoming(&[(&llvm_i1.const_zero(), bb)]);
|
|
ctx.builder.build_unconditional_branch(post_foreach_cmp).unwrap();
|
|
|
|
Ok(())
|
|
},
|
|
|_, _| Ok(()),
|
|
)?;
|
|
|
|
Ok(())
|
|
},
|
|
llvm_usize.const_int(1, false),
|
|
)?;
|
|
|
|
let bb = ctx.builder.get_insert_block().unwrap();
|
|
let is_len_eq = ctx.builder.build_int_compare(
|
|
IntPredicate::EQ,
|
|
lhs_len,
|
|
rhs_len,
|
|
"",
|
|
).unwrap();
|
|
cmp_phi.add_incoming(&[(&is_len_eq, bb)]);
|
|
ctx.builder.build_unconditional_branch(post_foreach_cmp).unwrap();
|
|
|
|
ctx.builder.position_at_end(post_foreach_cmp);
|
|
let cmp_phi = cmp_phi.as_basic_value().into_int_value();
|
|
|
|
// Invert the final value if __ne__
|
|
if *op == Cmpop::NotEq {
|
|
ctx.builder.build_not(cmp_phi, "").unwrap()
|
|
} else {
|
|
cmp_phi
|
|
}
|
|
} else if [left_ty, right_ty]
|
|
.iter()
|
|
.any(|ty| ty.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::List.id()))
|
|
{
|
|
let llvm_usize = generator.get_size_type(ctx.ctx);
|
|
|
|
let gen_list_cmpop = |generator: &mut G,
|
|
ctx: &mut CodeGenContext<'ctx, '_>|
|
|
-> Result<IntValue<'ctx>, String> {
|
|
let is_list1 =
|
|
left_ty.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::List.id());
|
|
let is_list2 =
|
|
right_ty.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::List.id());
|
|
|
|
let gen_bool_const = |ctx: &CodeGenContext<'ctx, '_>, val: bool| {
|
|
let llvm_i1 = ctx.ctx.bool_type();
|
|
|
|
match (op, val) {
|
|
(Cmpop::Eq, true) | (Cmpop::NotEq, false) => llvm_i1.const_all_ones(),
|
|
(Cmpop::Eq, false) | (Cmpop::NotEq, true) => llvm_i1.const_zero(),
|
|
(_, _) => codegen_unreachable!(ctx),
|
|
}
|
|
};
|
|
|
|
if !(is_list1 && is_list2) {
|
|
return Ok(generator.bool_to_i8(ctx, gen_bool_const(ctx, false)));
|
|
}
|
|
|
|
let left_elem_ty = if let TypeEnum::TObj { params, .. } =
|
|
&*ctx.unifier.get_ty_immutable(left_ty)
|
|
{
|
|
*params.iter().next().unwrap().1
|
|
} else {
|
|
codegen_unreachable!(ctx)
|
|
};
|
|
let right_elem_ty = if let TypeEnum::TObj { params, .. } =
|
|
&*ctx.unifier.get_ty_immutable(right_ty)
|
|
{
|
|
*params.iter().next().unwrap().1
|
|
} else {
|
|
codegen_unreachable!(ctx)
|
|
};
|
|
|
|
if !ctx.unifier.unioned(left_elem_ty, right_elem_ty) {
|
|
return Ok(generator.bool_to_i8(ctx, gen_bool_const(ctx, false)));
|
|
}
|
|
|
|
if ![Cmpop::Eq, Cmpop::NotEq].contains(op) {
|
|
todo!("Only __eq__ and __ne__ is implemented for lists")
|
|
}
|
|
|
|
let left_val =
|
|
ListValue::from_pointer_value(lhs.into_pointer_value(), llvm_usize, None);
|
|
let right_val =
|
|
ListValue::from_pointer_value(rhs.into_pointer_value(), llvm_usize, None);
|
|
|
|
Ok(gen_if_else_expr_callback(
|
|
generator,
|
|
ctx,
|
|
|_, ctx| {
|
|
Ok(ctx
|
|
.builder
|
|
.build_int_compare(
|
|
IntPredicate::EQ,
|
|
left_val.load_size(ctx, None),
|
|
right_val.load_size(ctx, None),
|
|
"",
|
|
)
|
|
.unwrap())
|
|
},
|
|
|generator, ctx| {
|
|
let acc_addr = generator
|
|
.gen_var_alloc(ctx, ctx.ctx.bool_type().into(), None)
|
|
.unwrap();
|
|
ctx.builder
|
|
.build_store(acc_addr, ctx.ctx.bool_type().const_all_ones())
|
|
.unwrap();
|
|
|
|
gen_for_callback_incrementing(
|
|
generator,
|
|
ctx,
|
|
None,
|
|
llvm_usize.const_zero(),
|
|
(left_val.load_size(ctx, None), false),
|
|
|generator, ctx, hooks, i| {
|
|
let left = unsafe {
|
|
left_val.data().get_unchecked(ctx, generator, &i, None)
|
|
};
|
|
let right = unsafe {
|
|
right_val.data().get_unchecked(ctx, generator, &i, None)
|
|
};
|
|
|
|
let res = gen_cmpop_expr_with_values(
|
|
generator,
|
|
ctx,
|
|
(Some(left_elem_ty), left),
|
|
&[Cmpop::Eq],
|
|
&[(Some(right_elem_ty), right)],
|
|
)?
|
|
.unwrap()
|
|
.to_basic_value_enum(ctx, generator, ctx.primitives.bool)
|
|
.unwrap()
|
|
.into_int_value();
|
|
|
|
gen_if_callback(
|
|
generator,
|
|
ctx,
|
|
|_, ctx| {
|
|
Ok(ctx
|
|
.builder
|
|
.build_int_compare(
|
|
IntPredicate::EQ,
|
|
res,
|
|
res.get_type().const_zero(),
|
|
"",
|
|
)
|
|
.unwrap())
|
|
},
|
|
|_, ctx| {
|
|
ctx.builder
|
|
.build_store(
|
|
acc_addr,
|
|
ctx.ctx.bool_type().const_zero(),
|
|
)
|
|
.unwrap();
|
|
ctx.builder
|
|
.build_unconditional_branch(hooks.exit_bb)
|
|
.unwrap();
|
|
|
|
Ok(())
|
|
},
|
|
|_, _| Ok(()),
|
|
)
|
|
.unwrap();
|
|
|
|
Ok(())
|
|
},
|
|
llvm_usize.const_int(1, false),
|
|
)?;
|
|
|
|
let acc = ctx
|
|
.builder
|
|
.build_load(acc_addr, "")
|
|
.map(BasicValueEnum::into_int_value)
|
|
.unwrap();
|
|
let acc = if *op == Cmpop::NotEq {
|
|
gen_unaryop_expr_with_values(
|
|
generator,
|
|
ctx,
|
|
Unaryop::Not,
|
|
(&Some(ctx.primitives.bool), acc.into()),
|
|
)?
|
|
.unwrap()
|
|
.to_basic_value_enum(ctx, generator, ctx.primitives.bool)?
|
|
.into_int_value()
|
|
} else {
|
|
acc
|
|
};
|
|
|
|
Ok(Some(generator.bool_to_i8(ctx, acc)))
|
|
},
|
|
|generator, ctx| {
|
|
Ok(Some(generator.bool_to_i8(ctx, gen_bool_const(ctx, false))))
|
|
},
|
|
)?
|
|
.map(BasicValueEnum::into_int_value)
|
|
.unwrap())
|
|
};
|
|
|
|
gen_list_cmpop(generator, ctx)?
|
|
} else if [left_ty, right_ty].iter().any(|ty| matches!(&*ctx.unifier.get_ty_immutable(*ty), TypeEnum::TTuple { .. })) {
|
|
let TypeEnum::TTuple { ty: left_tys, .. } = &*ctx.unifier.get_ty_immutable(left_ty) else {
|
|
return Err(format!("'{}' not supported between instances of '{}' and '{}'", op.op_info().symbol, ctx.unifier.stringify(left_ty), ctx.unifier.stringify(right_ty)))
|
|
};
|
|
let TypeEnum::TTuple { ty: right_tys, .. } = &*ctx.unifier.get_ty_immutable(right_ty) else {
|
|
return Err(format!("'{}' not supported between instances of '{}' and '{}'", op.op_info().symbol, ctx.unifier.stringify(left_ty), ctx.unifier.stringify(right_ty)))
|
|
};
|
|
|
|
if ![Cmpop::Eq, Cmpop::NotEq].contains(op) {
|
|
todo!("Only __eq__ and __ne__ is implemented for tuples")
|
|
}
|
|
|
|
let llvm_i1 = ctx.ctx.bool_type();
|
|
let llvm_i32 = ctx.ctx.i32_type();
|
|
|
|
// Assume `true` by default
|
|
let cmp_addr = generator.gen_var_alloc(ctx, llvm_i1.into(), None).unwrap();
|
|
ctx.builder.build_store(cmp_addr, llvm_i1.const_all_ones()).unwrap();
|
|
|
|
let current_bb = ctx.builder.get_insert_block().unwrap();
|
|
let post_foreach_cmp = ctx.ctx.insert_basic_block_after(current_bb, "foreach.cmp.end");
|
|
|
|
ctx.builder.position_at_end(post_foreach_cmp);
|
|
let cmp_phi = ctx.builder.build_phi(llvm_i1, "").unwrap();
|
|
ctx.builder.position_at_end(current_bb);
|
|
|
|
// Generate comparison between each element
|
|
let min_len = min(left_tys.len(), right_tys.len());
|
|
for i in 0..min_len {
|
|
let current_bb = ctx.builder.get_insert_block().unwrap();
|
|
let bb = ctx.ctx.insert_basic_block_after(current_bb, &format!("foreach.cmp.tuple.{i}e"));
|
|
ctx.builder.build_unconditional_branch(bb).unwrap();
|
|
|
|
ctx.builder.position_at_end(bb);
|
|
let left_ty = left_tys[i];
|
|
let left_elem = {
|
|
let plhs = generator.gen_var_alloc(ctx, lhs.get_type(), None).unwrap();
|
|
ctx.builder.build_store(plhs, *lhs).unwrap();
|
|
|
|
ctx.build_in_bounds_gep_and_load(
|
|
plhs,
|
|
&[llvm_i32.const_zero(), llvm_i32.const_int(i as u64, false)],
|
|
None,
|
|
)
|
|
};
|
|
let right_ty = right_tys[i];
|
|
let right_elem = {
|
|
let prhs = generator.gen_var_alloc(ctx, rhs.get_type(), None).unwrap();
|
|
ctx.builder.build_store(prhs, *rhs).unwrap();
|
|
|
|
ctx.build_in_bounds_gep_and_load(
|
|
prhs,
|
|
&[llvm_i32.const_zero(), llvm_i32.const_int(i as u64, false)],
|
|
None,
|
|
)
|
|
};
|
|
|
|
gen_if_callback(
|
|
generator,
|
|
ctx,
|
|
|generator, ctx| {
|
|
// Defer the `not` operation until the end - a != b <=> !(a == b)
|
|
let op = if *op == Cmpop::NotEq { Cmpop::Eq } else { *op };
|
|
|
|
let cmp = gen_cmpop_expr_with_values(
|
|
generator,
|
|
ctx,
|
|
(Some(left_ty), left_elem),
|
|
&[op],
|
|
&[(Some(right_ty), right_elem)],
|
|
)
|
|
.transpose()
|
|
.unwrap()
|
|
.and_then(|v| {
|
|
v.to_basic_value_enum(ctx, generator, ctx.primitives.bool)
|
|
})
|
|
.map(BasicValueEnum::into_int_value)?;
|
|
|
|
Ok(ctx.builder.build_not(
|
|
generator.bool_to_i1(ctx, cmp),
|
|
"",
|
|
).unwrap())
|
|
},
|
|
|_, ctx| {
|
|
let bb = ctx.builder.get_insert_block().unwrap();
|
|
cmp_phi.add_incoming(&[(&llvm_i1.const_zero(), bb)]);
|
|
ctx.builder.build_unconditional_branch(post_foreach_cmp).unwrap();
|
|
|
|
Ok(())
|
|
},
|
|
|_, _| Ok(()),
|
|
)?;
|
|
}
|
|
|
|
// Length of tuples is checked last as operators do not short-circuit by tuple
|
|
// length in Python:
|
|
//
|
|
// >>> (1, 2) < ("a",)
|
|
// TypeError: '<' not supported between instances of 'int' and 'str'
|
|
let bb = ctx.builder.get_insert_block().unwrap();
|
|
let is_len_eq = llvm_i1.const_int(
|
|
u64::from(left_tys.len() == right_tys.len()),
|
|
false,
|
|
);
|
|
cmp_phi.add_incoming(&[(&is_len_eq, bb)]);
|
|
ctx.builder.build_unconditional_branch(post_foreach_cmp).unwrap();
|
|
|
|
ctx.builder.position_at_end(post_foreach_cmp);
|
|
let cmp_phi = cmp_phi.as_basic_value().into_int_value();
|
|
|
|
// Invert the final value if __ne__
|
|
if *op == Cmpop::NotEq {
|
|
ctx.builder.build_not(cmp_phi, "").unwrap()
|
|
} else {
|
|
cmp_phi
|
|
}
|
|
} else if [left_ty, right_ty].iter().any(|ty| matches!(&*ctx.unifier.get_ty_immutable(*ty), TypeEnum::TVar { .. })) {
|
|
if ctx.registry.llvm_options.opt_level == OptimizationLevel::None {
|
|
ctx.make_assert(
|
|
generator,
|
|
ctx.ctx.bool_type().const_all_ones(),
|
|
"0:AssertionError",
|
|
"nac3core::codegen::expr::gen_cmpop_expr_with_values: Unexpected comparison between two typevar values",
|
|
[None, None, None],
|
|
ctx.current_loc,
|
|
);
|
|
}
|
|
|
|
ctx.ctx.bool_type().get_poison()
|
|
} else {
|
|
return Err(format!("'{}' not supported between instances of '{}' and '{}'",
|
|
op.op_info().symbol,
|
|
ctx.unifier.stringify(left_ty),
|
|
ctx.unifier.stringify(right_ty)))
|
|
};
|
|
|
|
Ok(prev?.map(|v| ctx.builder.build_and(v, current, "cmp").unwrap()).or(Some(current)))
|
|
})?;
|
|
|
|
Ok(Some(match cmp_val {
|
|
Some(v) => v.into(),
|
|
None => return Ok(None),
|
|
}))
|
|
}
|
|
|
|
/// Generates LLVM IR for a comparison operator expression.
|
|
///
|
|
/// * `left` - The left-hand side of the comparison operator.
|
|
/// * `ops` - The (possibly chained) operators applied on the operands.
|
|
/// * `comparators` - The right-hand side of the binary operator.
|
|
pub fn gen_cmpop_expr<'ctx, G: CodeGenerator>(
|
|
generator: &mut G,
|
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
left: &Expr<Option<Type>>,
|
|
ops: &[ast::Cmpop],
|
|
comparators: &[Expr<Option<Type>>],
|
|
) -> Result<Option<ValueEnum<'ctx>>, String> {
|
|
let left_val = if let Some(v) = generator.gen_expr(ctx, left)? {
|
|
v.to_basic_value_enum(ctx, generator, left.custom.unwrap())?
|
|
} else {
|
|
return Ok(None);
|
|
};
|
|
let comparator_vals = comparators
|
|
.iter()
|
|
.map(|cmptor| {
|
|
Ok(if let Some(v) = generator.gen_expr(ctx, cmptor)? {
|
|
Some((
|
|
cmptor.custom,
|
|
v.to_basic_value_enum(ctx, generator, cmptor.custom.unwrap())?,
|
|
))
|
|
} else {
|
|
None
|
|
})
|
|
})
|
|
.take_while(|v| if let Ok(v) = v { v.is_some() } else { true })
|
|
.collect::<Result<Vec<_>, String>>()?;
|
|
let comparator_vals = if comparator_vals.len() == comparators.len() {
|
|
comparator_vals.into_iter().map(Option::unwrap).collect_vec()
|
|
} else {
|
|
return Ok(None);
|
|
};
|
|
|
|
gen_cmpop_expr_with_values(
|
|
generator,
|
|
ctx,
|
|
(left.custom, left_val),
|
|
ops,
|
|
comparator_vals.as_slice(),
|
|
)
|
|
}
|
|
|
|
/// Generates code for a subscript expression on an `ndarray`.
|
|
///
|
|
/// * `ty` - The `Type` of the `NDArray` elements.
|
|
/// * `ndims` - The `Type` of the `NDArray` number-of-dimensions `Literal`.
|
|
/// * `v` - The `NDArray` value.
|
|
/// * `slice` - The slice expression used to subscript into the `ndarray`.
|
|
fn gen_ndarray_subscript_expr<'ctx, G: CodeGenerator>(
|
|
generator: &mut G,
|
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
ty: Type,
|
|
ndims: Type,
|
|
v: NDArrayValue<'ctx>,
|
|
slice: &Expr<Option<Type>>,
|
|
) -> Result<Option<ValueEnum<'ctx>>, String> {
|
|
let llvm_i1 = ctx.ctx.bool_type();
|
|
let llvm_i32 = ctx.ctx.i32_type();
|
|
let llvm_usize = generator.get_size_type(ctx.ctx);
|
|
|
|
let TypeEnum::TLiteral { values, .. } = &*ctx.unifier.get_ty_immutable(ndims) else {
|
|
codegen_unreachable!(ctx)
|
|
};
|
|
|
|
let ndims = values
|
|
.iter()
|
|
.map(|ndim| u64::try_from(ndim.clone()).map_err(|()| ndim.clone()))
|
|
.collect::<Result<Vec<_>, _>>()
|
|
.map_err(|val| {
|
|
format!(
|
|
"Expected non-negative literal for ndarray.ndims, got {}",
|
|
i128::try_from(val).unwrap()
|
|
)
|
|
})?;
|
|
|
|
assert!(!ndims.is_empty());
|
|
|
|
// The number of dimensions subscripted by the index expression.
|
|
// Slicing a ndarray will yield the same number of dimensions, whereas indexing into a
|
|
// dimension will remove a dimension.
|
|
let subscripted_dims = match &slice.node {
|
|
ExprKind::Tuple { elts, .. } => elts.iter().fold(0, |acc, value_subexpr| {
|
|
if let ExprKind::Slice { .. } = &value_subexpr.node {
|
|
acc
|
|
} else {
|
|
acc + 1
|
|
}
|
|
}),
|
|
|
|
ExprKind::Slice { .. } => 0,
|
|
_ => 1,
|
|
};
|
|
|
|
let ndarray_ndims_ty = ctx.unifier.get_fresh_literal(
|
|
ndims.iter().map(|v| SymbolValue::U64(v - subscripted_dims)).collect(),
|
|
None,
|
|
);
|
|
let ndarray_ty =
|
|
make_ndarray_ty(&mut ctx.unifier, &ctx.primitives, Some(ty), Some(ndarray_ndims_ty));
|
|
let llvm_pndarray_t = ctx.get_llvm_type(generator, ndarray_ty).into_pointer_type();
|
|
let llvm_ndarray_t = llvm_pndarray_t.get_element_type().into_struct_type();
|
|
let llvm_ndarray_data_t = ctx.get_llvm_type(generator, ty).as_basic_type_enum();
|
|
let sizeof_elem = llvm_ndarray_data_t.size_of().unwrap();
|
|
|
|
// Check that len is non-zero
|
|
let len = v.load_ndims(ctx);
|
|
ctx.make_assert(
|
|
generator,
|
|
ctx.builder.build_int_compare(IntPredicate::SGT, len, llvm_usize.const_zero(), "").unwrap(),
|
|
"0:IndexError",
|
|
"too many indices for array: array is {0}-dimensional but 1 were indexed",
|
|
[Some(len), None, None],
|
|
slice.location,
|
|
);
|
|
|
|
// Normalizes a possibly-negative index to its corresponding positive index
|
|
let normalize_index = |generator: &mut G,
|
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
index: IntValue<'ctx>,
|
|
dim: u64| {
|
|
gen_if_else_expr_callback(
|
|
generator,
|
|
ctx,
|
|
|_, ctx| {
|
|
Ok(ctx
|
|
.builder
|
|
.build_int_compare(IntPredicate::SGE, index, index.get_type().const_zero(), "")
|
|
.unwrap())
|
|
},
|
|
|_, _| Ok(Some(index)),
|
|
|generator, ctx| {
|
|
let llvm_i32 = ctx.ctx.i32_type();
|
|
|
|
let len = unsafe {
|
|
v.shape().get_typed_unchecked(
|
|
ctx,
|
|
generator,
|
|
&llvm_usize.const_int(dim, true),
|
|
None,
|
|
)
|
|
};
|
|
|
|
let index = ctx
|
|
.builder
|
|
.build_int_add(
|
|
len,
|
|
ctx.builder.build_int_s_extend(index, llvm_usize, "").unwrap(),
|
|
"",
|
|
)
|
|
.unwrap();
|
|
|
|
Ok(Some(ctx.builder.build_int_truncate(index, llvm_i32, "").unwrap()))
|
|
},
|
|
)
|
|
.map(|v| v.map(BasicValueEnum::into_int_value))
|
|
};
|
|
|
|
// Converts a slice expression into a slice-range tuple
|
|
let expr_to_slice = |generator: &mut G,
|
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
node: &ExprKind<Option<Type>>,
|
|
dim: u64| {
|
|
match node {
|
|
ExprKind::Constant { value: Constant::Int(v), .. } => {
|
|
let Some(index) =
|
|
normalize_index(generator, ctx, llvm_i32.const_int(*v as u64, true), dim)?
|
|
else {
|
|
return Ok(None);
|
|
};
|
|
|
|
Ok(Some((index, index, llvm_i32.const_int(1, true))))
|
|
}
|
|
|
|
ExprKind::Slice { lower, upper, step } => {
|
|
let dim_sz = unsafe {
|
|
v.shape().get_typed_unchecked(
|
|
ctx,
|
|
generator,
|
|
&llvm_usize.const_int(dim, false),
|
|
None,
|
|
)
|
|
};
|
|
|
|
handle_slice_indices(lower, upper, step, ctx, generator, dim_sz)
|
|
}
|
|
|
|
_ => {
|
|
let Some(index) = generator.gen_expr(ctx, slice)? else { return Ok(None) };
|
|
let index = index
|
|
.to_basic_value_enum(ctx, generator, slice.custom.unwrap())?
|
|
.into_int_value();
|
|
let Some(index) = normalize_index(generator, ctx, index, dim)? else {
|
|
return Ok(None);
|
|
};
|
|
|
|
Ok(Some((index, index, llvm_i32.const_int(1, true))))
|
|
}
|
|
}
|
|
};
|
|
|
|
let make_indices_arr = |generator: &mut G,
|
|
ctx: &mut CodeGenContext<'ctx, '_>|
|
|
-> Result<_, String> {
|
|
Ok(if let ExprKind::Tuple { elts, .. } = &slice.node {
|
|
let llvm_int_ty = ctx.get_llvm_type(generator, elts[0].custom.unwrap());
|
|
let index_addr = generator.gen_array_var_alloc(
|
|
ctx,
|
|
llvm_int_ty,
|
|
llvm_usize.const_int(elts.len() as u64, false),
|
|
None,
|
|
)?;
|
|
|
|
for (i, elt) in elts.iter().enumerate() {
|
|
let Some(index) = generator.gen_expr(ctx, elt)? else {
|
|
return Ok(None);
|
|
};
|
|
|
|
let index = index
|
|
.to_basic_value_enum(ctx, generator, elt.custom.unwrap())?
|
|
.into_int_value();
|
|
let Some(index) = normalize_index(generator, ctx, index, 0)? else {
|
|
return Ok(None);
|
|
};
|
|
|
|
let store_ptr = unsafe {
|
|
index_addr.ptr_offset_unchecked(
|
|
ctx,
|
|
generator,
|
|
&llvm_usize.const_int(i as u64, false),
|
|
None,
|
|
)
|
|
};
|
|
ctx.builder.build_store(store_ptr, index).unwrap();
|
|
}
|
|
|
|
Some(index_addr)
|
|
} else if let Some(index) = generator.gen_expr(ctx, slice)? {
|
|
let llvm_int_ty = ctx.get_llvm_type(generator, slice.custom.unwrap());
|
|
let index_addr = generator.gen_array_var_alloc(
|
|
ctx,
|
|
llvm_int_ty,
|
|
llvm_usize.const_int(1u64, false),
|
|
None,
|
|
)?;
|
|
|
|
let index =
|
|
index.to_basic_value_enum(ctx, generator, slice.custom.unwrap())?.into_int_value();
|
|
let Some(index) = normalize_index(generator, ctx, index, 0)? else { return Ok(None) };
|
|
|
|
let store_ptr = unsafe {
|
|
index_addr.ptr_offset_unchecked(ctx, generator, &llvm_usize.const_zero(), None)
|
|
};
|
|
ctx.builder.build_store(store_ptr, index).unwrap();
|
|
|
|
Some(index_addr)
|
|
} else {
|
|
None
|
|
})
|
|
};
|
|
|
|
Ok(Some(if ndims.len() == 1 && ndims[0] - subscripted_dims == 0 {
|
|
let Some(index_addr) = make_indices_arr(generator, ctx)? else { return Ok(None) };
|
|
|
|
v.data().get(ctx, generator, &index_addr, None).into()
|
|
} else {
|
|
match &slice.node {
|
|
ExprKind::Tuple { elts, .. } => {
|
|
let slices = elts
|
|
.iter()
|
|
.enumerate()
|
|
.map(|(dim, elt)| expr_to_slice(generator, ctx, &elt.node, dim as u64))
|
|
.take_while_inclusive(|slice| slice.as_ref().is_ok_and(Option::is_some))
|
|
.collect::<Result<Vec<_>, _>>()?;
|
|
if slices.len() < elts.len() {
|
|
return Ok(None);
|
|
}
|
|
|
|
let slices = slices.into_iter().map(Option::unwrap).collect_vec();
|
|
|
|
numpy::ndarray_sliced_copy(generator, ctx, ty, v, &slices)?.as_base_value().into()
|
|
}
|
|
|
|
ExprKind::Slice { .. } => {
|
|
let Some(slice) = expr_to_slice(generator, ctx, &slice.node, 0)? else {
|
|
return Ok(None);
|
|
};
|
|
|
|
numpy::ndarray_sliced_copy(generator, ctx, ty, v, &[slice])?.as_base_value().into()
|
|
}
|
|
|
|
_ => {
|
|
// Accessing an element from a multi-dimensional `ndarray`
|
|
|
|
let Some(index_addr) = make_indices_arr(generator, ctx)? else { return Ok(None) };
|
|
|
|
// Create a new array, remove the top dimension from the dimension-size-list, and copy the
|
|
// elements over
|
|
let subscripted_ndarray =
|
|
generator.gen_var_alloc(ctx, llvm_ndarray_t.into(), None)?;
|
|
let ndarray = NDArrayValue::from_pointer_value(
|
|
subscripted_ndarray,
|
|
llvm_ndarray_data_t,
|
|
llvm_usize,
|
|
None,
|
|
);
|
|
|
|
let num_dims = v.load_ndims(ctx);
|
|
ndarray.store_ndims(
|
|
ctx,
|
|
generator,
|
|
ctx.builder
|
|
.build_int_sub(num_dims, llvm_usize.const_int(1, false), "")
|
|
.unwrap(),
|
|
);
|
|
|
|
let ndarray_num_dims = ndarray.load_ndims(ctx);
|
|
ndarray.create_shape(ctx, llvm_usize, ndarray_num_dims);
|
|
|
|
let ndarray_num_dims = ctx
|
|
.builder
|
|
.build_int_z_extend_or_bit_cast(
|
|
ndarray.load_ndims(ctx),
|
|
llvm_usize.size_of().get_type(),
|
|
"",
|
|
)
|
|
.unwrap();
|
|
let v_dims_src_ptr = unsafe {
|
|
v.shape().ptr_offset_unchecked(
|
|
ctx,
|
|
generator,
|
|
&llvm_usize.const_int(1, false),
|
|
None,
|
|
)
|
|
};
|
|
call_memcpy_generic(
|
|
ctx,
|
|
ndarray.shape().base_ptr(ctx, generator),
|
|
v_dims_src_ptr,
|
|
ctx.builder
|
|
.build_int_mul(ndarray_num_dims, llvm_usize.size_of(), "")
|
|
.map(Into::into)
|
|
.unwrap(),
|
|
llvm_i1.const_zero(),
|
|
);
|
|
|
|
let ndarray_num_elems = ndarray::call_ndarray_calc_size(
|
|
generator,
|
|
ctx,
|
|
&ndarray.shape().as_slice_value(ctx, generator),
|
|
(None, None),
|
|
);
|
|
let ndarray_num_elems = ctx
|
|
.builder
|
|
.build_int_z_extend_or_bit_cast(ndarray_num_elems, sizeof_elem.get_type(), "")
|
|
.unwrap();
|
|
ndarray.create_data(generator, ctx, llvm_ndarray_data_t, ndarray_num_elems);
|
|
|
|
let v_data_src_ptr = v.data().ptr_offset(ctx, generator, &index_addr, None);
|
|
call_memcpy_generic(
|
|
ctx,
|
|
ndarray.data().base_ptr(ctx, generator),
|
|
v_data_src_ptr,
|
|
ctx.builder
|
|
.build_int_mul(
|
|
ndarray_num_elems,
|
|
llvm_ndarray_data_t.size_of().unwrap(),
|
|
"",
|
|
)
|
|
.map(Into::into)
|
|
.unwrap(),
|
|
llvm_i1.const_zero(),
|
|
);
|
|
|
|
ndarray.as_base_value().into()
|
|
}
|
|
}
|
|
}))
|
|
}
|
|
|
|
/// See [`CodeGenerator::gen_expr`].
|
|
pub fn gen_expr<'ctx, G: CodeGenerator>(
|
|
generator: &mut G,
|
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
expr: &Expr<Option<Type>>,
|
|
) -> Result<Option<ValueEnum<'ctx>>, String> {
|
|
ctx.current_loc = expr.location;
|
|
let int32 = ctx.ctx.i32_type();
|
|
let usize = generator.get_size_type(ctx.ctx);
|
|
let zero = int32.const_int(0, false);
|
|
|
|
let loc = ctx.debug_info.0.create_debug_location(
|
|
ctx.ctx,
|
|
ctx.current_loc.row as u32,
|
|
ctx.current_loc.column as u32,
|
|
ctx.debug_info.2,
|
|
None,
|
|
);
|
|
ctx.builder.set_current_debug_location(loc);
|
|
|
|
Ok(Some(match &expr.node {
|
|
ExprKind::Constant { value, .. } => {
|
|
let ty = expr.custom.unwrap();
|
|
let Some(const_val) = ctx.gen_const(generator, value, ty) else { return Ok(None) };
|
|
const_val.into()
|
|
}
|
|
ExprKind::Name { id, .. } if id == &"none".into() => {
|
|
match (
|
|
ctx.unifier.get_ty(expr.custom.unwrap()).as_ref(),
|
|
ctx.unifier.get_ty(ctx.primitives.option).as_ref(),
|
|
) {
|
|
(TypeEnum::TObj { obj_id, params, .. }, TypeEnum::TObj { obj_id: opt_id, .. })
|
|
if *obj_id == *opt_id =>
|
|
{
|
|
ctx.get_llvm_type(generator, *params.iter().next().unwrap().1)
|
|
.ptr_type(AddressSpace::default())
|
|
.const_null()
|
|
.into()
|
|
}
|
|
_ => codegen_unreachable!(ctx, "must be option type"),
|
|
}
|
|
}
|
|
ExprKind::Name { id, .. } => match ctx.var_assignment.get(id) {
|
|
Some((ptr, None, _)) => {
|
|
ctx.builder.build_load(*ptr, id.to_string().as_str()).map(Into::into).unwrap()
|
|
}
|
|
Some((_, Some(static_value), _)) => ValueEnum::Static(static_value.clone()),
|
|
None => {
|
|
let resolver = ctx.resolver.clone();
|
|
let value = resolver.get_symbol_value(*id, ctx, generator).unwrap();
|
|
|
|
let globals = ctx
|
|
.top_level
|
|
.definitions
|
|
.read()
|
|
.iter()
|
|
.filter_map(|def| {
|
|
if let TopLevelDef::Variable { simple_name, ty, .. } = &*def.read() {
|
|
Some((*simple_name, *ty))
|
|
} else {
|
|
None
|
|
}
|
|
})
|
|
.collect_vec();
|
|
|
|
if let Some((_, ty)) = globals.iter().find(|(name, _)| name == id) {
|
|
let ptr = value
|
|
.to_basic_value_enum(ctx, generator, *ty)
|
|
.map(BasicValueEnum::into_pointer_value)?;
|
|
|
|
ctx.builder.build_load(ptr, id.to_string().as_str()).map(Into::into).unwrap()
|
|
} else {
|
|
value
|
|
}
|
|
}
|
|
},
|
|
ExprKind::List { elts, .. } => {
|
|
// this shall be optimized later for constant primitive lists...
|
|
// we should use memcpy for that instead of generating thousands of stores
|
|
let elements = elts
|
|
.iter()
|
|
.map(|x| generator.gen_expr(ctx, x))
|
|
.take_while(|v| !matches!(v, Ok(None)))
|
|
.collect::<Result<Vec<_>, _>>()?;
|
|
let elements = elements
|
|
.into_iter()
|
|
.zip(elts)
|
|
.map(|(v, x)| v.unwrap().to_basic_value_enum(ctx, generator, x.custom.unwrap()))
|
|
.collect::<Result<Vec<_>, _>>()?;
|
|
|
|
if elements.len() < elts.len() {
|
|
return Ok(None);
|
|
}
|
|
|
|
let ty = if elements.is_empty() {
|
|
let ty = if let TypeEnum::TObj { obj_id, params, .. } =
|
|
&*ctx.unifier.get_ty(expr.custom.unwrap())
|
|
{
|
|
assert_eq!(*obj_id, PrimDef::List.id());
|
|
|
|
*params.iter().next().unwrap().1
|
|
} else {
|
|
codegen_unreachable!(ctx)
|
|
};
|
|
|
|
if let TypeEnum::TVar { .. } = &*ctx.unifier.get_ty_immutable(ty) {
|
|
None
|
|
} else {
|
|
Some(ctx.get_llvm_type(generator, ty))
|
|
}
|
|
} else {
|
|
Some(elements[0].get_type())
|
|
};
|
|
let length = generator.get_size_type(ctx.ctx).const_int(elements.len() as u64, false);
|
|
let arr_str_ptr = allocate_list(generator, ctx, ty, length, Some("list"));
|
|
let arr_ptr = arr_str_ptr.data();
|
|
for (i, v) in elements.iter().enumerate() {
|
|
let elem_ptr = arr_ptr.ptr_offset(
|
|
ctx,
|
|
generator,
|
|
&usize.const_int(i as u64, false),
|
|
Some("elem_ptr"),
|
|
);
|
|
ctx.builder.build_store(elem_ptr, *v).unwrap();
|
|
}
|
|
arr_str_ptr.as_base_value().into()
|
|
}
|
|
ExprKind::Tuple { elts, .. } => {
|
|
let elements_val = elts
|
|
.iter()
|
|
.map(|x| generator.gen_expr(ctx, x))
|
|
.take_while(|v| !matches!(v, Ok(None)))
|
|
.collect::<Result<Vec<_>, _>>()?;
|
|
let element_val = elements_val
|
|
.into_iter()
|
|
.zip(elts)
|
|
.map(|(v, x)| v.unwrap().to_basic_value_enum(ctx, generator, x.custom.unwrap()))
|
|
.collect::<Result<Vec<_>, _>>()?;
|
|
|
|
if element_val.len() < elts.len() {
|
|
return Ok(None);
|
|
}
|
|
|
|
let element_ty = element_val.iter().map(BasicValueEnum::get_type).collect_vec();
|
|
let tuple_ty = ctx.ctx.struct_type(&element_ty, false);
|
|
let tuple_ptr = ctx.builder.build_alloca(tuple_ty, "tuple").unwrap();
|
|
for (i, v) in element_val.into_iter().enumerate() {
|
|
unsafe {
|
|
let ptr = ctx
|
|
.builder
|
|
.build_in_bounds_gep(
|
|
tuple_ptr,
|
|
&[zero, int32.const_int(i as u64, false)],
|
|
"ptr",
|
|
)
|
|
.unwrap();
|
|
ctx.builder.build_store(ptr, v).unwrap();
|
|
}
|
|
}
|
|
ctx.builder.build_load(tuple_ptr, "tup_val").map(Into::into).unwrap()
|
|
}
|
|
ExprKind::Attribute { value, attr, .. } => {
|
|
// note that we would handle class methods directly in calls
|
|
|
|
// Change Class attribute access requests to accessing constants from Class Definition
|
|
if let Some(c) = value.custom {
|
|
if let TypeEnum::TFunc(_) = &*ctx.unifier.get_ty(c) {
|
|
let defs = ctx.top_level.definitions.read();
|
|
let result = defs.iter().find_map(|def| {
|
|
if let Some(rear_guard) = def.try_read() {
|
|
if let TopLevelDef::Class {
|
|
constructor: Some(constructor),
|
|
attributes,
|
|
..
|
|
} = &*rear_guard
|
|
{
|
|
if *constructor == c {
|
|
return attributes.iter().find_map(|f| {
|
|
if f.0 == *attr {
|
|
// All other checks performed by this point
|
|
return Some(f.2.clone());
|
|
}
|
|
None
|
|
});
|
|
}
|
|
}
|
|
}
|
|
None
|
|
});
|
|
match result {
|
|
Some(val) => {
|
|
let mut modified_expr = expr.clone();
|
|
modified_expr.node = ExprKind::Constant { value: val, kind: None };
|
|
|
|
return generator.gen_expr(ctx, &modified_expr);
|
|
}
|
|
None => {
|
|
codegen_unreachable!(ctx, "Function Type should not have attributes")
|
|
}
|
|
}
|
|
} else if let TypeEnum::TObj { obj_id, fields, params } = &*ctx.unifier.get_ty(c) {
|
|
if fields.is_empty() && params.is_empty() {
|
|
let defs = ctx.top_level.definitions.read();
|
|
let def = defs[obj_id.0].read();
|
|
match if let TopLevelDef::Class { attributes, .. } = &*def {
|
|
attributes.iter().find_map(|f| {
|
|
if f.0 == *attr {
|
|
return Some(f.2.clone());
|
|
}
|
|
None
|
|
})
|
|
} else {
|
|
None
|
|
} {
|
|
Some(val) => {
|
|
let mut modified_expr = expr.clone();
|
|
modified_expr.node = ExprKind::Constant { value: val, kind: None };
|
|
|
|
return generator.gen_expr(ctx, &modified_expr);
|
|
}
|
|
None => codegen_unreachable!(ctx),
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
match generator.gen_expr(ctx, value)? {
|
|
Some(ValueEnum::Static(v)) => v.get_field(*attr, ctx).map_or_else(
|
|
|| {
|
|
let v = v.to_basic_value_enum(ctx, generator, value.custom.unwrap())?;
|
|
let (index, _) = ctx.get_attr_index(value.custom.unwrap(), *attr);
|
|
Ok(ValueEnum::Dynamic(ctx.build_gep_and_load(
|
|
v.into_pointer_value(),
|
|
&[zero, int32.const_int(index as u64, false)],
|
|
None,
|
|
))) as Result<_, String>
|
|
},
|
|
Ok,
|
|
)?,
|
|
Some(ValueEnum::Dynamic(v)) => {
|
|
let (index, attr_value) = ctx.get_attr_index(value.custom.unwrap(), *attr);
|
|
if let Some(val) = attr_value {
|
|
// Change to Constant Construct
|
|
let mut modified_expr = expr.clone();
|
|
modified_expr.node = ExprKind::Constant { value: val, kind: None };
|
|
|
|
return generator.gen_expr(ctx, &modified_expr);
|
|
}
|
|
ValueEnum::Dynamic(ctx.build_gep_and_load(
|
|
v.into_pointer_value(),
|
|
&[zero, int32.const_int(index as u64, false)],
|
|
None,
|
|
))
|
|
}
|
|
None => return Ok(None),
|
|
}
|
|
}
|
|
ExprKind::BoolOp { op, values } => {
|
|
// requires conditional branches for short-circuiting...
|
|
let left = if let Some(v) = generator.gen_expr(ctx, &values[0])? {
|
|
v.to_basic_value_enum(ctx, generator, values[0].custom.unwrap())?.into_int_value()
|
|
} else {
|
|
return Ok(None);
|
|
};
|
|
let left = generator.bool_to_i1(ctx, left);
|
|
let current = ctx.builder.get_insert_block().unwrap().get_parent().unwrap();
|
|
let a_begin_bb = ctx.ctx.append_basic_block(current, "a_begin");
|
|
let a_end_bb = ctx.ctx.append_basic_block(current, "a_end");
|
|
let b_begin_bb = ctx.ctx.append_basic_block(current, "b_begin");
|
|
let b_end_bb = ctx.ctx.append_basic_block(current, "b_end");
|
|
let cont_bb = ctx.ctx.append_basic_block(current, "cont");
|
|
ctx.builder.build_conditional_branch(left, a_begin_bb, b_begin_bb).unwrap();
|
|
|
|
ctx.builder.position_at_end(a_end_bb);
|
|
ctx.builder.build_unconditional_branch(cont_bb).unwrap();
|
|
ctx.builder.position_at_end(b_end_bb);
|
|
ctx.builder.build_unconditional_branch(cont_bb).unwrap();
|
|
let (a, b) = match op {
|
|
Boolop::Or => {
|
|
ctx.builder.position_at_end(a_begin_bb);
|
|
let a = ctx.ctx.i8_type().const_int(1, false);
|
|
ctx.builder.build_unconditional_branch(a_end_bb).unwrap();
|
|
|
|
ctx.builder.position_at_end(b_begin_bb);
|
|
let b = if let Some(v) = generator.gen_expr(ctx, &values[1])? {
|
|
let b = v
|
|
.to_basic_value_enum(ctx, generator, values[1].custom.unwrap())?
|
|
.into_int_value();
|
|
let b = generator.bool_to_i8(ctx, b);
|
|
Some(b)
|
|
} else {
|
|
None
|
|
};
|
|
ctx.builder.build_unconditional_branch(b_end_bb).unwrap();
|
|
|
|
(Some(a), b)
|
|
}
|
|
Boolop::And => {
|
|
ctx.builder.position_at_end(a_begin_bb);
|
|
let a = if let Some(v) = generator.gen_expr(ctx, &values[1])? {
|
|
let a = v
|
|
.to_basic_value_enum(ctx, generator, values[1].custom.unwrap())?
|
|
.into_int_value();
|
|
let a = generator.bool_to_i8(ctx, a);
|
|
Some(a)
|
|
} else {
|
|
None
|
|
};
|
|
ctx.builder.build_unconditional_branch(a_end_bb).unwrap();
|
|
|
|
ctx.builder.position_at_end(b_begin_bb);
|
|
let b = ctx.ctx.i8_type().const_zero();
|
|
ctx.builder.build_unconditional_branch(b_end_bb).unwrap();
|
|
|
|
(a, Some(b))
|
|
}
|
|
};
|
|
|
|
ctx.builder.position_at_end(cont_bb);
|
|
match (a, b) {
|
|
(Some(a), Some(b)) => {
|
|
let phi = ctx.builder.build_phi(ctx.ctx.i8_type(), "").unwrap();
|
|
phi.add_incoming(&[(&a, a_end_bb), (&b, b_end_bb)]);
|
|
phi.as_basic_value().into()
|
|
}
|
|
(Some(a), None) => a.into(),
|
|
(None, Some(b)) => b.into(),
|
|
(None, None) => codegen_unreachable!(ctx),
|
|
}
|
|
}
|
|
ExprKind::BinOp { op, left, right } => {
|
|
return gen_binop_expr(generator, ctx, left, Binop::normal(*op), right, expr.location);
|
|
}
|
|
ExprKind::UnaryOp { op, operand } => return gen_unaryop_expr(generator, ctx, *op, operand),
|
|
ExprKind::Compare { left, ops, comparators } => {
|
|
return gen_cmpop_expr(generator, ctx, left, ops, comparators)
|
|
}
|
|
ExprKind::IfExp { test, body, orelse } => {
|
|
let test = match generator.gen_expr(ctx, test)? {
|
|
Some(v) => {
|
|
v.to_basic_value_enum(ctx, generator, test.custom.unwrap())?.into_int_value()
|
|
}
|
|
None => return Ok(None),
|
|
};
|
|
let test = generator.bool_to_i1(ctx, test);
|
|
let body_ty = body.custom.unwrap();
|
|
let is_none = ctx.unifier.get_representative(body_ty) == ctx.primitives.none;
|
|
let result = if is_none {
|
|
None
|
|
} else {
|
|
let llvm_ty = ctx.get_llvm_type(generator, body_ty);
|
|
Some(ctx.builder.build_alloca(llvm_ty, "if_exp_result").unwrap())
|
|
};
|
|
let current = ctx.builder.get_insert_block().unwrap().get_parent().unwrap();
|
|
let then_bb = ctx.ctx.append_basic_block(current, "then");
|
|
let else_bb = ctx.ctx.append_basic_block(current, "else");
|
|
let cont_bb = ctx.ctx.append_basic_block(current, "cont");
|
|
ctx.builder.build_conditional_branch(test, then_bb, else_bb).unwrap();
|
|
|
|
ctx.builder.position_at_end(then_bb);
|
|
let a = generator.gen_expr(ctx, body)?;
|
|
if let Some(a) = a {
|
|
match result {
|
|
None => None,
|
|
Some(v) => {
|
|
let a = a.to_basic_value_enum(ctx, generator, body.custom.unwrap())?;
|
|
Some(ctx.builder.build_store(v, a))
|
|
}
|
|
};
|
|
ctx.builder.build_unconditional_branch(cont_bb).unwrap();
|
|
}
|
|
|
|
ctx.builder.position_at_end(else_bb);
|
|
let b = generator.gen_expr(ctx, orelse)?;
|
|
if let Some(b) = b {
|
|
match result {
|
|
None => None,
|
|
Some(v) => {
|
|
let b = b.to_basic_value_enum(ctx, generator, orelse.custom.unwrap())?;
|
|
Some(ctx.builder.build_store(v, b))
|
|
}
|
|
};
|
|
ctx.builder.build_unconditional_branch(cont_bb).unwrap();
|
|
}
|
|
|
|
ctx.builder.position_at_end(cont_bb);
|
|
if let Some(v) = result {
|
|
ctx.builder.build_load(v, "if_exp_val_load").map(Into::into).unwrap()
|
|
} else {
|
|
return Ok(None);
|
|
}
|
|
}
|
|
ExprKind::Call { func, args, keywords } => {
|
|
let mut params = args
|
|
.iter()
|
|
.map(|arg| generator.gen_expr(ctx, arg))
|
|
.take_while(|expr| !matches!(expr, Ok(None)))
|
|
.map(|expr| Ok((None, expr?.unwrap())) as Result<_, String>)
|
|
.collect::<Result<Vec<_>, _>>()?;
|
|
|
|
if params.len() < args.len() {
|
|
return Ok(None);
|
|
}
|
|
|
|
let kw_iter = keywords.iter().map(|kw| {
|
|
Ok((
|
|
Some(*kw.node.arg.as_ref().unwrap()),
|
|
generator.gen_expr(ctx, &kw.node.value)?.unwrap(),
|
|
)) as Result<_, String>
|
|
});
|
|
let kw_iter = kw_iter.collect::<Result<Vec<_>, _>>()?;
|
|
params.extend(kw_iter);
|
|
let call = ctx.calls.get(&expr.location.into());
|
|
let signature = if let Some(call) = call {
|
|
ctx.unifier.get_call_signature(*call).unwrap()
|
|
} else {
|
|
let ty = func.custom.unwrap();
|
|
let TypeEnum::TFunc(sign) = &*ctx.unifier.get_ty(ty) else {
|
|
codegen_unreachable!(ctx)
|
|
};
|
|
|
|
sign.clone()
|
|
};
|
|
let func = func.as_ref();
|
|
match &func.node {
|
|
ExprKind::Name { id, .. } => {
|
|
// TODO: handle primitive casts and function pointers
|
|
let fun = ctx.resolver.get_identifier_def(*id).map_err(|e| {
|
|
format!("{} (at {})", e.iter().next().unwrap(), func.location)
|
|
})?;
|
|
return Ok(generator
|
|
.gen_call(ctx, None, (&signature, fun), params)?
|
|
.map(Into::into));
|
|
}
|
|
ExprKind::Attribute { value, attr, .. } => {
|
|
let Some(val) = generator.gen_expr(ctx, value)? else { return Ok(None) };
|
|
|
|
// Handle Class Method calls
|
|
// The attribute will be `DefinitionId` of the method if the call is to one of the parent methods
|
|
let func_id = attr.to_string().parse::<usize>();
|
|
|
|
let id = if let TypeEnum::TObj { obj_id, .. } =
|
|
&*ctx.unifier.get_ty(value.custom.unwrap())
|
|
{
|
|
*obj_id
|
|
} else {
|
|
codegen_unreachable!(ctx)
|
|
};
|
|
|
|
// Use the `DefinitionID` from attribute if it is available
|
|
let fun_id = if let Ok(func_id) = func_id {
|
|
DefinitionId(func_id)
|
|
} else {
|
|
let defs = ctx.top_level.definitions.read();
|
|
let obj_def = defs.get(id.0).unwrap().read();
|
|
let TopLevelDef::Class { methods, .. } = &*obj_def else {
|
|
codegen_unreachable!(ctx)
|
|
};
|
|
|
|
methods.iter().find(|method| method.0 == *attr).unwrap().2
|
|
};
|
|
// directly generate code for option.unwrap
|
|
// since it needs to return static value to optimize for kernel invariant
|
|
if attr == &"unwrap".into()
|
|
&& id == ctx.primitives.option.obj_id(&ctx.unifier).unwrap()
|
|
{
|
|
match val {
|
|
ValueEnum::Static(v) => {
|
|
return match v.get_field("_nac3_option".into(), ctx) {
|
|
// if is none, raise exception directly
|
|
None => {
|
|
let err_msg = ctx.gen_string(generator, "");
|
|
let current_fun = ctx
|
|
.builder
|
|
.get_insert_block()
|
|
.unwrap()
|
|
.get_parent()
|
|
.unwrap();
|
|
let unreachable_block = ctx.ctx.append_basic_block(
|
|
current_fun,
|
|
"unwrap_none_unreachable",
|
|
);
|
|
let exn_block = ctx.ctx.append_basic_block(
|
|
current_fun,
|
|
"unwrap_none_exception",
|
|
);
|
|
ctx.builder.build_unconditional_branch(exn_block).unwrap();
|
|
ctx.builder.position_at_end(exn_block);
|
|
ctx.raise_exn(
|
|
generator,
|
|
"0:UnwrapNoneError",
|
|
err_msg.into(),
|
|
[None, None, None],
|
|
ctx.current_loc,
|
|
);
|
|
ctx.builder.position_at_end(unreachable_block);
|
|
let ptr = ctx
|
|
.get_llvm_type(generator, value.custom.unwrap())
|
|
.into_pointer_type()
|
|
.const_null();
|
|
Ok(Some(
|
|
ctx.builder
|
|
.build_load(ptr, "unwrap_none_unreachable_load")
|
|
.map(Into::into)
|
|
.unwrap(),
|
|
))
|
|
}
|
|
Some(v) => Ok(Some(v)),
|
|
};
|
|
}
|
|
ValueEnum::Dynamic(BasicValueEnum::PointerValue(ptr)) => {
|
|
let not_null =
|
|
ctx.builder.build_is_not_null(ptr, "unwrap_not_null").unwrap();
|
|
ctx.make_assert(
|
|
generator,
|
|
not_null,
|
|
"0:UnwrapNoneError",
|
|
"",
|
|
[None, None, None],
|
|
expr.location,
|
|
);
|
|
return Ok(Some(
|
|
ctx.builder
|
|
.build_load(ptr, "unwrap_some_load")
|
|
.map(Into::into)
|
|
.unwrap(),
|
|
));
|
|
}
|
|
ValueEnum::Dynamic(_) => {
|
|
codegen_unreachable!(ctx, "option must be static or ptr")
|
|
}
|
|
}
|
|
}
|
|
|
|
// Reset current_loc back to the location of the call
|
|
ctx.current_loc = expr.location;
|
|
|
|
return Ok(generator
|
|
.gen_call(
|
|
ctx,
|
|
Some((value.custom.unwrap(), val)),
|
|
(&signature, fun_id),
|
|
params,
|
|
)?
|
|
.map(Into::into));
|
|
}
|
|
_ => unimplemented!(),
|
|
}
|
|
}
|
|
ExprKind::Subscript { value, slice, .. } => {
|
|
match &*ctx.unifier.get_ty(value.custom.unwrap()) {
|
|
TypeEnum::TObj { obj_id, params, .. } if *obj_id == PrimDef::List.id() => {
|
|
let ty = params.iter().next().unwrap().1;
|
|
|
|
let v = if let Some(v) = generator.gen_expr(ctx, value)? {
|
|
v.to_basic_value_enum(ctx, generator, value.custom.unwrap())?
|
|
.into_pointer_value()
|
|
} else {
|
|
return Ok(None);
|
|
};
|
|
let v = ListValue::from_pointer_value(v, usize, Some("arr"));
|
|
let ty = ctx.get_llvm_type(generator, *ty);
|
|
if let ExprKind::Slice { lower, upper, step } = &slice.node {
|
|
let one = int32.const_int(1, false);
|
|
let Some((start, end, step)) = handle_slice_indices(
|
|
lower,
|
|
upper,
|
|
step,
|
|
ctx,
|
|
generator,
|
|
v.load_size(ctx, None),
|
|
)?
|
|
else {
|
|
return Ok(None);
|
|
};
|
|
let length = calculate_len_for_slice_range(
|
|
generator,
|
|
ctx,
|
|
start,
|
|
ctx.builder
|
|
.build_select(
|
|
ctx.builder
|
|
.build_int_compare(IntPredicate::SLT, step, zero, "is_neg")
|
|
.unwrap(),
|
|
ctx.builder.build_int_sub(end, one, "e_min_one").unwrap(),
|
|
ctx.builder.build_int_add(end, one, "e_add_one").unwrap(),
|
|
"final_e",
|
|
)
|
|
.map(BasicValueEnum::into_int_value)
|
|
.unwrap(),
|
|
step,
|
|
);
|
|
let res_array_ret =
|
|
allocate_list(generator, ctx, Some(ty), length, Some("ret"));
|
|
let Some(res_ind) = handle_slice_indices(
|
|
&None,
|
|
&None,
|
|
&None,
|
|
ctx,
|
|
generator,
|
|
res_array_ret.load_size(ctx, None),
|
|
)?
|
|
else {
|
|
return Ok(None);
|
|
};
|
|
list_slice_assignment(
|
|
generator,
|
|
ctx,
|
|
ty,
|
|
res_array_ret,
|
|
res_ind,
|
|
v,
|
|
(start, end, step),
|
|
);
|
|
res_array_ret.as_base_value().into()
|
|
} else {
|
|
let len = v.load_size(ctx, Some("len"));
|
|
let raw_index = if let Some(v) = generator.gen_expr(ctx, slice)? {
|
|
v.to_basic_value_enum(ctx, generator, slice.custom.unwrap())?
|
|
.into_int_value()
|
|
} else {
|
|
return Ok(None);
|
|
};
|
|
let raw_index = ctx
|
|
.builder
|
|
.build_int_s_extend(raw_index, generator.get_size_type(ctx.ctx), "sext")
|
|
.unwrap();
|
|
// handle negative index
|
|
let is_negative = ctx
|
|
.builder
|
|
.build_int_compare(
|
|
IntPredicate::SLT,
|
|
raw_index,
|
|
generator.get_size_type(ctx.ctx).const_zero(),
|
|
"is_neg",
|
|
)
|
|
.unwrap();
|
|
let adjusted =
|
|
ctx.builder.build_int_add(raw_index, len, "adjusted").unwrap();
|
|
let index = ctx
|
|
.builder
|
|
.build_select(is_negative, adjusted, raw_index, "index")
|
|
.map(BasicValueEnum::into_int_value)
|
|
.unwrap();
|
|
// unsigned less than is enough, because negative index after adjustment is
|
|
// bigger than the length (for unsigned cmp)
|
|
let bound_check = ctx
|
|
.builder
|
|
.build_int_compare(IntPredicate::ULT, index, len, "inbound")
|
|
.unwrap();
|
|
ctx.make_assert(
|
|
generator,
|
|
bound_check,
|
|
"0:IndexError",
|
|
"index {0} out of bounds 0:{1}",
|
|
[Some(raw_index), Some(len), None],
|
|
expr.location,
|
|
);
|
|
v.data().get(ctx, generator, &index, None).into()
|
|
}
|
|
}
|
|
TypeEnum::TObj { obj_id, params, .. } if *obj_id == PrimDef::NDArray.id() => {
|
|
let (ty, ndims) = params.iter().map(|(_, ty)| ty).collect_tuple().unwrap();
|
|
let llvm_ty = ctx.get_llvm_type(generator, *ty);
|
|
|
|
let v = if let Some(v) = generator.gen_expr(ctx, value)? {
|
|
v.to_basic_value_enum(ctx, generator, value.custom.unwrap())?
|
|
.into_pointer_value()
|
|
} else {
|
|
return Ok(None);
|
|
};
|
|
let v = NDArrayValue::from_pointer_value(v, llvm_ty, usize, None);
|
|
|
|
return gen_ndarray_subscript_expr(generator, ctx, *ty, *ndims, v, slice);
|
|
}
|
|
TypeEnum::TTuple { .. } => {
|
|
let index: u32 =
|
|
if let ExprKind::Constant { value: Constant::Int(v), .. } = &slice.node {
|
|
(*v).try_into().unwrap()
|
|
} else {
|
|
codegen_unreachable!(
|
|
ctx,
|
|
"tuple subscript must be const int after type check"
|
|
);
|
|
};
|
|
match generator.gen_expr(ctx, value)? {
|
|
Some(ValueEnum::Dynamic(v)) => {
|
|
let v = v.into_struct_value();
|
|
ctx.builder.build_extract_value(v, index, "tup_elem").unwrap().into()
|
|
}
|
|
Some(ValueEnum::Static(v)) => {
|
|
if let Some(v) = v.get_tuple_element(index) {
|
|
v
|
|
} else {
|
|
let tup = v
|
|
.to_basic_value_enum(ctx, generator, value.custom.unwrap())?
|
|
.into_struct_value();
|
|
ctx.builder
|
|
.build_extract_value(tup, index, "tup_elem")
|
|
.unwrap()
|
|
.into()
|
|
}
|
|
}
|
|
None => return Ok(None),
|
|
}
|
|
}
|
|
_ => codegen_unreachable!(
|
|
ctx,
|
|
"should not be other subscriptable types after type check"
|
|
),
|
|
}
|
|
}
|
|
ExprKind::ListComp { .. } => {
|
|
if let Some(v) = gen_comprehension(generator, ctx, expr)? {
|
|
v.into()
|
|
} else {
|
|
return Ok(None);
|
|
}
|
|
}
|
|
_ => unimplemented!(),
|
|
}))
|
|
}
|