1
0
forked from M-Labs/nac3
nac3/nac3core/src/codegen/expr.rs

671 lines
31 KiB
Rust

use std::{collections::HashMap, convert::TryInto, iter::once};
use crate::{
codegen::{get_llvm_type, CodeGenContext, CodeGenTask},
symbol_resolver::SymbolValue,
toplevel::{DefinitionId, TopLevelDef},
typecheck::typedef::{FunSignature, FuncArg, Type, TypeEnum, Unifier},
};
use inkwell::{
types::{BasicType, BasicTypeEnum},
values::{BasicValueEnum, IntValue, PointerValue},
AddressSpace,
};
use itertools::{chain, izip, zip, Itertools};
use rustpython_parser::ast::{self, Boolop, Constant, Expr, ExprKind, Operator};
pub fn assert_int_val<'ctx>(val: BasicValueEnum<'ctx>) -> IntValue<'ctx> {
if let BasicValueEnum::IntValue(v) = val {
v
} else {
unreachable!()
}
}
pub fn assert_pointer_val<'ctx>(val: BasicValueEnum<'ctx>) -> PointerValue<'ctx> {
if let BasicValueEnum::PointerValue(v) = val {
v
} else {
unreachable!()
}
}
impl<'ctx, 'a> CodeGenContext<'ctx, 'a> {
fn get_subst_key(
&mut self,
obj: Option<Type>,
fun: &FunSignature,
filter: Option<&Vec<u32>>,
) -> String {
let mut vars = obj
.map(|ty| {
if let TypeEnum::TObj { params, .. } = &*self.unifier.get_ty(ty) {
params.borrow().clone()
} else {
unreachable!()
}
})
.unwrap_or_default();
vars.extend(fun.vars.iter());
let sorted =
vars.keys().filter(|id| filter.map(|v| v.contains(id)).unwrap_or(true)).sorted();
sorted
.map(|id| {
self.unifier.stringify(vars[id], &mut |id| id.to_string(), &mut |id| id.to_string())
})
.join(", ")
}
pub fn get_attr_index(&mut self, ty: Type, attr: &str) -> usize {
let obj_id = match &*self.unifier.get_ty(ty) {
TypeEnum::TObj { obj_id, .. } => *obj_id,
// we cannot have other types, virtual type should be handled by function calls
_ => unreachable!(),
};
let def = &self.top_level.definitions.read()[obj_id.0];
let index = if let TopLevelDef::Class { fields, .. } = &*def.read() {
fields.iter().find_position(|x| x.0 == attr).unwrap().0
} else {
unreachable!()
};
index
}
fn gen_symbol_val(&mut self, val: &SymbolValue) -> BasicValueEnum<'ctx> {
match val {
SymbolValue::I32(v) => self.ctx.i32_type().const_int(*v as u64, true).into(),
SymbolValue::I64(v) => self.ctx.i64_type().const_int(*v as u64, true).into(),
SymbolValue::Bool(v) => self.ctx.bool_type().const_int(*v as u64, true).into(),
SymbolValue::Double(v) => self.ctx.f64_type().const_float(*v).into(),
SymbolValue::Tuple(ls) => {
let vals = ls.iter().map(|v| self.gen_symbol_val(v)).collect_vec();
let fields = vals.iter().map(|v| v.get_type()).collect_vec();
let ty = self.ctx.struct_type(&fields, false);
let ptr = self.builder.build_alloca(ty, "tuple");
let zero = self.ctx.i32_type().const_zero();
unsafe {
for (i, val) in vals.into_iter().enumerate() {
let p = self.builder.build_in_bounds_gep(
ptr,
&[zero, self.ctx.i32_type().const_int(i as u64, false)],
"elemptr",
);
self.builder.build_store(p, val);
}
}
ptr.into()
}
}
}
pub fn get_llvm_type(&mut self, ty: Type) -> BasicTypeEnum<'ctx> {
get_llvm_type(self.ctx, &mut self.unifier, self.top_level, &mut self.type_cache, ty)
}
fn gen_call(
&mut self,
obj: Option<(Type, BasicValueEnum<'ctx>)>,
fun: (&FunSignature, DefinitionId),
params: Vec<(Option<String>, BasicValueEnum<'ctx>)>,
) -> Option<BasicValueEnum<'ctx>> {
let key = self.get_subst_key(obj.map(|a| a.0), fun.0, None);
let definition = self.top_level.definitions.read().get(fun.1.0).cloned().unwrap();
let mut task = None;
let symbol = {
// make sure this lock guard is dropped at the end of this scope...
let def = definition.read();
if let TopLevelDef::Function { instance_to_symbol, .. } = &*def {
instance_to_symbol.get(&key).cloned()
} else {
unreachable!()
}
}
.unwrap_or_else(|| {
if let TopLevelDef::Function {
name,
instance_to_symbol,
instance_to_stmt,
var_id,
resolver,
..
} = &mut *definition.write()
{
instance_to_symbol.get(&key).cloned().unwrap_or_else(|| {
let symbol = format!("{}_{}", name, instance_to_symbol.len());
instance_to_symbol.insert(key, symbol.clone());
let key = self.get_subst_key(obj.map(|a| a.0), fun.0, Some(var_id));
let instance = instance_to_stmt.get(&key).unwrap();
let unifiers = self.top_level.unifiers.read();
let (unifier, primitives) = &unifiers[instance.unifier_id];
let mut unifier = Unifier::from_shared_unifier(&unifier);
let mut type_cache = [
(self.primitives.int32, primitives.int32),
(self.primitives.int64, primitives.int64),
(self.primitives.float, primitives.float),
(self.primitives.bool, primitives.bool),
(self.primitives.none, primitives.none),
]
.iter()
.map(|(a, b)| {
(self.unifier.get_representative(*a), unifier.get_representative(*b))
})
.collect();
let subst = fun
.0
.vars
.iter()
.map(|(id, ty)| {
(
*instance.subst.get(id).unwrap(),
unifier.copy_from(&mut self.unifier, *ty, &mut type_cache),
)
})
.collect();
let signature = FunSignature {
args: fun
.0
.args
.iter()
.map(|arg| FuncArg {
name: arg.name.clone(),
ty: unifier.copy_from(&mut self.unifier, arg.ty, &mut type_cache),
default_value: arg.default_value.clone(),
})
.collect(),
ret: unifier.copy_from(&mut self.unifier, fun.0.ret, &mut type_cache),
vars: fun
.0
.vars
.iter()
.map(|(id, ty)| {
(*id, unifier.copy_from(&mut self.unifier, *ty, &mut type_cache))
})
.collect(),
};
let unifier = (unifier.get_shared_unifier(), *primitives);
task = Some(CodeGenTask {
symbol_name: symbol.clone(),
body: instance.body.clone(),
resolver: resolver.as_ref().unwrap().clone(),
calls: instance.calls.clone(),
subst,
signature,
unifier,
});
symbol
})
} else {
unreachable!()
}
});
if let Some(task) = task {
self.registry.add_task(task);
}
let fun_val = self.module.get_function(&symbol).unwrap_or_else(|| {
let params = fun.0.args.iter().map(|arg| self.get_llvm_type(arg.ty)).collect_vec();
let fun_ty = if self.unifier.unioned(fun.0.ret, self.primitives.none) {
self.ctx.void_type().fn_type(&params, false)
} else {
self.get_llvm_type(fun.0.ret).fn_type(&params, false)
};
self.module.add_function(&symbol, fun_ty, None)
});
let mut keys = fun.0.args.clone();
let mut mapping = HashMap::new();
for (key, value) in params.into_iter() {
mapping.insert(key.unwrap_or_else(|| keys.remove(0).name), value);
}
// default value handling
for k in keys.into_iter() {
mapping.insert(k.name, self.gen_symbol_val(&k.default_value.unwrap()));
}
// reorder the parameters
let params = fun.0.args.iter().map(|arg| mapping.remove(&arg.name).unwrap()).collect_vec();
self.builder.build_call(fun_val, &params, "call").try_as_basic_value().left()
}
fn gen_const(&mut self, value: &Constant, ty: Type) -> BasicValueEnum<'ctx> {
match value {
Constant::Bool(v) => {
assert!(self.unifier.unioned(ty, self.primitives.bool));
let ty = self.ctx.bool_type();
ty.const_int(if *v { 1 } else { 0 }, false).into()
}
Constant::Int(v) => {
let ty = if self.unifier.unioned(ty, self.primitives.int32) {
self.ctx.i32_type()
} else if self.unifier.unioned(ty, self.primitives.int64) {
self.ctx.i64_type()
} else {
unreachable!();
};
ty.const_int(v.try_into().unwrap(), false).into()
}
Constant::Float(v) => {
assert!(self.unifier.unioned(ty, self.primitives.float));
let ty = self.ctx.f64_type();
ty.const_float(*v).into()
}
Constant::Tuple(v) => {
let ty = self.unifier.get_ty(ty);
let types =
if let TypeEnum::TTuple { ty } = &*ty { ty.clone() } else { unreachable!() };
let values = zip(types.into_iter(), v.iter())
.map(|(ty, v)| self.gen_const(v, ty))
.collect_vec();
let types = values.iter().map(BasicValueEnum::get_type).collect_vec();
let ty = self.ctx.struct_type(&types, false);
ty.const_named_struct(&values).into()
}
_ => unreachable!(),
}
}
fn gen_int_ops(
&mut self,
op: &Operator,
lhs: BasicValueEnum<'ctx>,
rhs: BasicValueEnum<'ctx>,
) -> BasicValueEnum<'ctx> {
let (lhs, rhs) =
if let (BasicValueEnum::IntValue(lhs), BasicValueEnum::IntValue(rhs)) = (lhs, rhs) {
(lhs, rhs)
} else {
unreachable!()
};
match op {
Operator::Add => self.builder.build_int_add(lhs, rhs, "add").into(),
Operator::Sub => self.builder.build_int_sub(lhs, rhs, "sub").into(),
Operator::Mult => self.builder.build_int_mul(lhs, rhs, "mul").into(),
Operator::Div => {
let float = self.ctx.f64_type();
let left = self.builder.build_signed_int_to_float(lhs, float, "i2f");
let right = self.builder.build_signed_int_to_float(rhs, float, "i2f");
self.builder.build_float_div(left, right, "fdiv").into()
}
Operator::Mod => self.builder.build_int_signed_rem(lhs, rhs, "mod").into(),
Operator::BitOr => self.builder.build_or(lhs, rhs, "or").into(),
Operator::BitXor => self.builder.build_xor(lhs, rhs, "xor").into(),
Operator::BitAnd => self.builder.build_and(lhs, rhs, "and").into(),
Operator::LShift => self.builder.build_left_shift(lhs, rhs, "lshift").into(),
Operator::RShift => self.builder.build_right_shift(lhs, rhs, true, "rshift").into(),
Operator::FloorDiv => self.builder.build_int_signed_div(lhs, rhs, "floordiv").into(),
// special implementation?
Operator::Pow => unimplemented!(),
Operator::MatMult => unreachable!(),
}
}
fn gen_float_ops(
&mut self,
op: &Operator,
lhs: BasicValueEnum<'ctx>,
rhs: BasicValueEnum<'ctx>,
) -> BasicValueEnum<'ctx> {
let (lhs, rhs) = if let (BasicValueEnum::FloatValue(lhs), BasicValueEnum::FloatValue(rhs)) =
(lhs, rhs)
{
(lhs, rhs)
} else {
unreachable!()
};
match op {
Operator::Add => self.builder.build_float_add(lhs, rhs, "fadd").into(),
Operator::Sub => self.builder.build_float_sub(lhs, rhs, "fsub").into(),
Operator::Mult => self.builder.build_float_mul(lhs, rhs, "fmul").into(),
Operator::Div => self.builder.build_float_div(lhs, rhs, "fdiv").into(),
Operator::Mod => self.builder.build_float_rem(lhs, rhs, "fmod").into(),
Operator::FloorDiv => {
let div = self.builder.build_float_div(lhs, rhs, "fdiv");
let floor_intrinsic =
self.module.get_function("llvm.floor.f64").unwrap_or_else(|| {
let float = self.ctx.f64_type();
let fn_type = float.fn_type(&[float.into()], false);
self.module.add_function("llvm.floor.f64", fn_type, None)
});
self.builder
.build_call(floor_intrinsic, &[div.into()], "floor")
.try_as_basic_value()
.left()
.unwrap()
}
// special implementation?
_ => unimplemented!(),
}
}
pub fn gen_expr(&mut self, expr: &Expr<Option<Type>>) -> Option<BasicValueEnum<'ctx>> {
let zero = self.ctx.i32_type().const_int(0, false);
Some(match &expr.node {
ExprKind::Constant { value, .. } => {
let ty = expr.custom.unwrap();
self.gen_const(value, ty)
}
ExprKind::Name { id, .. } => {
let ptr = self.var_assignment.get(id).unwrap();
self.builder.build_load(*ptr, "load")
}
ExprKind::List { elts, .. } => {
// this shall be optimized later for constant primitive lists...
// we should use memcpy for that instead of generating thousands of stores
let elements = elts.iter().map(|x| self.gen_expr(x).unwrap()).collect_vec();
let ty = if elements.is_empty() {
self.ctx.i32_type().into()
} else {
elements[0].get_type()
};
let arr_ptr = self.builder.build_array_alloca(
ty,
self.ctx.i32_type().const_int(elements.len() as u64, false),
"tmparr",
);
let arr_ty = self.ctx.struct_type(
&[self.ctx.i32_type().into(), ty.ptr_type(AddressSpace::Generic).into()],
false,
);
let arr_str_ptr = self.builder.build_alloca(arr_ty, "tmparrstr");
unsafe {
let len_ptr =
self.builder.build_in_bounds_gep(arr_str_ptr, &[zero, zero], "len_ptr");
self.builder.build_store(
len_ptr,
self.ctx.i32_type().const_int(elements.len() as u64, false),
);
let ptr_to_arr = self.builder.build_in_bounds_gep(
arr_str_ptr,
&[zero, self.ctx.i32_type().const_int(1, false)],
"ptr_to_arr",
);
self.builder.build_store(ptr_to_arr, arr_ptr);
let i32_type = self.ctx.i32_type();
for (i, v) in elements.iter().enumerate() {
let elem_ptr = self.builder.build_in_bounds_gep(
arr_ptr,
&[i32_type.const_int(i as u64, false)],
"elem_ptr",
);
self.builder.build_store(elem_ptr, *v);
}
}
arr_str_ptr.into()
}
ExprKind::Tuple { elts, .. } => {
let element_val = elts.iter().map(|x| self.gen_expr(x).unwrap()).collect_vec();
let element_ty = element_val.iter().map(BasicValueEnum::get_type).collect_vec();
let tuple_ty = self.ctx.struct_type(&element_ty, false);
let tuple_ptr = self.builder.build_alloca(tuple_ty, "tuple");
for (i, v) in element_val.into_iter().enumerate() {
unsafe {
let ptr = self.builder.build_in_bounds_gep(
tuple_ptr,
&[zero, self.ctx.i32_type().const_int(i as u64, false)],
"ptr",
);
self.builder.build_store(ptr, v);
}
}
tuple_ptr.into()
}
ExprKind::Attribute { value, attr, .. } => {
// note that we would handle class methods directly in calls
let index = self.get_attr_index(value.custom.unwrap(), attr);
let val = self.gen_expr(value).unwrap();
let ptr = assert_pointer_val(val);
unsafe {
let ptr = self.builder.build_in_bounds_gep(
ptr,
&[zero, self.ctx.i32_type().const_int(index as u64, false)],
"attr",
);
self.builder.build_load(ptr, "field")
}
}
ExprKind::BoolOp { op, values } => {
// requires conditional branches for short-circuiting...
let left = assert_int_val(self.gen_expr(&values[0]).unwrap());
let current = self.builder.get_insert_block().unwrap().get_parent().unwrap();
let a_bb = self.ctx.append_basic_block(current, "a");
let b_bb = self.ctx.append_basic_block(current, "b");
let cont_bb = self.ctx.append_basic_block(current, "cont");
self.builder.build_conditional_branch(left, a_bb, b_bb);
let (a, b) = match op {
Boolop::Or => {
self.builder.position_at_end(a_bb);
let a = self.ctx.bool_type().const_int(1, false);
self.builder.build_unconditional_branch(cont_bb);
self.builder.position_at_end(b_bb);
let b = assert_int_val(self.gen_expr(&values[1]).unwrap());
self.builder.build_unconditional_branch(cont_bb);
(a, b)
}
Boolop::And => {
self.builder.position_at_end(a_bb);
let a = assert_int_val(self.gen_expr(&values[1]).unwrap());
self.builder.build_unconditional_branch(cont_bb);
self.builder.position_at_end(b_bb);
let b = self.ctx.bool_type().const_int(0, false);
self.builder.build_unconditional_branch(cont_bb);
(a, b)
}
};
self.builder.position_at_end(cont_bb);
let phi = self.builder.build_phi(self.ctx.bool_type(), "phi");
phi.add_incoming(&[(&a, a_bb), (&b, b_bb)]);
phi.as_basic_value()
}
ExprKind::BinOp { op, left, right } => {
let ty1 = self.unifier.get_representative(left.custom.unwrap());
let ty2 = self.unifier.get_representative(right.custom.unwrap());
let left = self.gen_expr(left).unwrap();
let right = self.gen_expr(right).unwrap();
// we can directly compare the types, because we've got their representatives
// which would be unchanged until further unification, which we would never do
// when doing code generation for function instances
if ty1 == ty2 && [self.primitives.int32, self.primitives.int64].contains(&ty1) {
self.gen_int_ops(op, left, right)
} else if ty1 == ty2 && self.primitives.float == ty1 {
self.gen_float_ops(op, left, right)
} else {
unimplemented!()
}
}
ExprKind::UnaryOp { op, operand } => {
let ty = self.unifier.get_representative(operand.custom.unwrap());
let val = self.gen_expr(operand).unwrap();
if ty == self.primitives.bool {
let val = assert_int_val(val);
match op {
ast::Unaryop::Invert | ast::Unaryop::Not => {
self.builder.build_not(val, "not").into()
}
_ => val.into(),
}
} else if [self.primitives.int32, self.primitives.int64].contains(&ty) {
let val = assert_int_val(val);
match op {
ast::Unaryop::USub => self.builder.build_int_neg(val, "neg").into(),
ast::Unaryop::Invert => self.builder.build_not(val, "not").into(),
ast::Unaryop::Not => self
.builder
.build_int_compare(
inkwell::IntPredicate::EQ,
val,
val.get_type().const_zero(),
"not",
)
.into(),
_ => val.into(),
}
} else if ty == self.primitives.float {
let val = if let BasicValueEnum::FloatValue(val) = val {
val
} else {
unreachable!()
};
match op {
ast::Unaryop::USub => self.builder.build_float_neg(val, "neg").into(),
ast::Unaryop::Not => self
.builder
.build_float_compare(
inkwell::FloatPredicate::OEQ,
val,
val.get_type().const_zero(),
"not",
)
.into(),
_ => val.into(),
}
} else {
unimplemented!()
}
}
ExprKind::Compare { left, ops, comparators } => {
izip!(
chain(once(left.as_ref()), comparators.iter()),
comparators.iter(),
ops.iter(),
)
.fold(None, |prev, (lhs, rhs, op)| {
let ty = self.unifier.get_representative(lhs.custom.unwrap());
let current =
if [self.primitives.int32, self.primitives.int64, self.primitives.bool]
.contains(&ty)
{
let (lhs, rhs) = if let (
BasicValueEnum::IntValue(lhs),
BasicValueEnum::IntValue(rhs),
) =
(self.gen_expr(lhs).unwrap(), self.gen_expr(rhs).unwrap())
{
(lhs, rhs)
} else {
unreachable!()
};
let op = match op {
ast::Cmpop::Eq | ast::Cmpop::Is => inkwell::IntPredicate::EQ,
ast::Cmpop::NotEq => inkwell::IntPredicate::NE,
ast::Cmpop::Lt => inkwell::IntPredicate::SLT,
ast::Cmpop::LtE => inkwell::IntPredicate::SLE,
ast::Cmpop::Gt => inkwell::IntPredicate::SGT,
ast::Cmpop::GtE => inkwell::IntPredicate::SGE,
_ => unreachable!(),
};
self.builder.build_int_compare(op, lhs, rhs, "cmp")
} else if ty == self.primitives.float {
let (lhs, rhs) = if let (
BasicValueEnum::FloatValue(lhs),
BasicValueEnum::FloatValue(rhs),
) =
(self.gen_expr(lhs).unwrap(), self.gen_expr(rhs).unwrap())
{
(lhs, rhs)
} else {
unreachable!()
};
let op = match op {
ast::Cmpop::Eq | ast::Cmpop::Is => inkwell::FloatPredicate::OEQ,
ast::Cmpop::NotEq => inkwell::FloatPredicate::ONE,
ast::Cmpop::Lt => inkwell::FloatPredicate::OLT,
ast::Cmpop::LtE => inkwell::FloatPredicate::OLE,
ast::Cmpop::Gt => inkwell::FloatPredicate::OGT,
ast::Cmpop::GtE => inkwell::FloatPredicate::OGE,
_ => unreachable!(),
};
self.builder.build_float_compare(op, lhs, rhs, "cmp")
} else {
unimplemented!()
};
prev.map(|v| self.builder.build_and(v, current, "cmp")).or(Some(current))
})
.unwrap()
.into() // as there should be at least 1 element, it should never be none
}
ExprKind::IfExp { test, body, orelse } => {
let test = assert_int_val(self.gen_expr(test).unwrap());
let current = self.builder.get_insert_block().unwrap().get_parent().unwrap();
let then_bb = self.ctx.append_basic_block(current, "then");
let else_bb = self.ctx.append_basic_block(current, "else");
let cont_bb = self.ctx.append_basic_block(current, "cont");
self.builder.build_conditional_branch(test, then_bb, else_bb);
self.builder.position_at_end(then_bb);
let a = self.gen_expr(body).unwrap();
self.builder.build_unconditional_branch(cont_bb);
self.builder.position_at_end(else_bb);
let b = self.gen_expr(orelse).unwrap();
self.builder.build_unconditional_branch(cont_bb);
self.builder.position_at_end(cont_bb);
let phi = self.builder.build_phi(a.get_type(), "ifexpr");
phi.add_incoming(&[(&a, then_bb), (&b, else_bb)]);
phi.as_basic_value()
}
ExprKind::Call { func, args, keywords } => {
if let ExprKind::Name { id, .. } = &func.as_ref().node {
// TODO: handle primitive casts and function pointers
let fun = self.resolver.get_identifier_def(&id).expect("Unknown identifier");
let mut params =
args.iter().map(|arg| (None, self.gen_expr(arg).unwrap())).collect_vec();
let kw_iter = keywords.iter().map(|kw| {
(
Some(kw.node.arg.as_ref().unwrap().clone()),
self.gen_expr(&kw.node.value).unwrap(),
)
});
params.extend(kw_iter);
let signature = self
.unifier
.get_call_signature(*self.calls.get(&expr.location.into()).unwrap())
.unwrap();
return self.gen_call(None, (&signature, fun), params);
} else {
// TODO: method
unimplemented!()
}
}
ExprKind::Subscript { value, slice, .. } => {
if let TypeEnum::TList { .. } = &*self.unifier.get_ty(value.custom.unwrap()) {
if let ExprKind::Slice { .. } = slice.node {
unimplemented!()
} else {
// TODO: bound check
let i32_type = self.ctx.i32_type();
let v = assert_pointer_val(self.gen_expr(value).unwrap());
let index = assert_int_val(self.gen_expr(slice).unwrap());
unsafe {
let ptr_to_arr = self.builder.build_in_bounds_gep(
v,
&[i32_type.const_zero(), i32_type.const_int(1, false)],
"ptr_to_arr",
);
let arr_ptr =
assert_pointer_val(self.builder.build_load(ptr_to_arr, "loadptr"));
let ptr = self.builder.build_gep(arr_ptr, &[index], "loadarrgep");
self.builder.build_load(ptr, "loadarr")
}
}
} else {
let i32_type = self.ctx.i32_type();
let v = assert_pointer_val(self.gen_expr(value).unwrap());
let index = assert_int_val(self.gen_expr(slice).unwrap());
unsafe {
let ptr_to_elem = self.builder.build_in_bounds_gep(
v,
&[i32_type.const_zero(), index],
"ptr_to_elem",
);
self.builder.build_load(ptr_to_elem, "loadelem")
}
}
}
_ => unimplemented!(),
})
}
}