use inkwell::{ types::BasicTypeEnum, values::{BasicValue, BasicValueEnum, IntValue}, FloatPredicate, IntPredicate, OptimizationLevel, }; use itertools::Itertools; use super::{ expr::destructure_range, extern_fns, irrt, irrt::calculate_len_for_slice_range, llvm_intrinsics, macros::codegen_unreachable, types::{ndarray::NDArrayType, ListType, TupleType}, values::{ ndarray::{NDArrayOut, NDArrayValue, ScalarOrNDArray}, ProxyValue, RangeValue, TypedArrayLikeAccessor, UntypedArrayLikeAccessor, }, CodeGenContext, CodeGenerator, }; use crate::{ toplevel::{ helper::{arraylike_flatten_element_type, extract_ndims, PrimDef}, numpy::unpack_ndarray_var_tys, }, typecheck::typedef::{Type, TypeEnum}, }; /// Shorthand for [`unreachable!()`] when a type of argument is not supported. /// /// The generated message will contain the function name and the name of the unsupported type. fn unsupported_type(ctx: &CodeGenContext<'_, '_>, fn_name: &str, tys: &[Type]) -> ! { codegen_unreachable!( ctx, "{fn_name}() not supported for '{}'", tys.iter().map(|ty| format!("'{}'", ctx.unifier.stringify(*ty))).join(", "), ) } /// Invokes the `len` builtin function. pub fn call_len<'ctx, G: CodeGenerator + ?Sized>( generator: &mut G, ctx: &mut CodeGenContext<'ctx, '_>, (arg_ty, arg): (Type, BasicValueEnum<'ctx>), ) -> Result, String> { let llvm_i32 = ctx.ctx.i32_type(); let range_ty = ctx.primitives.range; Ok(if ctx.unifier.unioned(arg_ty, range_ty) { let arg = RangeValue::from_pointer_value(arg.into_pointer_value(), Some("range")); let (start, end, step) = destructure_range(ctx, arg); calculate_len_for_slice_range(generator, ctx, start, end, step) } else { match &*ctx.unifier.get_ty_immutable(arg_ty) { TypeEnum::TTuple { .. } => { let tuple = TupleType::from_unifier_type(generator, ctx, arg_ty) .map_value(arg.into_struct_value(), None); llvm_i32.const_int(tuple.get_type().num_elements().into(), false) } TypeEnum::TObj { obj_id, .. } if *obj_id == ctx.primitives.ndarray.obj_id(&ctx.unifier).unwrap() => { let ndarray = NDArrayType::from_unifier_type(generator, ctx, arg_ty) .map_value(arg.into_pointer_value(), None); ctx.builder .build_int_truncate_or_bit_cast(ndarray.len(generator, ctx), llvm_i32, "len") .unwrap() } TypeEnum::TObj { obj_id, .. } if *obj_id == ctx.primitives.list.obj_id(&ctx.unifier).unwrap() => { let list = ListType::from_unifier_type(generator, ctx, arg_ty) .map_value(arg.into_pointer_value(), None); ctx.builder .build_int_truncate_or_bit_cast(list.load_size(ctx, None), llvm_i32, "len") .unwrap() } _ => unsupported_type(ctx, "len", &[arg_ty]), } }) } /// Invokes the `int32` builtin function. pub fn call_int32<'ctx, G: CodeGenerator + ?Sized>( generator: &mut G, ctx: &mut CodeGenContext<'ctx, '_>, (n_ty, n): (Type, BasicValueEnum<'ctx>), ) -> Result, String> { let llvm_i32 = ctx.ctx.i32_type(); Ok(match n { BasicValueEnum::IntValue(n) if matches!(n.get_type().get_bit_width(), 1 | 8) => { debug_assert!(ctx.unifier.unioned(n_ty, ctx.primitives.bool)); ctx.builder.build_int_z_extend(n, llvm_i32, "zext").map(Into::into).unwrap() } BasicValueEnum::IntValue(n) if n.get_type().get_bit_width() == 32 => { debug_assert!([ctx.primitives.int32, ctx.primitives.uint32,] .iter() .any(|ty| ctx.unifier.unioned(n_ty, *ty))); n.into() } BasicValueEnum::IntValue(n) if n.get_type().get_bit_width() == 64 => { debug_assert!([ctx.primitives.int64, ctx.primitives.uint64,] .iter() .any(|ty| ctx.unifier.unioned(n_ty, *ty))); ctx.builder.build_int_truncate(n, llvm_i32, "trunc").map(Into::into).unwrap() } BasicValueEnum::FloatValue(n) => { debug_assert!(ctx.unifier.unioned(n_ty, ctx.primitives.float)); let to_int64 = ctx.builder.build_float_to_signed_int(n, ctx.ctx.i64_type(), "").unwrap(); ctx.builder.build_int_truncate(to_int64, llvm_i32, "conv").map(Into::into).unwrap() } BasicValueEnum::PointerValue(n) if n_ty.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id()) => { let (elem_ty, _) = unpack_ndarray_var_tys(&mut ctx.unifier, n_ty); let ndarray = NDArrayType::from_unifier_type(generator, ctx, n_ty).map_value(n, None); let result = ndarray .map( generator, ctx, NDArrayOut::NewNDArray { dtype: ctx.ctx.i32_type().into() }, |generator, ctx, scalar| call_int32(generator, ctx, (elem_ty, scalar)), ) .unwrap(); result.as_base_value().into() } _ => unsupported_type(ctx, "int32", &[n_ty]), }) } /// Invokes the `int64` builtin function. pub fn call_int64<'ctx, G: CodeGenerator + ?Sized>( generator: &mut G, ctx: &mut CodeGenContext<'ctx, '_>, (n_ty, n): (Type, BasicValueEnum<'ctx>), ) -> Result, String> { let llvm_i64 = ctx.ctx.i64_type(); Ok(match n { BasicValueEnum::IntValue(n) if matches!(n.get_type().get_bit_width(), 1 | 8 | 32) => { debug_assert!([ctx.primitives.bool, ctx.primitives.int32, ctx.primitives.uint32,] .iter() .any(|ty| ctx.unifier.unioned(n_ty, *ty))); if ctx.unifier.unioned(n_ty, ctx.primitives.int32) { ctx.builder.build_int_s_extend(n, llvm_i64, "sext").map(Into::into).unwrap() } else { ctx.builder.build_int_z_extend(n, llvm_i64, "zext").map(Into::into).unwrap() } } BasicValueEnum::IntValue(n) if n.get_type().get_bit_width() == 64 => { debug_assert!([ctx.primitives.int64, ctx.primitives.uint64,] .iter() .any(|ty| ctx.unifier.unioned(n_ty, *ty))); n.into() } BasicValueEnum::FloatValue(n) => { debug_assert!(ctx.unifier.unioned(n_ty, ctx.primitives.float)); ctx.builder .build_float_to_signed_int(n, ctx.ctx.i64_type(), "fptosi") .map(Into::into) .unwrap() } BasicValueEnum::PointerValue(n) if n_ty.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id()) => { let (elem_ty, _) = unpack_ndarray_var_tys(&mut ctx.unifier, n_ty); let ndarray = NDArrayType::from_unifier_type(generator, ctx, n_ty).map_value(n, None); let result = ndarray .map( generator, ctx, NDArrayOut::NewNDArray { dtype: ctx.ctx.i64_type().into() }, |generator, ctx, scalar| call_int64(generator, ctx, (elem_ty, scalar)), ) .unwrap(); result.as_base_value().into() } _ => unsupported_type(ctx, "int64", &[n_ty]), }) } /// Invokes the `uint32` builtin function. pub fn call_uint32<'ctx, G: CodeGenerator + ?Sized>( generator: &mut G, ctx: &mut CodeGenContext<'ctx, '_>, (n_ty, n): (Type, BasicValueEnum<'ctx>), ) -> Result, String> { let llvm_i32 = ctx.ctx.i32_type(); Ok(match n { BasicValueEnum::IntValue(n) if matches!(n.get_type().get_bit_width(), 1 | 8) => { debug_assert!(ctx.unifier.unioned(n_ty, ctx.primitives.bool)); ctx.builder.build_int_z_extend(n, llvm_i32, "zext").map(Into::into).unwrap() } BasicValueEnum::IntValue(n) if n.get_type().get_bit_width() == 32 => { debug_assert!([ctx.primitives.int32, ctx.primitives.uint32,] .iter() .any(|ty| ctx.unifier.unioned(n_ty, *ty))); n.into() } BasicValueEnum::IntValue(n) if n.get_type().get_bit_width() == 64 => { debug_assert!( ctx.unifier.unioned(n_ty, ctx.primitives.int64) || ctx.unifier.unioned(n_ty, ctx.primitives.uint64) ); ctx.builder.build_int_truncate(n, llvm_i32, "trunc").map(Into::into).unwrap() } BasicValueEnum::FloatValue(n) => { debug_assert!(ctx.unifier.unioned(n_ty, ctx.primitives.float)); let n_gez = ctx .builder .build_float_compare(FloatPredicate::OGE, n, n.get_type().const_zero(), "") .unwrap(); let to_int32 = ctx.builder.build_float_to_signed_int(n, llvm_i32, "").unwrap(); let to_uint64 = ctx.builder.build_float_to_unsigned_int(n, ctx.ctx.i64_type(), "").unwrap(); ctx.builder .build_select( n_gez, ctx.builder.build_int_truncate(to_uint64, llvm_i32, "").unwrap(), to_int32, "conv", ) .unwrap() } BasicValueEnum::PointerValue(n) if n_ty.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id()) => { let (elem_ty, _) = unpack_ndarray_var_tys(&mut ctx.unifier, n_ty); let ndarray = NDArrayType::from_unifier_type(generator, ctx, n_ty).map_value(n, None); let result = ndarray .map( generator, ctx, NDArrayOut::NewNDArray { dtype: ctx.ctx.i32_type().into() }, |generator, ctx, scalar| call_uint32(generator, ctx, (elem_ty, scalar)), ) .unwrap(); result.as_base_value().into() } _ => unsupported_type(ctx, "uint32", &[n_ty]), }) } /// Invokes the `uint64` builtin function. pub fn call_uint64<'ctx, G: CodeGenerator + ?Sized>( generator: &mut G, ctx: &mut CodeGenContext<'ctx, '_>, (n_ty, n): (Type, BasicValueEnum<'ctx>), ) -> Result, String> { let llvm_i64 = ctx.ctx.i64_type(); Ok(match n { BasicValueEnum::IntValue(n) if matches!(n.get_type().get_bit_width(), 1 | 8 | 32) => { debug_assert!([ctx.primitives.bool, ctx.primitives.int32, ctx.primitives.uint32,] .iter() .any(|ty| ctx.unifier.unioned(n_ty, *ty))); if ctx.unifier.unioned(n_ty, ctx.primitives.int32) { ctx.builder.build_int_s_extend(n, llvm_i64, "sext").map(Into::into).unwrap() } else { ctx.builder.build_int_z_extend(n, llvm_i64, "zext").map(Into::into).unwrap() } } BasicValueEnum::IntValue(n) if n.get_type().get_bit_width() == 64 => { debug_assert!([ctx.primitives.int64, ctx.primitives.uint64,] .iter() .any(|ty| ctx.unifier.unioned(n_ty, *ty))); n.into() } BasicValueEnum::FloatValue(n) => { debug_assert!(ctx.unifier.unioned(n_ty, ctx.primitives.float)); let val_gez = ctx .builder .build_float_compare(FloatPredicate::OGE, n, n.get_type().const_zero(), "") .unwrap(); let to_int64 = ctx.builder.build_float_to_signed_int(n, llvm_i64, "").unwrap(); let to_uint64 = ctx.builder.build_float_to_unsigned_int(n, llvm_i64, "").unwrap(); ctx.builder.build_select(val_gez, to_uint64, to_int64, "conv").unwrap() } BasicValueEnum::PointerValue(n) if n_ty.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id()) => { let (elem_ty, _) = unpack_ndarray_var_tys(&mut ctx.unifier, n_ty); let ndarray = NDArrayType::from_unifier_type(generator, ctx, n_ty).map_value(n, None); let result = ndarray .map( generator, ctx, NDArrayOut::NewNDArray { dtype: ctx.ctx.i64_type().into() }, |generator, ctx, scalar| call_uint64(generator, ctx, (elem_ty, scalar)), ) .unwrap(); result.as_base_value().into() } _ => unsupported_type(ctx, "uint64", &[n_ty]), }) } /// Invokes the `float` builtin function. pub fn call_float<'ctx, G: CodeGenerator + ?Sized>( generator: &mut G, ctx: &mut CodeGenContext<'ctx, '_>, (n_ty, n): (Type, BasicValueEnum<'ctx>), ) -> Result, String> { let llvm_f64 = ctx.ctx.f64_type(); Ok(match n { BasicValueEnum::IntValue(n) if matches!(n.get_type().get_bit_width(), 1 | 8 | 32 | 64) => { debug_assert!([ ctx.primitives.bool, ctx.primitives.int32, ctx.primitives.uint32, ctx.primitives.int64, ctx.primitives.uint64, ] .iter() .any(|ty| ctx.unifier.unioned(n_ty, *ty))); if [ctx.primitives.bool, ctx.primitives.int32, ctx.primitives.int64] .iter() .any(|ty| ctx.unifier.unioned(n_ty, *ty)) { ctx.builder .build_signed_int_to_float(n, llvm_f64, "sitofp") .map(Into::into) .unwrap() } else { ctx.builder .build_unsigned_int_to_float(n, llvm_f64, "uitofp") .map(Into::into) .unwrap() } } BasicValueEnum::FloatValue(n) => { debug_assert!(ctx.unifier.unioned(n_ty, ctx.primitives.float)); n.into() } BasicValueEnum::PointerValue(n) if n_ty.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id()) => { let (elem_ty, _) = unpack_ndarray_var_tys(&mut ctx.unifier, n_ty); let ndarray = NDArrayType::from_unifier_type(generator, ctx, n_ty).map_value(n, None); let result = ndarray .map( generator, ctx, NDArrayOut::NewNDArray { dtype: ctx.ctx.f64_type().into() }, |generator, ctx, scalar| call_float(generator, ctx, (elem_ty, scalar)), ) .unwrap(); result.as_base_value().into() } _ => unsupported_type(ctx, "float", &[n_ty]), }) } /// Invokes the `round` builtin function. pub fn call_round<'ctx, G: CodeGenerator + ?Sized>( generator: &mut G, ctx: &mut CodeGenContext<'ctx, '_>, (n_ty, n): (Type, BasicValueEnum<'ctx>), ret_elem_ty: Type, ) -> Result, String> { const FN_NAME: &str = "round"; let llvm_ret_elem_ty = ctx.get_llvm_abi_type(generator, ret_elem_ty).into_int_type(); Ok(match n { BasicValueEnum::FloatValue(n) => { debug_assert!(ctx.unifier.unioned(n_ty, ctx.primitives.float)); let val = llvm_intrinsics::call_float_round(ctx, n, None); ctx.builder .build_float_to_signed_int(val, llvm_ret_elem_ty, FN_NAME) .map(Into::into) .unwrap() } BasicValueEnum::PointerValue(n) if n_ty.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id()) => { let (elem_ty, _) = unpack_ndarray_var_tys(&mut ctx.unifier, n_ty); let ndarray = NDArrayType::from_unifier_type(generator, ctx, n_ty).map_value(n, None); let result = ndarray .map( generator, ctx, NDArrayOut::NewNDArray { dtype: llvm_ret_elem_ty.into() }, |generator, ctx, scalar| { call_round(generator, ctx, (elem_ty, scalar), ret_elem_ty) }, ) .unwrap(); result.as_base_value().into() } _ => unsupported_type(ctx, FN_NAME, &[n_ty]), }) } /// Invokes the `np_round` builtin function. pub fn call_numpy_round<'ctx, G: CodeGenerator + ?Sized>( generator: &mut G, ctx: &mut CodeGenContext<'ctx, '_>, (n_ty, n): (Type, BasicValueEnum<'ctx>), ) -> Result, String> { const FN_NAME: &str = "np_round"; Ok(match n { BasicValueEnum::FloatValue(n) => { debug_assert!(ctx.unifier.unioned(n_ty, ctx.primitives.float)); llvm_intrinsics::call_float_rint(ctx, n, None).into() } BasicValueEnum::PointerValue(n) if n_ty.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id()) => { let (elem_ty, _) = unpack_ndarray_var_tys(&mut ctx.unifier, n_ty); let ndarray = NDArrayType::from_unifier_type(generator, ctx, n_ty).map_value(n, None); let result = ndarray .map( generator, ctx, NDArrayOut::NewNDArray { dtype: ctx.ctx.f64_type().into() }, |generator, ctx, scalar| call_numpy_round(generator, ctx, (elem_ty, scalar)), ) .unwrap(); result.as_base_value().into() } _ => unsupported_type(ctx, FN_NAME, &[n_ty]), }) } /// Invokes the `bool` builtin function. pub fn call_bool<'ctx, G: CodeGenerator + ?Sized>( generator: &mut G, ctx: &mut CodeGenContext<'ctx, '_>, (n_ty, n): (Type, BasicValueEnum<'ctx>), ) -> Result, String> { const FN_NAME: &str = "bool"; Ok(match n { BasicValueEnum::IntValue(n) if matches!(n.get_type().get_bit_width(), 1 | 8) => { debug_assert!(ctx.unifier.unioned(n_ty, ctx.primitives.bool)); n.into() } BasicValueEnum::IntValue(n) => { debug_assert!([ ctx.primitives.int32, ctx.primitives.uint32, ctx.primitives.int64, ctx.primitives.uint64, ] .iter() .any(|ty| ctx.unifier.unioned(n_ty, *ty))); ctx.builder .build_int_compare(IntPredicate::NE, n, n.get_type().const_zero(), FN_NAME) .map(Into::into) .unwrap() } BasicValueEnum::FloatValue(n) => { debug_assert!(ctx.unifier.unioned(n_ty, ctx.primitives.float)); ctx.builder .build_float_compare(FloatPredicate::UNE, n, n.get_type().const_zero(), FN_NAME) .map(Into::into) .unwrap() } BasicValueEnum::PointerValue(n) if n_ty.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id()) => { let (elem_ty, _) = unpack_ndarray_var_tys(&mut ctx.unifier, n_ty); let ndarray = NDArrayType::from_unifier_type(generator, ctx, n_ty).map_value(n, None); let result = ndarray .map( generator, ctx, NDArrayOut::NewNDArray { dtype: ctx.ctx.i8_type().into() }, |generator, ctx, scalar| { let elem = call_bool(generator, ctx, (elem_ty, scalar))?; Ok(generator.bool_to_i8(ctx, elem.into_int_value()).into()) }, ) .unwrap(); result.as_base_value().into() } _ => unsupported_type(ctx, FN_NAME, &[n_ty]), }) } /// Invokes the `floor` builtin function. pub fn call_floor<'ctx, G: CodeGenerator + ?Sized>( generator: &mut G, ctx: &mut CodeGenContext<'ctx, '_>, (n_ty, n): (Type, BasicValueEnum<'ctx>), ret_elem_ty: Type, ) -> Result, String> { const FN_NAME: &str = "floor"; let llvm_ret_elem_ty = ctx.get_llvm_abi_type(generator, ret_elem_ty); Ok(match n { BasicValueEnum::FloatValue(n) => { debug_assert!(ctx.unifier.unioned(n_ty, ctx.primitives.float)); let val = llvm_intrinsics::call_float_floor(ctx, n, None); if let BasicTypeEnum::IntType(llvm_ret_elem_ty) = llvm_ret_elem_ty { ctx.builder .build_float_to_signed_int(val, llvm_ret_elem_ty, FN_NAME) .map(Into::into) .unwrap() } else { val.into() } } BasicValueEnum::PointerValue(n) if n_ty.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id()) => { let (elem_ty, _) = unpack_ndarray_var_tys(&mut ctx.unifier, n_ty); let ndarray = NDArrayType::from_unifier_type(generator, ctx, n_ty).map_value(n, None); let result = ndarray .map( generator, ctx, NDArrayOut::NewNDArray { dtype: llvm_ret_elem_ty }, |generator, ctx, scalar| { call_floor(generator, ctx, (elem_ty, scalar), ret_elem_ty) }, ) .unwrap(); result.as_base_value().into() } _ => unsupported_type(ctx, FN_NAME, &[n_ty]), }) } /// Invokes the `ceil` builtin function. pub fn call_ceil<'ctx, G: CodeGenerator + ?Sized>( generator: &mut G, ctx: &mut CodeGenContext<'ctx, '_>, (n_ty, n): (Type, BasicValueEnum<'ctx>), ret_elem_ty: Type, ) -> Result, String> { const FN_NAME: &str = "ceil"; let llvm_ret_elem_ty = ctx.get_llvm_abi_type(generator, ret_elem_ty); Ok(match n { BasicValueEnum::FloatValue(n) => { debug_assert!(ctx.unifier.unioned(n_ty, ctx.primitives.float)); let val = llvm_intrinsics::call_float_ceil(ctx, n, None); if let BasicTypeEnum::IntType(llvm_ret_elem_ty) = llvm_ret_elem_ty { ctx.builder .build_float_to_signed_int(val, llvm_ret_elem_ty, FN_NAME) .map(Into::into) .unwrap() } else { val.into() } } BasicValueEnum::PointerValue(n) if n_ty.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id()) => { let (elem_ty, _) = unpack_ndarray_var_tys(&mut ctx.unifier, n_ty); let ndarray = NDArrayType::from_unifier_type(generator, ctx, n_ty).map_value(n, None); let result = ndarray .map( generator, ctx, NDArrayOut::NewNDArray { dtype: llvm_ret_elem_ty }, |generator, ctx, scalar| { call_ceil(generator, ctx, (elem_ty, scalar), ret_elem_ty) }, ) .unwrap(); result.as_base_value().into() } _ => unsupported_type(ctx, FN_NAME, &[n_ty]), }) } /// Invokes the `min` builtin function. pub fn call_min<'ctx>( ctx: &mut CodeGenContext<'ctx, '_>, (m_ty, m): (Type, BasicValueEnum<'ctx>), (n_ty, n): (Type, BasicValueEnum<'ctx>), ) -> BasicValueEnum<'ctx> { const FN_NAME: &str = "min"; let common_ty = if ctx.unifier.unioned(m_ty, n_ty) { m_ty } else { unsupported_type(ctx, FN_NAME, &[m_ty, n_ty]) }; match (m, n) { (BasicValueEnum::IntValue(m), BasicValueEnum::IntValue(n)) => { debug_assert!([ ctx.primitives.bool, ctx.primitives.int32, ctx.primitives.uint32, ctx.primitives.int64, ctx.primitives.uint64, ] .iter() .any(|ty| ctx.unifier.unioned(common_ty, *ty))); if [ctx.primitives.int32, ctx.primitives.int64] .iter() .any(|ty| ctx.unifier.unioned(common_ty, *ty)) { llvm_intrinsics::call_int_smin(ctx, m, n, Some(FN_NAME)).into() } else { llvm_intrinsics::call_int_umin(ctx, m, n, Some(FN_NAME)).into() } } (BasicValueEnum::FloatValue(m), BasicValueEnum::FloatValue(n)) => { debug_assert!(ctx.unifier.unioned(common_ty, ctx.primitives.float)); llvm_intrinsics::call_float_minnum(ctx, m, n, Some(FN_NAME)).into() } _ => unsupported_type(ctx, FN_NAME, &[m_ty, n_ty]), } } /// Invokes the `np_minimum` builtin function. pub fn call_numpy_minimum<'ctx, G: CodeGenerator + ?Sized>( generator: &mut G, ctx: &mut CodeGenContext<'ctx, '_>, (x1_ty, x1): (Type, BasicValueEnum<'ctx>), (x2_ty, x2): (Type, BasicValueEnum<'ctx>), ) -> Result, String> { const FN_NAME: &str = "np_minimum"; let common_ty = if ctx.unifier.unioned(x1_ty, x2_ty) { Some(x1_ty) } else { None }; Ok(match (x1, x2) { (BasicValueEnum::IntValue(x1), BasicValueEnum::IntValue(x2)) => { debug_assert!([ ctx.primitives.bool, ctx.primitives.int32, ctx.primitives.uint32, ctx.primitives.int64, ctx.primitives.uint64, ctx.primitives.float, ] .iter() .any(|ty| ctx.unifier.unioned(common_ty.unwrap(), *ty))); call_min(ctx, (x1_ty, x1.into()), (x2_ty, x2.into())) } (BasicValueEnum::FloatValue(x1), BasicValueEnum::FloatValue(x2)) => { debug_assert!(ctx.unifier.unioned(common_ty.unwrap(), ctx.primitives.float)); call_min(ctx, (x1_ty, x1.into()), (x2_ty, x2.into())) } (x1, x2) if [&x1_ty, &x2_ty].into_iter().any(|ty| { ty.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id()) }) => { let x1 = ScalarOrNDArray::from_value(generator, ctx, (x1_ty, x1)).to_ndarray(generator, ctx); let x2 = ScalarOrNDArray::from_value(generator, ctx, (x2_ty, x2)).to_ndarray(generator, ctx); let x1_dtype = arraylike_flatten_element_type(&mut ctx.unifier, x1_ty); let x2_dtype = arraylike_flatten_element_type(&mut ctx.unifier, x2_ty); debug_assert!(ctx.unifier.unioned(x1_dtype, x2_dtype)); let llvm_common_dtype = x1.get_type().element_type(); let result = NDArrayType::new_broadcast( generator, ctx.ctx, llvm_common_dtype, &[x1.get_type(), x2.get_type()], ) .broadcast_starmap( generator, ctx, &[x1, x2], NDArrayOut::NewNDArray { dtype: llvm_common_dtype }, |_, ctx, scalars| { let x1_scalar = scalars[0]; let x2_scalar = scalars[1]; Ok(call_min(ctx, (x1_dtype, x1_scalar), (x2_dtype, x2_scalar))) }, ) .unwrap(); result.as_base_value().into() } _ => unsupported_type(ctx, FN_NAME, &[x1_ty, x2_ty]), }) } /// Invokes the `max` builtin function. pub fn call_max<'ctx>( ctx: &mut CodeGenContext<'ctx, '_>, (m_ty, m): (Type, BasicValueEnum<'ctx>), (n_ty, n): (Type, BasicValueEnum<'ctx>), ) -> BasicValueEnum<'ctx> { const FN_NAME: &str = "max"; let common_ty = if ctx.unifier.unioned(m_ty, n_ty) { m_ty } else { unsupported_type(ctx, FN_NAME, &[m_ty, n_ty]) }; match (m, n) { (BasicValueEnum::IntValue(m), BasicValueEnum::IntValue(n)) => { debug_assert!([ ctx.primitives.bool, ctx.primitives.int32, ctx.primitives.uint32, ctx.primitives.int64, ctx.primitives.uint64, ] .iter() .any(|ty| ctx.unifier.unioned(common_ty, *ty))); if [ctx.primitives.int32, ctx.primitives.int64] .iter() .any(|ty| ctx.unifier.unioned(common_ty, *ty)) { llvm_intrinsics::call_int_smax(ctx, m, n, Some(FN_NAME)).into() } else { llvm_intrinsics::call_int_umax(ctx, m, n, Some(FN_NAME)).into() } } (BasicValueEnum::FloatValue(m), BasicValueEnum::FloatValue(n)) => { debug_assert!(ctx.unifier.unioned(common_ty, ctx.primitives.float)); llvm_intrinsics::call_float_maxnum(ctx, m, n, Some(FN_NAME)).into() } _ => unsupported_type(ctx, FN_NAME, &[m_ty, n_ty]), } } /// Invokes the `np_max`, `np_min`, `np_argmax`, `np_argmin` functions /// * `fn_name`: Can be one of `"np_argmin"`, `"np_argmax"`, `"np_max"`, `"np_min"` pub fn call_numpy_max_min<'ctx, G: CodeGenerator + ?Sized>( generator: &mut G, ctx: &mut CodeGenContext<'ctx, '_>, (a_ty, a): (Type, BasicValueEnum<'ctx>), fn_name: &str, ) -> Result, String> { debug_assert!(["np_argmin", "np_argmax", "np_max", "np_min"].iter().any(|f| *f == fn_name)); let llvm_int64 = ctx.ctx.i64_type(); let llvm_usize = generator.get_size_type(ctx.ctx); Ok(match a { BasicValueEnum::IntValue(_) | BasicValueEnum::FloatValue(_) => { debug_assert!([ ctx.primitives.bool, ctx.primitives.int32, ctx.primitives.uint32, ctx.primitives.int64, ctx.primitives.uint64, ctx.primitives.float, ] .iter() .any(|ty| ctx.unifier.unioned(a_ty, *ty))); match fn_name { "np_argmin" | "np_argmax" => llvm_int64.const_zero().into(), "np_max" | "np_min" => a, _ => codegen_unreachable!(ctx), } } BasicValueEnum::PointerValue(n) if a_ty.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id()) => { let (elem_ty, _) = unpack_ndarray_var_tys(&mut ctx.unifier, a_ty); let ndarray = NDArrayType::from_unifier_type(generator, ctx, a_ty).map_value(n, None); let llvm_dtype = ndarray.get_type().element_type(); let zero = llvm_usize.const_zero(); if ctx.registry.llvm_options.opt_level == OptimizationLevel::None { let size_nez = ctx .builder .build_int_compare(IntPredicate::NE, ndarray.size(generator, ctx), zero, "") .unwrap(); ctx.make_assert( generator, size_nez, "0:ValueError", format!("zero-size array to reduction operation {fn_name}").as_str(), [None, None, None], ctx.current_loc, ); } let extremum = generator.gen_var_alloc(ctx, llvm_dtype, None)?; let extremum_idx = generator.gen_var_alloc(ctx, llvm_usize.into(), None)?; let first_value = unsafe { ndarray.data().get_unchecked(ctx, generator, &zero, None) }; ctx.builder.build_store(extremum, first_value).unwrap(); ctx.builder.build_store(extremum_idx, zero).unwrap(); // The first element is iterated, but this doesn't matter. ndarray .foreach(generator, ctx, |_, ctx, _, nditer| { let old_extremum = ctx.builder.build_load(extremum, "").unwrap(); let old_extremum_idx = ctx .builder .build_load(extremum_idx, "") .map(BasicValueEnum::into_int_value) .unwrap(); let curr_value = nditer.get_scalar(ctx); let curr_idx = nditer.get_index(ctx); let new_extremum = match fn_name { "np_argmin" | "np_min" => { call_min(ctx, (elem_ty, old_extremum), (elem_ty, curr_value)) } "np_argmax" | "np_max" => { call_max(ctx, (elem_ty, old_extremum), (elem_ty, curr_value)) } _ => codegen_unreachable!(ctx), }; let new_extremum_idx = match (old_extremum, new_extremum) { (BasicValueEnum::IntValue(m), BasicValueEnum::IntValue(n)) => ctx .builder .build_select( ctx.builder.build_int_compare(IntPredicate::NE, m, n, "").unwrap(), curr_idx, old_extremum_idx, "", ) .unwrap(), (BasicValueEnum::FloatValue(m), BasicValueEnum::FloatValue(n)) => ctx .builder .build_select( ctx.builder .build_float_compare(FloatPredicate::ONE, m, n, "") .unwrap(), curr_idx, old_extremum_idx, "", ) .unwrap(), _ => unsupported_type(ctx, fn_name, &[elem_ty, elem_ty]), }; ctx.builder.build_store(extremum, new_extremum).unwrap(); ctx.builder.build_store(extremum_idx, new_extremum_idx).unwrap(); Ok(()) }) .unwrap(); match fn_name { "np_argmin" | "np_argmax" => ctx .builder .build_int_s_extend_or_bit_cast( ctx.builder .build_load(extremum_idx, "") .map(BasicValueEnum::into_int_value) .unwrap(), ctx.ctx.i64_type(), "", ) .unwrap() .into(), "np_max" | "np_min" => ctx.builder.build_load(extremum, "").unwrap(), _ => codegen_unreachable!(ctx), } } _ => unsupported_type(ctx, fn_name, &[a_ty]), }) } /// Invokes the `np_maximum` builtin function. pub fn call_numpy_maximum<'ctx, G: CodeGenerator + ?Sized>( generator: &mut G, ctx: &mut CodeGenContext<'ctx, '_>, (x1_ty, x1): (Type, BasicValueEnum<'ctx>), (x2_ty, x2): (Type, BasicValueEnum<'ctx>), ) -> Result, String> { const FN_NAME: &str = "np_maximum"; let common_ty = if ctx.unifier.unioned(x1_ty, x2_ty) { Some(x1_ty) } else { None }; Ok(match (x1, x2) { (BasicValueEnum::IntValue(x1), BasicValueEnum::IntValue(x2)) => { debug_assert!([ ctx.primitives.bool, ctx.primitives.int32, ctx.primitives.uint32, ctx.primitives.int64, ctx.primitives.uint64, ctx.primitives.float, ] .iter() .any(|ty| ctx.unifier.unioned(common_ty.unwrap(), *ty))); call_max(ctx, (x1_ty, x1.into()), (x2_ty, x2.into())) } (BasicValueEnum::FloatValue(x1), BasicValueEnum::FloatValue(x2)) => { debug_assert!(ctx.unifier.unioned(common_ty.unwrap(), ctx.primitives.float)); call_max(ctx, (x1_ty, x1.into()), (x2_ty, x2.into())) } (x1, x2) if [&x1_ty, &x2_ty].into_iter().any(|ty| { ty.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id()) }) => { let x1 = ScalarOrNDArray::from_value(generator, ctx, (x1_ty, x1)).to_ndarray(generator, ctx); let x2 = ScalarOrNDArray::from_value(generator, ctx, (x2_ty, x2)).to_ndarray(generator, ctx); let x1_dtype = arraylike_flatten_element_type(&mut ctx.unifier, x1_ty); let x2_dtype = arraylike_flatten_element_type(&mut ctx.unifier, x2_ty); debug_assert!(ctx.unifier.unioned(x1_dtype, x2_dtype)); let llvm_common_dtype = x1.get_type().element_type(); let result = NDArrayType::new_broadcast( generator, ctx.ctx, llvm_common_dtype, &[x1.get_type(), x2.get_type()], ) .broadcast_starmap( generator, ctx, &[x1, x2], NDArrayOut::NewNDArray { dtype: llvm_common_dtype }, |_, ctx, scalars| { let x1_scalar = scalars[0]; let x2_scalar = scalars[1]; Ok(call_max(ctx, (x1_dtype, x1_scalar), (x2_dtype, x2_scalar))) }, ) .unwrap(); result.as_base_value().into() } _ => unsupported_type(ctx, FN_NAME, &[x1_ty, x2_ty]), }) } /// Helper function to create a built-in elementwise unary numpy function that takes in either an ndarray or a scalar. /// /// * `(arg_ty, arg_val)`: The [`Type`] and llvm value of the input argument. /// * `fn_name`: The name of the function, only used when throwing an error with [`unsupported_type`] /// * `get_ret_elem_type`: A function that takes in the input scalar [`Type`], and returns the function's return scalar [`Type`]. /// Return a constant [`Type`] here if the return type does not depend on the input type. /// * `on_scalar`: The function that acts on the scalars of the input. Returns [`Option::None`] /// if the scalar type & value are faulty and should panic with [`unsupported_type`]. fn helper_call_numpy_unary_elementwise<'ctx, OnScalarFn, RetElemFn, G>( generator: &mut G, ctx: &mut CodeGenContext<'ctx, '_>, (arg_ty, arg_val): (Type, BasicValueEnum<'ctx>), fn_name: &str, get_ret_elem_type: &RetElemFn, on_scalar: &OnScalarFn, ) -> Result, String> where G: CodeGenerator + ?Sized, OnScalarFn: Fn( &mut G, &mut CodeGenContext<'ctx, '_>, Type, BasicValueEnum<'ctx>, ) -> Option>, RetElemFn: Fn(&mut CodeGenContext<'ctx, '_>, Type) -> Type, { let arg = ScalarOrNDArray::from_value(generator, ctx, (arg_ty, arg_val)); let dtype = arraylike_flatten_element_type(&mut ctx.unifier, arg_ty); let ret_ty = get_ret_elem_type(ctx, dtype); let llvm_ret_ty = ctx.get_llvm_type(generator, ret_ty); let result = arg.map(generator, ctx, llvm_ret_ty, |generator, ctx, scalar| { let Some(result) = on_scalar(generator, ctx, dtype, scalar) else { unsupported_type(ctx, fn_name, &[arg_ty]) }; Ok(result) })?; Ok(result.to_basic_value_enum()) } pub fn call_abs<'ctx, G: CodeGenerator + ?Sized>( generator: &mut G, ctx: &mut CodeGenContext<'ctx, '_>, n: (Type, BasicValueEnum<'ctx>), ) -> Result, String> { const FN_NAME: &str = "abs"; helper_call_numpy_unary_elementwise( generator, ctx, n, FN_NAME, &|_ctx, elem_ty| elem_ty, &|_generator, ctx, val_ty, val| match val { BasicValueEnum::IntValue(n) => Some({ debug_assert!([ ctx.primitives.bool, ctx.primitives.int32, ctx.primitives.uint32, ctx.primitives.int64, ctx.primitives.uint64, ] .iter() .any(|ty| ctx.unifier.unioned(val_ty, *ty))); if [ctx.primitives.int32, ctx.primitives.int64] .iter() .any(|ty| ctx.unifier.unioned(val_ty, *ty)) { llvm_intrinsics::call_int_abs( ctx, n, ctx.ctx.bool_type().const_zero(), Some(FN_NAME), ) .into() } else { n.into() } }), BasicValueEnum::FloatValue(n) => Some({ debug_assert!(ctx.unifier.unioned(val_ty, ctx.primitives.float)); llvm_intrinsics::call_float_fabs(ctx, n, Some(FN_NAME)).into() }), _ => None, }, ) } /// Macro to conveniently generate numpy functions with [`helper_call_numpy_unary_elementwise`]. /// /// Arguments: /// * `$name:ident`: The identifier of the rust function to be generated. /// * `$fn_name:literal`: To be passed to the `fn_name` parameter of [`helper_call_numpy_unary_elementwise`] /// * `$get_ret_elem_type:expr`: To be passed to the `get_ret_elem_type` parameter of [`helper_call_numpy_unary_elementwise`]. /// But there is no need to make it a reference. /// * `$on_scalar:expr`: To be passed to the `on_scalar` parameter of [`helper_call_numpy_unary_elementwise`]. /// But there is no need to make it a reference. macro_rules! create_helper_call_numpy_unary_elementwise { ($name:ident, $fn_name:literal, $get_ret_elem_type:expr, $on_scalar:expr) => { #[allow(clippy::redundant_closure_call)] pub fn $name<'ctx, G: CodeGenerator + ?Sized>( generator: &mut G, ctx: &mut CodeGenContext<'ctx, '_>, arg: (Type, BasicValueEnum<'ctx>), ) -> Result, String> { helper_call_numpy_unary_elementwise( generator, ctx, arg, $fn_name, &$get_ret_elem_type, &$on_scalar, ) } }; } /// A specialized version of [`create_helper_call_numpy_unary_elementwise`] to generate functions that takes in float and returns boolean (as an `i8`) elementwise. /// /// Arguments: /// * `$name:ident`: The identifier of the rust function to be generated. /// * `$fn_name:literal`: To be passed to the `fn_name` parameter of [`helper_call_numpy_unary_elementwise`]. /// * `$on_scalar:expr`: The closure (see below for its type) that acts on float scalar values and returns /// the boolean results of LLVM type `i1`. The returned `i1` value will be converted into an `i8`. /// /// ```ignore /// // Type of `$on_scalar:expr` /// fn on_scalar<'ctx, G: CodeGenerator + ?Sized>( /// generator: &mut G, /// ctx: &mut CodeGenContext<'ctx, '_>, /// arg: FloatValue<'ctx> /// ) -> IntValue<'ctx> // of LLVM type `i1` /// ``` macro_rules! create_helper_call_numpy_unary_elementwise_float_to_bool { ($name:ident, $fn_name:literal, $on_scalar:expr) => { create_helper_call_numpy_unary_elementwise!( $name, $fn_name, |ctx, _| ctx.primitives.bool, |generator, ctx, n_ty, val| { match val { BasicValueEnum::FloatValue(n) => { debug_assert!(ctx.unifier.unioned(n_ty, ctx.primitives.float)); let ret = $on_scalar(generator, ctx, n); Some(generator.bool_to_i8(ctx, ret).into()) } _ => None, } } ); }; } /// A specialized version of [`create_helper_call_numpy_unary_elementwise`] to generate functions that takes in float and returns float elementwise. /// /// Arguments: /// * `$name:ident`: The identifier of the rust function to be generated. /// * `$fn_name:literal`: To be passed to the `fn_name` parameter of [`helper_call_numpy_unary_elementwise`]. /// * `$on_scalar:expr`: The closure (see below for its type) that acts on float scalar values and returns float results. /// /// ```ignore /// // Type of `$on_scalar:expr` /// fn on_scalar<'ctx, G: CodeGenerator + ?Sized>( /// generator: &mut G, /// ctx: &mut CodeGenContext<'ctx, '_>, /// arg: FloatValue<'ctx> /// ) -> FloatValue<'ctx> /// ``` macro_rules! create_helper_call_numpy_unary_elementwise_float_to_float { ($name:ident, $fn_name:literal, $elem_call:expr) => { create_helper_call_numpy_unary_elementwise!( $name, $fn_name, |ctx, _| ctx.primitives.float, |_generator, ctx, val_ty, val| { match val { BasicValueEnum::FloatValue(n) => { debug_assert!(ctx.unifier.unioned(val_ty, ctx.primitives.float)); Some($elem_call(ctx, n, Option::<&str>::None).into()) } _ => None, } } ); }; } create_helper_call_numpy_unary_elementwise_float_to_bool!( call_numpy_isnan, "np_isnan", irrt::call_isnan ); create_helper_call_numpy_unary_elementwise_float_to_bool!( call_numpy_isinf, "np_isinf", irrt::call_isinf ); create_helper_call_numpy_unary_elementwise_float_to_float!( call_numpy_sin, "np_sin", llvm_intrinsics::call_float_sin ); create_helper_call_numpy_unary_elementwise_float_to_float!( call_numpy_cos, "np_cos", llvm_intrinsics::call_float_cos ); create_helper_call_numpy_unary_elementwise_float_to_float!( call_numpy_tan, "np_tan", extern_fns::call_tan ); create_helper_call_numpy_unary_elementwise_float_to_float!( call_numpy_arcsin, "np_arcsin", extern_fns::call_asin ); create_helper_call_numpy_unary_elementwise_float_to_float!( call_numpy_arccos, "np_arccos", extern_fns::call_acos ); create_helper_call_numpy_unary_elementwise_float_to_float!( call_numpy_arctan, "np_arctan", extern_fns::call_atan ); create_helper_call_numpy_unary_elementwise_float_to_float!( call_numpy_sinh, "np_sinh", extern_fns::call_sinh ); create_helper_call_numpy_unary_elementwise_float_to_float!( call_numpy_cosh, "np_cosh", extern_fns::call_cosh ); create_helper_call_numpy_unary_elementwise_float_to_float!( call_numpy_tanh, "np_tanh", extern_fns::call_tanh ); create_helper_call_numpy_unary_elementwise_float_to_float!( call_numpy_arcsinh, "np_arcsinh", extern_fns::call_asinh ); create_helper_call_numpy_unary_elementwise_float_to_float!( call_numpy_arccosh, "np_arccosh", extern_fns::call_acosh ); create_helper_call_numpy_unary_elementwise_float_to_float!( call_numpy_arctanh, "np_arctanh", extern_fns::call_atanh ); create_helper_call_numpy_unary_elementwise_float_to_float!( call_numpy_exp, "np_exp", llvm_intrinsics::call_float_exp ); create_helper_call_numpy_unary_elementwise_float_to_float!( call_numpy_exp2, "np_exp2", llvm_intrinsics::call_float_exp2 ); create_helper_call_numpy_unary_elementwise_float_to_float!( call_numpy_expm1, "np_expm1", extern_fns::call_expm1 ); create_helper_call_numpy_unary_elementwise_float_to_float!( call_numpy_log, "np_log", llvm_intrinsics::call_float_log ); create_helper_call_numpy_unary_elementwise_float_to_float!( call_numpy_log2, "np_log2", llvm_intrinsics::call_float_log2 ); create_helper_call_numpy_unary_elementwise_float_to_float!( call_numpy_log10, "np_log10", llvm_intrinsics::call_float_log10 ); create_helper_call_numpy_unary_elementwise_float_to_float!( call_numpy_sqrt, "np_sqrt", llvm_intrinsics::call_float_sqrt ); create_helper_call_numpy_unary_elementwise_float_to_float!( call_numpy_cbrt, "np_cbrt", extern_fns::call_cbrt ); create_helper_call_numpy_unary_elementwise_float_to_float!( call_numpy_fabs, "np_fabs", llvm_intrinsics::call_float_fabs ); create_helper_call_numpy_unary_elementwise_float_to_float!( call_numpy_rint, "np_rint", llvm_intrinsics::call_float_rint ); create_helper_call_numpy_unary_elementwise_float_to_float!( call_scipy_special_erf, "sp_spec_erf", extern_fns::call_erf ); create_helper_call_numpy_unary_elementwise_float_to_float!( call_scipy_special_erfc, "sp_spec_erfc", extern_fns::call_erfc ); create_helper_call_numpy_unary_elementwise_float_to_float!( call_scipy_special_gamma, "sp_spec_gamma", |ctx, val, _| irrt::call_gamma(ctx, val) ); create_helper_call_numpy_unary_elementwise_float_to_float!( call_scipy_special_gammaln, "sp_spec_gammaln", |ctx, val, _| irrt::call_gammaln(ctx, val) ); create_helper_call_numpy_unary_elementwise_float_to_float!( call_scipy_special_j0, "sp_spec_j0", |ctx, val, _| irrt::call_j0(ctx, val) ); create_helper_call_numpy_unary_elementwise_float_to_float!( call_scipy_special_j1, "sp_spec_j1", extern_fns::call_j1 ); /// Invokes the `np_arctan2` builtin function. pub fn call_numpy_arctan2<'ctx, G: CodeGenerator + ?Sized>( generator: &mut G, ctx: &mut CodeGenContext<'ctx, '_>, (x1_ty, x1): (Type, BasicValueEnum<'ctx>), (x2_ty, x2): (Type, BasicValueEnum<'ctx>), ) -> Result, String> { const FN_NAME: &str = "np_arctan2"; let x1 = ScalarOrNDArray::from_value(generator, ctx, (x1_ty, x1)); let x2 = ScalarOrNDArray::from_value(generator, ctx, (x2_ty, x2)); let result = ScalarOrNDArray::broadcasting_starmap( generator, ctx, &[x1, x2], ctx.ctx.f64_type().into(), |_, ctx, scalars| { let x1_scalar = scalars[0]; let x2_scalar = scalars[1]; match (x1_scalar, x2_scalar) { (BasicValueEnum::FloatValue(x1), BasicValueEnum::FloatValue(x2)) => { Ok(extern_fns::call_atan2(ctx, x1, x2, None).into()) } _ => unsupported_type(ctx, FN_NAME, &[x1_ty, x2_ty]), } }, ) .unwrap(); Ok(result.to_basic_value_enum()) } /// Invokes the `np_copysign` builtin function. pub fn call_numpy_copysign<'ctx, G: CodeGenerator + ?Sized>( generator: &mut G, ctx: &mut CodeGenContext<'ctx, '_>, (x1_ty, x1): (Type, BasicValueEnum<'ctx>), (x2_ty, x2): (Type, BasicValueEnum<'ctx>), ) -> Result, String> { const FN_NAME: &str = "np_copysign"; let x1 = ScalarOrNDArray::from_value(generator, ctx, (x1_ty, x1)); let x2 = ScalarOrNDArray::from_value(generator, ctx, (x2_ty, x2)); let result = ScalarOrNDArray::broadcasting_starmap( generator, ctx, &[x1, x2], ctx.ctx.f64_type().into(), |_, ctx, scalars| { let x1_scalar = scalars[0]; let x2_scalar = scalars[1]; match (x1_scalar, x2_scalar) { (BasicValueEnum::FloatValue(x1), BasicValueEnum::FloatValue(x2)) => { Ok(llvm_intrinsics::call_float_copysign(ctx, x1, x2, None).into()) } _ => unsupported_type(ctx, FN_NAME, &[x1_ty, x2_ty]), } }, ) .unwrap(); Ok(result.to_basic_value_enum()) } /// Invokes the `np_fmax` builtin function. pub fn call_numpy_fmax<'ctx, G: CodeGenerator + ?Sized>( generator: &mut G, ctx: &mut CodeGenContext<'ctx, '_>, (x1_ty, x1): (Type, BasicValueEnum<'ctx>), (x2_ty, x2): (Type, BasicValueEnum<'ctx>), ) -> Result, String> { const FN_NAME: &str = "np_fmax"; let x1 = ScalarOrNDArray::from_value(generator, ctx, (x1_ty, x1)); let x2 = ScalarOrNDArray::from_value(generator, ctx, (x2_ty, x2)); let result = ScalarOrNDArray::broadcasting_starmap( generator, ctx, &[x1, x2], ctx.ctx.f64_type().into(), |_, ctx, scalars| { let x1_scalar = scalars[0]; let x2_scalar = scalars[1]; match (x1_scalar, x2_scalar) { (BasicValueEnum::FloatValue(x1), BasicValueEnum::FloatValue(x2)) => { Ok(llvm_intrinsics::call_float_maxnum(ctx, x1, x2, None).into()) } _ => unsupported_type(ctx, FN_NAME, &[x1_ty, x2_ty]), } }, ) .unwrap(); Ok(result.to_basic_value_enum()) } /// Invokes the `np_fmin` builtin function. pub fn call_numpy_fmin<'ctx, G: CodeGenerator + ?Sized>( generator: &mut G, ctx: &mut CodeGenContext<'ctx, '_>, (x1_ty, x1): (Type, BasicValueEnum<'ctx>), (x2_ty, x2): (Type, BasicValueEnum<'ctx>), ) -> Result, String> { const FN_NAME: &str = "np_fmin"; let x1 = ScalarOrNDArray::from_value(generator, ctx, (x1_ty, x1)); let x2 = ScalarOrNDArray::from_value(generator, ctx, (x2_ty, x2)); let result = ScalarOrNDArray::broadcasting_starmap( generator, ctx, &[x1, x2], ctx.ctx.f64_type().into(), |_, ctx, scalars| { let x1_scalar = scalars[0]; let x2_scalar = scalars[1]; match (x1_scalar, x2_scalar) { (BasicValueEnum::FloatValue(x1), BasicValueEnum::FloatValue(x2)) => { Ok(llvm_intrinsics::call_float_minnum(ctx, x1, x2, None).into()) } _ => unsupported_type(ctx, FN_NAME, &[x1_ty, x2_ty]), } }, ) .unwrap(); Ok(result.to_basic_value_enum()) } /// Invokes the `np_ldexp` builtin function. pub fn call_numpy_ldexp<'ctx, G: CodeGenerator + ?Sized>( generator: &mut G, ctx: &mut CodeGenContext<'ctx, '_>, (x1_ty, x1): (Type, BasicValueEnum<'ctx>), (x2_ty, x2): (Type, BasicValueEnum<'ctx>), ) -> Result, String> { const FN_NAME: &str = "np_ldexp"; let x1 = ScalarOrNDArray::from_value(generator, ctx, (x1_ty, x1)); let x2 = ScalarOrNDArray::from_value(generator, ctx, (x2_ty, x2)); let result = ScalarOrNDArray::broadcasting_starmap( generator, ctx, &[x1, x2], ctx.ctx.f64_type().into(), |_, ctx, scalars| { let x1_scalar = scalars[0]; let x2_scalar = scalars[1]; match (x1_scalar, x2_scalar) { (BasicValueEnum::FloatValue(x1_scalar), BasicValueEnum::IntValue(x2_scalar)) => { debug_assert_eq!(x1.get_dtype(), ctx.ctx.f64_type().into()); debug_assert_eq!(x2.get_dtype(), ctx.ctx.i32_type().into()); Ok(extern_fns::call_ldexp(ctx, x1_scalar, x2_scalar, None).into()) } _ => unsupported_type(ctx, FN_NAME, &[x1_ty, x2_ty]), } }, ) .unwrap(); Ok(result.to_basic_value_enum()) } /// Invokes the `np_hypot` builtin function. pub fn call_numpy_hypot<'ctx, G: CodeGenerator + ?Sized>( generator: &mut G, ctx: &mut CodeGenContext<'ctx, '_>, (x1_ty, x1): (Type, BasicValueEnum<'ctx>), (x2_ty, x2): (Type, BasicValueEnum<'ctx>), ) -> Result, String> { const FN_NAME: &str = "np_hypot"; let x1 = ScalarOrNDArray::from_value(generator, ctx, (x1_ty, x1)); let x2 = ScalarOrNDArray::from_value(generator, ctx, (x2_ty, x2)); let result = ScalarOrNDArray::broadcasting_starmap( generator, ctx, &[x1, x2], ctx.ctx.f64_type().into(), |_, ctx, scalars| { let x1_scalar = scalars[0]; let x2_scalar = scalars[1]; match (x1_scalar, x2_scalar) { (BasicValueEnum::FloatValue(x1), BasicValueEnum::FloatValue(x2)) => { Ok(extern_fns::call_hypot(ctx, x1, x2, None).into()) } _ => unsupported_type(ctx, FN_NAME, &[x1_ty, x2_ty]), } }, ) .unwrap(); Ok(result.to_basic_value_enum()) } /// Invokes the `np_nextafter` builtin function. pub fn call_numpy_nextafter<'ctx, G: CodeGenerator + ?Sized>( generator: &mut G, ctx: &mut CodeGenContext<'ctx, '_>, (x1_ty, x1): (Type, BasicValueEnum<'ctx>), (x2_ty, x2): (Type, BasicValueEnum<'ctx>), ) -> Result, String> { const FN_NAME: &str = "np_nextafter"; let x1 = ScalarOrNDArray::from_value(generator, ctx, (x1_ty, x1)); let x2 = ScalarOrNDArray::from_value(generator, ctx, (x2_ty, x2)); let result = ScalarOrNDArray::broadcasting_starmap( generator, ctx, &[x1, x2], ctx.ctx.f64_type().into(), |_, ctx, scalars| { let x1_scalar = scalars[0]; let x2_scalar = scalars[1]; match (x1_scalar, x2_scalar) { (BasicValueEnum::FloatValue(x1), BasicValueEnum::FloatValue(x2)) => { Ok(extern_fns::call_nextafter(ctx, x1, x2, None).into()) } _ => unsupported_type(ctx, FN_NAME, &[x1_ty, x2_ty]), } }, ) .unwrap(); Ok(result.to_basic_value_enum()) } /// Invokes the `np_linalg_cholesky` linalg function pub fn call_np_linalg_cholesky<'ctx, G: CodeGenerator + ?Sized>( generator: &mut G, ctx: &mut CodeGenContext<'ctx, '_>, (x1_ty, x1): (Type, BasicValueEnum<'ctx>), ) -> Result, String> { const FN_NAME: &str = "np_linalg_cholesky"; let BasicValueEnum::PointerValue(x1) = x1 else { unsupported_type(ctx, FN_NAME, &[x1_ty]) }; let x1 = NDArrayType::from_unifier_type(generator, ctx, x1_ty).map_value(x1, None); if !x1.get_type().element_type().is_float_type() { unsupported_type(ctx, FN_NAME, &[x1_ty]); } let out = NDArrayType::new(generator, ctx.ctx, ctx.ctx.f64_type().into(), Some(2)) .construct_uninitialized(generator, ctx, None); out.copy_shape_from_ndarray(generator, ctx, x1); unsafe { out.create_data(generator, ctx) }; let x1_c = x1.make_contiguous_ndarray(generator, ctx); let out_c = out.make_contiguous_ndarray(generator, ctx); extern_fns::call_np_linalg_cholesky( ctx, x1_c.as_base_value().into(), out_c.as_base_value().into(), None, ); Ok(out.as_base_value().into()) } /// Invokes the `np_linalg_qr` linalg function pub fn call_np_linalg_qr<'ctx, G: CodeGenerator + ?Sized>( generator: &mut G, ctx: &mut CodeGenContext<'ctx, '_>, (x1_ty, x1): (Type, BasicValueEnum<'ctx>), ) -> Result, String> { const FN_NAME: &str = "np_linalg_qr"; let llvm_usize = generator.get_size_type(ctx.ctx); let BasicValueEnum::PointerValue(x1) = x1 else { unsupported_type(ctx, FN_NAME, &[x1_ty]) }; let x1 = NDArrayType::from_unifier_type(generator, ctx, x1_ty).map_value(x1, None); if !x1.get_type().element_type().is_float_type() { unsupported_type(ctx, FN_NAME, &[x1_ty]); } let x1_shape = x1.shape(); let d0 = unsafe { x1_shape.get_typed_unchecked(ctx, generator, &llvm_usize.const_zero(), None) }; let d1 = unsafe { x1_shape.get_typed_unchecked(ctx, generator, &llvm_usize.const_int(1, false), None) }; let dk = llvm_intrinsics::call_int_smin(ctx, d0, d1, None); let out_ndarray_ty = NDArrayType::new(generator, ctx.ctx, ctx.ctx.f64_type().into(), Some(2)); let q = out_ndarray_ty.construct_dyn_shape(generator, ctx, &[d0, dk], None); unsafe { q.create_data(generator, ctx) }; let r = out_ndarray_ty.construct_dyn_shape(generator, ctx, &[dk, d1], None); unsafe { r.create_data(generator, ctx) }; let x1_c = x1.make_contiguous_ndarray(generator, ctx); let q_c = q.make_contiguous_ndarray(generator, ctx); let r_c = r.make_contiguous_ndarray(generator, ctx); extern_fns::call_np_linalg_qr( ctx, x1_c.as_base_value().into(), q_c.as_base_value().into(), r_c.as_base_value().into(), None, ); let q = q.as_base_value().as_basic_value_enum(); let r = r.as_base_value().as_basic_value_enum(); let tuple = TupleType::new(generator, ctx.ctx, &[q.get_type(), r.get_type()]) .construct_from_objects(ctx, [q, r], None); Ok(tuple.as_base_value().into()) } /// Invokes the `np_linalg_svd` linalg function pub fn call_np_linalg_svd<'ctx, G: CodeGenerator + ?Sized>( generator: &mut G, ctx: &mut CodeGenContext<'ctx, '_>, (x1_ty, x1): (Type, BasicValueEnum<'ctx>), ) -> Result, String> { const FN_NAME: &str = "np_linalg_svd"; let llvm_usize = generator.get_size_type(ctx.ctx); let BasicValueEnum::PointerValue(x1) = x1 else { unsupported_type(ctx, FN_NAME, &[x1_ty]) }; let x1 = NDArrayType::from_unifier_type(generator, ctx, x1_ty).map_value(x1, None); if !x1.get_type().element_type().is_float_type() { unsupported_type(ctx, FN_NAME, &[x1_ty]); } let x1_shape = x1.shape(); let d0 = unsafe { x1_shape.get_typed_unchecked(ctx, generator, &llvm_usize.const_zero(), None) }; let d1 = unsafe { x1_shape.get_typed_unchecked(ctx, generator, &llvm_usize.const_int(1, false), None) }; let dk = llvm_intrinsics::call_int_smin(ctx, d0, d1, None); let out_ndarray1_ty = NDArrayType::new(generator, ctx.ctx, ctx.ctx.f64_type().into(), Some(1)); let out_ndarray2_ty = NDArrayType::new(generator, ctx.ctx, ctx.ctx.f64_type().into(), Some(2)); let u = out_ndarray2_ty.construct_dyn_shape(generator, ctx, &[d0, d0], None); unsafe { u.create_data(generator, ctx) }; let s = out_ndarray1_ty.construct_dyn_shape(generator, ctx, &[dk], None); unsafe { s.create_data(generator, ctx) }; let vh = out_ndarray2_ty.construct_dyn_shape(generator, ctx, &[d1, d1], None); unsafe { vh.create_data(generator, ctx) }; let x1_c = x1.make_contiguous_ndarray(generator, ctx); let u_c = u.make_contiguous_ndarray(generator, ctx); let s_c = s.make_contiguous_ndarray(generator, ctx); let vh_c = vh.make_contiguous_ndarray(generator, ctx); extern_fns::call_np_linalg_svd( ctx, x1_c.as_base_value().into(), u_c.as_base_value().into(), s_c.as_base_value().into(), vh_c.as_base_value().into(), None, ); let u = u.as_base_value().as_basic_value_enum(); let s = s.as_base_value().as_basic_value_enum(); let vh = vh.as_base_value().as_basic_value_enum(); let tuple = TupleType::new(generator, ctx.ctx, &[u.get_type(), s.get_type(), vh.get_type()]) .construct_from_objects(ctx, [u, s, vh], None); Ok(tuple.as_base_value().into()) } /// Invokes the `np_linalg_inv` linalg function pub fn call_np_linalg_inv<'ctx, G: CodeGenerator + ?Sized>( generator: &mut G, ctx: &mut CodeGenContext<'ctx, '_>, (x1_ty, x1): (Type, BasicValueEnum<'ctx>), ) -> Result, String> { const FN_NAME: &str = "np_linalg_inv"; let BasicValueEnum::PointerValue(x1) = x1 else { unsupported_type(ctx, FN_NAME, &[x1_ty]) }; let x1 = NDArrayType::from_unifier_type(generator, ctx, x1_ty).map_value(x1, None); if !x1.get_type().element_type().is_float_type() { unsupported_type(ctx, FN_NAME, &[x1_ty]); } let out = NDArrayType::new(generator, ctx.ctx, ctx.ctx.f64_type().into(), Some(2)) .construct_uninitialized(generator, ctx, None); out.copy_shape_from_ndarray(generator, ctx, x1); unsafe { out.create_data(generator, ctx) }; let x1_c = x1.make_contiguous_ndarray(generator, ctx); let out_c = out.make_contiguous_ndarray(generator, ctx); extern_fns::call_np_linalg_inv( ctx, x1_c.as_base_value().into(), out_c.as_base_value().into(), None, ); Ok(out.as_base_value().into()) } /// Invokes the `np_linalg_pinv` linalg function pub fn call_np_linalg_pinv<'ctx, G: CodeGenerator + ?Sized>( generator: &mut G, ctx: &mut CodeGenContext<'ctx, '_>, (x1_ty, x1): (Type, BasicValueEnum<'ctx>), ) -> Result, String> { const FN_NAME: &str = "np_linalg_pinv"; let llvm_usize = generator.get_size_type(ctx.ctx); let BasicValueEnum::PointerValue(x1) = x1 else { unsupported_type(ctx, FN_NAME, &[x1_ty]) }; let x1 = NDArrayType::from_unifier_type(generator, ctx, x1_ty).map_value(x1, None); if !x1.get_type().element_type().is_float_type() { unsupported_type(ctx, FN_NAME, &[x1_ty]); } let x1_shape = x1.shape(); let d0 = unsafe { x1_shape.get_typed_unchecked(ctx, generator, &llvm_usize.const_zero(), None) }; let d1 = unsafe { x1_shape.get_typed_unchecked(ctx, generator, &llvm_usize.const_int(1, false), None) }; let out = NDArrayType::new(generator, ctx.ctx, ctx.ctx.f64_type().into(), Some(2)) .construct_dyn_shape(generator, ctx, &[d0, d1], None); unsafe { out.create_data(generator, ctx) }; let x1_c = x1.make_contiguous_ndarray(generator, ctx); let out_c = out.make_contiguous_ndarray(generator, ctx); extern_fns::call_np_linalg_pinv( ctx, x1_c.as_base_value().into(), out_c.as_base_value().into(), None, ); Ok(out.as_base_value().into()) } /// Invokes the `sp_linalg_lu` linalg function pub fn call_sp_linalg_lu<'ctx, G: CodeGenerator + ?Sized>( generator: &mut G, ctx: &mut CodeGenContext<'ctx, '_>, (x1_ty, x1): (Type, BasicValueEnum<'ctx>), ) -> Result, String> { const FN_NAME: &str = "sp_linalg_lu"; let llvm_usize = generator.get_size_type(ctx.ctx); let BasicValueEnum::PointerValue(x1) = x1 else { unsupported_type(ctx, FN_NAME, &[x1_ty]) }; let x1 = NDArrayType::from_unifier_type(generator, ctx, x1_ty).map_value(x1, None); if !x1.get_type().element_type().is_float_type() { unsupported_type(ctx, FN_NAME, &[x1_ty]); } let x1_shape = x1.shape(); let d0 = unsafe { x1_shape.get_typed_unchecked(ctx, generator, &llvm_usize.const_zero(), None) }; let d1 = unsafe { x1_shape.get_typed_unchecked(ctx, generator, &llvm_usize.const_int(1, false), None) }; let dk = llvm_intrinsics::call_int_smin(ctx, d0, d1, None); let out_ndarray_ty = NDArrayType::new(generator, ctx.ctx, ctx.ctx.f64_type().into(), Some(2)); let l = out_ndarray_ty.construct_dyn_shape(generator, ctx, &[d0, dk], None); unsafe { l.create_data(generator, ctx) }; let u = out_ndarray_ty.construct_dyn_shape(generator, ctx, &[dk, d1], None); unsafe { u.create_data(generator, ctx) }; let x1_c = x1.make_contiguous_ndarray(generator, ctx); let l_c = l.make_contiguous_ndarray(generator, ctx); let u_c = u.make_contiguous_ndarray(generator, ctx); extern_fns::call_sp_linalg_lu( ctx, x1_c.as_base_value().into(), l_c.as_base_value().into(), u_c.as_base_value().into(), None, ); let l = l.as_base_value().as_basic_value_enum(); let u = u.as_base_value().as_basic_value_enum(); let tuple = TupleType::new(generator, ctx.ctx, &[l.get_type(), u.get_type()]) .construct_from_objects(ctx, [l, u], None); Ok(tuple.as_base_value().into()) } /// Invokes the `np_linalg_matrix_power` linalg function pub fn call_np_linalg_matrix_power<'ctx, G: CodeGenerator + ?Sized>( generator: &mut G, ctx: &mut CodeGenContext<'ctx, '_>, (x1_ty, x1): (Type, BasicValueEnum<'ctx>), (x2_ty, x2): (Type, BasicValueEnum<'ctx>), ) -> Result, String> { const FN_NAME: &str = "np_linalg_matrix_power"; let llvm_usize = generator.get_size_type(ctx.ctx); let BasicValueEnum::PointerValue(x1) = x1 else { unsupported_type(ctx, FN_NAME, &[x1_ty, x2_ty]) }; let (elem_ty, ndims) = unpack_ndarray_var_tys(&mut ctx.unifier, x1_ty); let ndims = extract_ndims(&ctx.unifier, ndims); let x1_elem_ty = ctx.get_llvm_type(generator, elem_ty); let x1 = NDArrayValue::from_pointer_value(x1, x1_elem_ty, Some(ndims), llvm_usize, None); if !x1.get_type().element_type().is_float_type() { unsupported_type(ctx, FN_NAME, &[x1_ty]); } // x2 is a float, but we are promoting this to a 1D ndarray (.shape == [1]) for uniformity in function call. let x2 = call_float(generator, ctx, (x2_ty, x2))?; let BasicValueEnum::FloatValue(x2) = x2 else { unsupported_type(ctx, FN_NAME, &[x1_ty, x2_ty]) }; let x2 = NDArrayType::new_unsized(generator, ctx.ctx, ctx.ctx.f64_type().into()) .construct_unsized(generator, ctx, &x2, None); // x2.shape == [] let x2 = x2.atleast_nd(generator, ctx, 1); // x2.shape == [1] let out = NDArrayType::new(generator, ctx.ctx, ctx.ctx.f64_type().into(), Some(2)) .construct_uninitialized(generator, ctx, None); out.copy_shape_from_ndarray(generator, ctx, x1); unsafe { out.create_data(generator, ctx) }; let x1_c = x1.make_contiguous_ndarray(generator, ctx); let x2_c = x2.make_contiguous_ndarray(generator, ctx); let out_c = out.make_contiguous_ndarray(generator, ctx); extern_fns::call_np_linalg_matrix_power( ctx, x1_c.as_base_value().into(), x2_c.as_base_value().into(), out_c.as_base_value().into(), None, ); Ok(out.as_base_value().into()) } /// Invokes the `np_linalg_det` linalg function pub fn call_np_linalg_det<'ctx, G: CodeGenerator + ?Sized>( generator: &mut G, ctx: &mut CodeGenContext<'ctx, '_>, (x1_ty, x1): (Type, BasicValueEnum<'ctx>), ) -> Result, String> { const FN_NAME: &str = "np_linalg_matrix_power"; let llvm_usize = generator.get_size_type(ctx.ctx); let BasicValueEnum::PointerValue(x1) = x1 else { unsupported_type(ctx, FN_NAME, &[x1_ty]) }; let x1 = NDArrayType::from_unifier_type(generator, ctx, x1_ty).map_value(x1, None); if !x1.get_type().element_type().is_float_type() { unsupported_type(ctx, FN_NAME, &[x1_ty]); } // The output is a float64, but we are using an ndarray (shape == [1]) for uniformity in function call. let det = NDArrayType::new(generator, ctx.ctx, ctx.ctx.f64_type().into(), Some(1)) .construct_const_shape(generator, ctx, &[1], None); unsafe { det.create_data(generator, ctx) }; let x1_c = x1.make_contiguous_ndarray(generator, ctx); let out_c = det.make_contiguous_ndarray(generator, ctx); extern_fns::call_np_linalg_det( ctx, x1_c.as_base_value().into(), out_c.as_base_value().into(), None, ); // Get the determinant out of `out` let det = unsafe { det.data().get_unchecked(ctx, generator, &llvm_usize.const_zero(), None) }; Ok(det) } /// Invokes the `sp_linalg_schur` linalg function pub fn call_sp_linalg_schur<'ctx, G: CodeGenerator + ?Sized>( generator: &mut G, ctx: &mut CodeGenContext<'ctx, '_>, (x1_ty, x1): (Type, BasicValueEnum<'ctx>), ) -> Result, String> { const FN_NAME: &str = "sp_linalg_schur"; let BasicValueEnum::PointerValue(x1) = x1 else { unsupported_type(ctx, FN_NAME, &[x1_ty]) }; let x1 = NDArrayType::from_unifier_type(generator, ctx, x1_ty).map_value(x1, None); assert_eq!(x1.get_type().ndims(), Some(2)); if !x1.get_type().element_type().is_float_type() { unsupported_type(ctx, FN_NAME, &[x1_ty]); } let out_ndarray_ty = NDArrayType::new(generator, ctx.ctx, ctx.ctx.f64_type().into(), Some(2)); let t = out_ndarray_ty.construct_uninitialized(generator, ctx, None); t.copy_shape_from_ndarray(generator, ctx, x1); unsafe { t.create_data(generator, ctx) }; let z = out_ndarray_ty.construct_uninitialized(generator, ctx, None); z.copy_shape_from_ndarray(generator, ctx, x1); unsafe { z.create_data(generator, ctx) }; let x1_c = x1.make_contiguous_ndarray(generator, ctx); let t_c = t.make_contiguous_ndarray(generator, ctx); let z_c = z.make_contiguous_ndarray(generator, ctx); extern_fns::call_sp_linalg_schur( ctx, x1_c.as_base_value().into(), t_c.as_base_value().into(), z_c.as_base_value().into(), None, ); let t = t.as_base_value().as_basic_value_enum(); let z = z.as_base_value().as_basic_value_enum(); let tuple = TupleType::new(generator, ctx.ctx, &[t.get_type(), z.get_type()]) .construct_from_objects(ctx, [t, z], None); Ok(tuple.as_base_value().into()) } /// Invokes the `sp_linalg_hessenberg` linalg function pub fn call_sp_linalg_hessenberg<'ctx, G: CodeGenerator + ?Sized>( generator: &mut G, ctx: &mut CodeGenContext<'ctx, '_>, (x1_ty, x1): (Type, BasicValueEnum<'ctx>), ) -> Result, String> { const FN_NAME: &str = "sp_linalg_hessenberg"; let BasicValueEnum::PointerValue(x1) = x1 else { unsupported_type(ctx, FN_NAME, &[x1_ty]) }; let x1 = NDArrayType::from_unifier_type(generator, ctx, x1_ty).map_value(x1, None); assert_eq!(x1.get_type().ndims(), Some(2)); if !x1.get_type().element_type().is_float_type() { unsupported_type(ctx, FN_NAME, &[x1_ty]); } let out_ndarray_ty = NDArrayType::new(generator, ctx.ctx, ctx.ctx.f64_type().into(), Some(2)); let h = out_ndarray_ty.construct_uninitialized(generator, ctx, None); h.copy_shape_from_ndarray(generator, ctx, x1); unsafe { h.create_data(generator, ctx) }; let q = out_ndarray_ty.construct_uninitialized(generator, ctx, None); q.copy_shape_from_ndarray(generator, ctx, x1); unsafe { q.create_data(generator, ctx) }; let x1_c = x1.make_contiguous_ndarray(generator, ctx); let h_c = h.make_contiguous_ndarray(generator, ctx); let q_c = q.make_contiguous_ndarray(generator, ctx); extern_fns::call_sp_linalg_hessenberg( ctx, x1_c.as_base_value().into(), h_c.as_base_value().into(), q_c.as_base_value().into(), None, ); let h = h.as_base_value().as_basic_value_enum(); let q = q.as_base_value().as_basic_value_enum(); let tuple = TupleType::new(generator, ctx.ctx, &[h.get_type(), q.get_type()]) .construct_from_objects(ctx, [h, q], None); Ok(tuple.as_base_value().into()) }