1
0
forked from M-Labs/nac3
nac3/nac3core/src/codegen/stmt.rs

1817 lines
70 KiB
Rust

use super::{
super::symbol_resolver::ValueEnum,
expr::destructure_range,
irrt::{handle_slice_indices, list_slice_assignment},
CodeGenContext, CodeGenerator,
};
use crate::{
codegen::{
classes::{ArrayLikeIndexer, ArraySliceValue, ListValue, RangeValue},
expr::gen_binop_expr,
gen_in_range_check,
},
toplevel::{DefinitionId, TopLevelDef},
typecheck::{
magic_methods::Binop,
typedef::{iter_type_vars, FunSignature, Type, TypeEnum},
},
};
use inkwell::{
attributes::{Attribute, AttributeLoc},
basic_block::BasicBlock,
types::{BasicType, BasicTypeEnum},
values::{BasicValue, BasicValueEnum, FunctionValue, IntValue, PointerValue},
IntPredicate,
};
use itertools::{izip, Itertools};
use nac3parser::ast::{
Constant, ExcepthandlerKind, Expr, ExprKind, Location, Stmt, StmtKind, StrRef,
};
/// See [`CodeGenerator::gen_var_alloc`].
pub fn gen_var<'ctx>(
ctx: &mut CodeGenContext<'ctx, '_>,
ty: BasicTypeEnum<'ctx>,
name: Option<&str>,
) -> Result<PointerValue<'ctx>, String> {
// Restore debug location
let di_loc = ctx.debug_info.0.create_debug_location(
ctx.ctx,
ctx.current_loc.row as u32,
ctx.current_loc.column as u32,
ctx.debug_info.2,
None,
);
// put the alloca in init block
let current = ctx.builder.get_insert_block().unwrap();
// position before the last branching instruction...
ctx.builder.position_before(&ctx.init_bb.get_last_instruction().unwrap());
ctx.builder.set_current_debug_location(di_loc);
let ptr = ctx.builder.build_alloca(ty, name.unwrap_or("")).unwrap();
ctx.builder.position_at_end(current);
ctx.builder.set_current_debug_location(di_loc);
Ok(ptr)
}
/// See [`CodeGenerator::gen_array_var_alloc`].
pub fn gen_array_var<'ctx, 'a, T: BasicType<'ctx>>(
ctx: &mut CodeGenContext<'ctx, 'a>,
ty: T,
size: IntValue<'ctx>,
name: Option<&'ctx str>,
) -> Result<ArraySliceValue<'ctx>, String> {
// Restore debug location
let di_loc = ctx.debug_info.0.create_debug_location(
ctx.ctx,
ctx.current_loc.row as u32,
ctx.current_loc.column as u32,
ctx.debug_info.2,
None,
);
// put the alloca in init block
let current = ctx.builder.get_insert_block().unwrap();
// position before the last branching instruction...
ctx.builder.position_before(&ctx.init_bb.get_last_instruction().unwrap());
ctx.builder.set_current_debug_location(di_loc);
let ptr = ctx.builder.build_array_alloca(ty, size, name.unwrap_or("")).unwrap();
let ptr = ArraySliceValue::from_ptr_val(ptr, size, name);
ctx.builder.position_at_end(current);
ctx.builder.set_current_debug_location(di_loc);
Ok(ptr)
}
/// See [`CodeGenerator::gen_store_target`].
pub fn gen_store_target<'ctx, G: CodeGenerator>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
pattern: &Expr<Option<Type>>,
name: Option<&str>,
) -> Result<Option<PointerValue<'ctx>>, String> {
// very similar to gen_expr, but we don't do an extra load at the end
// and we flatten nested tuples
Ok(Some(match &pattern.node {
ExprKind::Name { id, .. } => match ctx.var_assignment.get(id) {
None => {
let ptr_ty = ctx.get_llvm_type(generator, pattern.custom.unwrap());
let ptr = generator.gen_var_alloc(ctx, ptr_ty, name)?;
ctx.var_assignment.insert(*id, (ptr, None, 0));
ptr
}
Some(v) => {
let (ptr, counter) = (v.0, v.2);
ctx.var_assignment.insert(*id, (ptr, None, counter));
ptr
}
},
ExprKind::Attribute { value, attr, .. } => {
let (index, _) = ctx.get_attr_index(value.custom.unwrap(), *attr);
let val = if let Some(v) = generator.gen_expr(ctx, value)? {
v.to_basic_value_enum(ctx, generator, value.custom.unwrap())?
} else {
return Ok(None);
};
let BasicValueEnum::PointerValue(ptr) = val else {
unreachable!();
};
unsafe {
ctx.builder.build_in_bounds_gep(
ptr,
&[
ctx.ctx.i32_type().const_zero(),
ctx.ctx.i32_type().const_int(index as u64, false),
],
name.unwrap_or(""),
)
}
.unwrap()
}
_ => unreachable!(),
}))
}
/// See [`CodeGenerator::gen_assign`].
pub fn gen_assign<'ctx, G: CodeGenerator>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
target: &Expr<Option<Type>>,
value: ValueEnum<'ctx>,
value_ty: Type,
) -> Result<(), String> {
// See https://docs.python.org/3/reference/simple_stmts.html#assignment-statements.
match &target.node {
ExprKind::Subscript { value: target, slice: key, .. } => {
// Handle "slicing" or "subscription"
generator.gen_setitem(ctx, target, key, value, value_ty)?;
}
ExprKind::Tuple { elts, .. } | ExprKind::List { elts, .. } => {
// Fold on `"[" [target_list] "]"` and `"(" [target_list] ")"`
generator.gen_assign_target_list(ctx, elts, value, value_ty)?;
}
_ => {
// Handle attribute and direct variable assignments.
let name = if let ExprKind::Name { id, .. } = &target.node {
format!("{id}.addr")
} else {
String::from("target.addr")
};
let Some(ptr) = generator.gen_store_target(ctx, target, Some(name.as_str()))? else {
return Ok(());
};
if let ExprKind::Name { id, .. } = &target.node {
let (_, static_value, counter) = ctx.var_assignment.get_mut(id).unwrap();
*counter += 1;
if let ValueEnum::Static(s) = &value {
*static_value = Some(s.clone());
}
}
let val = value.to_basic_value_enum(ctx, generator, target.custom.unwrap())?;
ctx.builder.build_store(ptr, val).unwrap();
}
};
Ok(())
}
/// See [`CodeGenerator::gen_assign_target_list`].
pub fn gen_assign_target_list<'ctx, G: CodeGenerator>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
targets: &Vec<Expr<Option<Type>>>,
value: ValueEnum<'ctx>,
value_ty: Type,
) -> Result<(), String> {
// Deconstruct the tuple `value`
let BasicValueEnum::StructValue(tuple) = value.to_basic_value_enum(ctx, generator, value_ty)?
else {
unreachable!()
};
// NOTE: Currently, RHS's type is forced to be a Tuple by the type inferencer.
let TypeEnum::TTuple { ty: tuple_tys, .. } = &*ctx.unifier.get_ty(value_ty) else {
unreachable!();
};
assert_eq!(tuple.get_type().count_fields() as usize, tuple_tys.len());
let tuple = (0..tuple.get_type().count_fields())
.map(|i| ctx.builder.build_extract_value(tuple, i, "item").unwrap())
.collect_vec();
// Find the starred target if it exists.
let mut starred_target_index: Option<usize> = None; // Index of the "starred" target. If it exists, there may only be one.
for (i, target) in targets.iter().enumerate() {
if matches!(target.node, ExprKind::Starred { .. }) {
assert!(starred_target_index.is_none()); // The typechecker ensures this
starred_target_index = Some(i);
}
}
if let Some(starred_target_index) = starred_target_index {
assert!(tuple_tys.len() >= targets.len() - 1); // The typechecker ensures this
let a = starred_target_index; // Number of RHS values before the starred target
let b = tuple_tys.len() - (targets.len() - 1 - starred_target_index); // Number of RHS values after the starred target
// Thus `tuple[a..b]` is assigned to the starred target.
// Handle assignment before the starred target
for (target, val, val_ty) in
izip!(&targets[..starred_target_index], &tuple[..a], &tuple_tys[..a])
{
generator.gen_assign(ctx, target, ValueEnum::Dynamic(*val), *val_ty)?;
}
// Handle assignment to the starred target
if let ExprKind::Starred { value: target, .. } = &targets[starred_target_index].node {
let vals = &tuple[a..b];
let val_tys = &tuple_tys[a..b];
// Create a sub-tuple from `value` for the starred target.
let sub_tuple_ty = ctx
.ctx
.struct_type(&vals.iter().map(BasicValueEnum::get_type).collect_vec(), false);
let psub_tuple_val =
ctx.builder.build_alloca(sub_tuple_ty, "starred_target_value_ptr").unwrap();
for (i, val) in vals.iter().enumerate() {
let pitem = ctx
.builder
.build_struct_gep(psub_tuple_val, i as u32, "starred_target_value_item")
.unwrap();
ctx.builder.build_store(pitem, *val).unwrap();
}
let sub_tuple_val =
ctx.builder.build_load(psub_tuple_val, "starred_target_value").unwrap();
// Create the typechecker type of the sub-tuple
let sub_tuple_ty =
ctx.unifier.add_ty(TypeEnum::TTuple { ty: val_tys.to_vec(), is_vararg_ctx: false });
// Now assign with that sub-tuple to the starred target.
generator.gen_assign(ctx, target, ValueEnum::Dynamic(sub_tuple_val), sub_tuple_ty)?;
} else {
unreachable!() // The typechecker ensures this
}
// Handle assignment after the starred target
for (target, val, val_ty) in
izip!(&targets[starred_target_index + 1..], &tuple[b..], &tuple_tys[b..])
{
generator.gen_assign(ctx, target, ValueEnum::Dynamic(*val), *val_ty)?;
}
} else {
assert_eq!(tuple_tys.len(), targets.len()); // The typechecker ensures this
for (target, val, val_ty) in izip!(targets, tuple, tuple_tys) {
generator.gen_assign(ctx, target, ValueEnum::Dynamic(val), *val_ty)?;
}
}
Ok(())
}
/// See [`CodeGenerator::gen_setitem`].
pub fn gen_setitem<'ctx, G: CodeGenerator>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
target: &Expr<Option<Type>>,
key: &Expr<Option<Type>>,
value: ValueEnum<'ctx>,
value_ty: Type,
) -> Result<(), String> {
let target_ty = target.custom.unwrap();
let key_ty = key.custom.unwrap();
match &*ctx.unifier.get_ty(target_ty) {
TypeEnum::TObj { obj_id, params: list_params, .. }
if *obj_id == ctx.primitives.list.obj_id(&ctx.unifier).unwrap() =>
{
// Handle list item assignment
let llvm_usize = generator.get_size_type(ctx.ctx);
let target_item_ty = iter_type_vars(list_params).next().unwrap().ty;
let target = generator
.gen_expr(ctx, target)?
.unwrap()
.to_basic_value_enum(ctx, generator, target_ty)?
.into_pointer_value();
let target = ListValue::from_ptr_val(target, llvm_usize, None);
if let ExprKind::Slice { .. } = &key.node {
// Handle assigning to a slice
let ExprKind::Slice { lower, upper, step } = &key.node else { unreachable!() };
let Some((start, end, step)) = handle_slice_indices(
lower,
upper,
step,
ctx,
generator,
target.load_size(ctx, None),
)?
else {
return Ok(());
};
let value =
value.to_basic_value_enum(ctx, generator, value_ty)?.into_pointer_value();
let value = ListValue::from_ptr_val(value, llvm_usize, None);
let target_item_ty = ctx.get_llvm_type(generator, target_item_ty);
let Some(src_ind) = handle_slice_indices(
&None,
&None,
&None,
ctx,
generator,
value.load_size(ctx, None),
)?
else {
return Ok(());
};
list_slice_assignment(
generator,
ctx,
target_item_ty,
target,
(start, end, step),
value,
src_ind,
);
} else {
// Handle assigning to an index
let len = target.load_size(ctx, Some("len"));
let index = generator
.gen_expr(ctx, key)?
.unwrap()
.to_basic_value_enum(ctx, generator, key_ty)?
.into_int_value();
let index = ctx
.builder
.build_int_s_extend(index, generator.get_size_type(ctx.ctx), "sext")
.unwrap();
// handle negative index
let is_negative = ctx
.builder
.build_int_compare(
IntPredicate::SLT,
index,
generator.get_size_type(ctx.ctx).const_zero(),
"is_neg",
)
.unwrap();
let adjusted = ctx.builder.build_int_add(index, len, "adjusted").unwrap();
let index = ctx
.builder
.build_select(is_negative, adjusted, index, "index")
.map(BasicValueEnum::into_int_value)
.unwrap();
// unsigned less than is enough, because negative index after adjustment is
// bigger than the length (for unsigned cmp)
let bound_check = ctx
.builder
.build_int_compare(IntPredicate::ULT, index, len, "inbound")
.unwrap();
ctx.make_assert(
generator,
bound_check,
"0:IndexError",
"index {0} out of bounds 0:{1}",
[Some(index), Some(len), None],
key.location,
);
// Write value to index on list
let item_ptr =
target.data().ptr_offset(ctx, generator, &index, Some("list_item_ptr"));
let value = value.to_basic_value_enum(ctx, generator, value_ty)?;
ctx.builder.build_store(item_ptr, value).unwrap();
}
}
TypeEnum::TObj { obj_id, .. }
if *obj_id == ctx.primitives.ndarray.obj_id(&ctx.unifier).unwrap() =>
{
// Handle NDArray item assignment
todo!("ndarray subscript assignment is not yet implemented");
}
_ => {
panic!("encountered unknown target type: {}", ctx.unifier.stringify(target_ty));
}
}
Ok(())
}
/// See [`CodeGenerator::gen_for`].
pub fn gen_for<G: CodeGenerator>(
generator: &mut G,
ctx: &mut CodeGenContext<'_, '_>,
stmt: &Stmt<Option<Type>>,
) -> Result<(), String> {
let StmtKind::For { iter, target, body, orelse, .. } = &stmt.node else { unreachable!() };
// var_assignment static values may be changed in another branch
// if so, remove the static value as it may not be correct in this branch
let var_assignment = ctx.var_assignment.clone();
let int32 = ctx.ctx.i32_type();
let size_t = generator.get_size_type(ctx.ctx);
let zero = int32.const_zero();
let current = ctx.builder.get_insert_block().and_then(BasicBlock::get_parent).unwrap();
let body_bb = ctx.ctx.append_basic_block(current, "for.body");
let cont_bb = ctx.ctx.append_basic_block(current, "for.end");
// if there is no orelse, we just go to cont_bb
let orelse_bb =
if orelse.is_empty() { cont_bb } else { ctx.ctx.append_basic_block(current, "for.orelse") };
// The BB containing the increment expression
let incr_bb = ctx.ctx.append_basic_block(current, "for.incr");
// The BB containing the loop condition check
let cond_bb = ctx.ctx.append_basic_block(current, "for.cond");
// store loop bb information and restore it later
let loop_bb = ctx.loop_target.replace((incr_bb, cont_bb));
let iter_ty = iter.custom.unwrap();
let iter_val = if let Some(v) = generator.gen_expr(ctx, iter)? {
v.to_basic_value_enum(ctx, generator, iter_ty)?
} else {
return Ok(());
};
match &*ctx.unifier.get_ty(iter_ty) {
TypeEnum::TObj { obj_id, .. }
if *obj_id == ctx.primitives.range.obj_id(&ctx.unifier).unwrap() =>
{
let iter_val = RangeValue::from_ptr_val(iter_val.into_pointer_value(), Some("range"));
// Internal variable for loop; Cannot be assigned
let i = generator.gen_var_alloc(ctx, int32.into(), Some("for.i.addr"))?;
// Variable declared in "target" expression of the loop; Can be reassigned *or* shadowed
let Some(target_i) =
generator.gen_store_target(ctx, target, Some("for.target.addr"))?
else {
unreachable!()
};
let (start, stop, step) = destructure_range(ctx, iter_val);
ctx.builder.build_store(i, start).unwrap();
// Check "If step is zero, ValueError is raised."
let rangenez = ctx
.builder
.build_int_compare(IntPredicate::NE, step, int32.const_zero(), "")
.unwrap();
ctx.make_assert(
generator,
rangenez,
"ValueError",
"range() arg 3 must not be zero",
[None, None, None],
ctx.current_loc,
);
ctx.builder.build_unconditional_branch(cond_bb).unwrap();
{
ctx.builder.position_at_end(cond_bb);
ctx.builder
.build_conditional_branch(
gen_in_range_check(
ctx,
ctx.builder
.build_load(i, "")
.map(BasicValueEnum::into_int_value)
.unwrap(),
stop,
step,
),
body_bb,
orelse_bb,
)
.unwrap();
}
ctx.builder.position_at_end(incr_bb);
let next_i = ctx
.builder
.build_int_add(
ctx.builder.build_load(i, "").map(BasicValueEnum::into_int_value).unwrap(),
step,
"inc",
)
.unwrap();
ctx.builder.build_store(i, next_i).unwrap();
ctx.builder.build_unconditional_branch(cond_bb).unwrap();
ctx.builder.position_at_end(body_bb);
ctx.builder
.build_store(
target_i,
ctx.builder.build_load(i, "").map(BasicValueEnum::into_int_value).unwrap(),
)
.unwrap();
generator.gen_block(ctx, body.iter())?;
}
TypeEnum::TObj { obj_id, params: list_params, .. }
if *obj_id == ctx.primitives.list.obj_id(&ctx.unifier).unwrap() =>
{
let index_addr = generator.gen_var_alloc(ctx, size_t.into(), Some("for.index.addr"))?;
ctx.builder.build_store(index_addr, size_t.const_zero()).unwrap();
let len = ctx
.build_gep_and_load(
iter_val.into_pointer_value(),
&[zero, int32.const_int(1, false)],
Some("len"),
)
.into_int_value();
ctx.builder.build_unconditional_branch(cond_bb).unwrap();
ctx.builder.position_at_end(cond_bb);
let index = ctx
.builder
.build_load(index_addr, "for.index")
.map(BasicValueEnum::into_int_value)
.unwrap();
let cmp = ctx.builder.build_int_compare(IntPredicate::SLT, index, len, "cond").unwrap();
ctx.builder.build_conditional_branch(cmp, body_bb, orelse_bb).unwrap();
ctx.builder.position_at_end(incr_bb);
let index =
ctx.builder.build_load(index_addr, "").map(BasicValueEnum::into_int_value).unwrap();
let inc = ctx.builder.build_int_add(index, size_t.const_int(1, true), "inc").unwrap();
ctx.builder.build_store(index_addr, inc).unwrap();
ctx.builder.build_unconditional_branch(cond_bb).unwrap();
ctx.builder.position_at_end(body_bb);
let arr_ptr = ctx
.build_gep_and_load(iter_val.into_pointer_value(), &[zero, zero], Some("arr.addr"))
.into_pointer_value();
let index = ctx
.builder
.build_load(index_addr, "for.index")
.map(BasicValueEnum::into_int_value)
.unwrap();
let val = ctx.build_gep_and_load(arr_ptr, &[index], Some("val"));
let val_ty = iter_type_vars(list_params).next().unwrap().ty;
generator.gen_assign(ctx, target, val.into(), val_ty)?;
generator.gen_block(ctx, body.iter())?;
}
_ => {
panic!("unsupported for loop iterator type: {}", ctx.unifier.stringify(iter_ty));
}
}
for (k, (_, _, counter)) in &var_assignment {
let (_, static_val, counter2) = ctx.var_assignment.get_mut(k).unwrap();
if counter != counter2 {
*static_val = None;
}
}
if !ctx.is_terminated() {
ctx.builder.build_unconditional_branch(incr_bb).unwrap();
}
if !orelse.is_empty() {
ctx.builder.position_at_end(orelse_bb);
generator.gen_block(ctx, orelse.iter())?;
if !ctx.is_terminated() {
ctx.builder.build_unconditional_branch(cont_bb).unwrap();
}
}
for (k, (_, _, counter)) in &var_assignment {
let (_, static_val, counter2) = ctx.var_assignment.get_mut(k).unwrap();
if counter != counter2 {
*static_val = None;
}
}
ctx.builder.position_at_end(cont_bb);
ctx.loop_target = loop_bb;
Ok(())
}
#[derive(PartialEq, Eq, Debug, Clone, Copy, Hash)]
pub struct BreakContinueHooks<'ctx> {
/// The [exit block][`BasicBlock`] to branch to when `break`-ing out of a loop.
pub exit_bb: BasicBlock<'ctx>,
/// The [latch basic block][`BasicBlock`] to branch to for `continue`-ing to the next iteration
/// of the loop.
pub latch_bb: BasicBlock<'ctx>,
}
/// Generates a C-style `for` construct using lambdas, similar to the following C code:
///
/// ```c
/// for (x... = init(); cond(x...); update(x...)) {
/// body(x...);
/// }
/// ```
///
/// * `init` - A lambda containing IR statements declaring and initializing loop variables. The
/// return value is a [Clone] value which will be passed to the other lambdas.
/// * `cond` - A lambda containing IR statements checking whether the loop should continue
/// executing. The result value must be an `i1` indicating if the loop should continue.
/// * `body` - A lambda containing IR statements within the loop body.
/// * `update` - A lambda containing IR statements updating loop variables.
pub fn gen_for_callback<'ctx, 'a, G, I, InitFn, CondFn, BodyFn, UpdateFn>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, 'a>,
label: Option<&str>,
init: InitFn,
cond: CondFn,
body: BodyFn,
update: UpdateFn,
) -> Result<(), String>
where
G: CodeGenerator + ?Sized,
I: Clone,
InitFn: FnOnce(&mut G, &mut CodeGenContext<'ctx, 'a>) -> Result<I, String>,
CondFn: FnOnce(&mut G, &mut CodeGenContext<'ctx, 'a>, I) -> Result<IntValue<'ctx>, String>,
BodyFn: FnOnce(
&mut G,
&mut CodeGenContext<'ctx, 'a>,
BreakContinueHooks<'ctx>,
I,
) -> Result<(), String>,
UpdateFn: FnOnce(&mut G, &mut CodeGenContext<'ctx, 'a>, I) -> Result<(), String>,
{
let label = label.unwrap_or("for");
let current_bb = ctx.builder.get_insert_block().unwrap();
let init_bb = ctx.ctx.insert_basic_block_after(current_bb, &format!("{label}.init"));
// The BB containing the loop condition check
let cond_bb = ctx.ctx.insert_basic_block_after(init_bb, &format!("{label}.cond"));
let body_bb = ctx.ctx.insert_basic_block_after(cond_bb, &format!("{label}.body"));
// The BB containing the increment expression
let update_bb = ctx.ctx.insert_basic_block_after(body_bb, &format!("{label}.update"));
let cont_bb = ctx.ctx.insert_basic_block_after(update_bb, &format!("{label}.end"));
// store loop bb information and restore it later
let loop_bb = ctx.loop_target.replace((update_bb, cont_bb));
ctx.builder.build_unconditional_branch(init_bb).unwrap();
ctx.builder.position_at_end(init_bb);
let loop_var = init(generator, ctx)?;
if !ctx.is_terminated() {
ctx.builder.build_unconditional_branch(cond_bb).unwrap();
}
ctx.builder.position_at_end(cond_bb);
let cond = cond(generator, ctx, loop_var.clone())?;
assert_eq!(cond.get_type().get_bit_width(), ctx.ctx.bool_type().get_bit_width());
if !ctx.is_terminated() {
ctx.builder.build_conditional_branch(cond, body_bb, cont_bb).unwrap();
}
ctx.builder.position_at_end(body_bb);
let hooks = BreakContinueHooks { exit_bb: cont_bb, latch_bb: update_bb };
body(generator, ctx, hooks, loop_var.clone())?;
if !ctx.is_terminated() {
ctx.builder.build_unconditional_branch(update_bb).unwrap();
}
ctx.builder.position_at_end(update_bb);
update(generator, ctx, loop_var)?;
if !ctx.is_terminated() {
ctx.builder.build_unconditional_branch(cond_bb).unwrap();
}
ctx.builder.position_at_end(cont_bb);
ctx.loop_target = loop_bb;
Ok(())
}
/// Generates a C-style monotonically-increasing `for` construct using lambdas, similar to the
/// following C code:
///
/// ```c
/// for (int x = init_val; x /* < or <= ; see `max_val` */ max_val; x += incr_val) {
/// body(x);
/// }
/// ```
///
/// * `init_val` - The initial value of the loop variable. The type of this value will also be used
/// as the type of the loop variable.
/// * `max_val` - A tuple containing the maximum value of the loop variable, and whether the maximum
/// value should be treated as inclusive (as opposed to exclusive).
/// * `body` - A lambda containing IR statements within the loop body.
/// * `incr_val` - The value to increment the loop variable on each iteration.
pub fn gen_for_callback_incrementing<'ctx, 'a, G, BodyFn>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, 'a>,
label: Option<&str>,
init_val: IntValue<'ctx>,
max_val: (IntValue<'ctx>, bool),
body: BodyFn,
incr_val: IntValue<'ctx>,
) -> Result<(), String>
where
G: CodeGenerator + ?Sized,
BodyFn: FnOnce(
&mut G,
&mut CodeGenContext<'ctx, 'a>,
BreakContinueHooks<'ctx>,
IntValue<'ctx>,
) -> Result<(), String>,
{
let init_val_t = init_val.get_type();
gen_for_callback(
generator,
ctx,
label,
|generator, ctx| {
let i_addr = generator.gen_var_alloc(ctx, init_val_t.into(), None)?;
ctx.builder.build_store(i_addr, init_val).unwrap();
Ok(i_addr)
},
|_, ctx, i_addr| {
let cmp_op = if max_val.1 { IntPredicate::ULE } else { IntPredicate::ULT };
let i = ctx.builder.build_load(i_addr, "").map(BasicValueEnum::into_int_value).unwrap();
let max_val =
ctx.builder.build_int_z_extend_or_bit_cast(max_val.0, init_val_t, "").unwrap();
Ok(ctx.builder.build_int_compare(cmp_op, i, max_val, "").unwrap())
},
|generator, ctx, hooks, i_addr| {
let i = ctx.builder.build_load(i_addr, "").map(BasicValueEnum::into_int_value).unwrap();
body(generator, ctx, hooks, i)
},
|_, ctx, i_addr| {
let i = ctx.builder.build_load(i_addr, "").map(BasicValueEnum::into_int_value).unwrap();
let incr_val =
ctx.builder.build_int_z_extend_or_bit_cast(incr_val, init_val_t, "").unwrap();
let i = ctx.builder.build_int_add(i, incr_val, "").unwrap();
ctx.builder.build_store(i_addr, i).unwrap();
Ok(())
},
)
}
/// Generates a `for` construct over a `range`-like iterable using lambdas, similar to the following
/// C code:
///
/// ```c
/// bool incr = start_fn() <= end_fn();
/// for (int i = start_fn(); i /* < or > */ end_fn(); i += step_fn()) {
/// body_fn(i);
/// }
/// ```
///
/// - `is_unsigned`: Whether to treat the values of the `range` as unsigned.
/// - `start_fn`: A lambda of IR statements that retrieves the `start` value of the `range`-like
/// iterable.
/// - `stop_fn`: A lambda of IR statements that retrieves the `stop` value of the `range`-like
/// iterable. This value will be extended to the size of `start`.
/// - `stop_inclusive`: Whether the stop value should be treated as inclusive.
/// - `step_fn`: A lambda of IR statements that retrieves the `step` value of the `range`-like
/// iterable. This value will be extended to the size of `start`.
/// - `body_fn`: A lambda of IR statements within the loop body.
#[allow(clippy::too_many_arguments)]
pub fn gen_for_range_callback<'ctx, 'a, G, StartFn, StopFn, StepFn, BodyFn>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, 'a>,
label: Option<&str>,
is_unsigned: bool,
start_fn: StartFn,
(stop_fn, stop_inclusive): (StopFn, bool),
step_fn: StepFn,
body_fn: BodyFn,
) -> Result<(), String>
where
G: CodeGenerator + ?Sized,
StartFn: Fn(&mut G, &mut CodeGenContext<'ctx, 'a>) -> Result<IntValue<'ctx>, String>,
StopFn: Fn(&mut G, &mut CodeGenContext<'ctx, 'a>) -> Result<IntValue<'ctx>, String>,
StepFn: Fn(&mut G, &mut CodeGenContext<'ctx, 'a>) -> Result<IntValue<'ctx>, String>,
BodyFn: FnOnce(
&mut G,
&mut CodeGenContext<'ctx, 'a>,
BreakContinueHooks<'ctx>,
IntValue<'ctx>,
) -> Result<(), String>,
{
let init_val_t = start_fn(generator, ctx).map(IntValue::get_type).unwrap();
gen_for_callback(
generator,
ctx,
label,
|generator, ctx| {
let i_addr = generator.gen_var_alloc(ctx, init_val_t.into(), None)?;
let start = start_fn(generator, ctx)?;
ctx.builder.build_store(i_addr, start).unwrap();
let start = start_fn(generator, ctx)?;
let stop = stop_fn(generator, ctx)?;
let stop = if stop.get_type().get_bit_width() == start.get_type().get_bit_width() {
stop
} else if is_unsigned {
ctx.builder.build_int_z_extend(stop, start.get_type(), "").unwrap()
} else {
ctx.builder.build_int_s_extend(stop, start.get_type(), "").unwrap()
};
let incr = ctx
.builder
.build_int_compare(
if is_unsigned { IntPredicate::ULE } else { IntPredicate::SLE },
start,
stop,
"",
)
.unwrap();
Ok((i_addr, incr))
},
|generator, ctx, (i_addr, incr)| {
let (lt_cmp_op, gt_cmp_op) = match (is_unsigned, stop_inclusive) {
(true, true) => (IntPredicate::ULE, IntPredicate::UGE),
(true, false) => (IntPredicate::ULT, IntPredicate::UGT),
(false, true) => (IntPredicate::SLE, IntPredicate::SGE),
(false, false) => (IntPredicate::SLT, IntPredicate::SGT),
};
let i = ctx.builder.build_load(i_addr, "").map(BasicValueEnum::into_int_value).unwrap();
let stop = stop_fn(generator, ctx)?;
let stop = if stop.get_type().get_bit_width() == i.get_type().get_bit_width() {
stop
} else if is_unsigned {
ctx.builder.build_int_z_extend(stop, i.get_type(), "").unwrap()
} else {
ctx.builder.build_int_s_extend(stop, i.get_type(), "").unwrap()
};
let i_lt_end = ctx.builder.build_int_compare(lt_cmp_op, i, stop, "").unwrap();
let i_gt_end = ctx.builder.build_int_compare(gt_cmp_op, i, stop, "").unwrap();
let cond = ctx
.builder
.build_select(incr, i_lt_end, i_gt_end, "")
.map(BasicValueEnum::into_int_value)
.unwrap();
Ok(cond)
},
|generator, ctx, hooks, (i_addr, _)| {
let i = ctx.builder.build_load(i_addr, "").map(BasicValueEnum::into_int_value).unwrap();
body_fn(generator, ctx, hooks, i)
},
|generator, ctx, (i_addr, _)| {
let i = ctx.builder.build_load(i_addr, "").map(BasicValueEnum::into_int_value).unwrap();
let incr_val = step_fn(generator, ctx)?;
let incr_val = if incr_val.get_type().get_bit_width() == i.get_type().get_bit_width() {
incr_val
} else if is_unsigned {
ctx.builder.build_int_z_extend(incr_val, i.get_type(), "").unwrap()
} else {
ctx.builder.build_int_s_extend(incr_val, i.get_type(), "").unwrap()
};
let i = ctx.builder.build_int_add(i, incr_val, "").unwrap();
ctx.builder.build_store(i_addr, i).unwrap();
Ok(())
},
)
}
/// See [`CodeGenerator::gen_while`].
pub fn gen_while<G: CodeGenerator>(
generator: &mut G,
ctx: &mut CodeGenContext<'_, '_>,
stmt: &Stmt<Option<Type>>,
) -> Result<(), String> {
let StmtKind::While { test, body, orelse, .. } = &stmt.node else { unreachable!() };
// var_assignment static values may be changed in another branch
// if so, remove the static value as it may not be correct in this branch
let var_assignment = ctx.var_assignment.clone();
let current = ctx.builder.get_insert_block().unwrap().get_parent().unwrap();
let test_bb = ctx.ctx.append_basic_block(current, "while.test");
let body_bb = ctx.ctx.append_basic_block(current, "while.body");
let cont_bb = ctx.ctx.append_basic_block(current, "while.cont");
// if there is no orelse, we just go to cont_bb
let orelse_bb = if orelse.is_empty() {
cont_bb
} else {
ctx.ctx.append_basic_block(current, "while.orelse")
};
// store loop bb information and restore it later
let loop_bb = ctx.loop_target.replace((test_bb, cont_bb));
ctx.builder.build_unconditional_branch(test_bb).unwrap();
ctx.builder.position_at_end(test_bb);
let test = if let Some(v) = generator.gen_expr(ctx, test)? {
v.to_basic_value_enum(ctx, generator, test.custom.unwrap())?
} else {
for bb in [body_bb, cont_bb] {
ctx.builder.position_at_end(bb);
ctx.builder.build_unreachable().unwrap();
}
return Ok(());
};
let BasicValueEnum::IntValue(test) = test else { unreachable!() };
ctx.builder
.build_conditional_branch(generator.bool_to_i1(ctx, test), body_bb, orelse_bb)
.unwrap();
ctx.builder.position_at_end(body_bb);
generator.gen_block(ctx, body.iter())?;
for (k, (_, _, counter)) in &var_assignment {
let (_, static_val, counter2) = ctx.var_assignment.get_mut(k).unwrap();
if counter != counter2 {
*static_val = None;
}
}
if !ctx.is_terminated() {
ctx.builder.build_unconditional_branch(test_bb).unwrap();
}
if !orelse.is_empty() {
ctx.builder.position_at_end(orelse_bb);
generator.gen_block(ctx, orelse.iter())?;
if !ctx.is_terminated() {
ctx.builder.build_unconditional_branch(cont_bb).unwrap();
}
}
for (k, (_, _, counter)) in &var_assignment {
let (_, static_val, counter2) = ctx.var_assignment.get_mut(k).unwrap();
if counter != counter2 {
*static_val = None;
}
}
ctx.builder.position_at_end(cont_bb);
ctx.loop_target = loop_bb;
Ok(())
}
/// Generates a C-style chained-`if` construct using lambdas, similar to the following C code:
///
/// ```c
/// T val;
/// if (cond_fn()) {
/// val = then_fn();
/// } else {
/// val = else_fn();
/// }
/// ```
pub fn gen_if_else_expr_callback<'ctx, 'a, G, CondFn, ThenFn, ElseFn, R>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, 'a>,
cond_fn: CondFn,
then_fn: ThenFn,
else_fn: ElseFn,
) -> Result<Option<BasicValueEnum<'ctx>>, String>
where
G: CodeGenerator + ?Sized,
CondFn: FnOnce(&mut G, &mut CodeGenContext<'ctx, 'a>) -> Result<IntValue<'ctx>, String>,
ThenFn: FnOnce(&mut G, &mut CodeGenContext<'ctx, 'a>) -> Result<Option<R>, String>,
ElseFn: FnOnce(&mut G, &mut CodeGenContext<'ctx, 'a>) -> Result<Option<R>, String>,
R: BasicValue<'ctx>,
{
let current_bb = ctx.builder.get_insert_block().unwrap();
let then_bb = ctx.ctx.insert_basic_block_after(current_bb, "if.then");
let else_bb = ctx.ctx.insert_basic_block_after(then_bb, "if.else");
let end_bb = ctx.ctx.insert_basic_block_after(else_bb, "if.end");
let cond = cond_fn(generator, ctx)?;
assert_eq!(cond.get_type().get_bit_width(), ctx.ctx.bool_type().get_bit_width());
ctx.builder.build_conditional_branch(cond, then_bb, else_bb).unwrap();
ctx.builder.position_at_end(then_bb);
let then_val = then_fn(generator, ctx)?;
let then_end_bb = ctx.builder.get_insert_block().unwrap();
if !ctx.is_terminated() {
ctx.builder.build_unconditional_branch(end_bb).unwrap();
}
ctx.builder.position_at_end(else_bb);
let else_val = else_fn(generator, ctx)?;
let else_end_bb = ctx.builder.get_insert_block().unwrap();
if !ctx.is_terminated() {
ctx.builder.build_unconditional_branch(end_bb).unwrap();
}
ctx.builder.position_at_end(end_bb);
let phi = match (then_val, else_val) {
(Some(tv), Some(ev)) => {
let tv_ty = tv.as_basic_value_enum().get_type();
assert_eq!(tv_ty, ev.as_basic_value_enum().get_type());
let phi = ctx.builder.build_phi(tv_ty, "").unwrap();
phi.add_incoming(&[(&tv, then_end_bb), (&ev, else_end_bb)]);
Some(phi.as_basic_value())
}
(Some(tv), None) => Some(tv.as_basic_value_enum()),
(None, Some(ev)) => Some(ev.as_basic_value_enum()),
(None, None) => None,
};
Ok(phi)
}
/// Generates a C-style chained-`if` construct using lambdas, similar to the following C code:
///
/// ```c
/// if (cond_fn()) {
/// then_fn();
/// } else {
/// else_fn();
/// }
/// ```
pub fn gen_if_callback<'ctx, 'a, G, CondFn, ThenFn, ElseFn>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, 'a>,
cond_fn: CondFn,
then_fn: ThenFn,
else_fn: ElseFn,
) -> Result<(), String>
where
G: CodeGenerator + ?Sized,
CondFn: FnOnce(&mut G, &mut CodeGenContext<'ctx, 'a>) -> Result<IntValue<'ctx>, String>,
ThenFn: FnOnce(&mut G, &mut CodeGenContext<'ctx, 'a>) -> Result<(), String>,
ElseFn: FnOnce(&mut G, &mut CodeGenContext<'ctx, 'a>) -> Result<(), String>,
{
gen_if_else_expr_callback(
generator,
ctx,
cond_fn,
|generator, ctx| {
then_fn(generator, ctx)?;
Ok(None::<BasicValueEnum<'ctx>>)
},
|generator, ctx| {
else_fn(generator, ctx)?;
Ok(None)
},
)?;
Ok(())
}
/// See [`CodeGenerator::gen_if`].
pub fn gen_if<G: CodeGenerator>(
generator: &mut G,
ctx: &mut CodeGenContext<'_, '_>,
stmt: &Stmt<Option<Type>>,
) -> Result<(), String> {
let StmtKind::If { test, body, orelse, .. } = &stmt.node else { unreachable!() };
// var_assignment static values may be changed in another branch
// if so, remove the static value as it may not be correct in this branch
let var_assignment = ctx.var_assignment.clone();
let current = ctx.builder.get_insert_block().unwrap().get_parent().unwrap();
let test_bb = ctx.ctx.append_basic_block(current, "if.test");
let body_bb = ctx.ctx.append_basic_block(current, "if.body");
let mut cont_bb = None;
// if there is no orelse, we just go to cont_bb
let orelse_bb = if orelse.is_empty() {
cont_bb = Some(ctx.ctx.append_basic_block(current, "if.cont"));
cont_bb.unwrap()
} else {
ctx.ctx.append_basic_block(current, "if.orelse")
};
ctx.builder.build_unconditional_branch(test_bb).unwrap();
ctx.builder.position_at_end(test_bb);
let test = generator.gen_expr(ctx, test).and_then(|v| {
v.map(|v| v.to_basic_value_enum(ctx, generator, test.custom.unwrap())).transpose()
})?;
if let Some(BasicValueEnum::IntValue(test)) = test {
ctx.builder
.build_conditional_branch(generator.bool_to_i1(ctx, test), body_bb, orelse_bb)
.unwrap();
};
ctx.builder.position_at_end(body_bb);
generator.gen_block(ctx, body.iter())?;
for (k, (_, _, counter)) in &var_assignment {
let (_, static_val, counter2) = ctx.var_assignment.get_mut(k).unwrap();
if counter != counter2 {
*static_val = None;
}
}
if !ctx.is_terminated() {
if cont_bb.is_none() {
cont_bb = Some(ctx.ctx.append_basic_block(current, "cont"));
}
ctx.builder.build_unconditional_branch(cont_bb.unwrap()).unwrap();
}
if !orelse.is_empty() {
ctx.builder.position_at_end(orelse_bb);
generator.gen_block(ctx, orelse.iter())?;
if !ctx.is_terminated() {
if cont_bb.is_none() {
cont_bb = Some(ctx.ctx.append_basic_block(current, "cont"));
}
ctx.builder.build_unconditional_branch(cont_bb.unwrap()).unwrap();
}
}
if let Some(cont_bb) = cont_bb {
ctx.builder.position_at_end(cont_bb);
}
for (k, (_, _, counter)) in &var_assignment {
let (_, static_val, counter2) = ctx.var_assignment.get_mut(k).unwrap();
if counter != counter2 {
*static_val = None;
}
}
Ok(())
}
pub fn final_proxy<'ctx>(
ctx: &mut CodeGenContext<'ctx, '_>,
target: BasicBlock<'ctx>,
block: BasicBlock<'ctx>,
final_data: &mut (PointerValue, Vec<BasicBlock<'ctx>>, Vec<BasicBlock<'ctx>>),
) {
let (final_state, final_targets, final_paths) = final_data;
let prev = ctx.builder.get_insert_block().unwrap();
ctx.builder.position_at_end(block);
unsafe {
ctx.builder.build_store(*final_state, target.get_address().unwrap()).unwrap();
}
ctx.builder.position_at_end(prev);
final_targets.push(target);
final_paths.push(block);
}
/// Inserts the declaration of the builtin function with the specified `symbol` name, and returns
/// the function.
pub fn get_builtins<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
symbol: &str,
) -> FunctionValue<'ctx> {
ctx.module.get_function(symbol).unwrap_or_else(|| {
let ty = match symbol {
"__nac3_raise" => ctx
.ctx
.void_type()
.fn_type(&[ctx.get_llvm_type(generator, ctx.primitives.exception).into()], false),
"__nac3_resume" | "__nac3_end_catch" => ctx.ctx.void_type().fn_type(&[], false),
_ => unimplemented!(),
};
let fun = ctx.module.add_function(symbol, ty, None);
if symbol == "__nac3_raise" || symbol == "__nac3_resume" {
fun.add_attribute(
AttributeLoc::Function,
ctx.ctx.create_enum_attribute(Attribute::get_named_enum_kind_id("noreturn"), 0),
);
}
fun
})
}
pub fn exn_constructor<'ctx>(
ctx: &mut CodeGenContext<'ctx, '_>,
obj: Option<(Type, ValueEnum<'ctx>)>,
_fun: (&FunSignature, DefinitionId),
mut args: Vec<(Option<StrRef>, ValueEnum<'ctx>)>,
generator: &mut dyn CodeGenerator,
) -> Result<Option<BasicValueEnum<'ctx>>, String> {
let (zelf_ty, zelf) = obj.unwrap();
let zelf = zelf.to_basic_value_enum(ctx, generator, zelf_ty)?.into_pointer_value();
let int32 = ctx.ctx.i32_type();
let zero = int32.const_zero();
let zelf_id = if let TypeEnum::TObj { obj_id, .. } = &*ctx.unifier.get_ty(zelf_ty) {
obj_id.0
} else {
unreachable!()
};
let defs = ctx.top_level.definitions.read();
let def = defs[zelf_id].read();
let TopLevelDef::Class { name: zelf_name, .. } = &*def else { unreachable!() };
let exception_name = format!("{}:{}", ctx.resolver.get_exception_id(zelf_id), zelf_name);
unsafe {
let id_ptr = ctx.builder.build_in_bounds_gep(zelf, &[zero, zero], "exn.id").unwrap();
let id = ctx.resolver.get_string_id(&exception_name);
ctx.builder.build_store(id_ptr, int32.const_int(id as u64, false)).unwrap();
let empty_string =
ctx.gen_const(generator, &Constant::Str(String::new()), ctx.primitives.str);
let ptr = ctx
.builder
.build_in_bounds_gep(zelf, &[zero, int32.const_int(5, false)], "exn.msg")
.unwrap();
let msg = if args.is_empty() {
empty_string.unwrap()
} else {
args.remove(0).1.to_basic_value_enum(ctx, generator, ctx.primitives.str)?
};
ctx.builder.build_store(ptr, msg).unwrap();
for i in &[6, 7, 8] {
let value = if args.is_empty() {
ctx.ctx.i64_type().const_zero().into()
} else {
args.remove(0).1.to_basic_value_enum(ctx, generator, ctx.primitives.int64)?
};
let ptr = ctx
.builder
.build_in_bounds_gep(zelf, &[zero, int32.const_int(*i, false)], "exn.param")
.unwrap();
ctx.builder.build_store(ptr, value).unwrap();
}
// set file, func to empty string
for i in &[1, 4] {
let ptr = ctx
.builder
.build_in_bounds_gep(zelf, &[zero, int32.const_int(*i, false)], "exn.str")
.unwrap();
ctx.builder.build_store(ptr, empty_string.unwrap()).unwrap();
}
// set ints to zero
for i in &[2, 3] {
let ptr = ctx
.builder
.build_in_bounds_gep(zelf, &[zero, int32.const_int(*i, false)], "exn.ints")
.unwrap();
ctx.builder.build_store(ptr, zero).unwrap();
}
}
Ok(Some(zelf.into()))
}
/// Generates IR for a `raise` statement.
///
/// * `exception` - The exception thrown by the `raise` statement.
/// * `loc` - The location where the exception is raised from.
pub fn gen_raise<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
exception: Option<&BasicValueEnum<'ctx>>,
loc: Location,
) {
if let Some(exception) = exception {
unsafe {
let int32 = ctx.ctx.i32_type();
let zero = int32.const_zero();
let exception = exception.into_pointer_value();
let file_ptr = ctx
.builder
.build_in_bounds_gep(exception, &[zero, int32.const_int(1, false)], "file_ptr")
.unwrap();
let filename = ctx.gen_string(generator, loc.file.0);
ctx.builder.build_store(file_ptr, filename).unwrap();
let row_ptr = ctx
.builder
.build_in_bounds_gep(exception, &[zero, int32.const_int(2, false)], "row_ptr")
.unwrap();
ctx.builder.build_store(row_ptr, int32.const_int(loc.row as u64, false)).unwrap();
let col_ptr = ctx
.builder
.build_in_bounds_gep(exception, &[zero, int32.const_int(3, false)], "col_ptr")
.unwrap();
ctx.builder.build_store(col_ptr, int32.const_int(loc.column as u64, false)).unwrap();
let current_fun = ctx.builder.get_insert_block().unwrap().get_parent().unwrap();
let fun_name = ctx.gen_string(generator, current_fun.get_name().to_str().unwrap());
let name_ptr = ctx
.builder
.build_in_bounds_gep(exception, &[zero, int32.const_int(4, false)], "name_ptr")
.unwrap();
ctx.builder.build_store(name_ptr, fun_name).unwrap();
}
let raise = get_builtins(generator, ctx, "__nac3_raise");
let exception = *exception;
ctx.build_call_or_invoke(raise, &[exception], "raise");
} else {
let resume = get_builtins(generator, ctx, "__nac3_resume");
ctx.build_call_or_invoke(resume, &[], "resume");
}
ctx.builder.build_unreachable().unwrap();
}
/// Generates IR for a `try` statement.
pub fn gen_try<'ctx, 'a, G: CodeGenerator>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, 'a>,
target: &Stmt<Option<Type>>,
) -> Result<(), String> {
let StmtKind::Try { body, handlers, orelse, finalbody, .. } = &target.node else {
unreachable!()
};
// if we need to generate anything related to exception, we must have personality defined
let personality_symbol = ctx.top_level.personality_symbol.as_ref().unwrap();
let personality = ctx.module.get_function(personality_symbol).unwrap_or_else(|| {
let ty = ctx.ctx.i32_type().fn_type(&[], true);
ctx.module.add_function(personality_symbol, ty, None)
});
let exception_type = ctx.get_llvm_type(generator, ctx.primitives.exception);
let ptr_type = ctx.ctx.i8_type().ptr_type(inkwell::AddressSpace::default());
let current_block = ctx.builder.get_insert_block().unwrap();
let current_fun = current_block.get_parent().unwrap();
let landingpad = ctx.ctx.append_basic_block(current_fun, "try.landingpad");
let dispatcher = ctx.ctx.append_basic_block(current_fun, "try.dispatch");
let mut dispatcher_end = dispatcher;
ctx.builder.position_at_end(dispatcher);
let exn = ctx.builder.build_phi(exception_type, "exn").unwrap();
ctx.builder.position_at_end(current_block);
let mut cleanup = None;
let mut old_loop_target = None;
let mut old_return = None;
let mut final_data = None;
let has_cleanup = !finalbody.is_empty();
if has_cleanup {
let final_state =
generator.gen_var_alloc(ctx, ptr_type.into(), Some("try.final_state.addr"))?;
final_data = Some((final_state, Vec::new(), Vec::new()));
if let Some((continue_target, break_target)) = ctx.loop_target {
let break_proxy = ctx.ctx.append_basic_block(current_fun, "try.break");
let continue_proxy = ctx.ctx.append_basic_block(current_fun, "try.continue");
final_proxy(ctx, break_target, break_proxy, final_data.as_mut().unwrap());
final_proxy(ctx, continue_target, continue_proxy, final_data.as_mut().unwrap());
old_loop_target = ctx.loop_target.replace((continue_proxy, break_proxy));
}
let return_proxy = ctx.ctx.append_basic_block(current_fun, "try.return");
if let Some(return_target) = ctx.return_target {
final_proxy(ctx, return_target, return_proxy, final_data.as_mut().unwrap());
} else {
let return_target = ctx.ctx.append_basic_block(current_fun, "try.return_target");
ctx.builder.position_at_end(return_target);
let return_value =
ctx.return_buffer.map(|v| ctx.builder.build_load(v, "$ret").unwrap());
ctx.builder.build_return(return_value.as_ref().map(|v| v as &dyn BasicValue)).unwrap();
ctx.builder.position_at_end(current_block);
final_proxy(ctx, return_target, return_proxy, final_data.as_mut().unwrap());
}
old_return = ctx.return_target.replace(return_proxy);
cleanup = Some(ctx.ctx.append_basic_block(current_fun, "try.cleanup"));
}
let mut clauses = Vec::new();
let mut found_catch_all = false;
for handler_node in handlers {
let ExcepthandlerKind::ExceptHandler { type_, .. } = &handler_node.node;
// none or Exception
if type_.is_none()
|| ctx
.unifier
.unioned(type_.as_ref().unwrap().custom.unwrap(), ctx.primitives.exception)
{
clauses.push(None);
found_catch_all = true;
break;
}
let type_ = type_.as_ref().unwrap();
let exn_name = ctx.resolver.get_type_name(
&ctx.top_level.definitions.read(),
&mut ctx.unifier,
type_.custom.unwrap(),
);
let obj_id =
if let TypeEnum::TObj { obj_id, .. } = &*ctx.unifier.get_ty(type_.custom.unwrap()) {
*obj_id
} else {
unreachable!()
};
let exception_name = format!("{}:{}", ctx.resolver.get_exception_id(obj_id.0), exn_name);
let exn_id = ctx.resolver.get_string_id(&exception_name);
let exn_id_global =
ctx.module.add_global(ctx.ctx.i32_type(), None, &format!("exn.{exn_id}"));
exn_id_global.set_initializer(&ctx.ctx.i32_type().const_int(exn_id as u64, false));
clauses.push(Some(exn_id_global.as_pointer_value().as_basic_value_enum()));
}
let mut all_clauses = clauses.clone();
if let Some(old_clauses) = &ctx.outer_catch_clauses {
if !found_catch_all {
all_clauses.extend_from_slice(&old_clauses.0);
}
}
let old_clauses = ctx.outer_catch_clauses.replace((all_clauses, dispatcher, exn));
let old_unwind = ctx.unwind_target.replace(landingpad);
generator.gen_block(ctx, body.iter())?;
if ctx.builder.get_insert_block().unwrap().get_terminator().is_none() {
generator.gen_block(ctx, orelse.iter())?;
}
let body = ctx.builder.get_insert_block().unwrap();
// reset old_clauses and old_unwind
let (all_clauses, _, _) = ctx.outer_catch_clauses.take().unwrap();
ctx.outer_catch_clauses = old_clauses;
ctx.unwind_target = old_unwind;
ctx.return_target = old_return;
ctx.loop_target = old_loop_target.or(ctx.loop_target).take();
let old_unwind = if finalbody.is_empty() {
None
} else {
let final_landingpad = ctx.ctx.append_basic_block(current_fun, "try.catch.final");
ctx.builder.position_at_end(final_landingpad);
ctx.builder
.build_landing_pad(
ctx.ctx.struct_type(&[ptr_type.into(), exception_type], false),
personality,
&[],
true,
"try.catch.final",
)
.unwrap();
ctx.builder.build_unconditional_branch(cleanup.unwrap()).unwrap();
ctx.builder.position_at_end(body);
ctx.unwind_target.replace(final_landingpad)
};
// run end_catch before continue/break/return
let mut final_proxy_lambda =
|ctx: &mut CodeGenContext<'ctx, 'a>, target: BasicBlock<'ctx>, block: BasicBlock<'ctx>| {
final_proxy(ctx, target, block, final_data.as_mut().unwrap());
};
let mut redirect_lambda =
|ctx: &mut CodeGenContext<'ctx, 'a>, target: BasicBlock<'ctx>, block: BasicBlock<'ctx>| {
ctx.builder.position_at_end(block);
ctx.builder.build_unconditional_branch(target).unwrap();
ctx.builder.position_at_end(body);
};
let redirect = if has_cleanup {
&mut final_proxy_lambda
as &mut dyn FnMut(&mut CodeGenContext<'ctx, 'a>, BasicBlock<'ctx>, BasicBlock<'ctx>)
} else {
&mut redirect_lambda
as &mut dyn FnMut(&mut CodeGenContext<'ctx, 'a>, BasicBlock<'ctx>, BasicBlock<'ctx>)
};
let resume = get_builtins(generator, ctx, "__nac3_resume");
let end_catch = get_builtins(generator, ctx, "__nac3_end_catch");
if let Some((continue_target, break_target)) = ctx.loop_target.take() {
let break_proxy = ctx.ctx.append_basic_block(current_fun, "try.break");
let continue_proxy = ctx.ctx.append_basic_block(current_fun, "try.continue");
ctx.builder.position_at_end(break_proxy);
ctx.builder.build_call(end_catch, &[], "end_catch").unwrap();
ctx.builder.position_at_end(continue_proxy);
ctx.builder.build_call(end_catch, &[], "end_catch").unwrap();
ctx.builder.position_at_end(body);
redirect(ctx, break_target, break_proxy);
redirect(ctx, continue_target, continue_proxy);
ctx.loop_target = Some((continue_proxy, break_proxy));
old_loop_target = Some((continue_target, break_target));
}
let return_proxy = ctx.ctx.append_basic_block(current_fun, "try.return");
ctx.builder.position_at_end(return_proxy);
ctx.builder.build_call(end_catch, &[], "end_catch").unwrap();
let return_target = ctx.return_target.take().unwrap_or_else(|| {
let doreturn = ctx.ctx.append_basic_block(current_fun, "try.doreturn");
ctx.builder.position_at_end(doreturn);
let return_value = ctx.return_buffer.map(|v| ctx.builder.build_load(v, "$ret").unwrap());
ctx.builder.build_return(return_value.as_ref().map(|v| v as &dyn BasicValue)).unwrap();
doreturn
});
redirect(ctx, return_target, return_proxy);
ctx.return_target = Some(return_proxy);
old_return = Some(return_target);
let mut post_handlers = Vec::new();
let exnid = if handlers.is_empty() {
None
} else {
ctx.builder.position_at_end(dispatcher);
unsafe {
let zero = ctx.ctx.i32_type().const_zero();
let exnid_ptr = ctx
.builder
.build_gep(exn.as_basic_value().into_pointer_value(), &[zero, zero], "exnidptr")
.unwrap();
Some(ctx.builder.build_load(exnid_ptr, "exnid").unwrap())
}
};
for (handler_node, exn_type) in handlers.iter().zip(clauses.iter()) {
let ExcepthandlerKind::ExceptHandler { type_, name, body } = &handler_node.node;
let handler_bb = ctx.ctx.append_basic_block(current_fun, "try.handler");
ctx.builder.position_at_end(handler_bb);
if let Some(name) = name {
let exn_ty = ctx.get_llvm_type(generator, type_.as_ref().unwrap().custom.unwrap());
let exn_store = generator.gen_var_alloc(ctx, exn_ty, Some("try.exn_store.addr"))?;
ctx.var_assignment.insert(*name, (exn_store, None, 0));
ctx.builder.build_store(exn_store, exn.as_basic_value()).unwrap();
}
generator.gen_block(ctx, body.iter())?;
let current = ctx.builder.get_insert_block().unwrap();
// only need to call end catch if not terminated
// otherwise, we already handled in return/break/continue/raise
if current.get_terminator().is_none() {
ctx.builder.build_call(end_catch, &[], "end_catch").unwrap();
}
post_handlers.push(current);
ctx.builder.position_at_end(dispatcher_end);
if let Some(exn_type) = exn_type {
let dispatcher_cont = ctx.ctx.append_basic_block(current_fun, "try.dispatcher_cont");
let actual_id = exnid.unwrap().into_int_value();
let expected_id = ctx
.builder
.build_load(exn_type.into_pointer_value(), "expected_id")
.map(BasicValueEnum::into_int_value)
.unwrap();
let result = ctx
.builder
.build_int_compare(IntPredicate::EQ, actual_id, expected_id, "exncheck")
.unwrap();
ctx.builder.build_conditional_branch(result, handler_bb, dispatcher_cont).unwrap();
dispatcher_end = dispatcher_cont;
} else {
ctx.builder.build_unconditional_branch(handler_bb).unwrap();
break;
}
}
ctx.unwind_target = old_unwind;
ctx.loop_target = old_loop_target.or(ctx.loop_target).take();
ctx.return_target = old_return;
ctx.builder.position_at_end(landingpad);
let clauses: Vec<_> = if finalbody.is_empty() { &all_clauses } else { &clauses }
.iter()
.map(|v| v.unwrap_or(ptr_type.const_zero().into()))
.collect();
let landingpad_value = ctx
.builder
.build_landing_pad(
ctx.ctx.struct_type(&[ptr_type.into(), exception_type], false),
personality,
&clauses,
has_cleanup,
"try.landingpad",
)
.map(BasicValueEnum::into_struct_value)
.unwrap();
let exn_val = ctx.builder.build_extract_value(landingpad_value, 1, "exn").unwrap();
ctx.builder.build_unconditional_branch(dispatcher).unwrap();
exn.add_incoming(&[(&exn_val, landingpad)]);
if dispatcher_end.get_terminator().is_none() {
ctx.builder.position_at_end(dispatcher_end);
if let Some(cleanup) = cleanup {
ctx.builder.build_unconditional_branch(cleanup).unwrap();
} else if let Some((_, outer_dispatcher, phi)) = ctx.outer_catch_clauses {
phi.add_incoming(&[(&exn_val, dispatcher_end)]);
ctx.builder.build_unconditional_branch(outer_dispatcher).unwrap();
} else {
ctx.build_call_or_invoke(resume, &[], "resume");
ctx.builder.build_unreachable().unwrap();
}
}
if finalbody.is_empty() {
let tail = ctx.ctx.append_basic_block(current_fun, "try.tail");
if body.get_terminator().is_none() {
ctx.builder.position_at_end(body);
ctx.builder.build_unconditional_branch(tail).unwrap();
}
if matches!(cleanup, Some(cleanup) if cleanup.get_terminator().is_none()) {
ctx.builder.position_at_end(cleanup.unwrap());
ctx.builder.build_unconditional_branch(tail).unwrap();
}
for post_handler in post_handlers {
if post_handler.get_terminator().is_none() {
ctx.builder.position_at_end(post_handler);
ctx.builder.build_unconditional_branch(tail).unwrap();
}
}
ctx.builder.position_at_end(tail);
} else {
// exception path
let cleanup = cleanup.unwrap();
ctx.builder.position_at_end(cleanup);
generator.gen_block(ctx, finalbody.iter())?;
if !ctx.is_terminated() {
ctx.build_call_or_invoke(resume, &[], "resume");
ctx.builder.build_unreachable().unwrap();
}
// normal path
let (final_state, mut final_targets, final_paths) = final_data.unwrap();
let tail = ctx.ctx.append_basic_block(current_fun, "try.tail");
final_targets.push(tail);
let finalizer = ctx.ctx.append_basic_block(current_fun, "try.finally");
ctx.builder.position_at_end(finalizer);
generator.gen_block(ctx, finalbody.iter())?;
if !ctx.is_terminated() {
let dest = ctx.builder.build_load(final_state, "final_dest").unwrap();
ctx.builder.build_indirect_branch(dest, &final_targets).unwrap();
}
for block in &final_paths {
if block.get_terminator().is_none() {
ctx.builder.position_at_end(*block);
ctx.builder.build_unconditional_branch(finalizer).unwrap();
}
}
for block in [body].iter().chain(post_handlers.iter()) {
if block.get_terminator().is_none() {
ctx.builder.position_at_end(*block);
unsafe {
ctx.builder.build_store(final_state, tail.get_address().unwrap()).unwrap();
}
ctx.builder.build_unconditional_branch(finalizer).unwrap();
}
}
ctx.builder.position_at_end(tail);
}
Ok(())
}
/// See [`CodeGenerator::gen_with`].
pub fn gen_with<G: CodeGenerator>(
_: &mut G,
_: &mut CodeGenContext<'_, '_>,
stmt: &Stmt<Option<Type>>,
) -> Result<(), String> {
// TODO: Implement with statement after finishing exceptions
Err(format!("With statement with custom types is not yet supported (at {})", stmt.location))
}
/// Generates IR for a `return` statement.
pub fn gen_return<G: CodeGenerator>(
generator: &mut G,
ctx: &mut CodeGenContext<'_, '_>,
value: &Option<Box<Expr<Option<Type>>>>,
) -> Result<(), String> {
let func = ctx.builder.get_insert_block().and_then(BasicBlock::get_parent).unwrap();
let value = if let Some(v_expr) = value.as_ref() {
if let Some(v) = generator.gen_expr(ctx, v_expr).transpose() {
Some(v.and_then(|v| v.to_basic_value_enum(ctx, generator, v_expr.custom.unwrap()))?)
} else {
return Ok(());
}
} else {
None
};
if let Some(return_target) = ctx.return_target {
if let Some(value) = value {
ctx.builder.build_store(ctx.return_buffer.unwrap(), value).unwrap();
}
ctx.builder.build_unconditional_branch(return_target).unwrap();
} else if ctx.need_sret {
// sret
ctx.builder.build_store(ctx.return_buffer.unwrap(), value.unwrap()).unwrap();
ctx.builder.build_return(None).unwrap();
} else {
// Remap boolean return type into i1
let value = value.map(|v| {
let expected_ty = func.get_type().get_return_type().unwrap();
let ret_val = v.as_basic_value_enum();
if expected_ty.is_int_type() && ret_val.is_int_value() {
let ret_type = expected_ty.into_int_type();
let ret_val = ret_val.into_int_value();
if ret_type.get_bit_width() == 1 && ret_val.get_type().get_bit_width() != 1 {
generator.bool_to_i1(ctx, ret_val)
} else {
ret_val
}
.into()
} else {
ret_val
}
});
let value = value.as_ref().map(|v| v as &dyn BasicValue);
ctx.builder.build_return(value).unwrap();
}
Ok(())
}
/// See [`CodeGenerator::gen_stmt`].
pub fn gen_stmt<G: CodeGenerator>(
generator: &mut G,
ctx: &mut CodeGenContext<'_, '_>,
stmt: &Stmt<Option<Type>>,
) -> Result<(), String> {
ctx.current_loc = stmt.location;
let loc = ctx.debug_info.0.create_debug_location(
ctx.ctx,
ctx.current_loc.row as u32,
ctx.current_loc.column as u32,
ctx.debug_info.2,
None,
);
ctx.builder.set_current_debug_location(loc);
match &stmt.node {
StmtKind::Pass { .. } => {}
StmtKind::Expr { value, .. } => {
generator.gen_expr(ctx, value)?;
}
StmtKind::Return { value, .. } => {
gen_return(generator, ctx, value)?;
}
StmtKind::AnnAssign { target, value, .. } => {
if let Some(value) = value {
let Some(value_enum) = generator.gen_expr(ctx, value)? else { return Ok(()) };
generator.gen_assign(ctx, target, value_enum, value.custom.unwrap())?;
}
}
StmtKind::Assign { targets, value, .. } => {
let Some(value_enum) = generator.gen_expr(ctx, value)? else { return Ok(()) };
for target in targets {
generator.gen_assign(ctx, target, value_enum.clone(), value.custom.unwrap())?;
}
}
StmtKind::Continue { .. } => {
ctx.builder.build_unconditional_branch(ctx.loop_target.unwrap().0).unwrap();
}
StmtKind::Break { .. } => {
ctx.builder.build_unconditional_branch(ctx.loop_target.unwrap().1).unwrap();
}
StmtKind::If { .. } => generator.gen_if(ctx, stmt)?,
StmtKind::While { .. } => generator.gen_while(ctx, stmt)?,
StmtKind::For { .. } => generator.gen_for(ctx, stmt)?,
StmtKind::With { .. } => generator.gen_with(ctx, stmt)?,
StmtKind::AugAssign { target, op, value, .. } => {
let value_enum = gen_binop_expr(
generator,
ctx,
target,
Binop::aug_assign(*op),
value,
stmt.location,
)?
.unwrap();
generator.gen_assign(ctx, target, value_enum, value.custom.unwrap())?;
}
StmtKind::Try { .. } => gen_try(generator, ctx, stmt)?,
StmtKind::Raise { exc, .. } => {
if let Some(exc) = exc {
let exc = if let Some(v) = generator.gen_expr(ctx, exc)? {
v.to_basic_value_enum(ctx, generator, exc.custom.unwrap())?
} else {
return Ok(());
};
gen_raise(generator, ctx, Some(&exc), stmt.location);
} else {
gen_raise(generator, ctx, None, stmt.location);
}
}
StmtKind::Assert { test, msg, .. } => {
let test = if let Some(v) = generator.gen_expr(ctx, test)? {
v.to_basic_value_enum(ctx, generator, test.custom.unwrap())?
} else {
return Ok(());
};
let err_msg = match msg {
Some(msg) => {
if let Some(v) = generator.gen_expr(ctx, msg)? {
v.to_basic_value_enum(ctx, generator, msg.custom.unwrap())?
} else {
return Ok(());
}
}
None => ctx.gen_string(generator, "").into(),
};
ctx.make_assert_impl(
generator,
generator.bool_to_i1(ctx, test.into_int_value()),
"0:AssertionError",
err_msg,
[None, None, None],
stmt.location,
);
}
_ => unimplemented!(),
};
Ok(())
}
/// Generates IR for a block statement contains `stmts`.
pub fn gen_block<'a, G: CodeGenerator, I: Iterator<Item = &'a Stmt<Option<Type>>>>(
generator: &mut G,
ctx: &mut CodeGenContext<'_, '_>,
stmts: I,
) -> Result<(), String> {
for stmt in stmts {
generator.gen_stmt(ctx, stmt)?;
if ctx.is_terminated() {
break;
}
}
Ok(())
}