1
0
forked from M-Labs/nac3
nac3/nac3artiq/src/symbol_resolver.rs

975 lines
38 KiB
Rust

use inkwell::{types::BasicType, values::BasicValueEnum, AddressSpace};
use nac3core::{
codegen::{CodeGenContext, CodeGenerator},
location::Location,
symbol_resolver::{StaticValue, SymbolResolver, SymbolValue, ValueEnum},
toplevel::{DefinitionId, TopLevelDef},
typecheck::{
type_inferencer::PrimitiveStore,
typedef::{Type, TypeEnum, Unifier},
},
};
use nac3parser::ast::{self, StrRef};
use parking_lot::{Mutex, RwLock};
use pyo3::{
types::{PyDict, PyTuple},
PyAny, PyObject, PyResult, Python,
};
use std::{
cell::RefCell,
collections::{HashMap, HashSet},
sync::Arc,
};
use crate::PrimitivePythonId;
pub enum PrimitiveValue {
I32(i32),
I64(i64),
F64(f64),
Bool(bool),
}
pub struct InnerResolver {
pub id_to_type: RwLock<HashMap<StrRef, Type>>,
pub id_to_def: RwLock<HashMap<StrRef, DefinitionId>>,
pub id_to_pyval: RwLock<HashMap<StrRef, (u64, PyObject)>>,
pub id_to_primitive: RwLock<HashMap<u64, PrimitiveValue>>,
pub field_to_val: RwLock<HashMap<(u64, StrRef), Option<(u64, PyObject)>>>,
pub global_value_ids: Arc<RwLock<HashSet<u64>>>,
pub class_names: Mutex<HashMap<StrRef, Type>>,
pub pyid_to_def: Arc<RwLock<HashMap<u64, DefinitionId>>>,
pub pyid_to_type: Arc<RwLock<HashMap<u64, Type>>>,
pub primitive_ids: PrimitivePythonId,
pub helper: PythonHelper,
// module specific
pub name_to_pyid: HashMap<StrRef, u64>,
pub module: PyObject,
}
pub struct Resolver(pub Arc<InnerResolver>);
#[derive(Clone)]
pub struct PythonHelper {
pub type_fn: PyObject,
pub len_fn: PyObject,
pub id_fn: PyObject,
pub origin_ty_fn: PyObject,
pub args_ty_fn: PyObject,
}
struct PythonValue {
id: u64,
value: PyObject,
resolver: Arc<InnerResolver>,
}
impl StaticValue for PythonValue {
fn get_unique_identifier(&self) -> u64 {
self.id
}
fn to_basic_value_enum<'ctx, 'a>(
&self,
ctx: &mut CodeGenContext<'ctx, 'a>,
generator: &mut dyn CodeGenerator,
) -> BasicValueEnum<'ctx> {
if let Some(val) = self.resolver.id_to_primitive.read().get(&self.id) {
return match val {
PrimitiveValue::I32(val) => ctx.ctx.i32_type().const_int(*val as u64, false).into(),
PrimitiveValue::I64(val) => ctx.ctx.i64_type().const_int(*val as u64, false).into(),
PrimitiveValue::F64(val) => ctx.ctx.f64_type().const_float(*val).into(),
PrimitiveValue::Bool(val) => {
ctx.ctx.bool_type().const_int(*val as u64, false).into()
}
};
}
if let Some(global) = ctx.module.get_global(&self.id.to_string()) {
return global.as_pointer_value().into();
}
Python::with_gil(|py| -> PyResult<BasicValueEnum<'ctx>> {
self.resolver
.get_obj_value(py, self.value.as_ref(py), ctx, generator)
.map(Option::unwrap)
})
.unwrap()
}
fn get_field<'ctx, 'a>(
&self,
name: StrRef,
ctx: &mut CodeGenContext<'ctx, 'a>,
) -> Option<ValueEnum<'ctx>> {
{
let field_to_val = self.resolver.field_to_val.read();
field_to_val.get(&(self.id, name)).cloned()
}
.unwrap_or_else(|| {
Python::with_gil(|py| -> PyResult<Option<(u64, PyObject)>> {
let helper = &self.resolver.helper;
let ty = helper.type_fn.call1(py, (&self.value,))?;
let ty_id: u64 = helper.id_fn.call1(py, (ty,))?.extract(py)?;
let def_id = { *self.resolver.pyid_to_def.read().get(&ty_id).unwrap() };
let mut mutable = true;
let defs = ctx.top_level.definitions.read();
if let TopLevelDef::Class { fields, .. } = &*defs[def_id.0].read() {
for (field_name, _, is_mutable) in fields.iter() {
if field_name == &name {
mutable = *is_mutable;
break;
}
}
}
let result = if mutable {
None
} else {
let obj = self.value.getattr(py, &name.to_string())?;
let id = self.resolver.helper.id_fn.call1(py, (&obj,))?.extract(py)?;
Some((id, obj))
};
self.resolver
.field_to_val
.write()
.insert((self.id, name), result.clone());
Ok(result)
})
.unwrap()
})
.map(|(id, obj)| {
ValueEnum::Static(Arc::new(PythonValue {
id,
value: obj,
resolver: self.resolver.clone(),
}))
})
}
}
impl InnerResolver {
fn get_list_elem_type(
&self,
py: Python,
list: &PyAny,
len: usize,
unifier: &mut Unifier,
defs: &[Arc<RwLock<TopLevelDef>>],
primitives: &PrimitiveStore,
) -> PyResult<Result<Type, String>> {
let mut ty = match self.get_obj_type(py, list.get_item(0)?, unifier, defs, primitives)? {
Ok(t) => t,
Err(e) => return Ok(Err(format!(
"type error ({}) at element #0 of the list", e
))),
};
for i in 1..len {
let b = match list
.get_item(i)
.map(|elem| self.get_obj_type(py, elem, unifier, defs, primitives))?? {
Ok(t) => t,
Err(e) => return Ok(Err(format!(
"type error ({}) at element #{} of the list", e, i
))),
};
ty = match unifier.unify(ty, b) {
Ok(_) => ty,
Err(e) => return Ok(Err(format!(
"inhomogeneous type ({}) at element #{} of the list", e, i
)))
};
}
Ok(Ok(ty))
}
// handle python objects that represent types themselves
// primitives and class types should be themselves, use `ty_id` to check,
// TypeVars and GenericAlias(`A[int, bool]`) should use `ty_ty_id` to check
// the `bool` value returned indicates whether they are instantiated or not
fn get_pyty_obj_type(
&self,
py: Python,
pyty: &PyAny,
unifier: &mut Unifier,
defs: &[Arc<RwLock<TopLevelDef>>],
primitives: &PrimitiveStore,
) -> PyResult<Result<(Type, bool), String>> {
let ty_id: u64 = self.helper.id_fn.call1(py, (pyty,))?.extract(py)?;
let ty_ty_id: u64 = self
.helper
.id_fn
.call1(py, (self.helper.type_fn.call1(py, (pyty,))?,))?
.extract(py)?;
if ty_id == self.primitive_ids.int || ty_id == self.primitive_ids.int32 {
Ok(Ok((primitives.int32, true)))
} else if ty_id == self.primitive_ids.int64 {
Ok(Ok((primitives.int64, true)))
} else if ty_id == self.primitive_ids.bool {
Ok(Ok((primitives.bool, true)))
} else if ty_id == self.primitive_ids.float {
Ok(Ok((primitives.float, true)))
} else if ty_id == self.primitive_ids.list {
// do not handle type var param and concrete check here
let var = unifier.get_fresh_var().0;
let list = unifier.add_ty(TypeEnum::TList { ty: var });
Ok(Ok((list, false)))
} else if ty_id == self.primitive_ids.tuple {
// do not handle type var param and concrete check here
Ok(Ok((unifier.add_ty(TypeEnum::TTuple { ty: vec![] }), false)))
} else if let Some(def_id) = self.pyid_to_def.read().get(&ty_id).cloned() {
let def = defs[def_id.0].read();
if let TopLevelDef::Class {
object_id,
type_vars,
fields,
methods,
..
} = &*def
{
// do not handle type var param and concrete check here, and no subst
Ok(Ok({
let ty = TypeEnum::TObj {
obj_id: *object_id,
params: RefCell::new({
type_vars
.iter()
.map(|x| {
if let TypeEnum::TVar { id, .. } = &*unifier.get_ty(*x) {
(*id, *x)
} else {
unreachable!()
}
})
.collect()
}),
fields: RefCell::new({
let mut res = methods
.iter()
.map(|(iden, ty, _)| (*iden, (*ty, false)))
.collect::<HashMap<_, _>>();
res.extend(fields.clone().into_iter().map(|x| (x.0, (x.1, x.2))));
res
}),
};
// here also false, later instantiation use python object to check compatible
(unifier.add_ty(ty), false)
}))
} else {
// only object is supported, functions are not supported
unreachable!("function type is not supported, should not be queried")
}
} else if ty_ty_id == self.primitive_ids.typevar {
let constraint_types = {
let constraints = pyty.getattr("__constraints__").unwrap();
let mut result: Vec<Type> = vec![];
for i in 0.. {
if let Ok(constr) = constraints.get_item(i) {
result.push({
match self.get_pyty_obj_type(py, constr, unifier, defs, primitives)? {
Ok((ty, _)) => {
if unifier.is_concrete(ty, &[]) {
ty
} else {
return Ok(Err(format!(
"the {}th constraint of TypeVar `{}` is not concrete",
i + 1,
pyty.getattr("__name__")?.extract::<String>()?
)));
}
}
Err(err) => return Ok(Err(err)),
}
})
} else {
break;
}
}
result
};
let res = unifier.get_fresh_var_with_range(&constraint_types).0;
Ok(Ok((res, true)))
} else if ty_ty_id == self.primitive_ids.generic_alias.0
|| ty_ty_id == self.primitive_ids.generic_alias.1
{
let origin = self.helper.origin_ty_fn.call1(py, (pyty,))?;
let args = self.helper.args_ty_fn.call1(py, (pyty,))?;
let args: &PyTuple = args.cast_as(py)?;
let origin_ty =
match self.get_pyty_obj_type(py, origin.as_ref(py), unifier, defs, primitives)? {
Ok((ty, false)) => ty,
Ok((_, true)) => {
return Ok(Err("instantiated type does not take type parameters".into()))
}
Err(err) => return Ok(Err(err)),
};
match &*unifier.get_ty(origin_ty) {
TypeEnum::TList { .. } => {
if args.len() == 1 {
let ty = match self.get_pyty_obj_type(
py,
args.get_item(0),
unifier,
defs,
primitives,
)? {
Ok(ty) => ty,
Err(err) => return Ok(Err(err)),
};
if !unifier.is_concrete(ty.0, &[]) && !ty.1 {
return Ok(Err(
"type list should take concrete parameters in typevar range".into()
));
}
Ok(Ok((unifier.add_ty(TypeEnum::TList { ty: ty.0 }), true)))
} else {
return Ok(Err(format!(
"type list needs exactly 1 type parameters, found {}",
args.len()
)));
}
}
TypeEnum::TTuple { .. } => {
let args = match args
.iter()
.map(|x| self.get_pyty_obj_type(py, x, unifier, defs, primitives))
.collect::<Result<Vec<_>, _>>()?
.into_iter()
.collect::<Result<Vec<_>, _>>() {
Ok(args) if !args.is_empty() => args
.into_iter()
.map(|(x, check)| if !unifier.is_concrete(x, &[]) && !check {
panic!("type tuple should take concrete parameters in type var ranges")
} else {
x
}
)
.collect::<Vec<_>>(),
Err(err) => return Ok(Err(err)),
_ => return Ok(Err("tuple type needs at least 1 type parameters".to_string()))
};
Ok(Ok((unifier.add_ty(TypeEnum::TTuple { ty: args }), true)))
}
TypeEnum::TObj { params, obj_id, .. } => {
let subst = {
let params = &*params.borrow();
if params.len() != args.len() {
return Ok(Err(format!(
"for class #{}, expect {} type parameters, got {}.",
obj_id.0,
params.len(),
args.len(),
)));
}
let args = match args
.iter()
.map(|x| self.get_pyty_obj_type(py, x, unifier, defs, primitives))
.collect::<Result<Vec<_>, _>>()?
.into_iter()
.collect::<Result<Vec<_>, _>>() {
Ok(args) => args
.into_iter()
.map(|(x, check)| if !unifier.is_concrete(x, &[]) && !check {
panic!("type class should take concrete parameters in type var ranges")
} else {
x
}
)
.collect::<Vec<_>>(),
Err(err) => return Ok(Err(err)),
};
params
.iter()
.zip(args.iter())
.map(|((id, _), ty)| (*id, *ty))
.collect::<HashMap<_, _>>()
};
Ok(Ok((
unifier.subst(origin_ty, &subst).unwrap_or(origin_ty),
true,
)))
}
TypeEnum::TVirtual { .. } => {
if args.len() == 1 {
let ty = match self.get_pyty_obj_type(
py,
args.get_item(0),
unifier,
defs,
primitives,
)? {
Ok(ty) => ty,
Err(err) => return Ok(Err(err)),
};
if !unifier.is_concrete(ty.0, &[]) && !ty.1 {
panic!(
"virtual class should take concrete parameters in type var ranges"
)
}
Ok(Ok((unifier.add_ty(TypeEnum::TVirtual { ty: ty.0 }), true)))
} else {
return Ok(Err(format!(
"virtual class needs exactly 1 type parameters, found {}",
args.len()
)));
}
}
_ => unimplemented!(),
}
} else if ty_id == self.primitive_ids.virtual_id {
Ok(Ok((
{
let ty = TypeEnum::TVirtual {
ty: unifier.get_fresh_var().0,
};
unifier.add_ty(ty)
},
false,
)))
} else {
Ok(Err("unknown type".into()))
}
}
fn get_obj_type(
&self,
py: Python,
obj: &PyAny,
unifier: &mut Unifier,
defs: &[Arc<RwLock<TopLevelDef>>],
primitives: &PrimitiveStore,
) -> PyResult<Result<Type, String>> {
let ty = self.helper.type_fn.call1(py, (obj,)).unwrap();
let (extracted_ty, inst_check) = match self.get_pyty_obj_type(
py,
{
if [
self.primitive_ids.typevar,
self.primitive_ids.generic_alias.0,
self.primitive_ids.generic_alias.1,
]
.contains(
&self
.helper
.id_fn
.call1(py, (ty.clone(),))?
.extract::<u64>(py)?,
) {
obj
} else {
ty.as_ref(py)
}
},
unifier,
defs,
primitives,
)? {
Ok(s) => s,
Err(e) => return Ok(Err(e)),
};
return match (&*unifier.get_ty(extracted_ty), inst_check) {
// do the instantiation for these three types
(TypeEnum::TList { ty }, false) => {
let len: usize = self.helper.len_fn.call1(py, (obj,))?.extract(py)?;
if len == 0 {
assert!(matches!(
&*unifier.get_ty(extracted_ty),
TypeEnum::TVar { meta: nac3core::typecheck::typedef::TypeVarMeta::Generic, range, .. }
if range.borrow().is_empty()
));
Ok(Ok(extracted_ty))
} else {
let actual_ty =
self.get_list_elem_type(py, obj, len, unifier, defs, primitives)?;
match actual_ty {
Ok(t) => match unifier.unify(*ty, t) {
Ok(_) => Ok(Ok(unifier.add_ty(TypeEnum::TList{ ty: *ty }))),
Err(e) => Ok(Err(format!("type error ({}) for the list", e))),
}
Err(e) => Ok(Err(e)),
}
}
}
(TypeEnum::TTuple { .. }, false) => {
let elements: &PyTuple = obj.cast_as()?;
let types: Result<Result<Vec<_>, _>, _> = elements
.iter()
.map(|elem| self.get_obj_type(py, elem, unifier, defs, primitives))
.collect();
let types = types?;
Ok(types.map(|types| unifier.add_ty(TypeEnum::TTuple { ty: types })))
}
(TypeEnum::TObj { params, fields, .. }, false) => {
let var_map = params
.borrow()
.iter()
.map(|(id_var, ty)| {
if let TypeEnum::TVar { id, range, .. } = &*unifier.get_ty(*ty) {
assert_eq!(*id, *id_var);
(*id, unifier.get_fresh_var_with_range(&range.borrow()).0)
} else {
unreachable!()
}
})
.collect::<HashMap<_, _>>();
// loop through non-function fields of the class to get the instantiated value
for field in fields.borrow().iter() {
let name: String = (*field.0).into();
if let TypeEnum::TFunc(..) = &*unifier.get_ty(field.1 .0) {
continue;
} else {
let field_data = obj.getattr(&name)?;
let ty = match self
.get_obj_type(py, field_data, unifier, defs, primitives)? {
Ok(t) => t,
Err(e) => return Ok(Err(format!(
"error when getting type of field `{}` ({})", name, e
))),
};
let field_ty = unifier.subst(field.1 .0, &var_map).unwrap_or(field.1 .0);
if let Err(e) = unifier.unify(ty, field_ty) {
// field type mismatch
return Ok(Err(format!(
"error when getting type of field `{}` ({})", name, e
)));
}
}
}
for (_, ty) in var_map.iter() {
// must be concrete type
if !unifier.is_concrete(*ty, &[]) {
return Ok(Err("object is not of concrete type".into()));
}
}
return Ok(Ok(
unifier
.subst(extracted_ty, &var_map)
.unwrap_or(extracted_ty),
));
}
_ => Ok(Ok(extracted_ty)),
};
}
fn get_obj_value<'ctx, 'a>(
&self,
py: Python,
obj: &PyAny,
ctx: &mut CodeGenContext<'ctx, 'a>,
generator: &mut dyn CodeGenerator,
) -> PyResult<Option<BasicValueEnum<'ctx>>> {
let ty_id: u64 = self
.helper
.id_fn
.call1(py, (self.helper.type_fn.call1(py, (obj,))?,))?
.extract(py)?;
let id: u64 = self.helper.id_fn.call1(py, (obj,))?.extract(py)?;
if ty_id == self.primitive_ids.int || ty_id == self.primitive_ids.int32 {
let val: i32 = obj.extract()?;
self.id_to_primitive
.write()
.insert(id, PrimitiveValue::I32(val));
Ok(Some(ctx.ctx.i32_type().const_int(val as u64, false).into()))
} else if ty_id == self.primitive_ids.int64 {
let val: i64 = obj.extract()?;
self.id_to_primitive
.write()
.insert(id, PrimitiveValue::I64(val));
Ok(Some(ctx.ctx.i64_type().const_int(val as u64, false).into()))
} else if ty_id == self.primitive_ids.bool {
let val: bool = obj.extract()?;
self.id_to_primitive
.write()
.insert(id, PrimitiveValue::Bool(val));
Ok(Some(
ctx.ctx.bool_type().const_int(val as u64, false).into(),
))
} else if ty_id == self.primitive_ids.float {
let val: f64 = obj.extract()?;
self.id_to_primitive
.write()
.insert(id, PrimitiveValue::F64(val));
Ok(Some(ctx.ctx.f64_type().const_float(val).into()))
} else if ty_id == self.primitive_ids.list {
let id_str = id.to_string();
if let Some(global) = ctx.module.get_global(&id_str) {
return Ok(Some(global.as_pointer_value().into()));
}
let len: usize = self.helper.len_fn.call1(py, (obj,))?.extract(py)?;
let ty = if len == 0 {
ctx.primitives.int32
} else {
self.get_list_elem_type(
py,
obj,
len,
&mut ctx.unifier,
&ctx.top_level.definitions.read(),
&ctx.primitives,
)?
.unwrap()
};
let ty = ctx.get_llvm_type(generator, ty);
let size_t = generator.get_size_type(ctx.ctx);
let arr_ty = ctx.ctx.struct_type(
&[ty.ptr_type(AddressSpace::Generic).into(), size_t.into()],
false,
);
{
if self.global_value_ids.read().contains(&id) {
let global = ctx.module.get_global(&id_str).unwrap_or_else(|| {
ctx.module
.add_global(arr_ty, Some(AddressSpace::Generic), &id_str)
});
return Ok(Some(global.as_pointer_value().into()));
} else {
self.global_value_ids.write().insert(id);
}
}
let arr: Result<Option<Vec<_>>, _> = (0..len)
.map(|i| {
obj.get_item(i)
.and_then(|elem| self.get_obj_value(py, elem, ctx, generator))
})
.collect();
let arr = arr?.unwrap();
let arr_global = ctx.module.add_global(
ty.array_type(len as u32),
Some(AddressSpace::Generic),
&(id_str.clone() + "_"),
);
let arr: BasicValueEnum = if ty.is_int_type() {
let arr: Vec<_> = arr
.into_iter()
.map(BasicValueEnum::into_int_value)
.collect();
ty.into_int_type().const_array(&arr)
} else if ty.is_float_type() {
let arr: Vec<_> = arr
.into_iter()
.map(BasicValueEnum::into_float_value)
.collect();
ty.into_float_type().const_array(&arr)
} else if ty.is_array_type() {
let arr: Vec<_> = arr
.into_iter()
.map(BasicValueEnum::into_array_value)
.collect();
ty.into_array_type().const_array(&arr)
} else if ty.is_struct_type() {
let arr: Vec<_> = arr
.into_iter()
.map(BasicValueEnum::into_struct_value)
.collect();
ty.into_struct_type().const_array(&arr)
} else if ty.is_pointer_type() {
let arr: Vec<_> = arr
.into_iter()
.map(BasicValueEnum::into_pointer_value)
.collect();
ty.into_pointer_type().const_array(&arr)
} else {
unreachable!()
}
.into();
arr_global.set_initializer(&arr);
let val = arr_ty.const_named_struct(&[
arr_global
.as_pointer_value()
.const_cast(ty.ptr_type(AddressSpace::Generic))
.into(),
size_t.const_int(len as u64, false).into(),
]);
let global = ctx
.module
.add_global(arr_ty, Some(AddressSpace::Generic), &id_str);
global.set_initializer(&val);
Ok(Some(global.as_pointer_value().into()))
} else if ty_id == self.primitive_ids.tuple {
let id_str = id.to_string();
if let Some(global) = ctx.module.get_global(&id_str) {
return Ok(Some(global.as_pointer_value().into()));
}
let elements: &PyTuple = obj.cast_as()?;
let types: Result<Result<Vec<_>, _>, _> = elements
.iter()
.map(|elem| {
self.get_obj_type(
py,
elem,
&mut ctx.unifier,
&ctx.top_level.definitions.read(),
&ctx.primitives,
)
.map(|ty| ty.map(|ty| ctx.get_llvm_type(generator, ty)))
})
.collect();
let types = types?.unwrap();
let ty = ctx.ctx.struct_type(&types, false);
{
if self.global_value_ids.read().contains(&id) {
let global = ctx.module.get_global(&id_str).unwrap_or_else(|| {
ctx.module
.add_global(ty, Some(AddressSpace::Generic), &id_str)
});
return Ok(Some(global.as_pointer_value().into()));
} else {
self.global_value_ids.write().insert(id);
}
}
let val: Result<Option<Vec<_>>, _> = elements
.iter()
.map(|elem| self.get_obj_value(py, elem, ctx, generator))
.collect();
let val = val?.unwrap();
let val = ctx.ctx.const_struct(&val, false);
let global = ctx
.module
.add_global(ty, Some(AddressSpace::Generic), &id_str);
global.set_initializer(&val);
Ok(Some(global.as_pointer_value().into()))
} else {
let id_str = id.to_string();
if let Some(global) = ctx.module.get_global(&id_str) {
return Ok(Some(global.as_pointer_value().into()));
}
let top_level_defs = ctx.top_level.definitions.read();
let ty = self
.get_obj_type(py, obj, &mut ctx.unifier, &top_level_defs, &ctx.primitives)?
.unwrap();
let ty = ctx
.get_llvm_type(generator, ty)
.into_pointer_type()
.get_element_type()
.into_struct_type()
.as_basic_type_enum();
{
if self.global_value_ids.read().contains(&id) {
let global = ctx.module.get_global(&id_str).unwrap_or_else(|| {
ctx.module
.add_global(ty, Some(AddressSpace::Generic), &id_str)
});
return Ok(Some(global.as_pointer_value().into()));
} else {
self.global_value_ids.write().insert(id);
}
}
// should be classes
let definition = top_level_defs
.get(self.pyid_to_def.read().get(&ty_id).unwrap().0)
.unwrap()
.read();
if let TopLevelDef::Class { fields, .. } = &*definition {
let values: Result<Option<Vec<_>>, _> = fields
.iter()
.map(|(name, _, _)| {
self.get_obj_value(py, obj.getattr(&name.to_string())?, ctx, generator)
})
.collect();
let values = values?;
if let Some(values) = values {
let val = ctx.ctx.const_struct(&values, false);
let global = ctx
.module
.add_global(ty, Some(AddressSpace::Generic), &id_str);
global.set_initializer(&val);
Ok(Some(global.as_pointer_value().into()))
} else {
Ok(None)
}
} else {
unreachable!()
}
}
}
fn get_default_param_obj_value(
&self,
py: Python,
obj: &PyAny,
) -> PyResult<Result<SymbolValue, String>> {
let ty_id: u64 = self
.helper
.id_fn
.call1(py, (self.helper.type_fn.call1(py, (obj,))?,))?
.extract(py)?;
Ok(
if ty_id == self.primitive_ids.int || ty_id == self.primitive_ids.int32 {
let val: i32 = obj.extract()?;
Ok(SymbolValue::I32(val))
} else if ty_id == self.primitive_ids.int64 {
let val: i64 = obj.extract()?;
Ok(SymbolValue::I64(val))
} else if ty_id == self.primitive_ids.bool {
let val: bool = obj.extract()?;
Ok(SymbolValue::Bool(val))
} else if ty_id == self.primitive_ids.float {
let val: f64 = obj.extract()?;
Ok(SymbolValue::Double(val))
} else if ty_id == self.primitive_ids.tuple {
let elements: &PyTuple = obj.cast_as()?;
let elements: Result<Result<Vec<_>, String>, _> = elements
.iter()
.map(|elem| self.get_default_param_obj_value(py, elem))
.collect();
let elements = match elements? {
Ok(el) => el,
Err(err) => return Ok(Err(err)),
};
Ok(SymbolValue::Tuple(elements))
} else {
Err("only primitives values and tuple can be default parameter value".into())
},
)
}
}
impl SymbolResolver for Resolver {
fn get_default_param_value(&self, expr: &ast::Expr) -> Option<SymbolValue> {
match &expr.node {
ast::ExprKind::Name { id, .. } => {
Python::with_gil(|py| -> PyResult<Option<SymbolValue>> {
let obj: &PyAny = self.0.module.extract(py)?;
let members: &PyDict = obj.getattr("__dict__").unwrap().cast_as().unwrap();
let mut sym_value = None;
for (key, val) in members.iter() {
let key: &str = key.extract()?;
if key == id.to_string() {
sym_value = Some(
self.0
.get_default_param_obj_value(py, val)
.unwrap()
.unwrap(),
);
break;
}
}
Ok(sym_value)
})
.unwrap()
}
_ => unimplemented!("other type of expr not supported at {}", expr.location),
}
}
fn get_symbol_type(
&self,
unifier: &mut Unifier,
defs: &[Arc<RwLock<TopLevelDef>>],
primitives: &PrimitiveStore,
str: StrRef,
) -> Result<Type, String> {
match {
let id_to_type = self.0.id_to_type.read();
id_to_type.get(&str).cloned()
} {
Some(ty) => Ok(ty),
None => {
let id = match self.0.name_to_pyid.get(&str) {
Some(id) => id,
None => return Err(format!("cannot find symbol `{}`", str)),
};
let result = match {
let pyid_to_type = self.0.pyid_to_type.read();
pyid_to_type.get(id).copied()
} {
Some(t) => Ok(t),
None => Python::with_gil(|py| -> PyResult<Result<Type, String>> {
let obj: &PyAny = self.0.module.extract(py)?;
let mut sym_ty = Err(format!("cannot find symbol `{}`", str));
let members: &PyDict = obj.getattr("__dict__").unwrap().cast_as().unwrap();
for (key, val) in members.iter() {
let key: &str = key.extract()?;
if key == str.to_string() {
sym_ty = self.0.get_obj_type(py, val, unifier, defs, primitives)?;
break;
}
}
if let Ok(t) = sym_ty {
self.0.pyid_to_type.write().insert(*id, t);
}
Ok(sym_ty)
})
.unwrap(),
};
if let Ok(t) = &result {
self.0.id_to_type.write().insert(str, *t);
}
result
}
}
}
fn get_symbol_value<'ctx, 'a>(
&self,
id: StrRef,
_: &mut CodeGenContext<'ctx, 'a>,
) -> Option<ValueEnum<'ctx>> {
let sym_value = {
let id_to_val = self.0.id_to_pyval.read();
id_to_val.get(&id).cloned()
}
.or_else(|| {
Python::with_gil(|py| -> PyResult<Option<(u64, PyObject)>> {
let obj: &PyAny = self.0.module.extract(py)?;
let mut sym_value: Option<(u64, PyObject)> = None;
let members: &PyDict = obj.getattr("__dict__").unwrap().cast_as().unwrap();
for (key, val) in members.iter() {
let key: &str = key.extract()?;
if key == id.to_string() {
let id = self.0.helper.id_fn.call1(py, (val,))?.extract(py)?;
sym_value = Some((id, val.extract()?));
break;
}
}
if let Some((pyid, val)) = &sym_value {
self.0.id_to_pyval.write().insert(id, (*pyid, val.clone()));
}
Ok(sym_value)
})
.unwrap()
});
sym_value.map(|(id, v)| {
ValueEnum::Static(Arc::new(PythonValue {
id,
value: v,
resolver: self.0.clone(),
}))
})
}
fn get_symbol_location(&self, _: StrRef) -> Option<Location> {
unimplemented!()
}
fn get_identifier_def(&self, id: StrRef) -> Option<DefinitionId> {
{
let id_to_def = self.0.id_to_def.read();
id_to_def.get(&id).cloned()
}
.or_else(|| {
let py_id = self.0.name_to_pyid.get(&id);
let result = py_id.and_then(|id| self.0.pyid_to_def.read().get(id).copied());
if let Some(result) = &result {
self.0.id_to_def.write().insert(id, *result);
}
result
})
}
}