use inkwell::{ types::{AnyTypeEnum, BasicType, BasicTypeEnum, PointerType}, values::{BasicValue, BasicValueEnum, IntValue, PointerValue}, AddressSpace, IntPredicate, OptimizationLevel, }; use nac3parser::ast::{Operator, StrRef}; use super::{ expr::gen_binop_expr_with_values, irrt::{ calculate_len_for_slice_range, call_ndarray_calc_broadcast, call_ndarray_calc_broadcast_index, call_ndarray_calc_nd_indices, call_ndarray_calc_size, }, llvm_intrinsics::{self, call_memcpy_generic}, macros::codegen_unreachable, stmt::{gen_for_callback_incrementing, gen_for_range_callback, gen_if_else_expr_callback}, types::{ListType, NDArrayType, ProxyType}, values::{ ArrayLikeIndexer, ArrayLikeValue, ListValue, NDArrayValue, ProxyValue, TypedArrayLikeAccessor, TypedArrayLikeAdapter, TypedArrayLikeMutator, UntypedArrayLikeAccessor, UntypedArrayLikeMutator, }, CodeGenContext, CodeGenerator, }; use crate::{ symbol_resolver::ValueEnum, toplevel::{ helper::PrimDef, numpy::{make_ndarray_ty, unpack_ndarray_var_tys}, DefinitionId, }, typecheck::{ magic_methods::Binop, typedef::{FunSignature, Type, TypeEnum}, }, }; /// Creates an uninitialized `NDArray` instance. fn create_ndarray_uninitialized<'ctx, G: CodeGenerator + ?Sized>( generator: &mut G, ctx: &mut CodeGenContext<'ctx, '_>, elem_ty: Type, ) -> Result, String> { let ndarray_ty = make_ndarray_ty(&mut ctx.unifier, &ctx.primitives, Some(elem_ty), None); let llvm_usize = generator.get_size_type(ctx.ctx); let llvm_ndarray_t = ctx .get_llvm_type(generator, ndarray_ty) .into_pointer_type() .get_element_type() .into_struct_type(); let ndarray = generator.gen_var_alloc(ctx, llvm_ndarray_t.into(), None)?; Ok(NDArrayValue::from_pointer_value(ndarray, llvm_usize, None)) } /// Creates an `NDArray` instance from a dynamic shape. /// /// * `elem_ty` - The element type of the `NDArray`. /// * `shape` - The shape of the `NDArray`. /// * `shape_len_fn` - A function that retrieves the number of dimensions from `shape`. /// * `shape_data_fn` - A function that retrieves the size of a dimension from `shape`. fn create_ndarray_dyn_shape<'ctx, 'a, G, V, LenFn, DataFn>( generator: &mut G, ctx: &mut CodeGenContext<'ctx, 'a>, elem_ty: Type, shape: &V, shape_len_fn: LenFn, shape_data_fn: DataFn, ) -> Result, String> where G: CodeGenerator + ?Sized, LenFn: Fn(&mut G, &mut CodeGenContext<'ctx, 'a>, &V) -> Result, String>, DataFn: Fn( &mut G, &mut CodeGenContext<'ctx, 'a>, &V, IntValue<'ctx>, ) -> Result, String>, { let llvm_usize = generator.get_size_type(ctx.ctx); // Assert that all dimensions are non-negative let shape_len = shape_len_fn(generator, ctx, shape)?; gen_for_callback_incrementing( generator, ctx, None, llvm_usize.const_zero(), (shape_len, false), |generator, ctx, _, i| { let shape_dim = shape_data_fn(generator, ctx, shape, i)?; debug_assert!(shape_dim.get_type().get_bit_width() <= llvm_usize.get_bit_width()); let shape_dim_gez = ctx .builder .build_int_compare( IntPredicate::SGE, shape_dim, shape_dim.get_type().const_zero(), "", ) .unwrap(); ctx.make_assert( generator, shape_dim_gez, "0:ValueError", "negative dimensions not supported", [None, None, None], ctx.current_loc, ); // TODO: Disallow dim_sz > u32_MAX Ok(()) }, llvm_usize.const_int(1, false), )?; let ndarray = create_ndarray_uninitialized(generator, ctx, elem_ty)?; let num_dims = shape_len_fn(generator, ctx, shape)?; ndarray.store_ndims(ctx, generator, num_dims); let ndarray_num_dims = ndarray.load_ndims(ctx); ndarray.create_dim_sizes(ctx, llvm_usize, ndarray_num_dims); // Copy the dimension sizes from shape to ndarray.dims let shape_len = shape_len_fn(generator, ctx, shape)?; gen_for_callback_incrementing( generator, ctx, None, llvm_usize.const_zero(), (shape_len, false), |generator, ctx, _, i| { let shape_dim = shape_data_fn(generator, ctx, shape, i)?; debug_assert!(shape_dim.get_type().get_bit_width() <= llvm_usize.get_bit_width()); let shape_dim = ctx.builder.build_int_z_extend(shape_dim, llvm_usize, "").unwrap(); let ndarray_pdim = unsafe { ndarray.dim_sizes().ptr_offset_unchecked(ctx, generator, &i, None) }; ctx.builder.build_store(ndarray_pdim, shape_dim).unwrap(); Ok(()) }, llvm_usize.const_int(1, false), )?; let ndarray = ndarray_init_data(generator, ctx, elem_ty, ndarray); Ok(ndarray) } /// Creates an `NDArray` instance from a constant shape. /// /// * `elem_ty` - The element type of the `NDArray`. /// * `shape` - The shape of the `NDArray`, represented am array of [`IntValue`]s. pub fn create_ndarray_const_shape<'ctx, G: CodeGenerator + ?Sized>( generator: &mut G, ctx: &mut CodeGenContext<'ctx, '_>, elem_ty: Type, shape: &[IntValue<'ctx>], ) -> Result, String> { let llvm_usize = generator.get_size_type(ctx.ctx); for &shape_dim in shape { let shape_dim = ctx.builder.build_int_z_extend(shape_dim, llvm_usize, "").unwrap(); let shape_dim_gez = ctx .builder .build_int_compare(IntPredicate::SGE, shape_dim, llvm_usize.const_zero(), "") .unwrap(); ctx.make_assert( generator, shape_dim_gez, "0:ValueError", "negative dimensions not supported", [None, None, None], ctx.current_loc, ); // TODO: Disallow dim_sz > u32_MAX } let ndarray = create_ndarray_uninitialized(generator, ctx, elem_ty)?; let num_dims = llvm_usize.const_int(shape.len() as u64, false); ndarray.store_ndims(ctx, generator, num_dims); let ndarray_num_dims = ndarray.load_ndims(ctx); ndarray.create_dim_sizes(ctx, llvm_usize, ndarray_num_dims); for (i, &shape_dim) in shape.iter().enumerate() { let shape_dim = ctx.builder.build_int_z_extend(shape_dim, llvm_usize, "").unwrap(); let ndarray_dim = unsafe { ndarray.dim_sizes().ptr_offset_unchecked( ctx, generator, &llvm_usize.const_int(i as u64, true), None, ) }; ctx.builder.build_store(ndarray_dim, shape_dim).unwrap(); } let ndarray = ndarray_init_data(generator, ctx, elem_ty, ndarray); Ok(ndarray) } /// Initializes the `data` field of [`NDArrayValue`] based on the `ndims` and `dim_sz` fields. fn ndarray_init_data<'ctx, G: CodeGenerator + ?Sized>( generator: &mut G, ctx: &mut CodeGenContext<'ctx, '_>, elem_ty: Type, ndarray: NDArrayValue<'ctx>, ) -> NDArrayValue<'ctx> { let llvm_ndarray_data_t = ctx.get_llvm_type(generator, elem_ty).as_basic_type_enum(); assert!(llvm_ndarray_data_t.is_sized()); let ndarray_num_elems = call_ndarray_calc_size( generator, ctx, &ndarray.dim_sizes().as_slice_value(ctx, generator), (None, None), ); ndarray.create_data(ctx, llvm_ndarray_data_t, ndarray_num_elems); ndarray } fn ndarray_zero_value<'ctx, G: CodeGenerator + ?Sized>( generator: &mut G, ctx: &mut CodeGenContext<'ctx, '_>, elem_ty: Type, ) -> BasicValueEnum<'ctx> { if [ctx.primitives.int32, ctx.primitives.uint32] .iter() .any(|ty| ctx.unifier.unioned(elem_ty, *ty)) { ctx.ctx.i32_type().const_zero().into() } else if [ctx.primitives.int64, ctx.primitives.uint64] .iter() .any(|ty| ctx.unifier.unioned(elem_ty, *ty)) { ctx.ctx.i64_type().const_zero().into() } else if ctx.unifier.unioned(elem_ty, ctx.primitives.float) { ctx.ctx.f64_type().const_zero().into() } else if ctx.unifier.unioned(elem_ty, ctx.primitives.bool) { ctx.ctx.bool_type().const_zero().into() } else if ctx.unifier.unioned(elem_ty, ctx.primitives.str) { ctx.gen_string(generator, "").into() } else { codegen_unreachable!(ctx) } } fn ndarray_one_value<'ctx, G: CodeGenerator + ?Sized>( generator: &mut G, ctx: &mut CodeGenContext<'ctx, '_>, elem_ty: Type, ) -> BasicValueEnum<'ctx> { if [ctx.primitives.int32, ctx.primitives.uint32] .iter() .any(|ty| ctx.unifier.unioned(elem_ty, *ty)) { let is_signed = ctx.unifier.unioned(elem_ty, ctx.primitives.int32); ctx.ctx.i32_type().const_int(1, is_signed).into() } else if [ctx.primitives.int64, ctx.primitives.uint64] .iter() .any(|ty| ctx.unifier.unioned(elem_ty, *ty)) { let is_signed = ctx.unifier.unioned(elem_ty, ctx.primitives.int64); ctx.ctx.i64_type().const_int(1, is_signed).into() } else if ctx.unifier.unioned(elem_ty, ctx.primitives.float) { ctx.ctx.f64_type().const_float(1.0).into() } else if ctx.unifier.unioned(elem_ty, ctx.primitives.bool) { ctx.ctx.bool_type().const_int(1, false).into() } else if ctx.unifier.unioned(elem_ty, ctx.primitives.str) { ctx.gen_string(generator, "1").into() } else { codegen_unreachable!(ctx) } } /// LLVM-typed implementation for generating the implementation for constructing an `NDArray`. /// /// * `elem_ty` - The element type of the `NDArray`. /// * `shape` - The `shape` parameter used to construct the `NDArray`. /// /// ### Notes on `shape` /// /// Just like numpy, the `shape` argument can be: /// 1. A list of `int32`; e.g., `np.empty([600, 800, 3])` /// 2. A tuple of `int32`; e.g., `np.empty((600, 800, 3))` /// 3. A scalar `int32`; e.g., `np.empty(3)`, this is functionally equivalent to `np.empty([3])` /// /// See also [`typecheck::type_inferencer::fold_numpy_function_call_shape_argument`] to /// learn how `shape` gets from being a Python user expression to here. fn call_ndarray_empty_impl<'ctx, G: CodeGenerator + ?Sized>( generator: &mut G, ctx: &mut CodeGenContext<'ctx, '_>, elem_ty: Type, shape: BasicValueEnum<'ctx>, ) -> Result, String> { let llvm_usize = generator.get_size_type(ctx.ctx); match shape { BasicValueEnum::PointerValue(shape_list_ptr) if ListValue::is_representable(shape_list_ptr, llvm_usize).is_ok() => { // 1. A list of ints; e.g., `np.empty([600, 800, 3])` let shape_list = ListValue::from_pointer_value(shape_list_ptr, llvm_usize, None); create_ndarray_dyn_shape( generator, ctx, elem_ty, &shape_list, |_, ctx, shape_list| Ok(shape_list.load_size(ctx, None)), |generator, ctx, shape_list, idx| { Ok(shape_list.data().get(ctx, generator, &idx, None).into_int_value()) }, ) } BasicValueEnum::StructValue(shape_tuple) => { // 2. A tuple of ints; e.g., `np.empty((600, 800, 3))` // Read [`codegen::expr::gen_expr`] to see how `nac3core` translates a Python tuple into LLVM. // Get the length/size of the tuple, which also happens to be the value of `ndims`. let ndims = shape_tuple.get_type().count_fields(); let mut shape = Vec::with_capacity(ndims as usize); for dim_i in 0..ndims { let dim = ctx .builder .build_extract_value(shape_tuple, dim_i, format!("dim{dim_i}").as_str()) .unwrap() .into_int_value(); shape.push(dim); } create_ndarray_const_shape(generator, ctx, elem_ty, shape.as_slice()) } BasicValueEnum::IntValue(shape_int) => { // 3. A scalar int; e.g., `np.empty(3)`, this is functionally equivalent to `np.empty([3])` create_ndarray_const_shape(generator, ctx, elem_ty, &[shape_int]) } _ => codegen_unreachable!(ctx), } } /// Generates LLVM IR for populating the entire `NDArray` using a lambda with its flattened index as /// its input. fn ndarray_fill_flattened<'ctx, 'a, G, ValueFn>( generator: &mut G, ctx: &mut CodeGenContext<'ctx, 'a>, ndarray: NDArrayValue<'ctx>, value_fn: ValueFn, ) -> Result<(), String> where G: CodeGenerator + ?Sized, ValueFn: Fn( &mut G, &mut CodeGenContext<'ctx, 'a>, IntValue<'ctx>, ) -> Result, String>, { let llvm_usize = generator.get_size_type(ctx.ctx); let ndarray_num_elems = call_ndarray_calc_size( generator, ctx, &ndarray.dim_sizes().as_slice_value(ctx, generator), (None, None), ); gen_for_callback_incrementing( generator, ctx, None, llvm_usize.const_zero(), (ndarray_num_elems, false), |generator, ctx, _, i| { let elem = unsafe { ndarray.data().ptr_offset_unchecked(ctx, generator, &i, None) }; let value = value_fn(generator, ctx, i)?; ctx.builder.build_store(elem, value).unwrap(); Ok(()) }, llvm_usize.const_int(1, false), ) } /// Generates LLVM IR for populating the entire `NDArray` using a lambda with the dimension-indices /// as its input. fn ndarray_fill_indexed<'ctx, 'a, G, ValueFn>( generator: &mut G, ctx: &mut CodeGenContext<'ctx, 'a>, ndarray: NDArrayValue<'ctx>, value_fn: ValueFn, ) -> Result<(), String> where G: CodeGenerator + ?Sized, ValueFn: Fn( &mut G, &mut CodeGenContext<'ctx, 'a>, &TypedArrayLikeAdapter<'ctx, IntValue<'ctx>>, ) -> Result, String>, { ndarray_fill_flattened(generator, ctx, ndarray, |generator, ctx, idx| { let indices = call_ndarray_calc_nd_indices(generator, ctx, idx, ndarray); value_fn(generator, ctx, &indices) }) } fn ndarray_fill_mapping<'ctx, 'a, G, MapFn>( generator: &mut G, ctx: &mut CodeGenContext<'ctx, 'a>, src: NDArrayValue<'ctx>, dest: NDArrayValue<'ctx>, map_fn: MapFn, ) -> Result<(), String> where G: CodeGenerator + ?Sized, MapFn: Fn( &mut G, &mut CodeGenContext<'ctx, 'a>, BasicValueEnum<'ctx>, ) -> Result, String>, { ndarray_fill_flattened(generator, ctx, dest, |generator, ctx, i| { let elem = unsafe { src.data().get_unchecked(ctx, generator, &i, None) }; map_fn(generator, ctx, elem) }) } /// Generates the LLVM IR for checking whether the source `ndarray` can be broadcast to the shape of /// the target `ndarray`. fn ndarray_assert_is_broadcastable<'ctx, G: CodeGenerator + ?Sized>( generator: &mut G, ctx: &mut CodeGenContext<'ctx, '_>, target: NDArrayValue<'ctx>, source: NDArrayValue<'ctx>, ) { let array_ndims = source.load_ndims(ctx); let broadcast_size = target.load_ndims(ctx); ctx.make_assert( generator, ctx.builder.build_int_compare(IntPredicate::ULE, array_ndims, broadcast_size, "").unwrap(), "0:ValueError", "operands cannot be broadcast together", [None, None, None], ctx.current_loc, ); } /// Generates the LLVM IR for populating the entire `NDArray` from two `ndarray` or scalar value /// with broadcast-compatible shapes. fn ndarray_broadcast_fill<'ctx, 'a, G, ValueFn>( generator: &mut G, ctx: &mut CodeGenContext<'ctx, 'a>, res: NDArrayValue<'ctx>, lhs: (BasicValueEnum<'ctx>, bool), rhs: (BasicValueEnum<'ctx>, bool), value_fn: ValueFn, ) -> Result, String> where G: CodeGenerator + ?Sized, ValueFn: Fn( &mut G, &mut CodeGenContext<'ctx, 'a>, (BasicValueEnum<'ctx>, BasicValueEnum<'ctx>), ) -> Result, String>, { let llvm_usize = generator.get_size_type(ctx.ctx); let (lhs_val, lhs_scalar) = lhs; let (rhs_val, rhs_scalar) = rhs; assert!( !(lhs_scalar && rhs_scalar), "One of the operands must be a ndarray instance: `{}`, `{}`", lhs_val.get_type(), rhs_val.get_type() ); // Assert that all ndarray operands are broadcastable to the target size if !lhs_scalar { let lhs_val = NDArrayValue::from_pointer_value(lhs_val.into_pointer_value(), llvm_usize, None); ndarray_assert_is_broadcastable(generator, ctx, res, lhs_val); } if !rhs_scalar { let rhs_val = NDArrayValue::from_pointer_value(rhs_val.into_pointer_value(), llvm_usize, None); ndarray_assert_is_broadcastable(generator, ctx, res, rhs_val); } ndarray_fill_indexed(generator, ctx, res, |generator, ctx, idx| { let lhs_elem = if lhs_scalar { lhs_val } else { let lhs = NDArrayValue::from_pointer_value(lhs_val.into_pointer_value(), llvm_usize, None); let lhs_idx = call_ndarray_calc_broadcast_index(generator, ctx, lhs, idx); unsafe { lhs.data().get_unchecked(ctx, generator, &lhs_idx, None) } }; let rhs_elem = if rhs_scalar { rhs_val } else { let rhs = NDArrayValue::from_pointer_value(rhs_val.into_pointer_value(), llvm_usize, None); let rhs_idx = call_ndarray_calc_broadcast_index(generator, ctx, rhs, idx); unsafe { rhs.data().get_unchecked(ctx, generator, &rhs_idx, None) } }; value_fn(generator, ctx, (lhs_elem, rhs_elem)) })?; Ok(res) } /// LLVM-typed implementation for generating the implementation for `ndarray.zeros`. /// /// * `elem_ty` - The element type of the `NDArray`. /// * `shape` - The `shape` parameter used to construct the `NDArray`. fn call_ndarray_zeros_impl<'ctx, G: CodeGenerator + ?Sized>( generator: &mut G, ctx: &mut CodeGenContext<'ctx, '_>, elem_ty: Type, shape: BasicValueEnum<'ctx>, ) -> Result, String> { let supported_types = [ ctx.primitives.int32, ctx.primitives.int64, ctx.primitives.uint32, ctx.primitives.uint64, ctx.primitives.float, ctx.primitives.bool, ctx.primitives.str, ]; assert!(supported_types.iter().any(|supported_ty| ctx.unifier.unioned(*supported_ty, elem_ty))); let ndarray = call_ndarray_empty_impl(generator, ctx, elem_ty, shape)?; ndarray_fill_flattened(generator, ctx, ndarray, |generator, ctx, _| { let value = ndarray_zero_value(generator, ctx, elem_ty); Ok(value) })?; Ok(ndarray) } /// LLVM-typed implementation for generating the implementation for `ndarray.ones`. /// /// * `elem_ty` - The element type of the `NDArray`. /// * `shape` - The `shape` parameter used to construct the `NDArray`. fn call_ndarray_ones_impl<'ctx, G: CodeGenerator + ?Sized>( generator: &mut G, ctx: &mut CodeGenContext<'ctx, '_>, elem_ty: Type, shape: BasicValueEnum<'ctx>, ) -> Result, String> { let supported_types = [ ctx.primitives.int32, ctx.primitives.int64, ctx.primitives.uint32, ctx.primitives.uint64, ctx.primitives.float, ctx.primitives.bool, ctx.primitives.str, ]; assert!(supported_types.iter().any(|supported_ty| ctx.unifier.unioned(*supported_ty, elem_ty))); let ndarray = call_ndarray_empty_impl(generator, ctx, elem_ty, shape)?; ndarray_fill_flattened(generator, ctx, ndarray, |generator, ctx, _| { let value = ndarray_one_value(generator, ctx, elem_ty); Ok(value) })?; Ok(ndarray) } /// LLVM-typed implementation for generating the implementation for `ndarray.full`. /// /// * `elem_ty` - The element type of the `NDArray`. /// * `shape` - The `shape` parameter used to construct the `NDArray`. fn call_ndarray_full_impl<'ctx, G: CodeGenerator + ?Sized>( generator: &mut G, ctx: &mut CodeGenContext<'ctx, '_>, elem_ty: Type, shape: BasicValueEnum<'ctx>, fill_value: BasicValueEnum<'ctx>, ) -> Result, String> { let ndarray = call_ndarray_empty_impl(generator, ctx, elem_ty, shape)?; ndarray_fill_flattened(generator, ctx, ndarray, |generator, ctx, _| { let value = if fill_value.is_pointer_value() { let llvm_i1 = ctx.ctx.bool_type(); let copy = generator.gen_var_alloc(ctx, fill_value.get_type(), None)?; call_memcpy_generic( ctx, copy, fill_value.into_pointer_value(), fill_value.get_type().size_of().map(Into::into).unwrap(), llvm_i1.const_zero(), ); copy.into() } else if fill_value.is_int_value() || fill_value.is_float_value() { fill_value } else { codegen_unreachable!(ctx) }; Ok(value) })?; Ok(ndarray) } /// Returns the number of dimensions for a multidimensional list as an [`IntValue`]. fn llvm_ndlist_get_ndims<'ctx, G: CodeGenerator + ?Sized>( generator: &G, ctx: &CodeGenContext<'ctx, '_>, ty: PointerType<'ctx>, ) -> IntValue<'ctx> { let llvm_usize = generator.get_size_type(ctx.ctx); let list_ty = ListType::from_type(ty, llvm_usize); let list_elem_ty = list_ty.element_type(); let ndims = llvm_usize.const_int(1, false); match list_elem_ty { AnyTypeEnum::PointerType(ptr_ty) if ListType::is_representable(ptr_ty, llvm_usize).is_ok() => { ndims.const_add(llvm_ndlist_get_ndims(generator, ctx, ptr_ty)) } AnyTypeEnum::PointerType(ptr_ty) if NDArrayType::is_representable(ptr_ty, llvm_usize).is_ok() => { todo!("Getting ndims for list[ndarray] not supported") } _ => ndims, } } /// Returns the number of dimensions for an array-like object as an [`IntValue`]. fn llvm_arraylike_get_ndims<'ctx, G: CodeGenerator + ?Sized>( generator: &mut G, ctx: &mut CodeGenContext<'ctx, '_>, value: BasicValueEnum<'ctx>, ) -> IntValue<'ctx> { let llvm_usize = generator.get_size_type(ctx.ctx); match value { BasicValueEnum::PointerValue(v) if NDArrayValue::is_representable(v, llvm_usize).is_ok() => { NDArrayValue::from_pointer_value(v, llvm_usize, None).load_ndims(ctx) } BasicValueEnum::PointerValue(v) if ListValue::is_representable(v, llvm_usize).is_ok() => { llvm_ndlist_get_ndims(generator, ctx, v.get_type()) } _ => llvm_usize.const_zero(), } } /// Flattens and copies the values from a multidimensional list into an [`NDArrayValue`]. fn ndarray_from_ndlist_impl<'ctx, G: CodeGenerator + ?Sized>( generator: &mut G, ctx: &mut CodeGenContext<'ctx, '_>, elem_ty: Type, (dst_arr, dst_slice_ptr): (NDArrayValue<'ctx>, PointerValue<'ctx>), src_lst: ListValue<'ctx>, dim: u64, ) -> Result<(), String> { let llvm_i1 = ctx.ctx.bool_type(); let llvm_usize = generator.get_size_type(ctx.ctx); let list_elem_ty = src_lst.get_type().element_type(); match list_elem_ty { AnyTypeEnum::PointerType(ptr_ty) if ListType::is_representable(ptr_ty, llvm_usize).is_ok() => { // The stride of elements in this dimension, i.e. the number of elements between arr[i] // and arr[i + 1] in this dimension let stride = call_ndarray_calc_size( generator, ctx, &dst_arr.dim_sizes(), (Some(llvm_usize.const_int(dim + 1, false)), None), ); gen_for_range_callback( generator, ctx, None, true, |_, _| Ok(llvm_usize.const_zero()), (|_, ctx| Ok(src_lst.load_size(ctx, None)), false), |_, _| Ok(llvm_usize.const_int(1, false)), |generator, ctx, _, i| { let offset = ctx.builder.build_int_mul(stride, i, "").unwrap(); let dst_ptr = unsafe { ctx.builder.build_gep(dst_slice_ptr, &[offset], "").unwrap() }; let nested_lst_elem = ListValue::from_pointer_value( unsafe { src_lst.data().get_unchecked(ctx, generator, &i, None) } .into_pointer_value(), llvm_usize, None, ); ndarray_from_ndlist_impl( generator, ctx, elem_ty, (dst_arr, dst_ptr), nested_lst_elem, dim + 1, )?; Ok(()) }, )?; } AnyTypeEnum::PointerType(ptr_ty) if NDArrayType::is_representable(ptr_ty, llvm_usize).is_ok() => { todo!("Not implemented for list[ndarray]") } _ => { let lst_len = src_lst.load_size(ctx, None); let sizeof_elem = ctx.get_llvm_type(generator, elem_ty).size_of().unwrap(); let sizeof_elem = ctx.builder.build_int_cast(sizeof_elem, llvm_usize, "").unwrap(); let cpy_len = ctx .builder .build_int_mul( ctx.builder.build_int_z_extend_or_bit_cast(lst_len, llvm_usize, "").unwrap(), sizeof_elem, "", ) .unwrap(); call_memcpy_generic( ctx, dst_slice_ptr, src_lst.data().base_ptr(ctx, generator), cpy_len, llvm_i1.const_zero(), ); } } Ok(()) } /// LLVM-typed implementation for `ndarray.array`. fn call_ndarray_array_impl<'ctx, G: CodeGenerator + ?Sized>( generator: &mut G, ctx: &mut CodeGenContext<'ctx, '_>, elem_ty: Type, object: BasicValueEnum<'ctx>, copy: IntValue<'ctx>, ndmin: IntValue<'ctx>, ) -> Result, String> { let llvm_i1 = ctx.ctx.bool_type(); let llvm_usize = generator.get_size_type(ctx.ctx); let ndmin = ctx.builder.build_int_z_extend_or_bit_cast(ndmin, llvm_usize, "").unwrap(); // TODO(Derppening): Add assertions for sizes of different dimensions // object is not a pointer - 0-dim NDArray if !object.is_pointer_value() { let ndarray = create_ndarray_const_shape(generator, ctx, elem_ty, &[])?; unsafe { ndarray.data().set_unchecked(ctx, generator, &llvm_usize.const_zero(), object); } return Ok(ndarray); } let object = object.into_pointer_value(); // object is an NDArray instance - copy object unless copy=0 && ndmin < object.ndims if NDArrayValue::is_representable(object, llvm_usize).is_ok() { let object = NDArrayValue::from_pointer_value(object, llvm_usize, None); let ndarray = gen_if_else_expr_callback( generator, ctx, |_, ctx| { let copy_nez = ctx .builder .build_int_compare(IntPredicate::NE, copy, llvm_i1.const_zero(), "") .unwrap(); let ndmin_gt_ndims = ctx .builder .build_int_compare(IntPredicate::UGT, ndmin, object.load_ndims(ctx), "") .unwrap(); Ok(ctx.builder.build_and(copy_nez, ndmin_gt_ndims, "").unwrap()) }, |generator, ctx| { let ndarray = create_ndarray_dyn_shape( generator, ctx, elem_ty, &object, |_, ctx, object| { let ndims = object.load_ndims(ctx); let ndmin_gt_ndims = ctx .builder .build_int_compare(IntPredicate::UGT, ndmin, object.load_ndims(ctx), "") .unwrap(); Ok(ctx .builder .build_select(ndmin_gt_ndims, ndmin, ndims, "") .map(BasicValueEnum::into_int_value) .unwrap()) }, |generator, ctx, object, idx| { let ndims = object.load_ndims(ctx); let ndmin = llvm_intrinsics::call_int_umax(ctx, ndims, ndmin, None); // The number of dimensions to prepend 1's to let offset = ctx.builder.build_int_sub(ndmin, ndims, "").unwrap(); Ok(gen_if_else_expr_callback( generator, ctx, |_, ctx| { Ok(ctx .builder .build_int_compare(IntPredicate::UGE, idx, offset, "") .unwrap()) }, |_, _| Ok(Some(llvm_usize.const_int(1, false))), |_, ctx| Ok(Some(ctx.builder.build_int_sub(idx, offset, "").unwrap())), )? .map(BasicValueEnum::into_int_value) .unwrap()) }, )?; ndarray_sliced_copyto_impl( generator, ctx, elem_ty, (ndarray, ndarray.data().base_ptr(ctx, generator)), (object, object.data().base_ptr(ctx, generator)), 0, &[], )?; Ok(Some(ndarray.as_base_value())) }, |_, _| Ok(Some(object.as_base_value())), )?; return Ok(NDArrayValue::from_pointer_value( ndarray.map(BasicValueEnum::into_pointer_value).unwrap(), llvm_usize, None, )); } // Remaining case: TList assert!(ListValue::is_representable(object, llvm_usize).is_ok()); let object = ListValue::from_pointer_value(object, llvm_usize, None); // The number of dimensions to prepend 1's to let ndims = llvm_ndlist_get_ndims(generator, ctx, object.as_base_value().get_type()); let ndmin = llvm_intrinsics::call_int_umax(ctx, ndims, ndmin, None); let offset = ctx.builder.build_int_sub(ndmin, ndims, "").unwrap(); let ndarray = create_ndarray_dyn_shape( generator, ctx, elem_ty, &object, |generator, ctx, object| { let ndims = llvm_ndlist_get_ndims(generator, ctx, object.as_base_value().get_type()); let ndmin_gt_ndims = ctx.builder.build_int_compare(IntPredicate::UGT, ndmin, ndims, "").unwrap(); Ok(ctx .builder .build_select(ndmin_gt_ndims, ndmin, ndims, "") .map(BasicValueEnum::into_int_value) .unwrap()) }, |generator, ctx, object, idx| { Ok(gen_if_else_expr_callback( generator, ctx, |_, ctx| { Ok(ctx.builder.build_int_compare(IntPredicate::ULT, idx, offset, "").unwrap()) }, |_, _| Ok(Some(llvm_usize.const_int(1, false))), |generator, ctx| { let make_llvm_list = |elem_ty: BasicTypeEnum<'ctx>| { ctx.ctx.struct_type( &[elem_ty.ptr_type(AddressSpace::default()).into(), llvm_usize.into()], false, ) }; let llvm_i8 = ctx.ctx.i8_type(); let llvm_list_i8 = make_llvm_list(llvm_i8.into()); let llvm_plist_i8 = llvm_list_i8.ptr_type(AddressSpace::default()); // Cast list to { i8*, usize } since we only care about the size let lst = generator .gen_var_alloc( ctx, ListType::new(generator, ctx.ctx, llvm_i8.into()).as_base_type().into(), None, ) .unwrap(); ctx.builder .build_store( lst, ctx.builder .build_bit_cast(object.as_base_value(), llvm_plist_i8, "") .unwrap(), ) .unwrap(); let stop = ctx.builder.build_int_sub(idx, offset, "").unwrap(); gen_for_range_callback( generator, ctx, None, true, |_, _| Ok(llvm_usize.const_zero()), (|_, _| Ok(stop), false), |_, _| Ok(llvm_usize.const_int(1, false)), |generator, ctx, _, _| { let plist_plist_i8 = make_llvm_list(llvm_plist_i8.into()) .ptr_type(AddressSpace::default()); let this_dim = ctx .builder .build_load(lst, "") .map(BasicValueEnum::into_pointer_value) .map(|v| ctx.builder.build_bit_cast(v, plist_plist_i8, "").unwrap()) .map(BasicValueEnum::into_pointer_value) .unwrap(); let this_dim = ListValue::from_pointer_value(this_dim, llvm_usize, None); // TODO: Assert this_dim.sz != 0 let next_dim = unsafe { this_dim.data().get_unchecked( ctx, generator, &llvm_usize.const_zero(), None, ) } .into_pointer_value(); ctx.builder .build_store( lst, ctx.builder .build_bit_cast(next_dim, llvm_plist_i8, "") .unwrap(), ) .unwrap(); Ok(()) }, )?; let lst = ListValue::from_pointer_value( ctx.builder .build_load(lst, "") .map(BasicValueEnum::into_pointer_value) .unwrap(), llvm_usize, None, ); Ok(Some(lst.load_size(ctx, None))) }, )? .map(BasicValueEnum::into_int_value) .unwrap()) }, )?; ndarray_from_ndlist_impl( generator, ctx, elem_ty, (ndarray, ndarray.data().base_ptr(ctx, generator)), object, 0, )?; Ok(ndarray) } /// LLVM-typed implementation for generating the implementation for `ndarray.eye`. /// /// * `elem_ty` - The element type of the `NDArray`. fn call_ndarray_eye_impl<'ctx, G: CodeGenerator + ?Sized>( generator: &mut G, ctx: &mut CodeGenContext<'ctx, '_>, elem_ty: Type, nrows: IntValue<'ctx>, ncols: IntValue<'ctx>, offset: IntValue<'ctx>, ) -> Result, String> { let llvm_i32 = ctx.ctx.i32_type(); let llvm_usize = generator.get_size_type(ctx.ctx); let nrows = ctx.builder.build_int_z_extend_or_bit_cast(nrows, llvm_usize, "").unwrap(); let ncols = ctx.builder.build_int_z_extend_or_bit_cast(ncols, llvm_usize, "").unwrap(); let ndarray = create_ndarray_const_shape(generator, ctx, elem_ty, &[nrows, ncols])?; ndarray_fill_indexed(generator, ctx, ndarray, |generator, ctx, indices| { let (row, col) = unsafe { ( indices.get_typed_unchecked(ctx, generator, &llvm_usize.const_zero(), None), indices.get_typed_unchecked(ctx, generator, &llvm_usize.const_int(1, false), None), ) }; let col_with_offset = ctx .builder .build_int_add( col, ctx.builder.build_int_s_extend_or_bit_cast(offset, llvm_i32, "").unwrap(), "", ) .unwrap(); let is_on_diag = ctx.builder.build_int_compare(IntPredicate::EQ, row, col_with_offset, "").unwrap(); let zero = ndarray_zero_value(generator, ctx, elem_ty); let one = ndarray_one_value(generator, ctx, elem_ty); let value = ctx.builder.build_select(is_on_diag, one, zero, "").unwrap(); Ok(value) })?; Ok(ndarray) } /// Copies a slice of an [`NDArrayValue`] to another. /// /// - `dst_arr`: The [`NDArrayValue`] instance of the destination array. The `ndims` and `dim_sz` /// fields should be populated before calling this function. /// - `dst_slice_ptr`: The [`PointerValue`] to the first element of the currently processing /// dimensional slice in the destination array. /// - `src_arr`: The [`NDArrayValue`] instance of the source array. /// - `src_slice_ptr`: The [`PointerValue`] to the first element of the currently processing /// dimensional slice in the source array. /// - `dim`: The index of the currently processing dimension. /// - `slices`: List of all slices, with the first element corresponding to the slice applicable to /// this dimension. The `start`/`stop` values of each slice must be non-negative indices. fn ndarray_sliced_copyto_impl<'ctx, G: CodeGenerator + ?Sized>( generator: &mut G, ctx: &mut CodeGenContext<'ctx, '_>, elem_ty: Type, (dst_arr, dst_slice_ptr): (NDArrayValue<'ctx>, PointerValue<'ctx>), (src_arr, src_slice_ptr): (NDArrayValue<'ctx>, PointerValue<'ctx>), dim: u64, slices: &[(IntValue<'ctx>, IntValue<'ctx>, IntValue<'ctx>)], ) -> Result<(), String> { let llvm_i1 = ctx.ctx.bool_type(); let llvm_usize = generator.get_size_type(ctx.ctx); // If there are no (remaining) slice expressions, memcpy the entire dimension if slices.is_empty() { let sizeof_elem = ctx.get_llvm_type(generator, elem_ty).size_of().unwrap(); let stride = call_ndarray_calc_size( generator, ctx, &src_arr.dim_sizes(), (Some(llvm_usize.const_int(dim, false)), None), ); let stride = ctx.builder.build_int_z_extend_or_bit_cast(stride, sizeof_elem.get_type(), "").unwrap(); let cpy_len = ctx.builder.build_int_mul(stride, sizeof_elem, "").unwrap(); call_memcpy_generic(ctx, dst_slice_ptr, src_slice_ptr, cpy_len, llvm_i1.const_zero()); return Ok(()); } // The stride of elements in this dimension, i.e. the number of elements between arr[i] and // arr[i + 1] in this dimension let src_stride = call_ndarray_calc_size( generator, ctx, &src_arr.dim_sizes(), (Some(llvm_usize.const_int(dim + 1, false)), None), ); let dst_stride = call_ndarray_calc_size( generator, ctx, &dst_arr.dim_sizes(), (Some(llvm_usize.const_int(dim + 1, false)), None), ); let (start, stop, step) = slices[0]; let start = ctx.builder.build_int_s_extend_or_bit_cast(start, llvm_usize, "").unwrap(); let stop = ctx.builder.build_int_s_extend_or_bit_cast(stop, llvm_usize, "").unwrap(); let step = ctx.builder.build_int_s_extend_or_bit_cast(step, llvm_usize, "").unwrap(); let dst_i_addr = generator.gen_var_alloc(ctx, start.get_type().into(), None).unwrap(); ctx.builder.build_store(dst_i_addr, start.get_type().const_zero()).unwrap(); gen_for_range_callback( generator, ctx, None, false, |_, _| Ok(start), (|_, _| Ok(stop), true), |_, _| Ok(step), |generator, ctx, _, src_i| { // Calculate the offset of the active slice let src_data_offset = ctx.builder.build_int_mul(src_stride, src_i, "").unwrap(); let dst_i = ctx.builder.build_load(dst_i_addr, "").map(BasicValueEnum::into_int_value).unwrap(); let dst_data_offset = ctx.builder.build_int_mul(dst_stride, dst_i, "").unwrap(); let (src_ptr, dst_ptr) = unsafe { ( ctx.builder.build_gep(src_slice_ptr, &[src_data_offset], "").unwrap(), ctx.builder.build_gep(dst_slice_ptr, &[dst_data_offset], "").unwrap(), ) }; ndarray_sliced_copyto_impl( generator, ctx, elem_ty, (dst_arr, dst_ptr), (src_arr, src_ptr), dim + 1, &slices[1..], )?; let dst_i = ctx.builder.build_load(dst_i_addr, "").map(BasicValueEnum::into_int_value).unwrap(); let dst_i_add1 = ctx.builder.build_int_add(dst_i, llvm_usize.const_int(1, false), "").unwrap(); ctx.builder.build_store(dst_i_addr, dst_i_add1).unwrap(); Ok(()) }, )?; Ok(()) } /// Copies a [`NDArrayValue`] using slices. /// /// * `elem_ty` - The element type of the `NDArray`. /// - `slices`: List of all slices, with the first element corresponding to the slice applicable to /// this dimension. The `start`/`stop` values of each slice must be positive indices. pub fn ndarray_sliced_copy<'ctx, G: CodeGenerator + ?Sized>( generator: &mut G, ctx: &mut CodeGenContext<'ctx, '_>, elem_ty: Type, this: NDArrayValue<'ctx>, slices: &[(IntValue<'ctx>, IntValue<'ctx>, IntValue<'ctx>)], ) -> Result, String> { let llvm_i32 = ctx.ctx.i32_type(); let llvm_usize = generator.get_size_type(ctx.ctx); let ndarray = if slices.is_empty() { create_ndarray_dyn_shape( generator, ctx, elem_ty, &this, |_, ctx, shape| Ok(shape.load_ndims(ctx)), |generator, ctx, shape, idx| unsafe { Ok(shape.dim_sizes().get_typed_unchecked(ctx, generator, &idx, None)) }, )? } else { let ndarray = create_ndarray_uninitialized(generator, ctx, elem_ty)?; ndarray.store_ndims(ctx, generator, this.load_ndims(ctx)); let ndims = this.load_ndims(ctx); ndarray.create_dim_sizes(ctx, llvm_usize, ndims); // Populate the first slices.len() dimensions by computing the size of each dim slice for (i, (start, stop, step)) in slices.iter().enumerate() { // HACK: workaround calculate_len_for_slice_range requiring exclusive stop let stop = ctx .builder .build_select( ctx.builder .build_int_compare( IntPredicate::SLT, *step, llvm_i32.const_zero(), "is_neg", ) .unwrap(), ctx.builder .build_int_sub(*stop, llvm_i32.const_int(1, true), "e_min_one") .unwrap(), ctx.builder .build_int_add(*stop, llvm_i32.const_int(1, true), "e_add_one") .unwrap(), "final_e", ) .map(BasicValueEnum::into_int_value) .unwrap(); let slice_len = calculate_len_for_slice_range(generator, ctx, *start, stop, *step); let slice_len = ctx.builder.build_int_z_extend_or_bit_cast(slice_len, llvm_usize, "").unwrap(); unsafe { ndarray.dim_sizes().set_typed_unchecked( ctx, generator, &llvm_usize.const_int(i as u64, false), slice_len, ); } } // Populate the rest by directly copying the dim size from the source array gen_for_callback_incrementing( generator, ctx, None, llvm_usize.const_int(slices.len() as u64, false), (this.load_ndims(ctx), false), |generator, ctx, _, idx| { unsafe { let dim_sz = this.dim_sizes().get_typed_unchecked(ctx, generator, &idx, None); ndarray.dim_sizes().set_typed_unchecked(ctx, generator, &idx, dim_sz); } Ok(()) }, llvm_usize.const_int(1, false), ) .unwrap(); ndarray_init_data(generator, ctx, elem_ty, ndarray) }; ndarray_sliced_copyto_impl( generator, ctx, elem_ty, (ndarray, ndarray.data().base_ptr(ctx, generator)), (this, this.data().base_ptr(ctx, generator)), 0, slices, )?; Ok(ndarray) } /// LLVM-typed implementation for generating the implementation for `ndarray.copy`. /// /// * `elem_ty` - The element type of the `NDArray`. fn ndarray_copy_impl<'ctx, G: CodeGenerator + ?Sized>( generator: &mut G, ctx: &mut CodeGenContext<'ctx, '_>, elem_ty: Type, this: NDArrayValue<'ctx>, ) -> Result, String> { ndarray_sliced_copy(generator, ctx, elem_ty, this, &[]) } pub fn ndarray_elementwise_unaryop_impl<'ctx, 'a, G, MapFn>( generator: &mut G, ctx: &mut CodeGenContext<'ctx, 'a>, elem_ty: Type, res: Option>, operand: NDArrayValue<'ctx>, map_fn: MapFn, ) -> Result, String> where G: CodeGenerator + ?Sized, MapFn: Fn( &mut G, &mut CodeGenContext<'ctx, 'a>, BasicValueEnum<'ctx>, ) -> Result, String>, { let res = res.unwrap_or_else(|| { create_ndarray_dyn_shape( generator, ctx, elem_ty, &operand, |_, ctx, v| Ok(v.load_ndims(ctx)), |generator, ctx, v, idx| unsafe { Ok(v.dim_sizes().get_typed_unchecked(ctx, generator, &idx, None)) }, ) .unwrap() }); ndarray_fill_mapping(generator, ctx, operand, res, |generator, ctx, elem| { map_fn(generator, ctx, elem) })?; Ok(res) } /// LLVM-typed implementation for computing elementwise binary operations on two input operands. /// /// If the operand is a `ndarray`, the broadcast index corresponding to each element in the output /// is computed, the element accessed and used as an operand of the `value_fn` arguments tuple. /// Otherwise, the operand is treated as a scalar value, and is used as an operand of the /// `value_fn` arguments tuple for all output elements. /// /// The second element of the tuple indicates whether to treat the operand value as a `ndarray` /// (which would be accessed by its broadcast index) or as a scalar value (which would be /// broadcast to all elements). /// /// * `elem_ty` - The element type of the `NDArray`. /// * `res` - The `ndarray` instance to write results into, or [`None`] if the result should be /// written to a new `ndarray`. /// * `value_fn` - Function mapping the two input elements into the result. /// /// # Panic /// /// This function will panic if neither input operands (`lhs` or `rhs`) is a `ndarray`. pub fn ndarray_elementwise_binop_impl<'ctx, 'a, G, ValueFn>( generator: &mut G, ctx: &mut CodeGenContext<'ctx, 'a>, elem_ty: Type, res: Option>, lhs: (BasicValueEnum<'ctx>, bool), rhs: (BasicValueEnum<'ctx>, bool), value_fn: ValueFn, ) -> Result, String> where G: CodeGenerator + ?Sized, ValueFn: Fn( &mut G, &mut CodeGenContext<'ctx, 'a>, (BasicValueEnum<'ctx>, BasicValueEnum<'ctx>), ) -> Result, String>, { let llvm_usize = generator.get_size_type(ctx.ctx); let (lhs_val, lhs_scalar) = lhs; let (rhs_val, rhs_scalar) = rhs; assert!( !(lhs_scalar && rhs_scalar), "One of the operands must be a ndarray instance: `{}`, `{}`", lhs_val.get_type(), rhs_val.get_type() ); let ndarray = res.unwrap_or_else(|| { if lhs_scalar && rhs_scalar { let lhs_val = NDArrayValue::from_pointer_value(lhs_val.into_pointer_value(), llvm_usize, None); let rhs_val = NDArrayValue::from_pointer_value(rhs_val.into_pointer_value(), llvm_usize, None); let ndarray_dims = call_ndarray_calc_broadcast(generator, ctx, lhs_val, rhs_val); create_ndarray_dyn_shape( generator, ctx, elem_ty, &ndarray_dims, |generator, ctx, v| Ok(v.size(ctx, generator)), |generator, ctx, v, idx| unsafe { Ok(v.get_typed_unchecked(ctx, generator, &idx, None)) }, ) .unwrap() } else { let ndarray = NDArrayValue::from_pointer_value( if lhs_scalar { rhs_val } else { lhs_val }.into_pointer_value(), llvm_usize, None, ); create_ndarray_dyn_shape( generator, ctx, elem_ty, &ndarray, |_, ctx, v| Ok(v.load_ndims(ctx)), |generator, ctx, v, idx| unsafe { Ok(v.dim_sizes().get_typed_unchecked(ctx, generator, &idx, None)) }, ) .unwrap() } }); ndarray_broadcast_fill(generator, ctx, ndarray, lhs, rhs, |generator, ctx, elems| { value_fn(generator, ctx, elems) })?; Ok(ndarray) } /// LLVM-typed implementation for computing matrix multiplication between two 2D `ndarray`s. /// /// * `elem_ty` - The element type of the `NDArray`. /// * `res` - The `ndarray` instance to write results into, or [`None`] if the result should be /// written to a new `ndarray`. pub fn ndarray_matmul_2d<'ctx, G: CodeGenerator>( generator: &mut G, ctx: &mut CodeGenContext<'ctx, '_>, elem_ty: Type, res: Option>, lhs: NDArrayValue<'ctx>, rhs: NDArrayValue<'ctx>, ) -> Result, String> { let llvm_i32 = ctx.ctx.i32_type(); let llvm_usize = generator.get_size_type(ctx.ctx); if cfg!(debug_assertions) { let lhs_ndims = lhs.load_ndims(ctx); let rhs_ndims = rhs.load_ndims(ctx); // lhs.ndims == 2 ctx.make_assert( generator, ctx.builder .build_int_compare(IntPredicate::EQ, lhs_ndims, llvm_usize.const_int(2, false), "") .unwrap(), "0:ValueError", "", [None, None, None], ctx.current_loc, ); // rhs.ndims == 2 ctx.make_assert( generator, ctx.builder .build_int_compare(IntPredicate::EQ, rhs_ndims, llvm_usize.const_int(2, false), "") .unwrap(), "0:ValueError", "", [None, None, None], ctx.current_loc, ); if let Some(res) = res { let res_ndims = res.load_ndims(ctx); let res_dim0 = unsafe { res.dim_sizes().get_typed_unchecked(ctx, generator, &llvm_usize.const_zero(), None) }; let res_dim1 = unsafe { res.dim_sizes().get_typed_unchecked( ctx, generator, &llvm_usize.const_int(1, false), None, ) }; let lhs_dim0 = unsafe { lhs.dim_sizes().get_typed_unchecked(ctx, generator, &llvm_usize.const_zero(), None) }; let rhs_dim1 = unsafe { rhs.dim_sizes().get_typed_unchecked( ctx, generator, &llvm_usize.const_int(1, false), None, ) }; // res.ndims == 2 ctx.make_assert( generator, ctx.builder .build_int_compare( IntPredicate::EQ, res_ndims, llvm_usize.const_int(2, false), "", ) .unwrap(), "0:ValueError", "", [None, None, None], ctx.current_loc, ); // res.dims[0] == lhs.dims[0] ctx.make_assert( generator, ctx.builder.build_int_compare(IntPredicate::EQ, lhs_dim0, res_dim0, "").unwrap(), "0:ValueError", "", [None, None, None], ctx.current_loc, ); // res.dims[1] == rhs.dims[0] ctx.make_assert( generator, ctx.builder.build_int_compare(IntPredicate::EQ, rhs_dim1, res_dim1, "").unwrap(), "0:ValueError", "", [None, None, None], ctx.current_loc, ); } } if ctx.registry.llvm_options.opt_level == OptimizationLevel::None { let lhs_dim1 = unsafe { lhs.dim_sizes().get_typed_unchecked( ctx, generator, &llvm_usize.const_int(1, false), None, ) }; let rhs_dim0 = unsafe { rhs.dim_sizes().get_typed_unchecked(ctx, generator, &llvm_usize.const_zero(), None) }; // lhs.dims[1] == rhs.dims[0] ctx.make_assert( generator, ctx.builder.build_int_compare(IntPredicate::EQ, lhs_dim1, rhs_dim0, "").unwrap(), "0:ValueError", "", [None, None, None], ctx.current_loc, ); } let lhs = if res.is_some_and(|res| res.as_base_value() == lhs.as_base_value()) { ndarray_copy_impl(generator, ctx, elem_ty, lhs)? } else { lhs }; let ndarray = res.unwrap_or_else(|| { create_ndarray_dyn_shape( generator, ctx, elem_ty, &(lhs, rhs), |_, _, _| Ok(llvm_usize.const_int(2, false)), |generator, ctx, (lhs, rhs), idx| { gen_if_else_expr_callback( generator, ctx, |_, ctx| { Ok(ctx .builder .build_int_compare(IntPredicate::EQ, idx, llvm_usize.const_zero(), "") .unwrap()) }, |generator, ctx| { Ok(Some(unsafe { lhs.dim_sizes().get_typed_unchecked( ctx, generator, &llvm_usize.const_zero(), None, ) })) }, |generator, ctx| { Ok(Some(unsafe { rhs.dim_sizes().get_typed_unchecked( ctx, generator, &llvm_usize.const_int(1, false), None, ) })) }, ) .map(|v| v.map(BasicValueEnum::into_int_value).unwrap()) }, ) .unwrap() }); let llvm_ndarray_ty = ctx.get_llvm_type(generator, elem_ty); ndarray_fill_indexed(generator, ctx, ndarray, |generator, ctx, idx| { llvm_intrinsics::call_expect( ctx, idx.size(ctx, generator).get_type().const_int(2, false), idx.size(ctx, generator), None, ); let common_dim = { let lhs_idx1 = unsafe { lhs.dim_sizes().get_typed_unchecked( ctx, generator, &llvm_usize.const_int(1, false), None, ) }; let rhs_idx0 = unsafe { rhs.dim_sizes().get_typed_unchecked(ctx, generator, &llvm_usize.const_zero(), None) }; let idx = llvm_intrinsics::call_expect(ctx, rhs_idx0, lhs_idx1, None); ctx.builder.build_int_truncate(idx, llvm_i32, "").unwrap() }; let idx0 = unsafe { let idx0 = idx.get_typed_unchecked(ctx, generator, &llvm_usize.const_zero(), None); ctx.builder.build_int_truncate(idx0, llvm_i32, "").unwrap() }; let idx1 = unsafe { let idx1 = idx.get_typed_unchecked(ctx, generator, &llvm_usize.const_int(1, false), None); ctx.builder.build_int_truncate(idx1, llvm_i32, "").unwrap() }; let result_addr = generator.gen_var_alloc(ctx, llvm_ndarray_ty, None)?; let result_identity = ndarray_zero_value(generator, ctx, elem_ty); ctx.builder.build_store(result_addr, result_identity).unwrap(); gen_for_callback_incrementing( generator, ctx, None, llvm_i32.const_zero(), (common_dim, false), |generator, ctx, _, i| { let i = ctx.builder.build_int_truncate(i, llvm_i32, "").unwrap(); let ab_idx = generator.gen_array_var_alloc( ctx, llvm_i32.into(), llvm_usize.const_int(2, false), None, )?; let a = unsafe { ab_idx.set_unchecked(ctx, generator, &llvm_usize.const_zero(), idx0.into()); ab_idx.set_unchecked(ctx, generator, &llvm_usize.const_int(1, false), i.into()); lhs.data().get_unchecked(ctx, generator, &ab_idx, None) }; let b = unsafe { ab_idx.set_unchecked(ctx, generator, &llvm_usize.const_zero(), i.into()); ab_idx.set_unchecked( ctx, generator, &llvm_usize.const_int(1, false), idx1.into(), ); rhs.data().get_unchecked(ctx, generator, &ab_idx, None) }; let a_mul_b = gen_binop_expr_with_values( generator, ctx, (&Some(elem_ty), a), Binop::normal(Operator::Mult), (&Some(elem_ty), b), ctx.current_loc, )? .unwrap() .to_basic_value_enum(ctx, generator, elem_ty)?; let result = ctx.builder.build_load(result_addr, "").unwrap(); let result = gen_binop_expr_with_values( generator, ctx, (&Some(elem_ty), result), Binop::normal(Operator::Add), (&Some(elem_ty), a_mul_b), ctx.current_loc, )? .unwrap() .to_basic_value_enum(ctx, generator, elem_ty)?; ctx.builder.build_store(result_addr, result).unwrap(); Ok(()) }, llvm_usize.const_int(1, false), )?; let result = ctx.builder.build_load(result_addr, "").unwrap(); Ok(result) })?; Ok(ndarray) } /// Generates LLVM IR for `ndarray.empty`. pub fn gen_ndarray_empty<'ctx>( context: &mut CodeGenContext<'ctx, '_>, obj: &Option<(Type, ValueEnum<'ctx>)>, fun: (&FunSignature, DefinitionId), args: &[(Option, ValueEnum<'ctx>)], generator: &mut dyn CodeGenerator, ) -> Result, String> { assert!(obj.is_none()); assert_eq!(args.len(), 1); let shape_ty = fun.0.args[0].ty; let shape_arg = args[0].1.clone().to_basic_value_enum(context, generator, shape_ty)?; call_ndarray_empty_impl(generator, context, context.primitives.float, shape_arg) .map(NDArrayValue::into) } /// Generates LLVM IR for `ndarray.zeros`. pub fn gen_ndarray_zeros<'ctx>( context: &mut CodeGenContext<'ctx, '_>, obj: &Option<(Type, ValueEnum<'ctx>)>, fun: (&FunSignature, DefinitionId), args: &[(Option, ValueEnum<'ctx>)], generator: &mut dyn CodeGenerator, ) -> Result, String> { assert!(obj.is_none()); assert_eq!(args.len(), 1); let shape_ty = fun.0.args[0].ty; let shape_arg = args[0].1.clone().to_basic_value_enum(context, generator, shape_ty)?; call_ndarray_zeros_impl(generator, context, context.primitives.float, shape_arg) .map(NDArrayValue::into) } /// Generates LLVM IR for `ndarray.ones`. pub fn gen_ndarray_ones<'ctx>( context: &mut CodeGenContext<'ctx, '_>, obj: &Option<(Type, ValueEnum<'ctx>)>, fun: (&FunSignature, DefinitionId), args: &[(Option, ValueEnum<'ctx>)], generator: &mut dyn CodeGenerator, ) -> Result, String> { assert!(obj.is_none()); assert_eq!(args.len(), 1); let shape_ty = fun.0.args[0].ty; let shape_arg = args[0].1.clone().to_basic_value_enum(context, generator, shape_ty)?; call_ndarray_ones_impl(generator, context, context.primitives.float, shape_arg) .map(NDArrayValue::into) } /// Generates LLVM IR for `ndarray.full`. pub fn gen_ndarray_full<'ctx>( context: &mut CodeGenContext<'ctx, '_>, obj: &Option<(Type, ValueEnum<'ctx>)>, fun: (&FunSignature, DefinitionId), args: &[(Option, ValueEnum<'ctx>)], generator: &mut dyn CodeGenerator, ) -> Result, String> { assert!(obj.is_none()); assert_eq!(args.len(), 2); let shape_ty = fun.0.args[0].ty; let shape_arg = args[0].1.clone().to_basic_value_enum(context, generator, shape_ty)?; let fill_value_ty = fun.0.args[1].ty; let fill_value_arg = args[1].1.clone().to_basic_value_enum(context, generator, fill_value_ty)?; call_ndarray_full_impl(generator, context, fill_value_ty, shape_arg, fill_value_arg) .map(NDArrayValue::into) } pub fn gen_ndarray_array<'ctx>( context: &mut CodeGenContext<'ctx, '_>, obj: &Option<(Type, ValueEnum<'ctx>)>, fun: (&FunSignature, DefinitionId), args: &[(Option, ValueEnum<'ctx>)], generator: &mut dyn CodeGenerator, ) -> Result, String> { assert!(obj.is_none()); assert!(matches!(args.len(), 1..=3)); let obj_ty = fun.0.args[0].ty; let obj_elem_ty = match &*context.unifier.get_ty(obj_ty) { TypeEnum::TObj { obj_id, .. } if *obj_id == PrimDef::NDArray.id() => { unpack_ndarray_var_tys(&mut context.unifier, obj_ty).0 } TypeEnum::TObj { obj_id, params, .. } if *obj_id == PrimDef::List.id() => { let mut ty = *params.iter().next().unwrap().1; while let TypeEnum::TObj { obj_id, params, .. } = &*context.unifier.get_ty_immutable(ty) { if *obj_id != PrimDef::List.id() { break; } ty = *params.iter().next().unwrap().1; } ty } _ => obj_ty, }; let obj_arg = args[0].1.clone().to_basic_value_enum(context, generator, obj_ty)?; let copy_arg = if let Some(arg) = args.iter().find(|arg| arg.0.is_some_and(|name| name == fun.0.args[1].name)) { let copy_ty = fun.0.args[1].ty; arg.1.clone().to_basic_value_enum(context, generator, copy_ty)? } else { context.gen_symbol_val( generator, fun.0.args[1].default_value.as_ref().unwrap(), fun.0.args[1].ty, ) }; let ndmin_arg = if let Some(arg) = args.iter().find(|arg| arg.0.is_some_and(|name| name == fun.0.args[2].name)) { let ndmin_ty = fun.0.args[2].ty; arg.1.clone().to_basic_value_enum(context, generator, ndmin_ty)? } else { context.gen_symbol_val( generator, fun.0.args[2].default_value.as_ref().unwrap(), fun.0.args[2].ty, ) }; call_ndarray_array_impl( generator, context, obj_elem_ty, obj_arg, copy_arg.into_int_value(), ndmin_arg.into_int_value(), ) .map(NDArrayValue::into) } /// Generates LLVM IR for `ndarray.eye`. pub fn gen_ndarray_eye<'ctx>( context: &mut CodeGenContext<'ctx, '_>, obj: &Option<(Type, ValueEnum<'ctx>)>, fun: (&FunSignature, DefinitionId), args: &[(Option, ValueEnum<'ctx>)], generator: &mut dyn CodeGenerator, ) -> Result, String> { assert!(obj.is_none()); assert!(matches!(args.len(), 1..=3)); let nrows_ty = fun.0.args[0].ty; let nrows_arg = args[0].1.clone().to_basic_value_enum(context, generator, nrows_ty)?; let ncols_ty = fun.0.args[1].ty; let ncols_arg = if let Some(arg) = args.iter().find(|arg| arg.0.is_some_and(|name| name == fun.0.args[1].name)) { arg.1.clone().to_basic_value_enum(context, generator, ncols_ty) } else { args[0].1.clone().to_basic_value_enum(context, generator, nrows_ty) }?; let offset_ty = fun.0.args[2].ty; let offset_arg = if let Some(arg) = args.iter().find(|arg| arg.0.is_some_and(|name| name == fun.0.args[2].name)) { arg.1.clone().to_basic_value_enum(context, generator, offset_ty) } else { Ok(context.gen_symbol_val( generator, fun.0.args[2].default_value.as_ref().unwrap(), offset_ty, )) }?; call_ndarray_eye_impl( generator, context, context.primitives.float, nrows_arg.into_int_value(), ncols_arg.into_int_value(), offset_arg.into_int_value(), ) .map(NDArrayValue::into) } /// Generates LLVM IR for `ndarray.identity`. pub fn gen_ndarray_identity<'ctx>( context: &mut CodeGenContext<'ctx, '_>, obj: &Option<(Type, ValueEnum<'ctx>)>, fun: (&FunSignature, DefinitionId), args: &[(Option, ValueEnum<'ctx>)], generator: &mut dyn CodeGenerator, ) -> Result, String> { assert!(obj.is_none()); assert_eq!(args.len(), 1); let llvm_usize = generator.get_size_type(context.ctx); let n_ty = fun.0.args[0].ty; let n_arg = args[0].1.clone().to_basic_value_enum(context, generator, n_ty)?; call_ndarray_eye_impl( generator, context, context.primitives.float, n_arg.into_int_value(), n_arg.into_int_value(), llvm_usize.const_zero(), ) .map(NDArrayValue::into) } /// Generates LLVM IR for `ndarray.copy`. pub fn gen_ndarray_copy<'ctx>( context: &mut CodeGenContext<'ctx, '_>, obj: &Option<(Type, ValueEnum<'ctx>)>, _fun: (&FunSignature, DefinitionId), args: &[(Option, ValueEnum<'ctx>)], generator: &mut dyn CodeGenerator, ) -> Result, String> { assert!(obj.is_some()); assert!(args.is_empty()); let llvm_usize = generator.get_size_type(context.ctx); let this_ty = obj.as_ref().unwrap().0; let (this_elem_ty, _) = unpack_ndarray_var_tys(&mut context.unifier, this_ty); let this_arg = obj.as_ref().unwrap().1.clone().to_basic_value_enum(context, generator, this_ty)?; ndarray_copy_impl( generator, context, this_elem_ty, NDArrayValue::from_pointer_value(this_arg.into_pointer_value(), llvm_usize, None), ) .map(NDArrayValue::into) } /// Generates LLVM IR for `ndarray.fill`. pub fn gen_ndarray_fill<'ctx>( context: &mut CodeGenContext<'ctx, '_>, obj: &Option<(Type, ValueEnum<'ctx>)>, fun: (&FunSignature, DefinitionId), args: &[(Option, ValueEnum<'ctx>)], generator: &mut dyn CodeGenerator, ) -> Result<(), String> { assert!(obj.is_some()); assert_eq!(args.len(), 1); let llvm_usize = generator.get_size_type(context.ctx); let this_ty = obj.as_ref().unwrap().0; let this_arg = obj .as_ref() .unwrap() .1 .clone() .to_basic_value_enum(context, generator, this_ty)? .into_pointer_value(); let value_ty = fun.0.args[0].ty; let value_arg = args[0].1.clone().to_basic_value_enum(context, generator, value_ty)?; ndarray_fill_flattened( generator, context, NDArrayValue::from_pointer_value(this_arg, llvm_usize, None), |generator, ctx, _| { let value = if value_arg.is_pointer_value() { let llvm_i1 = ctx.ctx.bool_type(); let copy = generator.gen_var_alloc(ctx, value_arg.get_type(), None)?; call_memcpy_generic( ctx, copy, value_arg.into_pointer_value(), value_arg.get_type().size_of().map(Into::into).unwrap(), llvm_i1.const_zero(), ); copy.into() } else if value_arg.is_int_value() || value_arg.is_float_value() { value_arg } else { codegen_unreachable!(ctx) }; Ok(value) }, )?; Ok(()) } /// Generates LLVM IR for `ndarray.transpose`. pub fn ndarray_transpose<'ctx, G: CodeGenerator + ?Sized>( generator: &mut G, ctx: &mut CodeGenContext<'ctx, '_>, x1: (Type, BasicValueEnum<'ctx>), ) -> Result, String> { const FN_NAME: &str = "ndarray_transpose"; let (x1_ty, x1) = x1; let llvm_usize = generator.get_size_type(ctx.ctx); if let BasicValueEnum::PointerValue(n1) = x1 { let (elem_ty, _) = unpack_ndarray_var_tys(&mut ctx.unifier, x1_ty); let n1 = NDArrayValue::from_pointer_value(n1, llvm_usize, None); let n_sz = call_ndarray_calc_size(generator, ctx, &n1.dim_sizes(), (None, None)); // Dimensions are reversed in the transposed array let out = create_ndarray_dyn_shape( generator, ctx, elem_ty, &n1, |_, ctx, n| Ok(n.load_ndims(ctx)), |generator, ctx, n, idx| { let new_idx = ctx.builder.build_int_sub(n.load_ndims(ctx), idx, "").unwrap(); let new_idx = ctx .builder .build_int_sub(new_idx, new_idx.get_type().const_int(1, false), "") .unwrap(); unsafe { Ok(n.dim_sizes().get_typed_unchecked(ctx, generator, &new_idx, None)) } }, ) .unwrap(); gen_for_callback_incrementing( generator, ctx, None, llvm_usize.const_zero(), (n_sz, false), |generator, ctx, _, idx| { let elem = unsafe { n1.data().get_unchecked(ctx, generator, &idx, None) }; let new_idx = generator.gen_var_alloc(ctx, llvm_usize.into(), None)?; let rem_idx = generator.gen_var_alloc(ctx, llvm_usize.into(), None)?; ctx.builder.build_store(new_idx, llvm_usize.const_zero()).unwrap(); ctx.builder.build_store(rem_idx, idx).unwrap(); // Incrementally calculate the new index in the transposed array // For each index, we first decompose it into the n-dims and use those to reconstruct the new index // The formula used for indexing is: // idx = dim_n * ( ... (dim2 * (dim0 * dim1) + dim1) + dim2 ... ) + dim_n gen_for_callback_incrementing( generator, ctx, None, llvm_usize.const_zero(), (n1.load_ndims(ctx), false), |generator, ctx, _, ndim| { let ndim_rev = ctx.builder.build_int_sub(n1.load_ndims(ctx), ndim, "").unwrap(); let ndim_rev = ctx .builder .build_int_sub(ndim_rev, llvm_usize.const_int(1, false), "") .unwrap(); let dim = unsafe { n1.dim_sizes().get_typed_unchecked(ctx, generator, &ndim_rev, None) }; let rem_idx_val = ctx.builder.build_load(rem_idx, "").unwrap().into_int_value(); let new_idx_val = ctx.builder.build_load(new_idx, "").unwrap().into_int_value(); let add_component = ctx.builder.build_int_unsigned_rem(rem_idx_val, dim, "").unwrap(); let rem_idx_val = ctx.builder.build_int_unsigned_div(rem_idx_val, dim, "").unwrap(); let new_idx_val = ctx.builder.build_int_mul(new_idx_val, dim, "").unwrap(); let new_idx_val = ctx.builder.build_int_add(new_idx_val, add_component, "").unwrap(); ctx.builder.build_store(rem_idx, rem_idx_val).unwrap(); ctx.builder.build_store(new_idx, new_idx_val).unwrap(); Ok(()) }, llvm_usize.const_int(1, false), )?; let new_idx_val = ctx.builder.build_load(new_idx, "").unwrap().into_int_value(); unsafe { out.data().set_unchecked(ctx, generator, &new_idx_val, elem) }; Ok(()) }, llvm_usize.const_int(1, false), )?; Ok(out.as_base_value().into()) } else { codegen_unreachable!( ctx, "{FN_NAME}() not supported for '{}'", format!("'{}'", ctx.unifier.stringify(x1_ty)) ) } } /// LLVM-typed implementation for generating the implementation for `ndarray.reshape`. /// /// * `x1` - `NDArray` to reshape. /// * `shape` - The `shape` parameter used to construct the new `NDArray`. /// Just like numpy, the `shape` argument can be: /// 1. A list of `int32`; e.g., `np.reshape(arr, [600, -1, 3])` /// 2. A tuple of `int32`; e.g., `np.reshape(arr, (-1, 800, 3))` /// 3. A scalar `int32`; e.g., `np.reshape(arr, 3)` /// /// Note that unlike other generating functions, one of the dimensions in the shape can be negative. pub fn ndarray_reshape<'ctx, G: CodeGenerator + ?Sized>( generator: &mut G, ctx: &mut CodeGenContext<'ctx, '_>, x1: (Type, BasicValueEnum<'ctx>), shape: (Type, BasicValueEnum<'ctx>), ) -> Result, String> { const FN_NAME: &str = "ndarray_reshape"; let (x1_ty, x1) = x1; let (_, shape) = shape; let llvm_usize = generator.get_size_type(ctx.ctx); if let BasicValueEnum::PointerValue(n1) = x1 { let (elem_ty, _) = unpack_ndarray_var_tys(&mut ctx.unifier, x1_ty); let n1 = NDArrayValue::from_pointer_value(n1, llvm_usize, None); let n_sz = call_ndarray_calc_size(generator, ctx, &n1.dim_sizes(), (None, None)); let acc = generator.gen_var_alloc(ctx, llvm_usize.into(), None)?; let num_neg = generator.gen_var_alloc(ctx, llvm_usize.into(), None)?; ctx.builder.build_store(acc, llvm_usize.const_int(1, false)).unwrap(); ctx.builder.build_store(num_neg, llvm_usize.const_zero()).unwrap(); let out = match shape { BasicValueEnum::PointerValue(shape_list_ptr) if ListValue::is_representable(shape_list_ptr, llvm_usize).is_ok() => { // 1. A list of ints; e.g., `np.reshape(arr, [int64(600), int64(800, -1])` let shape_list = ListValue::from_pointer_value(shape_list_ptr, llvm_usize, None); // Check for -1 in dimensions gen_for_callback_incrementing( generator, ctx, None, llvm_usize.const_zero(), (shape_list.load_size(ctx, None), false), |generator, ctx, _, idx| { let ele = shape_list.data().get(ctx, generator, &idx, None).into_int_value(); let ele = ctx.builder.build_int_s_extend(ele, llvm_usize, "").unwrap(); gen_if_else_expr_callback( generator, ctx, |_, ctx| { Ok(ctx .builder .build_int_compare( IntPredicate::SLT, ele, llvm_usize.const_zero(), "", ) .unwrap()) }, |_, ctx| -> Result, String> { let num_neg_value = ctx.builder.build_load(num_neg, "").unwrap().into_int_value(); let num_neg_value = ctx .builder .build_int_add( num_neg_value, llvm_usize.const_int(1, false), "", ) .unwrap(); ctx.builder.build_store(num_neg, num_neg_value).unwrap(); Ok(None) }, |_, ctx| { let acc_value = ctx.builder.build_load(acc, "").unwrap().into_int_value(); let acc_value = ctx.builder.build_int_mul(acc_value, ele, "").unwrap(); ctx.builder.build_store(acc, acc_value).unwrap(); Ok(None) }, )?; Ok(()) }, llvm_usize.const_int(1, false), )?; let acc_val = ctx.builder.build_load(acc, "").unwrap().into_int_value(); let rem = ctx.builder.build_int_unsigned_div(n_sz, acc_val, "").unwrap(); // Generate the output shape by filling -1 with `rem` create_ndarray_dyn_shape( generator, ctx, elem_ty, &shape_list, |_, ctx, _| Ok(shape_list.load_size(ctx, None)), |generator, ctx, shape_list, idx| { let dim = shape_list.data().get(ctx, generator, &idx, None).into_int_value(); let dim = ctx.builder.build_int_s_extend(dim, llvm_usize, "").unwrap(); Ok(gen_if_else_expr_callback( generator, ctx, |_, ctx| { Ok(ctx .builder .build_int_compare( IntPredicate::SLT, dim, llvm_usize.const_zero(), "", ) .unwrap()) }, |_, _| Ok(Some(rem)), |_, _| Ok(Some(dim)), )? .unwrap() .into_int_value()) }, ) } BasicValueEnum::StructValue(shape_tuple) => { // 2. A tuple of `int32`; e.g., `np.reshape(arr, (-1, 800, 3))` let ndims = shape_tuple.get_type().count_fields(); // Check for -1 in dims for dim_i in 0..ndims { let dim = ctx .builder .build_extract_value(shape_tuple, dim_i, "") .unwrap() .into_int_value(); let dim = ctx.builder.build_int_s_extend(dim, llvm_usize, "").unwrap(); gen_if_else_expr_callback( generator, ctx, |_, ctx| { Ok(ctx .builder .build_int_compare( IntPredicate::SLT, dim, llvm_usize.const_zero(), "", ) .unwrap()) }, |_, ctx| -> Result, String> { let num_negs = ctx.builder.build_load(num_neg, "").unwrap().into_int_value(); let num_negs = ctx .builder .build_int_add(num_negs, llvm_usize.const_int(1, false), "") .unwrap(); ctx.builder.build_store(num_neg, num_negs).unwrap(); Ok(None) }, |_, ctx| { let acc_val = ctx.builder.build_load(acc, "").unwrap().into_int_value(); let acc_val = ctx.builder.build_int_mul(acc_val, dim, "").unwrap(); ctx.builder.build_store(acc, acc_val).unwrap(); Ok(None) }, )?; } let acc_val = ctx.builder.build_load(acc, "").unwrap().into_int_value(); let rem = ctx.builder.build_int_unsigned_div(n_sz, acc_val, "").unwrap(); let mut shape = Vec::with_capacity(ndims as usize); // Reconstruct shape filling negatives with rem for dim_i in 0..ndims { let dim = ctx .builder .build_extract_value(shape_tuple, dim_i, "") .unwrap() .into_int_value(); let dim = ctx.builder.build_int_s_extend(dim, llvm_usize, "").unwrap(); let dim = gen_if_else_expr_callback( generator, ctx, |_, ctx| { Ok(ctx .builder .build_int_compare( IntPredicate::SLT, dim, llvm_usize.const_zero(), "", ) .unwrap()) }, |_, _| Ok(Some(rem)), |_, _| Ok(Some(dim)), )? .unwrap() .into_int_value(); shape.push(dim); } create_ndarray_const_shape(generator, ctx, elem_ty, shape.as_slice()) } BasicValueEnum::IntValue(shape_int) => { // 3. A scalar `int32`; e.g., `np.reshape(arr, 3)` let shape_int = gen_if_else_expr_callback( generator, ctx, |_, ctx| { Ok(ctx .builder .build_int_compare( IntPredicate::SLT, shape_int, llvm_usize.const_zero(), "", ) .unwrap()) }, |_, _| Ok(Some(n_sz)), |_, ctx| { Ok(Some(ctx.builder.build_int_s_extend(shape_int, llvm_usize, "").unwrap())) }, )? .unwrap() .into_int_value(); create_ndarray_const_shape(generator, ctx, elem_ty, &[shape_int]) } _ => codegen_unreachable!(ctx), } .unwrap(); // Only allow one dimension to be negative let num_negs = ctx.builder.build_load(num_neg, "").unwrap().into_int_value(); ctx.make_assert( generator, ctx.builder .build_int_compare(IntPredicate::ULT, num_negs, llvm_usize.const_int(2, false), "") .unwrap(), "0:ValueError", "can only specify one unknown dimension", [None, None, None], ctx.current_loc, ); // The new shape must be compatible with the old shape let out_sz = call_ndarray_calc_size(generator, ctx, &out.dim_sizes(), (None, None)); ctx.make_assert( generator, ctx.builder.build_int_compare(IntPredicate::EQ, out_sz, n_sz, "").unwrap(), "0:ValueError", "cannot reshape array of size {0} into provided shape of size {1}", [Some(n_sz), Some(out_sz), None], ctx.current_loc, ); gen_for_callback_incrementing( generator, ctx, None, llvm_usize.const_zero(), (n_sz, false), |generator, ctx, _, idx| { let elem = unsafe { n1.data().get_unchecked(ctx, generator, &idx, None) }; unsafe { out.data().set_unchecked(ctx, generator, &idx, elem) }; Ok(()) }, llvm_usize.const_int(1, false), )?; Ok(out.as_base_value().into()) } else { codegen_unreachable!( ctx, "{FN_NAME}() not supported for '{}'", format!("'{}'", ctx.unifier.stringify(x1_ty)) ) } } /// Generates LLVM IR for `ndarray.dot`. /// Calculate inner product of two vectors or literals /// For matrix multiplication use `np_matmul` /// /// The input `NDArray` are flattened and treated as 1D /// The operation is equivalent to `np.dot(arr1.ravel(), arr2.ravel())` pub fn ndarray_dot<'ctx, G: CodeGenerator + ?Sized>( generator: &mut G, ctx: &mut CodeGenContext<'ctx, '_>, x1: (Type, BasicValueEnum<'ctx>), x2: (Type, BasicValueEnum<'ctx>), ) -> Result, String> { const FN_NAME: &str = "ndarray_dot"; let (x1_ty, x1) = x1; let (_, x2) = x2; let llvm_usize = generator.get_size_type(ctx.ctx); match (x1, x2) { (BasicValueEnum::PointerValue(n1), BasicValueEnum::PointerValue(n2)) => { let n1 = NDArrayValue::from_pointer_value(n1, llvm_usize, None); let n2 = NDArrayValue::from_pointer_value(n2, llvm_usize, None); let n1_sz = call_ndarray_calc_size(generator, ctx, &n1.dim_sizes(), (None, None)); let n2_sz = call_ndarray_calc_size(generator, ctx, &n1.dim_sizes(), (None, None)); ctx.make_assert( generator, ctx.builder.build_int_compare(IntPredicate::EQ, n1_sz, n2_sz, "").unwrap(), "0:ValueError", "shapes ({0}), ({1}) not aligned", [Some(n1_sz), Some(n2_sz), None], ctx.current_loc, ); let identity = unsafe { n1.data().get_unchecked(ctx, generator, &llvm_usize.const_zero(), None) }; let acc = ctx.builder.build_alloca(identity.get_type(), "").unwrap(); ctx.builder.build_store(acc, identity.get_type().const_zero()).unwrap(); gen_for_callback_incrementing( generator, ctx, None, llvm_usize.const_zero(), (n1_sz, false), |generator, ctx, _, idx| { let elem1 = unsafe { n1.data().get_unchecked(ctx, generator, &idx, None) }; let elem2 = unsafe { n2.data().get_unchecked(ctx, generator, &idx, None) }; let product = match elem1 { BasicValueEnum::IntValue(e1) => ctx .builder .build_int_mul(e1, elem2.into_int_value(), "") .unwrap() .as_basic_value_enum(), BasicValueEnum::FloatValue(e1) => ctx .builder .build_float_mul(e1, elem2.into_float_value(), "") .unwrap() .as_basic_value_enum(), _ => codegen_unreachable!(ctx), }; let acc_val = ctx.builder.build_load(acc, "").unwrap(); let acc_val = match acc_val { BasicValueEnum::IntValue(e1) => ctx .builder .build_int_add(e1, product.into_int_value(), "") .unwrap() .as_basic_value_enum(), BasicValueEnum::FloatValue(e1) => ctx .builder .build_float_add(e1, product.into_float_value(), "") .unwrap() .as_basic_value_enum(), _ => codegen_unreachable!(ctx), }; ctx.builder.build_store(acc, acc_val).unwrap(); Ok(()) }, llvm_usize.const_int(1, false), )?; let acc_val = ctx.builder.build_load(acc, "").unwrap(); Ok(acc_val) } (BasicValueEnum::IntValue(e1), BasicValueEnum::IntValue(e2)) => { Ok(ctx.builder.build_int_mul(e1, e2, "").unwrap().as_basic_value_enum()) } (BasicValueEnum::FloatValue(e1), BasicValueEnum::FloatValue(e2)) => { Ok(ctx.builder.build_float_mul(e1, e2, "").unwrap().as_basic_value_enum()) } _ => codegen_unreachable!( ctx, "{FN_NAME}() not supported for '{}'", format!("'{}'", ctx.unifier.stringify(x1_ty)) ), } }