forked from M-Labs/nac3
1
0
Fork 0

Compare commits

..

5 Commits

60 changed files with 4108 additions and 7404 deletions

1
.gitignore vendored
View File

@ -1,4 +1,3 @@
__pycache__
/target
/nac3standalone/demo/linalg/target
nix/windows/msys2

219
Cargo.lock generated
View File

@ -26,9 +26,9 @@ dependencies = [
[[package]]
name = "anstream"
version = "0.6.15"
version = "0.6.14"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "64e15c1ab1f89faffbf04a634d5e1962e9074f2741eef6d97f3c4e322426d526"
checksum = "418c75fa768af9c03be99d17643f93f79bbba589895012a80e3452a19ddda15b"
dependencies = [
"anstyle",
"anstyle-parse",
@ -41,36 +41,36 @@ dependencies = [
[[package]]
name = "anstyle"
version = "1.0.8"
version = "1.0.7"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "1bec1de6f59aedf83baf9ff929c98f2ad654b97c9510f4e70cf6f661d49fd5b1"
checksum = "038dfcf04a5feb68e9c60b21c9625a54c2c0616e79b72b0fd87075a056ae1d1b"
[[package]]
name = "anstyle-parse"
version = "0.2.5"
version = "0.2.4"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "eb47de1e80c2b463c735db5b217a0ddc39d612e7ac9e2e96a5aed1f57616c1cb"
checksum = "c03a11a9034d92058ceb6ee011ce58af4a9bf61491aa7e1e59ecd24bd40d22d4"
dependencies = [
"utf8parse",
]
[[package]]
name = "anstyle-query"
version = "1.1.1"
version = "1.1.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "6d36fc52c7f6c869915e99412912f22093507da8d9e942ceaf66fe4b7c14422a"
checksum = "ad186efb764318d35165f1758e7dcef3b10628e26d41a44bc5550652e6804391"
dependencies = [
"windows-sys 0.52.0",
"windows-sys",
]
[[package]]
name = "anstyle-wincon"
version = "3.0.4"
version = "3.0.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "5bf74e1b6e971609db8ca7a9ce79fd5768ab6ae46441c572e46cf596f59e57f8"
checksum = "61a38449feb7068f52bb06c12759005cf459ee52bb4adc1d5a7c4322d716fb19"
dependencies = [
"anstyle",
"windows-sys 0.52.0",
"windows-sys",
]
[[package]]
@ -117,9 +117,9 @@ checksum = "1fd0f2584146f6f2ef48085050886acf353beff7305ebd1ae69500e27c67f64b"
[[package]]
name = "cc"
version = "1.1.7"
version = "1.0.100"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "26a5c3fd7bfa1ce3897a3a3501d362b2d87b7f2583ebcb4a949ec25911025cbc"
checksum = "c891175c3fb232128f48de6590095e59198bbeb8620c310be349bfc3afd12c7b"
[[package]]
name = "cfg-if"
@ -129,9 +129,9 @@ checksum = "baf1de4339761588bc0619e3cbc0120ee582ebb74b53b4efbf79117bd2da40fd"
[[package]]
name = "clap"
version = "4.5.13"
version = "4.5.7"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "0fbb260a053428790f3de475e304ff84cdbc4face759ea7a3e64c1edd938a7fc"
checksum = "5db83dced34638ad474f39f250d7fea9598bdd239eaced1bdf45d597da0f433f"
dependencies = [
"clap_builder",
"clap_derive",
@ -139,9 +139,9 @@ dependencies = [
[[package]]
name = "clap_builder"
version = "4.5.13"
version = "4.5.7"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "64b17d7ea74e9f833c7dbf2cbe4fb12ff26783eda4782a8975b72f895c9b4d99"
checksum = "f7e204572485eb3fbf28f871612191521df159bc3e15a9f5064c66dba3a8c05f"
dependencies = [
"anstream",
"anstyle",
@ -151,27 +151,27 @@ dependencies = [
[[package]]
name = "clap_derive"
version = "4.5.13"
version = "4.5.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "501d359d5f3dcaf6ecdeee48833ae73ec6e42723a1e52419c79abf9507eec0a0"
checksum = "c780290ccf4fb26629baa7a1081e68ced113f1d3ec302fa5948f1c381ebf06c6"
dependencies = [
"heck 0.5.0",
"proc-macro2",
"quote",
"syn 2.0.72",
"syn 2.0.68",
]
[[package]]
name = "clap_lex"
version = "0.7.2"
version = "0.7.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "1462739cb27611015575c0c11df5df7601141071f07518d56fcc1be504cbec97"
checksum = "4b82cf0babdbd58558212896d1a4272303a57bdb245c2bf1147185fb45640e70"
[[package]]
name = "colorchoice"
version = "1.0.2"
version = "1.0.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "d3fd119d74b830634cea2a0f58bbd0d54540518a14397557951e79340abc28c0"
checksum = "0b6a852b24ab71dffc585bcb46eaf7959d175cb865a7152e35b348d1b2960422"
[[package]]
name = "console"
@ -182,7 +182,7 @@ dependencies = [
"encode_unicode",
"lazy_static",
"libc",
"windows-sys 0.52.0",
"windows-sys",
]
[[package]]
@ -270,9 +270,9 @@ dependencies = [
[[package]]
name = "either"
version = "1.13.0"
version = "1.12.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "60b1af1c220855b6ceac025d3f6ecdd2b7c4894bfe9cd9bda4fbb4bc7c0d4cf0"
checksum = "3dca9240753cf90908d7e4aac30f630662b02aebaa1b58a3cadabdb23385b58b"
[[package]]
name = "ena"
@ -302,7 +302,7 @@ source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "534c5cf6194dfab3db3242765c03bbe257cf92f22b38f6bc0c58d59108a820ba"
dependencies = [
"libc",
"windows-sys 0.52.0",
"windows-sys",
]
[[package]]
@ -385,9 +385,9 @@ dependencies = [
[[package]]
name = "indexmap"
version = "2.3.0"
version = "2.2.6"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "de3fc2e30ba82dd1b3911c8de1ffc143c74a914a14e99514d7637e3099df5ea0"
checksum = "168fb715dda47215e360912c096649d23d58bf392ac62f73919e831745e40f26"
dependencies = [
"equivalent",
"hashbrown 0.14.5",
@ -421,7 +421,7 @@ checksum = "4fa4d8d74483041a882adaa9a29f633253a66dde85055f0495c121620ac484b2"
dependencies = [
"proc-macro2",
"quote",
"syn 2.0.72",
"syn 2.0.68",
]
[[package]]
@ -440,9 +440,9 @@ dependencies = [
[[package]]
name = "is_terminal_polyfill"
version = "1.70.1"
version = "1.70.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "7943c866cc5cd64cbc25b2e01621d07fa8eb2a1a23160ee81ce38704e97b8ecf"
checksum = "f8478577c03552c21db0e2724ffb8986a5ce7af88107e6be5d2ee6e158c12800"
[[package]]
name = "itertools"
@ -513,9 +513,9 @@ checksum = "97b3888a4aecf77e811145cadf6eef5901f4782c53886191b2f693f24761847c"
[[package]]
name = "libloading"
version = "0.8.5"
version = "0.8.4"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "4979f22fdb869068da03c9f7528f8297c6fd2606bc3a4affe42e6a823fdb8da4"
checksum = "e310b3a6b5907f99202fcdb4960ff45b93735d7c7d96b760fcff8db2dc0e103d"
dependencies = [
"cfg-if",
"windows-targets",
@ -568,9 +568,9 @@ dependencies = [
[[package]]
name = "log"
version = "0.4.22"
version = "0.4.21"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "a7a70ba024b9dc04c27ea2f0c0548feb474ec5c54bba33a7f72f873a39d07b24"
checksum = "90ed8c1e510134f979dbc4f070f87d4313098b704861a105fe34231c70a3901c"
[[package]]
name = "memchr"
@ -616,7 +616,7 @@ name = "nac3core"
version = "0.1.0"
dependencies = [
"crossbeam",
"indexmap 2.3.0",
"indexmap 2.2.6",
"indoc",
"inkwell",
"insta",
@ -706,7 +706,7 @@ source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "b4c5cc86750666a3ed20bdaf5ca2a0344f9c67674cae0515bec2da16fbaa47db"
dependencies = [
"fixedbitset",
"indexmap 2.3.0",
"indexmap 2.2.6",
]
[[package]]
@ -749,7 +749,7 @@ dependencies = [
"phf_shared 0.11.2",
"proc-macro2",
"quote",
"syn 2.0.72",
"syn 2.0.68",
]
[[package]]
@ -778,18 +778,15 @@ checksum = "5be167a7af36ee22fe3115051bc51f6e6c7054c9348e28deb4f49bd6f705a315"
[[package]]
name = "portable-atomic"
version = "1.7.0"
version = "1.6.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "da544ee218f0d287a911e9c99a39a8c9bc8fcad3cb8db5959940044ecfc67265"
checksum = "7170ef9988bc169ba16dd36a7fa041e5c4cbeb6a35b76d4c03daded371eae7c0"
[[package]]
name = "ppv-lite86"
version = "0.2.20"
version = "0.2.17"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "77957b295656769bb8ad2b6a6b09d897d94f05c41b069aede1fcdaa675eaea04"
dependencies = [
"zerocopy",
]
checksum = "5b40af805b3121feab8a3c29f04d8ad262fa8e0561883e7653e024ae4479e6de"
[[package]]
name = "precomputed-hash"
@ -853,7 +850,7 @@ dependencies = [
"proc-macro2",
"pyo3-macros-backend",
"quote",
"syn 2.0.72",
"syn 2.0.68",
]
[[package]]
@ -866,7 +863,7 @@ dependencies = [
"proc-macro2",
"pyo3-build-config",
"quote",
"syn 2.0.72",
"syn 2.0.68",
]
[[package]]
@ -930,9 +927,9 @@ dependencies = [
[[package]]
name = "redox_syscall"
version = "0.5.3"
version = "0.5.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "2a908a6e00f1fdd0dfd9c0eb08ce85126f6d8bbda50017e74bc4a4b7d4a926a4"
checksum = "c82cf8cff14456045f55ec4241383baeff27af886adb72ffb2162f99911de0fd"
dependencies = [
"bitflags",
]
@ -950,9 +947,9 @@ dependencies = [
[[package]]
name = "regex"
version = "1.10.6"
version = "1.10.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "4219d74c6b67a3654a9fbebc4b419e22126d13d2f3c4a07ee0cb61ff79a79619"
checksum = "b91213439dad192326a0d7c6ee3955910425f441d7038e0d6933b0aec5c4517f"
dependencies = [
"aho-corasick",
"memchr",
@ -994,7 +991,7 @@ dependencies = [
"errno",
"libc",
"linux-raw-sys",
"windows-sys 0.52.0",
"windows-sys",
]
[[package]]
@ -1032,32 +1029,31 @@ checksum = "61697e0a1c7e512e84a621326239844a24d8207b4669b41bc18b32ea5cbf988b"
[[package]]
name = "serde"
version = "1.0.204"
version = "1.0.203"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "bc76f558e0cbb2a839d37354c575f1dc3fdc6546b5be373ba43d95f231bf7c12"
checksum = "7253ab4de971e72fb7be983802300c30b5a7f0c2e56fab8abfc6a214307c0094"
dependencies = [
"serde_derive",
]
[[package]]
name = "serde_derive"
version = "1.0.204"
version = "1.0.203"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "e0cd7e117be63d3c3678776753929474f3b04a43a080c744d6b0ae2a8c28e222"
checksum = "500cbc0ebeb6f46627f50f3f5811ccf6bf00643be300b4c3eabc0ef55dc5b5ba"
dependencies = [
"proc-macro2",
"quote",
"syn 2.0.72",
"syn 2.0.68",
]
[[package]]
name = "serde_json"
version = "1.0.122"
version = "1.0.118"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "784b6203951c57ff748476b126ccb5e8e2959a5c19e5c617ab1956be3dbc68da"
checksum = "d947f6b3163d8857ea16c4fa0dd4840d52f3041039a85decd46867eb1abef2e4"
dependencies = [
"itoa",
"memchr",
"ryu",
"serde",
]
@ -1076,9 +1072,9 @@ dependencies = [
[[package]]
name = "similar"
version = "2.6.0"
version = "2.5.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "1de1d4f81173b03af4c0cbed3c898f6bff5b870e4a7f5d6f4057d62a7a4b686e"
checksum = "fa42c91313f1d05da9b26f267f931cf178d4aba455b4c4622dd7355eb80c6640"
[[package]]
name = "siphasher"
@ -1138,7 +1134,7 @@ dependencies = [
"proc-macro2",
"quote",
"rustversion",
"syn 2.0.72",
"syn 2.0.68",
]
[[package]]
@ -1154,9 +1150,9 @@ dependencies = [
[[package]]
name = "syn"
version = "2.0.72"
version = "2.0.68"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "dc4b9b9bf2add8093d3f2c0204471e951b2285580335de42f9d2534f3ae7a8af"
checksum = "901fa70d88b9d6c98022e23b4136f9f3e54e4662c3bc1bd1d84a42a9a0f0c1e9"
dependencies = [
"proc-macro2",
"quote",
@ -1165,21 +1161,20 @@ dependencies = [
[[package]]
name = "target-lexicon"
version = "0.12.16"
version = "0.12.14"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "61c41af27dd6d1e27b1b16b489db798443478cef1f06a660c96db617ba5de3b1"
checksum = "e1fc403891a21bcfb7c37834ba66a547a8f402146eba7265b5a6d88059c9ff2f"
[[package]]
name = "tempfile"
version = "3.11.0"
version = "3.10.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "b8fcd239983515c23a32fb82099f97d0b11b8c72f654ed659363a95c3dad7a53"
checksum = "85b77fafb263dd9d05cbeac119526425676db3784113aa9295c88498cbf8bff1"
dependencies = [
"cfg-if",
"fastrand",
"once_cell",
"rustix",
"windows-sys 0.52.0",
"windows-sys",
]
[[package]]
@ -1208,22 +1203,22 @@ dependencies = [
[[package]]
name = "thiserror"
version = "1.0.63"
version = "1.0.61"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "c0342370b38b6a11b6cc11d6a805569958d54cfa061a29969c3b5ce2ea405724"
checksum = "c546c80d6be4bc6a00c0f01730c08df82eaa7a7a61f11d656526506112cc1709"
dependencies = [
"thiserror-impl",
]
[[package]]
name = "thiserror-impl"
version = "1.0.63"
version = "1.0.61"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "a4558b58466b9ad7ca0f102865eccc95938dca1a74a856f2b57b6629050da261"
checksum = "46c3384250002a6d5af4d114f2845d37b57521033f30d5c3f46c4d70e1197533"
dependencies = [
"proc-macro2",
"quote",
"syn 2.0.72",
"syn 2.0.68",
]
[[package]]
@ -1341,9 +1336,9 @@ checksum = "06abde3611657adf66d383f00b093d7faecc7fa57071cce2578660c9f1010821"
[[package]]
name = "version_check"
version = "0.9.5"
version = "0.9.4"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "0b928f33d975fc6ad9f86c8f283853ad26bdd5b10b7f1542aa2fa15e2289105a"
checksum = "49874b5167b65d7193b8aba1567f5c7d93d001cafc34600cee003eda787e483f"
[[package]]
name = "walkdir"
@ -1379,11 +1374,11 @@ checksum = "ac3b87c63620426dd9b991e5ce0329eff545bccbbb34f3be09ff6fb6ab51b7b6"
[[package]]
name = "winapi-util"
version = "0.1.9"
version = "0.1.8"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "cf221c93e13a30d793f7645a0e7762c55d169dbb0a49671918a2319d289b10bb"
checksum = "4d4cc384e1e73b93bafa6fb4f1df8c41695c8a91cf9c4c64358067d15a7b6c6b"
dependencies = [
"windows-sys 0.59.0",
"windows-sys",
]
[[package]]
@ -1401,20 +1396,11 @@ dependencies = [
"windows-targets",
]
[[package]]
name = "windows-sys"
version = "0.59.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "1e38bc4d79ed67fd075bcc251a1c39b32a1776bbe92e5bef1f0bf1f8c531853b"
dependencies = [
"windows-targets",
]
[[package]]
name = "windows-targets"
version = "0.52.6"
version = "0.52.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "9b724f72796e036ab90c1021d4780d4d3d648aca59e491e6b98e725b84e99973"
checksum = "6f0713a46559409d202e70e28227288446bf7841d3211583a4b53e3f6d96e7eb"
dependencies = [
"windows_aarch64_gnullvm",
"windows_aarch64_msvc",
@ -1428,51 +1414,51 @@ dependencies = [
[[package]]
name = "windows_aarch64_gnullvm"
version = "0.52.6"
version = "0.52.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "32a4622180e7a0ec044bb555404c800bc9fd9ec262ec147edd5989ccd0c02cd3"
checksum = "7088eed71e8b8dda258ecc8bac5fb1153c5cffaf2578fc8ff5d61e23578d3263"
[[package]]
name = "windows_aarch64_msvc"
version = "0.52.6"
version = "0.52.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "09ec2a7bb152e2252b53fa7803150007879548bc709c039df7627cabbd05d469"
checksum = "9985fd1504e250c615ca5f281c3f7a6da76213ebd5ccc9561496568a2752afb6"
[[package]]
name = "windows_i686_gnu"
version = "0.52.6"
version = "0.52.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "8e9b5ad5ab802e97eb8e295ac6720e509ee4c243f69d781394014ebfe8bbfa0b"
checksum = "88ba073cf16d5372720ec942a8ccbf61626074c6d4dd2e745299726ce8b89670"
[[package]]
name = "windows_i686_gnullvm"
version = "0.52.6"
version = "0.52.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "0eee52d38c090b3caa76c563b86c3a4bd71ef1a819287c19d586d7334ae8ed66"
checksum = "87f4261229030a858f36b459e748ae97545d6f1ec60e5e0d6a3d32e0dc232ee9"
[[package]]
name = "windows_i686_msvc"
version = "0.52.6"
version = "0.52.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "240948bc05c5e7c6dabba28bf89d89ffce3e303022809e73deaefe4f6ec56c66"
checksum = "db3c2bf3d13d5b658be73463284eaf12830ac9a26a90c717b7f771dfe97487bf"
[[package]]
name = "windows_x86_64_gnu"
version = "0.52.6"
version = "0.52.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "147a5c80aabfbf0c7d901cb5895d1de30ef2907eb21fbbab29ca94c5b08b1a78"
checksum = "4e4246f76bdeff09eb48875a0fd3e2af6aada79d409d33011886d3e1581517d9"
[[package]]
name = "windows_x86_64_gnullvm"
version = "0.52.6"
version = "0.52.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "24d5b23dc417412679681396f2b49f3de8c1473deb516bd34410872eff51ed0d"
checksum = "852298e482cd67c356ddd9570386e2862b5673c85bd5f88df9ab6802b334c596"
[[package]]
name = "windows_x86_64_msvc"
version = "0.52.6"
version = "0.52.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "589f6da84c646204747d1270a2a5661ea66ed1cced2631d546fdfb155959f9ec"
checksum = "bec47e5bfd1bff0eeaf6d8b485cc1074891a197ab4225d504cb7a1ab88b02bf0"
[[package]]
name = "yaml-rust"
@ -1485,21 +1471,20 @@ dependencies = [
[[package]]
name = "zerocopy"
version = "0.7.35"
version = "0.7.34"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "1b9b4fd18abc82b8136838da5d50bae7bdea537c574d8dc1a34ed098d6c166f0"
checksum = "ae87e3fcd617500e5d106f0380cf7b77f3c6092aae37191433159dda23cfb087"
dependencies = [
"byteorder",
"zerocopy-derive",
]
[[package]]
name = "zerocopy-derive"
version = "0.7.35"
version = "0.7.34"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "fa4f8080344d4671fb4e831a13ad1e68092748387dfc4f55e356242fae12ce3e"
checksum = "15e934569e47891f7d9411f1a451d947a60e000ab3bd24fbb970f000387d1b3b"
dependencies = [
"proc-macro2",
"quote",
"syn 2.0.72",
"syn 2.0.68",
]

View File

@ -2,11 +2,11 @@
"nodes": {
"nixpkgs": {
"locked": {
"lastModified": 1721924956,
"narHash": "sha256-Sb1jlyRO+N8jBXEX9Pg9Z1Qb8Bw9QyOgLDNMEpmjZ2M=",
"lastModified": 1718530797,
"narHash": "sha256-pup6cYwtgvzDpvpSCFh1TEUjw2zkNpk8iolbKnyFmmU=",
"owner": "NixOS",
"repo": "nixpkgs",
"rev": "5ad6a14c6bf098e98800b091668718c336effc95",
"rev": "b60ebf54c15553b393d144357375ea956f89e9a9",
"type": "github"
},
"original": {

View File

@ -6,7 +6,6 @@
outputs = { self, nixpkgs }:
let
pkgs = import nixpkgs { system = "x86_64-linux"; };
pkgs32 = import nixpkgs { system = "i686-linux"; };
in rec {
packages.x86_64-linux = rec {
llvm-nac3 = pkgs.callPackage ./nix/llvm {};
@ -16,22 +15,6 @@
ln -s ${pkgs.llvmPackages_14.clang-unwrapped}/bin/clang $out/bin/clang-irrt
ln -s ${pkgs.llvmPackages_14.llvm.out}/bin/llvm-as $out/bin/llvm-as-irrt
'';
demo-linalg-stub = pkgs.rustPlatform.buildRustPackage {
name = "demo-linalg-stub";
src = ./nac3standalone/demo/linalg;
cargoLock = {
lockFile = ./nac3standalone/demo/linalg/Cargo.lock;
};
doCheck = false;
};
demo-linalg-stub32 = pkgs32.rustPlatform.buildRustPackage {
name = "demo-linalg-stub32";
src = ./nac3standalone/demo/linalg;
cargoLock = {
lockFile = ./nac3standalone/demo/linalg/Cargo.lock;
};
doCheck = false;
};
nac3artiq = pkgs.python3Packages.toPythonModule (
pkgs.rustPlatform.buildRustPackage rec {
name = "nac3artiq";
@ -41,7 +24,7 @@
lockFile = ./Cargo.lock;
};
passthru.cargoLock = cargoLock;
nativeBuildInputs = [ pkgs.python3 (pkgs.wrapClangMulti pkgs.llvmPackages_14.clang) llvm-tools-irrt pkgs.llvmPackages_14.llvm.out llvm-nac3 ];
nativeBuildInputs = [ pkgs.python3 pkgs.llvmPackages_14.clang llvm-tools-irrt pkgs.llvmPackages_14.llvm.out llvm-nac3 ];
buildInputs = [ pkgs.python3 llvm-nac3 ];
checkInputs = [ (pkgs.python3.withPackages(ps: [ ps.numpy ps.scipy ])) ];
checkPhase =
@ -49,9 +32,7 @@
echo "Checking nac3standalone demos..."
pushd nac3standalone/demo
patchShebangs .
export DEMO_LINALG_STUB=${demo-linalg-stub}/lib/liblinalg.a
export DEMO_LINALG_STUB32=${demo-linalg-stub32}/lib/liblinalg.a
./check_demos.sh -i686
./check_demos.sh
popd
echo "Running Cargo tests..."
cargoCheckHook
@ -168,7 +149,7 @@
buildInputs = with pkgs; [
# build dependencies
packages.x86_64-linux.llvm-nac3
(pkgs.wrapClangMulti llvmPackages_14.clang) llvmPackages_14.llvm.out # for running nac3standalone demos
llvmPackages_14.clang llvmPackages_14.llvm.out # for running nac3standalone demos
packages.x86_64-linux.llvm-tools-irrt
cargo
rustc
@ -181,11 +162,6 @@
pre-commit
rustfmt
];
shellHook =
''
export DEMO_LINALG_STUB=${packages.x86_64-linux.demo-linalg-stub}/lib/liblinalg.a
export DEMO_LINALG_STUB32=${packages.x86_64-linux.demo-linalg-stub32}/lib/liblinalg.a
'';
};
devShells.x86_64-linux.msys2 = pkgs.mkShell {
name = "nac3-dev-shell-msys2";

View File

@ -1,24 +0,0 @@
from min_artiq import *
from numpy import int32
@nac3
class EmptyList:
core: KernelInvariant[Core]
def __init__(self):
self.core = Core()
@rpc
def get_empty(self) -> list[int32]:
return []
@kernel
def run(self):
a: list[int32] = self.get_empty()
if a != []:
raise ValueError
if __name__ == "__main__":
EmptyList().run()

View File

@ -6,8 +6,8 @@ use nac3core::{
CodeGenContext, CodeGenerator,
},
symbol_resolver::ValueEnum,
toplevel::{helper::PrimDef, numpy::unpack_ndarray_var_tys, DefinitionId, GenCall},
typecheck::typedef::{iter_type_vars, FunSignature, FuncArg, Type, TypeEnum, VarMap},
toplevel::{helper::PrimDef, DefinitionId, GenCall},
typecheck::typedef::{FunSignature, FuncArg, GenericObjectType, Type, TypeEnum, VarMap},
};
use nac3parser::ast::{Expr, ExprKind, Located, Stmt, StmtKind, StrRef};
@ -23,6 +23,7 @@ use pyo3::{
use crate::{symbol_resolver::InnerResolver, timeline::TimeFns};
use nac3core::toplevel::primitive_type;
use std::{
collections::hash_map::DefaultHasher,
collections::HashMap,
@ -386,21 +387,21 @@ fn gen_rpc_tag(
} else {
let ty_enum = ctx.unifier.get_ty(ty);
match &*ty_enum {
TTuple { ty, is_vararg_ctx: false } => {
TTuple { ty } => {
buffer.push(b't');
buffer.push(ty.len() as u8);
for ty in ty {
gen_rpc_tag(ctx, *ty, buffer)?;
}
}
TObj { obj_id, params, .. } if *obj_id == PrimDef::List.id() => {
let ty = iter_type_vars(params).next().unwrap().ty;
TList { ty } => {
buffer.push(b'l');
gen_rpc_tag(ctx, ty, buffer)?;
gen_rpc_tag(ctx, *ty, buffer)?;
}
TObj { obj_id, .. } if *obj_id == PrimDef::NDArray.id() => {
let (ndarray_dtype, ndarray_ndims) = unpack_ndarray_var_tys(&mut ctx.unifier, ty);
let ndarray_ty = primitive_type::NDArrayType::create(ty, &mut ctx.unifier);
let ndarray_dtype = ndarray_ty.dtype_tvar(&mut ctx.unifier).ty;
let ndarray_ndims = ndarray_ty.ndims_tvar(&mut ctx.unifier).ty;
let ndarray_ndims = if let TLiteral { values, .. } =
&*ctx.unifier.get_ty_immutable(ndarray_ndims)
{
@ -646,7 +647,7 @@ pub fn attributes_writeback(
let ty = ty.unwrap();
match &*ctx.unifier.get_ty(ty) {
TypeEnum::TObj { fields, obj_id, .. }
if *obj_id != ctx.primitives.option.obj_id(&ctx.unifier).unwrap() =>
if *obj_id != ctx.primitives.option.obj_id(&ctx.unifier) =>
{
// we only care about primitive attributes
// for non-primitive attributes, they should be in another global
@ -676,10 +677,8 @@ pub fn attributes_writeback(
host_attributes.append(pydict)?;
}
}
TypeEnum::TObj { obj_id, params, .. } if *obj_id == PrimDef::List.id() => {
let elem_ty = iter_type_vars(params).next().unwrap().ty;
if gen_rpc_tag(ctx, elem_ty, &mut scratch_buffer).is_ok() {
TypeEnum::TList { ty: elem_ty } => {
if gen_rpc_tag(ctx, *elem_ty, &mut scratch_buffer).is_ok() {
let pydict = PyDict::new(py);
pydict.set_item("obj", val)?;
host_attributes.append(pydict)?;
@ -700,7 +699,6 @@ pub fn attributes_writeback(
name: i.to_string().into(),
ty: *ty,
default_value: None,
is_vararg: false,
})
.collect(),
ret: ctx.primitives.none,

View File

@ -24,7 +24,6 @@ use std::rc::Rc;
use std::sync::Arc;
use inkwell::{
context::Context,
memory_buffer::MemoryBuffer,
module::{Linkage, Module},
passes::PassBuilderOptions,
@ -265,7 +264,7 @@ impl Nac3 {
arg_names.len(),
));
}
for (i, FuncArg { ty, default_value, name, .. }) in args.iter().enumerate() {
for (i, FuncArg { ty, default_value, name }) in args.iter().enumerate() {
let in_name = match arg_names.get(i) {
Some(n) => n,
None if default_value.is_none() => {
@ -626,9 +625,7 @@ impl Nac3 {
let buffer = buffer.as_slice().into();
membuffer.lock().push(buffer);
})));
let size_t = Context::create()
.ptr_sized_int_type(&self.get_llvm_target_machine().get_target_data(), None)
.get_bit_width();
let size_t = if self.isa == Isa::Host { 64 } else { 32 };
let num_threads = if is_multithreaded() { 4 } else { 1 };
let thread_names: Vec<String> = (0..num_threads).map(|_| "main".to_string()).collect();
let threads: Vec<_> = thread_names
@ -647,9 +644,6 @@ impl Nac3 {
ArtiqCodeGenerator::new("attributes_writeback".to_string(), size_t, self.time_fns);
let context = inkwell::context::Context::create();
let module = context.create_module("attributes_writeback");
let target_machine = self.llvm_options.create_target_machine().unwrap();
module.set_data_layout(&target_machine.get_target_data().get_data_layout());
module.set_triple(&target_machine.get_triple());
let builder = context.create_builder();
let (_, module, _) = gen_func_impl(
&context,
@ -869,7 +863,6 @@ impl Nac3 {
name: "t".into(),
ty: primitive.int64,
default_value: None,
is_vararg: false,
}],
ret: primitive.none,
vars: VarMap::new(),
@ -889,7 +882,6 @@ impl Nac3 {
name: "dt".into(),
ty: primitive.int64,
default_value: None,
is_vararg: false,
}],
ret: primitive.none,
vars: VarMap::new(),

View File

@ -4,20 +4,17 @@ use inkwell::{
AddressSpace,
};
use itertools::Itertools;
use nac3core::typecheck::typedef::{GenericObjectType, GenericTypeAdapter};
use nac3core::{
codegen::{
classes::{NDArrayType, ProxyType},
CodeGenContext, CodeGenerator,
},
symbol_resolver::{StaticValue, SymbolResolver, SymbolValue, ValueEnum},
toplevel::{
helper::PrimDef,
numpy::{make_ndarray_ty, unpack_ndarray_var_tys},
DefinitionId, TopLevelDef,
},
toplevel::{helper::PrimDef, primitive_type, DefinitionId, TopLevelDef},
typecheck::{
type_inferencer::PrimitiveStore,
typedef::{into_var_map, iter_type_vars, Type, TypeEnum, TypeVar, Unifier, VarMap},
typedef::{Type, TypeEnum, TypeVar, Unifier, VarMap},
},
};
use nac3parser::ast::{self, StrRef};
@ -329,31 +326,25 @@ impl InnerResolver {
Ok(Ok((primitives.exception, true)))
} else if ty_id == self.primitive_ids.list {
// do not handle type var param and concrete check here
let list_tvar = if let TypeEnum::TObj { obj_id, params, .. } =
&*unifier.get_ty_immutable(primitives.list)
{
assert_eq!(*obj_id, PrimDef::List.id());
iter_type_vars(params).nth(0).unwrap()
} else {
unreachable!()
};
let var = unifier.get_dummy_var().ty;
let list = unifier
.subst(primitives.list, &into_var_map([TypeVar { id: list_tvar.id, ty: var }]))
.unwrap();
let list = unifier.add_ty(TypeEnum::TList { ty: var });
Ok(Ok((list, false)))
} else if ty_id == self.primitive_ids.ndarray {
// do not handle type var param and concrete check here
let var = unifier.get_dummy_var().ty;
let ndims = unifier.get_fresh_const_generic_var(primitives.usize(), None, None).ty;
let ndarray = make_ndarray_ty(unifier, primitives, Some(var), Some(ndims));
Ok(Ok((ndarray, false)))
let ndarray = primitive_type::NDArrayType::from_primitive(
unifier,
primitives,
Some(var),
Some(ndims),
);
Ok(Ok((ndarray.into(), false)))
} else if ty_id == self.primitive_ids.tuple {
// do not handle type var param and concrete check here
Ok(Ok((unifier.add_ty(TypeEnum::TTuple { ty: vec![], is_vararg_ctx: false }), false)))
Ok(Ok((unifier.add_ty(TypeEnum::TTuple { ty: vec![] }), false)))
} else if ty_id == self.primitive_ids.option {
Ok(Ok((primitives.option, false)))
Ok(Ok((primitives.option.into(), false)))
} else if ty_id == self.primitive_ids.none {
unreachable!("none cannot be typeid")
} else if let Some(def_id) = self.pyid_to_def.read().get(&ty_id).copied() {
@ -471,7 +462,7 @@ impl InnerResolver {
};
match &*unifier.get_ty(origin_ty) {
TypeEnum::TObj { obj_id, .. } if *obj_id == PrimDef::List.id() => {
TypeEnum::TList { .. } => {
if args.len() == 1 {
let ty = match self.get_pyty_obj_type(
py,
@ -488,21 +479,7 @@ impl InnerResolver {
"type list should take concrete parameters in typevar range".into(),
));
}
let list_tvar = if let TypeEnum::TObj { obj_id, params, .. } =
&*unifier.get_ty_immutable(primitives.list)
{
assert_eq!(*obj_id, PrimDef::List.id());
iter_type_vars(params).nth(0).unwrap()
} else {
unreachable!()
};
let list = unifier
.subst(
primitives.list,
&into_var_map([TypeVar { id: list_tvar.id, ty: ty.0 }]),
)
.unwrap();
Ok(Ok((list, true)))
Ok(Ok((unifier.add_ty(TypeEnum::TList { ty: ty.0 }), true)))
} else {
return Ok(Err(format!(
"type list needs exactly 1 type parameters, found {}",
@ -534,7 +511,16 @@ impl InnerResolver {
));
}
Ok(Ok((make_ndarray_ty(unifier, primitives, Some(ty.0), None), true)))
Ok(Ok((
primitive_type::NDArrayType::from_primitive(
unifier,
primitives,
Some(ty.0),
None,
)
.into(),
true,
)))
}
TypeEnum::TTuple { .. } => {
let args = match args
@ -555,10 +541,7 @@ impl InnerResolver {
Err(err) => return Ok(Err(err)),
_ => return Ok(Err("tuple type needs at least 1 type parameters".to_string()))
};
Ok(Ok((
unifier.add_ty(TypeEnum::TTuple { ty: args, is_vararg_ctx: false }),
true,
)))
Ok(Ok((unifier.add_ty(TypeEnum::TTuple { ty: args }), true)))
}
TypeEnum::TObj { params, obj_id, .. } => {
let subst = {
@ -721,12 +704,11 @@ impl InnerResolver {
};
match (&*unifier.get_ty(extracted_ty), inst_check) {
// do the instantiation for these four types
(TypeEnum::TObj { obj_id, params, .. }, false) if *obj_id == PrimDef::List.id() => {
let ty = iter_type_vars(params).nth(0).unwrap().ty;
(TypeEnum::TList { ty }, false) => {
let len: usize = self.helper.len_fn.call1(py, (obj,))?.extract(py)?;
if len == 0 {
assert!(matches!(
&*unifier.get_ty(ty),
&*unifier.get_ty(*ty),
TypeEnum::TVar { fields: None, range, .. }
if range.is_empty()
));
@ -735,25 +717,8 @@ impl InnerResolver {
let actual_ty =
self.get_list_elem_type(py, obj, len, unifier, defs, primitives)?;
match actual_ty {
Ok(t) => match unifier.unify(ty, t) {
Ok(()) => {
let list_tvar = if let TypeEnum::TObj { obj_id, params, .. } =
&*unifier.get_ty_immutable(primitives.list)
{
assert_eq!(*obj_id, PrimDef::List.id());
iter_type_vars(params).nth(0).unwrap()
} else {
unreachable!()
};
let list = unifier
.subst(
primitives.list,
&into_var_map([TypeVar { id: list_tvar.id, ty }]),
)
.unwrap();
Ok(Ok(list))
}
Ok(t) => match unifier.unify(*ty, t) {
Ok(()) => Ok(Ok(unifier.add_ty(TypeEnum::TList { ty: *ty }))),
Err(e) => Ok(Err(format!(
"type error ({}) for the list",
e.to_display(unifier)
@ -764,7 +729,9 @@ impl InnerResolver {
}
}
(TypeEnum::TObj { obj_id, .. }, false) if *obj_id == PrimDef::NDArray.id() => {
let (ty, ndims) = unpack_ndarray_var_tys(unifier, extracted_ty);
let ndarray = primitive_type::NDArrayType::create(extracted_ty, unifier);
let ty = ndarray.dtype_tvar(unifier).ty;
let ndims = ndarray.ndims_tvar(unifier).ty;
let len: usize = obj.getattr("ndim")?.extract()?;
if len == 0 {
assert!(matches!(
@ -779,10 +746,14 @@ impl InnerResolver {
match dtype_ty {
Ok((t, _)) => match unifier.unify(ty, t) {
Ok(()) => {
let ndarray_ty =
make_ndarray_ty(unifier, primitives, Some(ty), Some(ndims));
let ndarray_ty = primitive_type::NDArrayType::from_primitive(
unifier,
primitives,
Some(ty),
Some(ndims),
);
Ok(Ok(ndarray_ty))
Ok(Ok(ndarray_ty.into()))
}
Err(e) => Ok(Err(format!(
"type error ({}) for the ndarray",
@ -800,14 +771,12 @@ impl InnerResolver {
.map(|elem| self.get_obj_type(py, elem, unifier, defs, primitives))
.collect();
let types = types?;
Ok(types.map(|types| {
unifier.add_ty(TypeEnum::TTuple { ty: types, is_vararg_ctx: false })
}))
Ok(types.map(|types| unifier.add_ty(TypeEnum::TTuple { ty: types })))
}
// special handling for option type since its class member layout in python side
// is special and cannot be mapped directly to a nac3 type as below
(TypeEnum::TObj { obj_id, params, .. }, false)
if *obj_id == primitives.option.obj_id(unifier).unwrap() =>
if *obj_id == primitives.option.obj_id(unifier) =>
{
let Ok(field_data) = obj.getattr("_nac3_option") else {
unreachable!("cannot be None")
@ -815,22 +784,24 @@ impl InnerResolver {
// if is `none`
let zelf_id: u64 = self.helper.id_fn.call1(py, (obj,))?.extract(py)?;
if zelf_id == self.primitive_ids.none {
let ty_enum = unifier.get_ty_immutable(primitives.option);
let TypeEnum::TObj { params, .. } = ty_enum.as_ref() else {
unreachable!("must be tobj")
};
let extracted_ty = GenericTypeAdapter::create(extracted_ty, unifier);
let var_map = extracted_ty.iter_var_map(unifier, |tvar_iter, unifier| {
tvar_iter
.map(|tvar| {
let TypeEnum::TVar { id, range, name, loc, .. } =
&*unifier.get_ty(tvar.ty)
else {
unreachable!()
};
let var_map = into_var_map(iter_type_vars(params).map(|tvar| {
let TypeEnum::TVar { id, range, name, loc, .. } = &*unifier.get_ty(tvar.ty)
else {
unreachable!()
};
assert_eq!(*id, tvar.id);
let ty = unifier.get_fresh_var_with_range(range, *name, *loc).ty;
TypeVar { id: *id, ty }
}));
return Ok(Ok(unifier.subst(primitives.option, &var_map).unwrap()));
assert_eq!(*id, tvar.id);
let ty = unifier.get_fresh_var_with_range(range, *name, *loc).ty;
TypeVar { id: *id, ty }
})
.map(TypeVar::into)
.collect::<VarMap>()
});
return Ok(Ok(unifier.subst(primitives.option.into(), &var_map).unwrap()));
}
let ty = match self.get_obj_type(py, field_data, unifier, defs, primitives)? {
@ -845,19 +816,26 @@ impl InnerResolver {
let res = unifier.subst(extracted_ty, &new_var_map).unwrap_or(extracted_ty);
Ok(Ok(res))
}
(TypeEnum::TObj { params, fields, .. }, false) => {
(TypeEnum::TObj { fields, .. }, false) => {
self.pyid_to_type.write().insert(py_obj_id, extracted_ty);
let var_map = into_var_map(iter_type_vars(params).map(|tvar| {
let TypeEnum::TVar { id, range, name, loc, .. } = &*unifier.get_ty(tvar.ty)
else {
unreachable!()
};
let extracted_ty = GenericTypeAdapter::create(extracted_ty, unifier);
let var_map = extracted_ty.iter_var_map(unifier, |tvar_iter, unifier| {
tvar_iter
.map(|tvar| {
let TypeEnum::TVar { id, range, name, loc, .. } =
&*unifier.get_ty(tvar.ty)
else {
unreachable!()
};
assert_eq!(*id, tvar.id);
let ty = unifier.get_fresh_var_with_range(range, *name, *loc).ty;
TypeVar { id: *id, ty }
}));
let mut instantiate_obj = || {
assert_eq!(*id, tvar.id);
let ty = unifier.get_fresh_var_with_range(range, *name, *loc).ty;
TypeVar { id: *id, ty }
})
.map(TypeVar::into)
.collect::<VarMap>()
});
let instantiate_obj = || {
// loop through non-function fields of the class to get the instantiated value
for field in fields {
let name: String = (*field.0).into();
@ -892,6 +870,7 @@ impl InnerResolver {
return Ok(Err("object is not of concrete type".into()));
}
}
let extracted_ty = extracted_ty.into();
let extracted_ty =
unifier.subst(extracted_ty, &var_map).unwrap_or(extracted_ty);
Ok(Ok(extracted_ty))
@ -990,21 +969,15 @@ impl InnerResolver {
}
let len: usize = self.helper.len_fn.call1(py, (obj,))?.extract(py)?;
let elem_ty = match ctx.unifier.get_ty_immutable(expected_ty).as_ref() {
TypeEnum::TObj { obj_id, params, .. } if *obj_id == PrimDef::List.id() => {
iter_type_vars(params).nth(0).unwrap().ty
}
_ => unreachable!("must be list"),
};
let size_t = generator.get_size_type(ctx.ctx);
let ty = if len == 0
&& matches!(&*ctx.unifier.get_ty_immutable(elem_ty), TypeEnum::TVar { .. })
let elem_ty = if let TypeEnum::TList { ty } =
ctx.unifier.get_ty_immutable(expected_ty).as_ref()
{
// The default type for zero-length lists of unknown element type is size_t
size_t.into()
*ty
} else {
ctx.get_llvm_type(generator, elem_ty)
unreachable!("must be list")
};
let ty = ctx.get_llvm_type(generator, elem_ty);
let size_t = generator.get_size_type(ctx.ctx);
let arr_ty = ctx
.ctx
.struct_type(&[ty.ptr_type(AddressSpace::default()).into(), size_t.into()], false);
@ -1081,8 +1054,9 @@ impl InnerResolver {
} else {
unreachable!("must be ndarray")
};
let (ndarray_dtype, ndarray_ndims) =
unpack_ndarray_var_tys(&mut ctx.unifier, ndarray_ty);
let ndarray_ty = primitive_type::NDArrayType::create(ndarray_ty, &mut ctx.unifier);
let ndarray_dtype = ndarray_ty.dtype_tvar(&mut ctx.unifier).ty;
let ndarray_ndims = ndarray_ty.ndims_tvar(&mut ctx.unifier).ty;
let llvm_usize = generator.get_size_type(ctx.ctx);
let ndarray_dtype_llvm_ty = ctx.get_llvm_type(generator, ndarray_dtype);
@ -1208,9 +1182,7 @@ impl InnerResolver {
Ok(Some(ndarray.as_pointer_value().into()))
} else if ty_id == self.primitive_ids.tuple {
let expected_ty_enum = ctx.unifier.get_ty_immutable(expected_ty);
let TypeEnum::TTuple { ty, is_vararg_ctx: false } = expected_ty_enum.as_ref() else {
unreachable!()
};
let TypeEnum::TTuple { ty } = expected_ty_enum.as_ref() else { unreachable!() };
let tup_tys = ty.iter();
let elements: &PyTuple = obj.downcast()?;
@ -1231,7 +1203,7 @@ impl InnerResolver {
} else if ty_id == self.primitive_ids.option {
let option_val_ty = match ctx.unifier.get_ty_immutable(expected_ty).as_ref() {
TypeEnum::TObj { obj_id, params, .. }
if *obj_id == ctx.primitives.option.obj_id(&ctx.unifier).unwrap() =>
if *obj_id == ctx.primitives.option.obj_id(&ctx.unifier) =>
{
*params.iter().next().unwrap().1
}

View File

@ -8,7 +8,7 @@ use std::{
};
fn main() {
const FILE: &str = "src/codegen/irrt/irrt.cpp";
const FILE: &str = "src/codegen/irrt/irrt.c";
/*
* HACK: Sadly, clang doesn't let us emit generic LLVM bitcode.
@ -17,11 +17,7 @@ fn main() {
let flags: &[&str] = &[
"--target=wasm32",
FILE,
"-x",
"c++",
"-fno-discard-value-names",
"-fno-exceptions",
"-fno-rtti",
match env::var("PROFILE").as_deref() {
Ok("debug") => "-O0",
Ok("release") => "-O3",

File diff suppressed because it is too large Load Diff

View File

@ -713,25 +713,12 @@ impl<'ctx> ListValue<'ctx> {
/// If `size` is [None], the size stored in the field of this instance is used instead.
pub fn create_data(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
ctx: &CodeGenContext<'ctx, '_>,
elem_ty: BasicTypeEnum<'ctx>,
size: Option<IntValue<'ctx>>,
) {
let size = size.unwrap_or_else(|| self.load_size(ctx, None));
let data = ctx
.builder
.build_select(
ctx.builder
.build_int_compare(IntPredicate::NE, size, self.llvm_usize.const_zero(), "")
.unwrap(),
ctx.builder.build_array_alloca(elem_ty, size, "").unwrap(),
elem_ty.ptr_type(AddressSpace::default()).const_zero(),
"",
)
.map(BasicValueEnum::into_pointer_value)
.unwrap();
self.store_data(ctx, data);
self.store_data(ctx, ctx.builder.build_array_alloca(elem_ty, size, "").unwrap());
}
/// Returns the double-indirection pointer to the `data` array, as if by calling `getelementptr`
@ -1717,10 +1704,9 @@ impl<'ctx, Index: UntypedArrayLikeAccessor<'ctx>> ArrayLikeIndexer<'ctx, Index>
gen_for_callback_incrementing(
generator,
ctx,
None,
llvm_usize.const_zero(),
(len, false),
|generator, ctx, _, i| {
|generator, ctx, i| {
let (dim_idx, dim_sz) = unsafe {
(
indices.get_unchecked(ctx, generator, &i, None).into_int_value(),

View File

@ -25,7 +25,6 @@ pub struct ConcreteFuncArg {
pub name: StrRef,
pub ty: ConcreteType,
pub default_value: Option<SymbolValue>,
pub is_vararg: bool,
}
#[derive(Clone, Debug)]
@ -47,7 +46,9 @@ pub enum ConcreteTypeEnum {
TPrimitive(Primitive),
TTuple {
ty: Vec<ConcreteType>,
is_vararg_ctx: bool,
},
TList {
ty: ConcreteType,
},
TObj {
obj_id: DefinitionId,
@ -104,16 +105,8 @@ impl ConcreteTypeStore {
.iter()
.map(|arg| ConcreteFuncArg {
name: arg.name,
ty: if arg.is_vararg {
let tuple_ty = unifier
.add_ty(TypeEnum::TTuple { ty: vec![arg.ty], is_vararg_ctx: true });
self.from_unifier_type(unifier, primitives, tuple_ty, cache)
} else {
self.from_unifier_type(unifier, primitives, arg.ty, cache)
},
ty: self.from_unifier_type(unifier, primitives, arg.ty, cache),
default_value: arg.default_value.clone(),
is_vararg: arg.is_vararg,
})
.collect(),
ret: self.from_unifier_type(unifier, primitives, signature.ret, cache),
@ -168,12 +161,14 @@ impl ConcreteTypeStore {
cache.insert(ty, None);
let ty_enum = unifier.get_ty(ty);
let result = match &*ty_enum {
TypeEnum::TTuple { ty, is_vararg_ctx } => ConcreteTypeEnum::TTuple {
TypeEnum::TTuple { ty } => ConcreteTypeEnum::TTuple {
ty: ty
.iter()
.map(|t| self.from_unifier_type(unifier, primitives, *t, cache))
.collect(),
is_vararg_ctx: *is_vararg_ctx,
},
TypeEnum::TList { ty } => ConcreteTypeEnum::TList {
ty: self.from_unifier_type(unifier, primitives, *ty, cache),
},
TypeEnum::TObj { obj_id, fields, params } => ConcreteTypeEnum::TObj {
obj_id: *obj_id,
@ -259,13 +254,15 @@ impl ConcreteTypeStore {
*cache.get_mut(&cty).unwrap() = Some(ty);
return ty;
}
ConcreteTypeEnum::TTuple { ty, is_vararg_ctx } => TypeEnum::TTuple {
ConcreteTypeEnum::TTuple { ty } => TypeEnum::TTuple {
ty: ty
.iter()
.map(|cty| self.to_unifier_type(unifier, primitives, *cty, cache))
.collect(),
is_vararg_ctx: *is_vararg_ctx,
},
ConcreteTypeEnum::TList { ty } => {
TypeEnum::TList { ty: self.to_unifier_type(unifier, primitives, *ty, cache) }
}
ConcreteTypeEnum::TVirtual { ty } => {
TypeEnum::TVirtual { ty: self.to_unifier_type(unifier, primitives, *ty, cache) }
}
@ -289,7 +286,6 @@ impl ConcreteTypeStore {
name: arg.name,
ty: self.to_unifier_type(unifier, primitives, arg.ty, cache),
default_value: arg.default_value.clone(),
is_vararg: false,
})
.collect(),
ret: self.to_unifier_type(unifier, primitives, *ret, cache),

File diff suppressed because it is too large Load Diff

View File

@ -4,97 +4,514 @@ use itertools::Either;
use crate::codegen::CodeGenContext;
/// Macro to generate extern function
/// Both function return type and function parameter type are `FloatValue`
///
/// Arguments:
/// * `unary/binary`: Whether the extern function requires one (unary) or two (binary) operands
/// * `$fn_name:ident`: The identifier of the rust function to be generated
/// * `$extern_fn:literal`: Name of underlying extern function
///
/// Optional Arguments:
/// * `$(,$attributes:literal)*)`: Attributes linked with the extern function
/// The default attributes are "mustprogress", "nofree", "nounwind", "willreturn", and "writeonly"
/// These will be used unless other attributes are specified
/// * `$(,$args:ident)*`: Operands of the extern function
/// The data type of these operands will be set to `FloatValue`
///
macro_rules! generate_extern_fn {
("unary", $fn_name:ident, $extern_fn:literal) => {
generate_extern_fn!($fn_name, $extern_fn, arg, "mustprogress", "nofree", "nounwind", "willreturn", "writeonly");
};
("unary", $fn_name:ident, $extern_fn:literal $(,$attributes:literal)*) => {
generate_extern_fn!($fn_name, $extern_fn, arg $(,$attributes)*);
};
("binary", $fn_name:ident, $extern_fn:literal) => {
generate_extern_fn!($fn_name, $extern_fn, arg1, arg2, "mustprogress", "nofree", "nounwind", "willreturn", "writeonly");
};
("binary", $fn_name:ident, $extern_fn:literal $(,$attributes:literal)*) => {
generate_extern_fn!($fn_name, $extern_fn, arg1, arg2 $(,$attributes)*);
};
($fn_name:ident, $extern_fn:literal $(,$args:ident)* $(,$attributes:literal)*) => {
#[doc = concat!("Invokes the [`", stringify!($extern_fn), "`](https://en.cppreference.com/w/c/numeric/math/", stringify!($llvm_name), ") function." )]
pub fn $fn_name<'ctx>(
ctx: &CodeGenContext<'ctx, '_>
$(,$args: FloatValue<'ctx>)*,
name: Option<&str>,
) -> FloatValue<'ctx> {
const FN_NAME: &str = $extern_fn;
/// Invokes the [`tan`](https://en.cppreference.com/w/c/numeric/math/tan) function.
pub fn call_tan<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
arg: FloatValue<'ctx>,
name: Option<&str>,
) -> FloatValue<'ctx> {
const FN_NAME: &str = "tan";
let llvm_f64 = ctx.ctx.f64_type();
$(debug_assert_eq!($args.get_type(), llvm_f64);)*
let llvm_f64 = ctx.ctx.f64_type();
debug_assert_eq!(arg.get_type(), llvm_f64);
let extern_fn = ctx.module.get_function(FN_NAME).unwrap_or_else(|| {
let fn_type = llvm_f64.fn_type(&[$($args.get_type().into()),*], false);
let func = ctx.module.add_function(FN_NAME, fn_type, None);
for attr in [$($attributes),*] {
func.add_attribute(
AttributeLoc::Function,
ctx.ctx.create_enum_attribute(Attribute::get_named_enum_kind_id(attr), 0),
);
}
func
});
ctx.builder
.build_call(extern_fn, &[$($args.into()),*], name.unwrap_or_default())
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
let extern_fn = ctx.module.get_function(FN_NAME).unwrap_or_else(|| {
let fn_type = llvm_f64.fn_type(&[llvm_f64.into()], false);
let func = ctx.module.add_function(FN_NAME, fn_type, None);
for attr in ["mustprogress", "nofree", "nounwind", "willreturn", "writeonly"] {
func.add_attribute(
AttributeLoc::Function,
ctx.ctx.create_enum_attribute(Attribute::get_named_enum_kind_id(attr), 0),
);
}
};
func
});
ctx.builder
.build_call(extern_fn, &[arg.into()], name.unwrap_or_default())
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}
generate_extern_fn!("unary", call_tan, "tan");
generate_extern_fn!("unary", call_asin, "asin");
generate_extern_fn!("unary", call_acos, "acos");
generate_extern_fn!("unary", call_atan, "atan");
generate_extern_fn!("unary", call_sinh, "sinh");
generate_extern_fn!("unary", call_cosh, "cosh");
generate_extern_fn!("unary", call_tanh, "tanh");
generate_extern_fn!("unary", call_asinh, "asinh");
generate_extern_fn!("unary", call_acosh, "acosh");
generate_extern_fn!("unary", call_atanh, "atanh");
generate_extern_fn!("unary", call_expm1, "expm1");
generate_extern_fn!(
"unary",
call_cbrt,
"cbrt",
"mustprogress",
"nofree",
"nosync",
"nounwind",
"readonly",
"willreturn"
);
generate_extern_fn!("unary", call_erf, "erf", "nounwind");
generate_extern_fn!("unary", call_erfc, "erfc", "nounwind");
generate_extern_fn!("unary", call_j1, "j1", "nounwind");
/// Invokes the [`asin`](https://en.cppreference.com/w/c/numeric/math/asin) function.
pub fn call_asin<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
arg: FloatValue<'ctx>,
name: Option<&str>,
) -> FloatValue<'ctx> {
const FN_NAME: &str = "asin";
generate_extern_fn!("binary", call_atan2, "atan2");
generate_extern_fn!("binary", call_hypot, "hypot", "nounwind");
generate_extern_fn!("binary", call_nextafter, "nextafter", "nounwind");
let llvm_f64 = ctx.ctx.f64_type();
debug_assert_eq!(arg.get_type(), llvm_f64);
let extern_fn = ctx.module.get_function(FN_NAME).unwrap_or_else(|| {
let fn_type = llvm_f64.fn_type(&[llvm_f64.into()], false);
let func = ctx.module.add_function(FN_NAME, fn_type, None);
for attr in ["mustprogress", "nofree", "nounwind", "willreturn", "writeonly"] {
func.add_attribute(
AttributeLoc::Function,
ctx.ctx.create_enum_attribute(Attribute::get_named_enum_kind_id(attr), 0),
);
}
func
});
ctx.builder
.build_call(extern_fn, &[arg.into()], name.unwrap_or_default())
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Invokes the [`acos`](https://en.cppreference.com/w/c/numeric/math/acos) function.
pub fn call_acos<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
arg: FloatValue<'ctx>,
name: Option<&str>,
) -> FloatValue<'ctx> {
const FN_NAME: &str = "acos";
let llvm_f64 = ctx.ctx.f64_type();
debug_assert_eq!(arg.get_type(), llvm_f64);
let extern_fn = ctx.module.get_function(FN_NAME).unwrap_or_else(|| {
let fn_type = llvm_f64.fn_type(&[llvm_f64.into()], false);
let func = ctx.module.add_function(FN_NAME, fn_type, None);
for attr in ["mustprogress", "nofree", "nounwind", "willreturn", "writeonly"] {
func.add_attribute(
AttributeLoc::Function,
ctx.ctx.create_enum_attribute(Attribute::get_named_enum_kind_id(attr), 0),
);
}
func
});
ctx.builder
.build_call(extern_fn, &[arg.into()], name.unwrap_or_default())
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Invokes the [`atan`](https://en.cppreference.com/w/c/numeric/math/atan) function.
pub fn call_atan<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
arg: FloatValue<'ctx>,
name: Option<&str>,
) -> FloatValue<'ctx> {
const FN_NAME: &str = "atan";
let llvm_f64 = ctx.ctx.f64_type();
debug_assert_eq!(arg.get_type(), llvm_f64);
let extern_fn = ctx.module.get_function(FN_NAME).unwrap_or_else(|| {
let fn_type = llvm_f64.fn_type(&[llvm_f64.into()], false);
let func = ctx.module.add_function(FN_NAME, fn_type, None);
for attr in ["mustprogress", "nofree", "nounwind", "willreturn", "writeonly"] {
func.add_attribute(
AttributeLoc::Function,
ctx.ctx.create_enum_attribute(Attribute::get_named_enum_kind_id(attr), 0),
);
}
func
});
ctx.builder
.build_call(extern_fn, &[arg.into()], name.unwrap_or_default())
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Invokes the [`sinh`](https://en.cppreference.com/w/c/numeric/math/sinh) function.
pub fn call_sinh<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
arg: FloatValue<'ctx>,
name: Option<&str>,
) -> FloatValue<'ctx> {
const FN_NAME: &str = "sinh";
let llvm_f64 = ctx.ctx.f64_type();
debug_assert_eq!(arg.get_type(), llvm_f64);
let extern_fn = ctx.module.get_function(FN_NAME).unwrap_or_else(|| {
let fn_type = llvm_f64.fn_type(&[llvm_f64.into()], false);
let func = ctx.module.add_function(FN_NAME, fn_type, None);
for attr in ["mustprogress", "nofree", "nounwind", "willreturn", "writeonly"] {
func.add_attribute(
AttributeLoc::Function,
ctx.ctx.create_enum_attribute(Attribute::get_named_enum_kind_id(attr), 0),
);
}
func
});
ctx.builder
.build_call(extern_fn, &[arg.into()], name.unwrap_or_default())
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Invokes the [`cosh`](https://en.cppreference.com/w/c/numeric/math/cosh) function.
pub fn call_cosh<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
arg: FloatValue<'ctx>,
name: Option<&str>,
) -> FloatValue<'ctx> {
const FN_NAME: &str = "cosh";
let llvm_f64 = ctx.ctx.f64_type();
debug_assert_eq!(arg.get_type(), llvm_f64);
let extern_fn = ctx.module.get_function(FN_NAME).unwrap_or_else(|| {
let fn_type = llvm_f64.fn_type(&[llvm_f64.into()], false);
let func = ctx.module.add_function(FN_NAME, fn_type, None);
for attr in ["mustprogress", "nofree", "nounwind", "willreturn", "writeonly"] {
func.add_attribute(
AttributeLoc::Function,
ctx.ctx.create_enum_attribute(Attribute::get_named_enum_kind_id(attr), 0),
);
}
func
});
ctx.builder
.build_call(extern_fn, &[arg.into()], name.unwrap_or_default())
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Invokes the [`tanh`](https://en.cppreference.com/w/c/numeric/math/tanh) function.
pub fn call_tanh<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
arg: FloatValue<'ctx>,
name: Option<&str>,
) -> FloatValue<'ctx> {
const FN_NAME: &str = "tanh";
let llvm_f64 = ctx.ctx.f64_type();
debug_assert_eq!(arg.get_type(), llvm_f64);
let extern_fn = ctx.module.get_function(FN_NAME).unwrap_or_else(|| {
let fn_type = llvm_f64.fn_type(&[llvm_f64.into()], false);
let func = ctx.module.add_function(FN_NAME, fn_type, None);
for attr in ["mustprogress", "nofree", "nounwind", "willreturn", "writeonly"] {
func.add_attribute(
AttributeLoc::Function,
ctx.ctx.create_enum_attribute(Attribute::get_named_enum_kind_id(attr), 0),
);
}
func
});
ctx.builder
.build_call(extern_fn, &[arg.into()], name.unwrap_or_default())
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Invokes the [`asinh`](https://en.cppreference.com/w/c/numeric/math/asinh) function.
pub fn call_asinh<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
arg: FloatValue<'ctx>,
name: Option<&str>,
) -> FloatValue<'ctx> {
const FN_NAME: &str = "asinh";
let llvm_f64 = ctx.ctx.f64_type();
debug_assert_eq!(arg.get_type(), llvm_f64);
let extern_fn = ctx.module.get_function(FN_NAME).unwrap_or_else(|| {
let fn_type = llvm_f64.fn_type(&[llvm_f64.into()], false);
let func = ctx.module.add_function(FN_NAME, fn_type, None);
for attr in ["mustprogress", "nofree", "nounwind", "willreturn", "writeonly"] {
func.add_attribute(
AttributeLoc::Function,
ctx.ctx.create_enum_attribute(Attribute::get_named_enum_kind_id(attr), 0),
);
}
func
});
ctx.builder
.build_call(extern_fn, &[arg.into()], name.unwrap_or_default())
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Invokes the [`acosh`](https://en.cppreference.com/w/c/numeric/math/acosh) function.
pub fn call_acosh<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
arg: FloatValue<'ctx>,
name: Option<&str>,
) -> FloatValue<'ctx> {
const FN_NAME: &str = "acosh";
let llvm_f64 = ctx.ctx.f64_type();
debug_assert_eq!(arg.get_type(), llvm_f64);
let extern_fn = ctx.module.get_function(FN_NAME).unwrap_or_else(|| {
let fn_type = llvm_f64.fn_type(&[llvm_f64.into()], false);
let func = ctx.module.add_function(FN_NAME, fn_type, None);
for attr in ["mustprogress", "nofree", "nounwind", "willreturn", "writeonly"] {
func.add_attribute(
AttributeLoc::Function,
ctx.ctx.create_enum_attribute(Attribute::get_named_enum_kind_id(attr), 0),
);
}
func
});
ctx.builder
.build_call(extern_fn, &[arg.into()], name.unwrap_or_default())
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Invokes the [`atanh`](https://en.cppreference.com/w/c/numeric/math/atanh) function.
pub fn call_atanh<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
arg: FloatValue<'ctx>,
name: Option<&str>,
) -> FloatValue<'ctx> {
const FN_NAME: &str = "atanh";
let llvm_f64 = ctx.ctx.f64_type();
debug_assert_eq!(arg.get_type(), llvm_f64);
let extern_fn = ctx.module.get_function(FN_NAME).unwrap_or_else(|| {
let fn_type = llvm_f64.fn_type(&[llvm_f64.into()], false);
let func = ctx.module.add_function(FN_NAME, fn_type, None);
for attr in ["mustprogress", "nofree", "nounwind", "willreturn", "writeonly"] {
func.add_attribute(
AttributeLoc::Function,
ctx.ctx.create_enum_attribute(Attribute::get_named_enum_kind_id(attr), 0),
);
}
func
});
ctx.builder
.build_call(extern_fn, &[arg.into()], name.unwrap_or_default())
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Invokes the [`expm1`](https://en.cppreference.com/w/c/numeric/math/expm1) function.
pub fn call_expm1<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
arg: FloatValue<'ctx>,
name: Option<&str>,
) -> FloatValue<'ctx> {
const FN_NAME: &str = "expm1";
let llvm_f64 = ctx.ctx.f64_type();
debug_assert_eq!(arg.get_type(), llvm_f64);
let extern_fn = ctx.module.get_function(FN_NAME).unwrap_or_else(|| {
let fn_type = llvm_f64.fn_type(&[llvm_f64.into()], false);
let func = ctx.module.add_function(FN_NAME, fn_type, None);
for attr in ["mustprogress", "nofree", "nounwind", "willreturn", "writeonly"] {
func.add_attribute(
AttributeLoc::Function,
ctx.ctx.create_enum_attribute(Attribute::get_named_enum_kind_id(attr), 0),
);
}
func
});
ctx.builder
.build_call(extern_fn, &[arg.into()], name.unwrap_or_default())
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Invokes the [`cbrt`](https://en.cppreference.com/w/c/numeric/math/cbrt) function.
pub fn call_cbrt<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
arg: FloatValue<'ctx>,
name: Option<&str>,
) -> FloatValue<'ctx> {
const FN_NAME: &str = "cbrt";
let llvm_f64 = ctx.ctx.f64_type();
debug_assert_eq!(arg.get_type(), llvm_f64);
let extern_fn = ctx.module.get_function(FN_NAME).unwrap_or_else(|| {
let fn_type = llvm_f64.fn_type(&[llvm_f64.into()], false);
let func = ctx.module.add_function(FN_NAME, fn_type, None);
for attr in ["mustprogress", "nofree", "nosync", "nounwind", "readonly", "willreturn"] {
func.add_attribute(
AttributeLoc::Function,
ctx.ctx.create_enum_attribute(Attribute::get_named_enum_kind_id(attr), 0),
);
}
func
});
ctx.builder
.build_call(extern_fn, &[arg.into()], name.unwrap_or_default())
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Invokes the [`erf`](https://en.cppreference.com/w/c/numeric/math/erf) function.
pub fn call_erf<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
arg: FloatValue<'ctx>,
name: Option<&str>,
) -> FloatValue<'ctx> {
const FN_NAME: &str = "erf";
let llvm_f64 = ctx.ctx.f64_type();
debug_assert_eq!(arg.get_type(), llvm_f64);
let extern_fn = ctx.module.get_function(FN_NAME).unwrap_or_else(|| {
let fn_type = llvm_f64.fn_type(&[llvm_f64.into()], false);
let func = ctx.module.add_function(FN_NAME, fn_type, None);
func.add_attribute(
AttributeLoc::Function,
ctx.ctx.create_enum_attribute(Attribute::get_named_enum_kind_id("nounwind"), 0),
);
func
});
ctx.builder
.build_call(extern_fn, &[arg.into()], name.unwrap_or_default())
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Invokes the [`erfc`](https://en.cppreference.com/w/c/numeric/math/erfc) function.
pub fn call_erfc<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
arg: FloatValue<'ctx>,
name: Option<&str>,
) -> FloatValue<'ctx> {
const FN_NAME: &str = "erfc";
let llvm_f64 = ctx.ctx.f64_type();
debug_assert_eq!(arg.get_type(), llvm_f64);
let extern_fn = ctx.module.get_function(FN_NAME).unwrap_or_else(|| {
let fn_type = llvm_f64.fn_type(&[llvm_f64.into()], false);
let func = ctx.module.add_function(FN_NAME, fn_type, None);
func.add_attribute(
AttributeLoc::Function,
ctx.ctx.create_enum_attribute(Attribute::get_named_enum_kind_id("nounwind"), 0),
);
func
});
ctx.builder
.build_call(extern_fn, &[arg.into()], name.unwrap_or_default())
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Invokes the [`j1`](https://www.gnu.org/software/libc/manual/html_node/Special-Functions.html#index-j1)
/// function.
pub fn call_j1<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
arg: FloatValue<'ctx>,
name: Option<&str>,
) -> FloatValue<'ctx> {
const FN_NAME: &str = "j1";
let llvm_f64 = ctx.ctx.f64_type();
debug_assert_eq!(arg.get_type(), llvm_f64);
let extern_fn = ctx.module.get_function(FN_NAME).unwrap_or_else(|| {
let fn_type = llvm_f64.fn_type(&[llvm_f64.into()], false);
let func = ctx.module.add_function(FN_NAME, fn_type, None);
func.add_attribute(
AttributeLoc::Function,
ctx.ctx.create_enum_attribute(Attribute::get_named_enum_kind_id("nounwind"), 0),
);
func
});
ctx.builder
.build_call(extern_fn, &[arg.into()], name.unwrap_or_default())
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Invokes the [`atan2`](https://en.cppreference.com/w/c/numeric/math/atan2) function.
pub fn call_atan2<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
y: FloatValue<'ctx>,
x: FloatValue<'ctx>,
name: Option<&str>,
) -> FloatValue<'ctx> {
const FN_NAME: &str = "atan2";
let llvm_f64 = ctx.ctx.f64_type();
debug_assert_eq!(y.get_type(), llvm_f64);
debug_assert_eq!(x.get_type(), llvm_f64);
let extern_fn = ctx.module.get_function(FN_NAME).unwrap_or_else(|| {
let fn_type = llvm_f64.fn_type(&[llvm_f64.into(), llvm_f64.into()], false);
let func = ctx.module.add_function(FN_NAME, fn_type, None);
for attr in ["mustprogress", "nofree", "nounwind", "willreturn", "writeonly"] {
func.add_attribute(
AttributeLoc::Function,
ctx.ctx.create_enum_attribute(Attribute::get_named_enum_kind_id(attr), 0),
);
}
func
});
ctx.builder
.build_call(extern_fn, &[y.into(), x.into()], name.unwrap_or_default())
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Invokes the [`ldexp`](https://en.cppreference.com/w/c/numeric/math/ldexp) function.
pub fn call_ldexp<'ctx>(
@ -131,61 +548,66 @@ pub fn call_ldexp<'ctx>(
.unwrap()
}
/// Macro to generate `np_linalg` and `sp_linalg` functions
/// The function takes as input `NDArray` and returns ()
///
/// Arguments:
/// * `$fn_name:ident`: The identifier of the rust function to be generated
/// * `$extern_fn:literal`: Name of underlying extern function
/// * (2/3/4): Number of `NDArray` that function takes as input
///
/// Note:
/// The operands and resulting `NDArray` are both passed as input to the funcion
/// It is the responsibility of caller to ensure that output `NDArray` is properly allocated on stack
/// The function changes the content of the output `NDArray` in-place
macro_rules! generate_linalg_extern_fn {
($fn_name:ident, $extern_fn:literal, 2) => {
generate_linalg_extern_fn!($fn_name, $extern_fn, mat1, mat2);
};
($fn_name:ident, $extern_fn:literal, 3) => {
generate_linalg_extern_fn!($fn_name, $extern_fn, mat1, mat2, mat3);
};
($fn_name:ident, $extern_fn:literal, 4) => {
generate_linalg_extern_fn!($fn_name, $extern_fn, mat1, mat2, mat3, mat4);
};
($fn_name:ident, $extern_fn:literal $(,$input_matrix:ident)*) => {
#[doc = concat!("Invokes the linalg `", stringify!($extern_fn), " function." )]
pub fn $fn_name<'ctx>(
ctx: &mut CodeGenContext<'ctx, '_>
$(,$input_matrix: BasicValueEnum<'ctx>)*,
name: Option<&str>,
){
const FN_NAME: &str = $extern_fn;
let extern_fn = ctx.module.get_function(FN_NAME).unwrap_or_else(|| {
let fn_type = ctx.ctx.void_type().fn_type(&[$($input_matrix.get_type().into()),*], false);
/// Invokes the [`hypot`](https://en.cppreference.com/w/c/numeric/math/hypot) function.
pub fn call_hypot<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
x: FloatValue<'ctx>,
y: FloatValue<'ctx>,
name: Option<&str>,
) -> FloatValue<'ctx> {
const FN_NAME: &str = "hypot";
let func = ctx.module.add_function(FN_NAME, fn_type, None);
for attr in ["mustprogress", "nofree", "nounwind", "willreturn", "writeonly"] {
func.add_attribute(
AttributeLoc::Function,
ctx.ctx.create_enum_attribute(Attribute::get_named_enum_kind_id(attr), 0),
);
}
func
});
let llvm_f64 = ctx.ctx.f64_type();
debug_assert_eq!(x.get_type(), llvm_f64);
debug_assert_eq!(y.get_type(), llvm_f64);
ctx.builder.build_call(extern_fn, &[$($input_matrix.into(),)*], name.unwrap_or_default()).unwrap();
}
};
let extern_fn = ctx.module.get_function(FN_NAME).unwrap_or_else(|| {
let fn_type = llvm_f64.fn_type(&[llvm_f64.into(), llvm_f64.into()], false);
let func = ctx.module.add_function(FN_NAME, fn_type, None);
func.add_attribute(
AttributeLoc::Function,
ctx.ctx.create_enum_attribute(Attribute::get_named_enum_kind_id("nounwind"), 0),
);
func
});
ctx.builder
.build_call(extern_fn, &[x.into(), y.into()], name.unwrap_or_default())
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}
generate_linalg_extern_fn!(call_np_linalg_cholesky, "np_linalg_cholesky", 2);
generate_linalg_extern_fn!(call_np_linalg_qr, "np_linalg_qr", 3);
generate_linalg_extern_fn!(call_np_linalg_svd, "np_linalg_svd", 4);
generate_linalg_extern_fn!(call_np_linalg_inv, "np_linalg_inv", 2);
generate_linalg_extern_fn!(call_np_linalg_pinv, "np_linalg_pinv", 2);
generate_linalg_extern_fn!(call_np_linalg_matrix_power, "np_linalg_matrix_power", 3);
generate_linalg_extern_fn!(call_np_linalg_det, "np_linalg_det", 2);
generate_linalg_extern_fn!(call_sp_linalg_lu, "sp_linalg_lu", 3);
generate_linalg_extern_fn!(call_sp_linalg_schur, "sp_linalg_schur", 3);
generate_linalg_extern_fn!(call_sp_linalg_hessenberg, "sp_linalg_hessenberg", 3);
/// Invokes the [`nextafter`](https://en.cppreference.com/w/c/numeric/math/nextafter) function.
pub fn call_nextafter<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
from: FloatValue<'ctx>,
to: FloatValue<'ctx>,
name: Option<&str>,
) -> FloatValue<'ctx> {
const FN_NAME: &str = "nextafter";
let llvm_f64 = ctx.ctx.f64_type();
debug_assert_eq!(from.get_type(), llvm_f64);
debug_assert_eq!(to.get_type(), llvm_f64);
let extern_fn = ctx.module.get_function(FN_NAME).unwrap_or_else(|| {
let fn_type = llvm_f64.fn_type(&[llvm_f64.into(), llvm_f64.into()], false);
let func = ctx.module.add_function(FN_NAME, fn_type, None);
func.add_attribute(
AttributeLoc::Function,
ctx.ctx.create_enum_attribute(Attribute::get_named_enum_kind_id("nounwind"), 0),
);
func
});
ctx.builder
.build_call(extern_fn, &[from.into(), to.into()], name.unwrap_or_default())
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}

View File

@ -123,45 +123,11 @@ pub trait CodeGenerator {
ctx: &mut CodeGenContext<'ctx, '_>,
target: &Expr<Option<Type>>,
value: ValueEnum<'ctx>,
value_ty: Type,
) -> Result<(), String>
where
Self: Sized,
{
gen_assign(self, ctx, target, value, value_ty)
}
/// Generate code for an assignment expression where LHS is a `"target_list"`.
///
/// See <https://docs.python.org/3/reference/simple_stmts.html#assignment-statements>.
fn gen_assign_target_list<'ctx>(
&mut self,
ctx: &mut CodeGenContext<'ctx, '_>,
targets: &Vec<Expr<Option<Type>>>,
value: ValueEnum<'ctx>,
value_ty: Type,
) -> Result<(), String>
where
Self: Sized,
{
gen_assign_target_list(self, ctx, targets, value, value_ty)
}
/// Generate code for an item assignment.
///
/// i.e., `target[key] = value`
fn gen_setitem<'ctx>(
&mut self,
ctx: &mut CodeGenContext<'ctx, '_>,
target: &Expr<Option<Type>>,
key: &Expr<Option<Type>>,
value: ValueEnum<'ctx>,
value_ty: Type,
) -> Result<(), String>
where
Self: Sized,
{
gen_setitem(self, ctx, target, key, value, value_ty)
gen_assign(self, ctx, target, value)
}
/// Generate code for a while expression.

View File

@ -1,154 +1,38 @@
using int8_t = _BitInt(8);
using uint8_t = unsigned _BitInt(8);
using int32_t = _BitInt(32);
using uint32_t = unsigned _BitInt(32);
using int64_t = _BitInt(64);
using uint64_t = unsigned _BitInt(64);
typedef _BitInt(8) int8_t;
typedef unsigned _BitInt(8) uint8_t;
typedef _BitInt(32) int32_t;
typedef unsigned _BitInt(32) uint32_t;
typedef _BitInt(64) int64_t;
typedef unsigned _BitInt(64) uint64_t;
// NDArray indices are always `uint32_t`.
using NDIndex = uint32_t;
// The type of an index or a value describing the length of a range/slice is always `int32_t`.
using SliceIndex = int32_t;
# define MAX(a, b) (a > b ? a : b)
# define MIN(a, b) (a > b ? b : a)
namespace {
template <typename T>
const T& max(const T& a, const T& b) {
return a > b ? a : b;
}
template <typename T>
const T& min(const T& a, const T& b) {
return a > b ? b : a;
}
# define NULL ((void *) 0)
// adapted from GNU Scientific Library: https://git.savannah.gnu.org/cgit/gsl.git/tree/sys/pow_int.c
// need to make sure `exp >= 0` before calling this function
template <typename T>
T __nac3_int_exp_impl(T base, T exp) {
T res = 1;
/* repeated squaring method */
do {
if (exp & 1) {
res *= base; /* for n odd */
}
exp >>= 1;
base *= base;
} while (exp);
return res;
}
#define DEF_INT_EXP(T) T __nac3_int_exp_##T( \
T base, \
T exp \
) { \
T res = (T)1; \
/* repeated squaring method */ \
do { \
if (exp & 1) res *= base; /* for n odd */ \
exp >>= 1; \
base *= base; \
} while (exp); \
return res; \
} \
template <typename SizeT>
SizeT __nac3_ndarray_calc_size_impl(
const SizeT* list_data,
SizeT list_len,
SizeT begin_idx,
SizeT end_idx
) {
__builtin_assume(end_idx <= list_len);
DEF_INT_EXP(int32_t)
DEF_INT_EXP(int64_t)
DEF_INT_EXP(uint32_t)
DEF_INT_EXP(uint64_t)
SizeT num_elems = 1;
for (SizeT i = begin_idx; i < end_idx; ++i) {
SizeT val = list_data[i];
__builtin_assume(val > 0);
num_elems *= val;
}
return num_elems;
}
template <typename SizeT>
void __nac3_ndarray_calc_nd_indices_impl(
SizeT index,
const SizeT* dims,
SizeT num_dims,
NDIndex* idxs
) {
SizeT stride = 1;
for (SizeT dim = 0; dim < num_dims; dim++) {
SizeT i = num_dims - dim - 1;
__builtin_assume(dims[i] > 0);
idxs[i] = (index / stride) % dims[i];
stride *= dims[i];
}
}
template <typename SizeT>
SizeT __nac3_ndarray_flatten_index_impl(
const SizeT* dims,
SizeT num_dims,
const NDIndex* indices,
SizeT num_indices
) {
SizeT idx = 0;
SizeT stride = 1;
for (SizeT i = 0; i < num_dims; ++i) {
SizeT ri = num_dims - i - 1;
if (ri < num_indices) {
idx += stride * indices[ri];
}
__builtin_assume(dims[i] > 0);
stride *= dims[ri];
}
return idx;
}
template <typename SizeT>
void __nac3_ndarray_calc_broadcast_impl(
const SizeT* lhs_dims,
SizeT lhs_ndims,
const SizeT* rhs_dims,
SizeT rhs_ndims,
SizeT* out_dims
) {
SizeT max_ndims = lhs_ndims > rhs_ndims ? lhs_ndims : rhs_ndims;
for (SizeT i = 0; i < max_ndims; ++i) {
const SizeT* lhs_dim_sz = i < lhs_ndims ? &lhs_dims[lhs_ndims - i - 1] : nullptr;
const SizeT* rhs_dim_sz = i < rhs_ndims ? &rhs_dims[rhs_ndims - i - 1] : nullptr;
SizeT* out_dim = &out_dims[max_ndims - i - 1];
if (lhs_dim_sz == nullptr) {
*out_dim = *rhs_dim_sz;
} else if (rhs_dim_sz == nullptr) {
*out_dim = *lhs_dim_sz;
} else if (*lhs_dim_sz == 1) {
*out_dim = *rhs_dim_sz;
} else if (*rhs_dim_sz == 1) {
*out_dim = *lhs_dim_sz;
} else if (*lhs_dim_sz == *rhs_dim_sz) {
*out_dim = *lhs_dim_sz;
} else {
__builtin_unreachable();
}
}
}
template <typename SizeT>
void __nac3_ndarray_calc_broadcast_idx_impl(
const SizeT* src_dims,
SizeT src_ndims,
const NDIndex* in_idx,
NDIndex* out_idx
) {
for (SizeT i = 0; i < src_ndims; ++i) {
SizeT src_i = src_ndims - i - 1;
out_idx[src_i] = src_dims[src_i] == 1 ? 0 : in_idx[src_i];
}
}
} // namespace
extern "C" {
#define DEF_nac3_int_exp_(T) \
T __nac3_int_exp_##T(T base, T exp) {\
return __nac3_int_exp_impl(base, exp);\
}
DEF_nac3_int_exp_(int32_t)
DEF_nac3_int_exp_(int64_t)
DEF_nac3_int_exp_(uint32_t)
DEF_nac3_int_exp_(uint64_t)
SliceIndex __nac3_slice_index_bound(SliceIndex i, const SliceIndex len) {
int32_t __nac3_slice_index_bound(int32_t i, const int32_t len) {
if (i < 0) {
i = len + i;
}
@ -160,12 +44,8 @@ SliceIndex __nac3_slice_index_bound(SliceIndex i, const SliceIndex len) {
return i;
}
SliceIndex __nac3_range_slice_len(
const SliceIndex start,
const SliceIndex end,
const SliceIndex step
) {
SliceIndex diff = end - start;
int32_t __nac3_range_slice_len(const int32_t start, const int32_t end, const int32_t step) {
int32_t diff = end - start;
if (diff > 0 && step > 0) {
return ((diff - 1) / step) + 1;
} else if (diff < 0 && step < 0) {
@ -181,25 +61,25 @@ SliceIndex __nac3_range_slice_len(
// - The end index is *inclusive*,
// - The length of src and dest slice size should already
// be checked: if dest.step == 1 then len(src) <= len(dest) else len(src) == len(dest)
SliceIndex __nac3_list_slice_assign_var_size(
SliceIndex dest_start,
SliceIndex dest_end,
SliceIndex dest_step,
uint8_t* dest_arr,
SliceIndex dest_arr_len,
SliceIndex src_start,
SliceIndex src_end,
SliceIndex src_step,
uint8_t* src_arr,
SliceIndex src_arr_len,
const SliceIndex size
int32_t __nac3_list_slice_assign_var_size(
int32_t dest_start,
int32_t dest_end,
int32_t dest_step,
uint8_t *dest_arr,
int32_t dest_arr_len,
int32_t src_start,
int32_t src_end,
int32_t src_step,
uint8_t *src_arr,
int32_t src_arr_len,
const int32_t size
) {
/* if dest_arr_len == 0, do nothing since we do not support extending list */
if (dest_arr_len == 0) return dest_arr_len;
/* if both step is 1, memmove directly, handle the dropping of the list, and shrink size */
if (src_step == dest_step && dest_step == 1) {
const SliceIndex src_len = (src_end >= src_start) ? (src_end - src_start + 1) : 0;
const SliceIndex dest_len = (dest_end >= dest_start) ? (dest_end - dest_start + 1) : 0;
const int32_t src_len = (src_end >= src_start) ? (src_end - src_start + 1) : 0;
const int32_t dest_len = (dest_end >= dest_start) ? (dest_end - dest_start + 1) : 0;
if (src_len > 0) {
__builtin_memmove(
dest_arr + dest_start * size,
@ -222,16 +102,16 @@ SliceIndex __nac3_list_slice_assign_var_size(
uint8_t need_alloca =
(dest_arr == src_arr)
&& !(
max(dest_start, dest_end) < min(src_start, src_end)
|| max(src_start, src_end) < min(dest_start, dest_end)
MAX(dest_start, dest_end) < MIN(src_start, src_end)
|| MAX(src_start, src_end) < MIN(dest_start, dest_end)
);
if (need_alloca) {
uint8_t* tmp = reinterpret_cast<uint8_t *>(__builtin_alloca(src_arr_len * size));
uint8_t *tmp = __builtin_alloca(src_arr_len * size);
__builtin_memcpy(tmp, src_arr, src_arr_len * size);
src_arr = tmp;
}
SliceIndex src_ind = src_start;
SliceIndex dest_ind = dest_start;
int32_t src_ind = src_start;
int32_t dest_ind = dest_start;
for (;
(src_step > 0) ? (src_ind <= src_end) : (src_ind >= src_end);
src_ind += src_step, dest_ind += dest_step
@ -321,94 +201,189 @@ double __nac3_j0(double x) {
}
uint32_t __nac3_ndarray_calc_size(
const uint32_t* list_data,
const uint64_t *list_data,
uint32_t list_len,
uint32_t begin_idx,
uint32_t end_idx
) {
return __nac3_ndarray_calc_size_impl(list_data, list_len, begin_idx, end_idx);
__builtin_assume(end_idx <= list_len);
uint32_t num_elems = 1;
for (uint32_t i = begin_idx; i < end_idx; ++i) {
uint64_t val = list_data[i];
__builtin_assume(val > 0);
num_elems *= val;
}
return num_elems;
}
uint64_t __nac3_ndarray_calc_size64(
const uint64_t* list_data,
const uint64_t *list_data,
uint64_t list_len,
uint64_t begin_idx,
uint64_t end_idx
) {
return __nac3_ndarray_calc_size_impl(list_data, list_len, begin_idx, end_idx);
__builtin_assume(end_idx <= list_len);
uint64_t num_elems = 1;
for (uint64_t i = begin_idx; i < end_idx; ++i) {
uint64_t val = list_data[i];
__builtin_assume(val > 0);
num_elems *= val;
}
return num_elems;
}
void __nac3_ndarray_calc_nd_indices(
uint32_t index,
const uint32_t* dims,
uint32_t num_dims,
NDIndex* idxs
uint32_t* idxs
) {
__nac3_ndarray_calc_nd_indices_impl(index, dims, num_dims, idxs);
uint32_t stride = 1;
for (uint32_t dim = 0; dim < num_dims; dim++) {
uint32_t i = num_dims - dim - 1;
__builtin_assume(dims[i] > 0);
idxs[i] = (index / stride) % dims[i];
stride *= dims[i];
}
}
void __nac3_ndarray_calc_nd_indices64(
uint64_t index,
const uint64_t* dims,
uint64_t num_dims,
NDIndex* idxs
uint32_t* idxs
) {
__nac3_ndarray_calc_nd_indices_impl(index, dims, num_dims, idxs);
uint64_t stride = 1;
for (uint64_t dim = 0; dim < num_dims; dim++) {
uint64_t i = num_dims - dim - 1;
__builtin_assume(dims[i] > 0);
idxs[i] = (uint32_t) ((index / stride) % dims[i]);
stride *= dims[i];
}
}
uint32_t __nac3_ndarray_flatten_index(
const uint32_t* dims,
uint32_t num_dims,
const NDIndex* indices,
const uint32_t* indices,
uint32_t num_indices
) {
return __nac3_ndarray_flatten_index_impl(dims, num_dims, indices, num_indices);
uint32_t idx = 0;
uint32_t stride = 1;
for (uint32_t i = 0; i < num_dims; ++i) {
uint32_t ri = num_dims - i - 1;
if (ri < num_indices) {
idx += (stride * indices[ri]);
}
__builtin_assume(dims[i] > 0);
stride *= dims[ri];
}
return idx;
}
uint64_t __nac3_ndarray_flatten_index64(
const uint64_t* dims,
uint64_t num_dims,
const NDIndex* indices,
const uint32_t* indices,
uint64_t num_indices
) {
return __nac3_ndarray_flatten_index_impl(dims, num_dims, indices, num_indices);
uint64_t idx = 0;
uint64_t stride = 1;
for (uint64_t i = 0; i < num_dims; ++i) {
uint64_t ri = num_dims - i - 1;
if (ri < num_indices) {
idx += (stride * indices[ri]);
}
__builtin_assume(dims[i] > 0);
stride *= dims[ri];
}
return idx;
}
void __nac3_ndarray_calc_broadcast(
const uint32_t* lhs_dims,
const uint32_t *lhs_dims,
uint32_t lhs_ndims,
const uint32_t* rhs_dims,
const uint32_t *rhs_dims,
uint32_t rhs_ndims,
uint32_t* out_dims
uint32_t *out_dims
) {
return __nac3_ndarray_calc_broadcast_impl(lhs_dims, lhs_ndims, rhs_dims, rhs_ndims, out_dims);
uint32_t max_ndims = lhs_ndims > rhs_ndims ? lhs_ndims : rhs_ndims;
for (uint32_t i = 0; i < max_ndims; ++i) {
uint32_t *lhs_dim_sz = i < lhs_ndims ? &lhs_dims[lhs_ndims - i - 1] : NULL;
uint32_t *rhs_dim_sz = i < rhs_ndims ? &rhs_dims[rhs_ndims - i - 1] : NULL;
uint32_t *out_dim = &out_dims[max_ndims - i - 1];
if (lhs_dim_sz == NULL) {
*out_dim = *rhs_dim_sz;
} else if (rhs_dim_sz == NULL) {
*out_dim = *lhs_dim_sz;
} else if (*lhs_dim_sz == 1) {
*out_dim = *rhs_dim_sz;
} else if (*rhs_dim_sz == 1) {
*out_dim = *lhs_dim_sz;
} else if (*lhs_dim_sz == *rhs_dim_sz) {
*out_dim = *lhs_dim_sz;
} else {
__builtin_unreachable();
}
}
}
void __nac3_ndarray_calc_broadcast64(
const uint64_t* lhs_dims,
const uint64_t *lhs_dims,
uint64_t lhs_ndims,
const uint64_t* rhs_dims,
const uint64_t *rhs_dims,
uint64_t rhs_ndims,
uint64_t* out_dims
uint64_t *out_dims
) {
return __nac3_ndarray_calc_broadcast_impl(lhs_dims, lhs_ndims, rhs_dims, rhs_ndims, out_dims);
uint64_t max_ndims = lhs_ndims > rhs_ndims ? lhs_ndims : rhs_ndims;
for (uint64_t i = 0; i < max_ndims; ++i) {
uint64_t *lhs_dim_sz = i < lhs_ndims ? &lhs_dims[lhs_ndims - i - 1] : NULL;
uint64_t *rhs_dim_sz = i < rhs_ndims ? &rhs_dims[rhs_ndims - i - 1] : NULL;
uint64_t *out_dim = &out_dims[max_ndims - i - 1];
if (lhs_dim_sz == NULL) {
*out_dim = *rhs_dim_sz;
} else if (rhs_dim_sz == NULL) {
*out_dim = *lhs_dim_sz;
} else if (*lhs_dim_sz == 1) {
*out_dim = *rhs_dim_sz;
} else if (*rhs_dim_sz == 1) {
*out_dim = *lhs_dim_sz;
} else if (*lhs_dim_sz == *rhs_dim_sz) {
*out_dim = *lhs_dim_sz;
} else {
__builtin_unreachable();
}
}
}
void __nac3_ndarray_calc_broadcast_idx(
const uint32_t* src_dims,
const uint32_t *src_dims,
uint32_t src_ndims,
const NDIndex* in_idx,
NDIndex* out_idx
const uint32_t *in_idx,
uint32_t *out_idx
) {
__nac3_ndarray_calc_broadcast_idx_impl(src_dims, src_ndims, in_idx, out_idx);
for (uint32_t i = 0; i < src_ndims; ++i) {
uint32_t src_i = src_ndims - i - 1;
out_idx[src_i] = src_dims[src_i] == 1 ? 0 : in_idx[src_i];
}
}
void __nac3_ndarray_calc_broadcast_idx64(
const uint64_t* src_dims,
const uint64_t *src_dims,
uint64_t src_ndims,
const NDIndex* in_idx,
NDIndex* out_idx
const uint32_t *in_idx,
uint32_t *out_idx
) {
__nac3_ndarray_calc_broadcast_idx_impl(src_dims, src_ndims, in_idx, out_idx);
for (uint64_t i = 0; i < src_ndims; ++i) {
uint64_t src_i = src_ndims - i - 1;
out_idx[src_i] = src_dims[src_i] == 1 ? 0 : (uint32_t) in_idx[src_i];
}
}
} // extern "C"

View File

@ -579,8 +579,10 @@ where
G: CodeGenerator + ?Sized,
Dims: ArrayLikeIndexer<'ctx>,
{
let llvm_i64 = ctx.ctx.i64_type();
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
let llvm_pi64 = llvm_i64.ptr_type(AddressSpace::default());
let ndarray_calc_size_fn_name = match llvm_usize.get_bit_width() {
32 => "__nac3_ndarray_calc_size",
@ -588,7 +590,7 @@ where
bw => unreachable!("Unsupported size type bit width: {}", bw),
};
let ndarray_calc_size_fn_t = llvm_usize.fn_type(
&[llvm_pusize.into(), llvm_usize.into(), llvm_usize.into(), llvm_usize.into()],
&[llvm_pi64.into(), llvm_usize.into(), llvm_usize.into(), llvm_usize.into()],
false,
);
let ndarray_calc_size_fn =
@ -798,10 +800,9 @@ pub fn call_ndarray_calc_broadcast<'ctx, G: CodeGenerator + ?Sized>(
gen_for_callback_incrementing(
generator,
ctx,
None,
llvm_usize.const_zero(),
(min_ndims, false),
|generator, ctx, _, idx| {
|generator, ctx, idx| {
let idx = ctx.builder.build_int_sub(min_ndims, idx, "").unwrap();
let (lhs_dim_sz, rhs_dim_sz) = unsafe {
(

View File

@ -35,40 +35,6 @@ fn get_float_intrinsic_repr(ctx: &Context, ft: FloatType) -> &'static str {
unreachable!()
}
/// Invokes the [`llvm.va_start`](https://llvm.org/docs/LangRef.html#llvm-va-start-intrinsic)
/// intrinsic.
pub fn call_va_start<'ctx>(ctx: &CodeGenContext<'ctx, '_>, arglist: PointerValue<'ctx>) {
const FN_NAME: &str = "llvm.va_start";
let intrinsic_fn = ctx.module.get_function(FN_NAME).unwrap_or_else(|| {
let llvm_void = ctx.ctx.void_type();
let llvm_i8 = ctx.ctx.i8_type();
let llvm_p0i8 = llvm_i8.ptr_type(AddressSpace::default());
let fn_type = llvm_void.fn_type(&[llvm_p0i8.into()], false);
ctx.module.add_function(FN_NAME, fn_type, None)
});
ctx.builder.build_call(intrinsic_fn, &[arglist.into()], "").unwrap();
}
/// Invokes the [`llvm.va_start`](https://llvm.org/docs/LangRef.html#llvm-va-start-intrinsic)
/// intrinsic.
pub fn call_va_end<'ctx>(ctx: &CodeGenContext<'ctx, '_>, arglist: PointerValue<'ctx>) {
const FN_NAME: &str = "llvm.va_end";
let intrinsic_fn = ctx.module.get_function(FN_NAME).unwrap_or_else(|| {
let llvm_void = ctx.ctx.void_type();
let llvm_i8 = ctx.ctx.i8_type();
let llvm_p0i8 = llvm_i8.ptr_type(AddressSpace::default());
let fn_type = llvm_void.fn_type(&[llvm_p0i8.into()], false);
ctx.module.add_function(FN_NAME, fn_type, None)
});
ctx.builder.build_call(intrinsic_fn, &[arglist.into()], "").unwrap();
}
/// Invokes the [`llvm.stacksave`](https://llvm.org/docs/LangRef.html#llvm-stacksave-intrinsic)
/// intrinsic.
pub fn call_stacksave<'ctx>(
@ -96,30 +62,145 @@ pub fn call_stacksave<'ctx>(
pub fn call_stackrestore<'ctx>(ctx: &CodeGenContext<'ctx, '_>, ptr: PointerValue<'ctx>) {
const FN_NAME: &str = "llvm.stackrestore";
/*
SEE https://github.com/TheDan64/inkwell/issues/496
let llvm_i8 = ctx.ctx.i8_type();
let llvm_p0i8 = llvm_i8.ptr_type(AddressSpace::default());
We want `llvm.stackrestore`, but the following would generate `llvm.stackrestore.p0i8`.
```ignore
let intrinsic_fn = Intrinsic::find(FN_NAME)
.and_then(|intrinsic| intrinsic.get_declaration(&ctx.module, &[llvm_p0i8.into()]))
.unwrap();
```
Temp workaround by manually declaring the intrinsic with the correct function name instead.
*/
let intrinsic_fn = ctx.module.get_function(FN_NAME).unwrap_or_else(|| {
let llvm_void = ctx.ctx.void_type();
let llvm_i8 = ctx.ctx.i8_type();
let llvm_p0i8 = llvm_i8.ptr_type(AddressSpace::default());
let fn_type = llvm_void.fn_type(&[llvm_p0i8.into()], false);
ctx.module.add_function(FN_NAME, fn_type, None)
});
let intrinsic_fn = Intrinsic::find(FN_NAME)
.and_then(|intrinsic| intrinsic.get_declaration(&ctx.module, &[llvm_p0i8.into()]))
.unwrap();
ctx.builder.build_call(intrinsic_fn, &[ptr.into()], "").unwrap();
}
/// Invokes the [`llvm.abs`](https://llvm.org/docs/LangRef.html#llvm-abs-intrinsic) intrinsic.
///
/// * `src` - The value for which the absolute value is to be returned.
/// * `is_int_min_poison` - Whether `poison` is to be returned if `src` is `INT_MIN`.
pub fn call_int_abs<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
src: IntValue<'ctx>,
is_int_min_poison: IntValue<'ctx>,
name: Option<&str>,
) -> IntValue<'ctx> {
const FN_NAME: &str = "llvm.abs";
debug_assert_eq!(is_int_min_poison.get_type().get_bit_width(), 1);
debug_assert!(is_int_min_poison.is_const());
let llvm_src_t = src.get_type();
let intrinsic_fn = Intrinsic::find(FN_NAME)
.and_then(|intrinsic| intrinsic.get_declaration(&ctx.module, &[llvm_src_t.into()]))
.unwrap();
ctx.builder
.build_call(intrinsic_fn, &[src.into(), is_int_min_poison.into()], name.unwrap_or_default())
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Invokes the [`llvm.smax`](https://llvm.org/docs/LangRef.html#llvm-smax-intrinsic) intrinsic.
pub fn call_int_smax<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
a: IntValue<'ctx>,
b: IntValue<'ctx>,
name: Option<&str>,
) -> IntValue<'ctx> {
const FN_NAME: &str = "llvm.smax";
debug_assert_eq!(a.get_type().get_bit_width(), b.get_type().get_bit_width());
let llvm_int_t = a.get_type();
let intrinsic_fn = Intrinsic::find(FN_NAME)
.and_then(|intrinsic| intrinsic.get_declaration(&ctx.module, &[llvm_int_t.into()]))
.unwrap();
ctx.builder
.build_call(intrinsic_fn, &[a.into(), b.into()], name.unwrap_or_default())
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Invokes the [`llvm.smin`](https://llvm.org/docs/LangRef.html#llvm-smin-intrinsic) intrinsic.
pub fn call_int_smin<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
a: IntValue<'ctx>,
b: IntValue<'ctx>,
name: Option<&str>,
) -> IntValue<'ctx> {
const FN_NAME: &str = "llvm.smin";
debug_assert_eq!(a.get_type().get_bit_width(), b.get_type().get_bit_width());
let llvm_int_t = a.get_type();
let intrinsic_fn = Intrinsic::find(FN_NAME)
.and_then(|intrinsic| intrinsic.get_declaration(&ctx.module, &[llvm_int_t.into()]))
.unwrap();
ctx.builder
.build_call(intrinsic_fn, &[a.into(), b.into()], name.unwrap_or_default())
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Invokes the [`llvm.umax`](https://llvm.org/docs/LangRef.html#llvm-umax-intrinsic) intrinsic.
pub fn call_int_umax<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
a: IntValue<'ctx>,
b: IntValue<'ctx>,
name: Option<&str>,
) -> IntValue<'ctx> {
const FN_NAME: &str = "llvm.umax";
debug_assert_eq!(a.get_type().get_bit_width(), b.get_type().get_bit_width());
let llvm_int_t = a.get_type();
let intrinsic_fn = Intrinsic::find(FN_NAME)
.and_then(|intrinsic| intrinsic.get_declaration(&ctx.module, &[llvm_int_t.into()]))
.unwrap();
ctx.builder
.build_call(intrinsic_fn, &[a.into(), b.into()], name.unwrap_or_default())
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Invokes the [`llvm.umin`](https://llvm.org/docs/LangRef.html#llvm-umin-intrinsic) intrinsic.
pub fn call_int_umin<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
a: IntValue<'ctx>,
b: IntValue<'ctx>,
name: Option<&str>,
) -> IntValue<'ctx> {
const FN_NAME: &str = "llvm.umin";
debug_assert_eq!(a.get_type().get_bit_width(), b.get_type().get_bit_width());
let llvm_int_t = a.get_type();
let intrinsic_fn = Intrinsic::find(FN_NAME)
.and_then(|intrinsic| intrinsic.get_declaration(&ctx.module, &[llvm_int_t.into()]))
.unwrap();
ctx.builder
.build_call(intrinsic_fn, &[a.into(), b.into()], name.unwrap_or_default())
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Invokes the [`llvm.memcpy`](https://llvm.org/docs/LangRef.html#llvm-memcpy-intrinsic) intrinsic.
///
/// * `dest` - The pointer to the destination. Must be a pointer to an integer type.
@ -199,122 +280,28 @@ pub fn call_memcpy_generic<'ctx>(
call_memcpy(ctx, dest, src, len, is_volatile);
}
/// Macro to find and generate build call for llvm intrinsic (body of llvm intrinsic function)
///
/// Arguments:
/// * `$ctx:ident`: Reference to the current Code Generation Context
/// * `$name:ident`: Optional name to be assigned to the llvm build call (Option<&str>)
/// * `$llvm_name:literal`: Name of underlying llvm intrinsic function
/// * `$map_fn:ident`: Mapping function to be applied on `BasicValue` (`BasicValue` -> Function Return Type)
/// Use `BasicValueEnum::into_int_value` for Integer return type and `BasicValueEnum::into_float_value` for Float return type
/// * `$llvm_ty:ident`: Type of first operand
/// * `,($val:ident)*`: Comma separated list of operands
macro_rules! generate_llvm_intrinsic_fn_body {
($ctx:ident, $name:ident, $llvm_name:literal, $map_fn:expr, $llvm_ty:ident $(,$val:ident)*) => {{
const FN_NAME: &str = concat!("llvm.", $llvm_name);
let intrinsic_fn = Intrinsic::find(FN_NAME).and_then(|intrinsic| intrinsic.get_declaration(&$ctx.module, &[$llvm_ty.into()])).unwrap();
$ctx.builder.build_call(intrinsic_fn, &[$($val.into()),*], $name.unwrap_or_default()).map(CallSiteValue::try_as_basic_value).map(|v| v.map_left($map_fn)).map(Either::unwrap_left).unwrap()
}};
}
/// Macro to generate the llvm intrinsic function using [`generate_llvm_intrinsic_fn_body`].
///
/// Arguments:
/// * `float/int`: Indicates the return and argument type of the function
/// * `$fn_name:ident`: The identifier of the rust function to be generated
/// * `$llvm_name:literal`: Name of underlying llvm intrinsic function
/// Omit "llvm." prefix from the function name i.e. use "ceil" instead of "llvm.ceil"
/// * `$val:ident`: The operand for unary operations
/// * `$val1:ident`, `$val2:ident`: The operands for binary operations
macro_rules! generate_llvm_intrinsic_fn {
("float", $fn_name:ident, $llvm_name:literal, $val:ident) => {
#[doc = concat!("Invokes the [`", stringify!($llvm_name), "`](https://llvm.org/docs/LangRef.html#llvm-", stringify!($llvm_name), "-intrinsic) intrinsic." )]
pub fn $fn_name<'ctx> (
ctx: &CodeGenContext<'ctx, '_>,
$val: FloatValue<'ctx>,
name: Option<&str>,
) -> FloatValue<'ctx> {
let llvm_ty = $val.get_type();
generate_llvm_intrinsic_fn_body!(ctx, name, $llvm_name, BasicValueEnum::into_float_value, llvm_ty, $val)
}
};
("float", $fn_name:ident, $llvm_name:literal, $val1:ident, $val2:ident) => {
#[doc = concat!("Invokes the [`", stringify!($llvm_name), "`](https://llvm.org/docs/LangRef.html#llvm-", stringify!($llvm_name), "-intrinsic) intrinsic." )]
pub fn $fn_name<'ctx> (
ctx: &CodeGenContext<'ctx, '_>,
$val1: FloatValue<'ctx>,
$val2: FloatValue<'ctx>,
name: Option<&str>,
) -> FloatValue<'ctx> {
debug_assert_eq!($val1.get_type(), $val2.get_type());
let llvm_ty = $val1.get_type();
generate_llvm_intrinsic_fn_body!(ctx, name, $llvm_name, BasicValueEnum::into_float_value, llvm_ty, $val1, $val2)
}
};
("int", $fn_name:ident, $llvm_name:literal, $val1:ident, $val2:ident) => {
#[doc = concat!("Invokes the [`", stringify!($llvm_name), "`](https://llvm.org/docs/LangRef.html#llvm-", stringify!($llvm_name), "-intrinsic) intrinsic." )]
pub fn $fn_name<'ctx> (
ctx: &CodeGenContext<'ctx, '_>,
$val1: IntValue<'ctx>,
$val2: IntValue<'ctx>,
name: Option<&str>,
) -> IntValue<'ctx> {
debug_assert_eq!($val1.get_type().get_bit_width(), $val2.get_type().get_bit_width());
let llvm_ty = $val1.get_type();
generate_llvm_intrinsic_fn_body!(ctx, name, $llvm_name, BasicValueEnum::into_int_value, llvm_ty, $val1, $val2)
}
};
}
/// Invokes the [`llvm.abs`](https://llvm.org/docs/LangRef.html#llvm-abs-intrinsic) intrinsic.
///
/// * `src` - The value for which the absolute value is to be returned.
/// * `is_int_min_poison` - Whether `poison` is to be returned if `src` is `INT_MIN`.
pub fn call_int_abs<'ctx>(
/// Invokes the [`llvm.sqrt`](https://llvm.org/docs/LangRef.html#llvm-sqrt-intrinsic) intrinsic.
pub fn call_float_sqrt<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
src: IntValue<'ctx>,
is_int_min_poison: IntValue<'ctx>,
val: FloatValue<'ctx>,
name: Option<&str>,
) -> IntValue<'ctx> {
debug_assert_eq!(is_int_min_poison.get_type().get_bit_width(), 1);
debug_assert!(is_int_min_poison.is_const());
) -> FloatValue<'ctx> {
const FN_NAME: &str = "llvm.sqrt";
let src_type = src.get_type();
generate_llvm_intrinsic_fn_body!(
ctx,
name,
"abs",
BasicValueEnum::into_int_value,
src_type,
src,
is_int_min_poison
)
let llvm_float_t = val.get_type();
let intrinsic_fn = Intrinsic::find(FN_NAME)
.and_then(|intrinsic| intrinsic.get_declaration(&ctx.module, &[llvm_float_t.into()]))
.unwrap();
ctx.builder
.build_call(intrinsic_fn, &[val.into()], name.unwrap_or_default())
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}
generate_llvm_intrinsic_fn!("int", call_int_smax, "smax", a, b);
generate_llvm_intrinsic_fn!("int", call_int_smin, "smin", a, b);
generate_llvm_intrinsic_fn!("int", call_int_umax, "umax", a, b);
generate_llvm_intrinsic_fn!("int", call_int_umin, "umin", a, b);
generate_llvm_intrinsic_fn!("int", call_expect, "expect", val, expected_val);
generate_llvm_intrinsic_fn!("float", call_float_sqrt, "sqrt", val);
generate_llvm_intrinsic_fn!("float", call_float_sin, "sin", val);
generate_llvm_intrinsic_fn!("float", call_float_cos, "cos", val);
generate_llvm_intrinsic_fn!("float", call_float_pow, "pow", val, power);
generate_llvm_intrinsic_fn!("float", call_float_exp, "exp", val);
generate_llvm_intrinsic_fn!("float", call_float_exp2, "exp2", val);
generate_llvm_intrinsic_fn!("float", call_float_log, "log", val);
generate_llvm_intrinsic_fn!("float", call_float_log10, "log10", val);
generate_llvm_intrinsic_fn!("float", call_float_log2, "log2", val);
generate_llvm_intrinsic_fn!("float", call_float_fabs, "fabs", src);
generate_llvm_intrinsic_fn!("float", call_float_minnum, "minnum", val, power);
generate_llvm_intrinsic_fn!("float", call_float_maxnum, "maxnum", val, power);
generate_llvm_intrinsic_fn!("float", call_float_copysign, "copysign", mag, sgn);
generate_llvm_intrinsic_fn!("float", call_float_floor, "floor", val);
generate_llvm_intrinsic_fn!("float", call_float_ceil, "ceil", val);
generate_llvm_intrinsic_fn!("float", call_float_round, "round", val);
generate_llvm_intrinsic_fn!("float", call_float_rint, "rint", val);
/// Invokes the [`llvm.powi`](https://llvm.org/docs/LangRef.html#llvm-powi-intrinsic) intrinsic.
pub fn call_float_powi<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
@ -340,3 +327,393 @@ pub fn call_float_powi<'ctx>(
.map(Either::unwrap_left)
.unwrap()
}
/// Invokes the [`llvm.sin`](https://llvm.org/docs/LangRef.html#llvm-sin-intrinsic) intrinsic.
pub fn call_float_sin<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
val: FloatValue<'ctx>,
name: Option<&str>,
) -> FloatValue<'ctx> {
const FN_NAME: &str = "llvm.sin";
let llvm_float_t = val.get_type();
let intrinsic_fn = Intrinsic::find(FN_NAME)
.and_then(|intrinsic| intrinsic.get_declaration(&ctx.module, &[llvm_float_t.into()]))
.unwrap();
ctx.builder
.build_call(intrinsic_fn, &[val.into()], name.unwrap_or_default())
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Invokes the [`llvm.cos`](https://llvm.org/docs/LangRef.html#llvm-cos-intrinsic) intrinsic.
pub fn call_float_cos<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
val: FloatValue<'ctx>,
name: Option<&str>,
) -> FloatValue<'ctx> {
const FN_NAME: &str = "llvm.cos";
let llvm_float_t = val.get_type();
let intrinsic_fn = Intrinsic::find(FN_NAME)
.and_then(|intrinsic| intrinsic.get_declaration(&ctx.module, &[llvm_float_t.into()]))
.unwrap();
ctx.builder
.build_call(intrinsic_fn, &[val.into()], name.unwrap_or_default())
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Invokes the [`llvm.pow`](https://llvm.org/docs/LangRef.html#llvm-pow-intrinsic) intrinsic.
pub fn call_float_pow<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
val: FloatValue<'ctx>,
power: FloatValue<'ctx>,
name: Option<&str>,
) -> FloatValue<'ctx> {
const FN_NAME: &str = "llvm.pow";
debug_assert_eq!(val.get_type(), power.get_type());
let llvm_float_t = val.get_type();
let intrinsic_fn = Intrinsic::find(FN_NAME)
.and_then(|intrinsic| intrinsic.get_declaration(&ctx.module, &[llvm_float_t.into()]))
.unwrap();
ctx.builder
.build_call(intrinsic_fn, &[val.into(), power.into()], name.unwrap_or_default())
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Invokes the [`llvm.exp`](https://llvm.org/docs/LangRef.html#llvm-exp-intrinsic) intrinsic.
pub fn call_float_exp<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
val: FloatValue<'ctx>,
name: Option<&str>,
) -> FloatValue<'ctx> {
const FN_NAME: &str = "llvm.exp";
let llvm_float_t = val.get_type();
let intrinsic_fn = Intrinsic::find(FN_NAME)
.and_then(|intrinsic| intrinsic.get_declaration(&ctx.module, &[llvm_float_t.into()]))
.unwrap();
ctx.builder
.build_call(intrinsic_fn, &[val.into()], name.unwrap_or_default())
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Invokes the [`llvm.exp2`](https://llvm.org/docs/LangRef.html#llvm-exp2-intrinsic) intrinsic.
pub fn call_float_exp2<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
val: FloatValue<'ctx>,
name: Option<&str>,
) -> FloatValue<'ctx> {
const FN_NAME: &str = "llvm.exp2";
let llvm_float_t = val.get_type();
let intrinsic_fn = Intrinsic::find(FN_NAME)
.and_then(|intrinsic| intrinsic.get_declaration(&ctx.module, &[llvm_float_t.into()]))
.unwrap();
ctx.builder
.build_call(intrinsic_fn, &[val.into()], name.unwrap_or_default())
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Invokes the [`llvm.log`](https://llvm.org/docs/LangRef.html#llvm-log-intrinsic) intrinsic.
pub fn call_float_log<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
val: FloatValue<'ctx>,
name: Option<&str>,
) -> FloatValue<'ctx> {
const FN_NAME: &str = "llvm.log";
let llvm_float_t = val.get_type();
let intrinsic_fn = Intrinsic::find(FN_NAME)
.and_then(|intrinsic| intrinsic.get_declaration(&ctx.module, &[llvm_float_t.into()]))
.unwrap();
ctx.builder
.build_call(intrinsic_fn, &[val.into()], name.unwrap_or_default())
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Invokes the [`llvm.log10`](https://llvm.org/docs/LangRef.html#llvm-log10-intrinsic) intrinsic.
pub fn call_float_log10<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
val: FloatValue<'ctx>,
name: Option<&str>,
) -> FloatValue<'ctx> {
const FN_NAME: &str = "llvm.log10";
let llvm_float_t = val.get_type();
let intrinsic_fn = Intrinsic::find(FN_NAME)
.and_then(|intrinsic| intrinsic.get_declaration(&ctx.module, &[llvm_float_t.into()]))
.unwrap();
ctx.builder
.build_call(intrinsic_fn, &[val.into()], name.unwrap_or_default())
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Invokes the [`llvm.log2`](https://llvm.org/docs/LangRef.html#llvm-log2-intrinsic) intrinsic.
pub fn call_float_log2<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
val: FloatValue<'ctx>,
name: Option<&str>,
) -> FloatValue<'ctx> {
const FN_NAME: &str = "llvm.log2";
let llvm_float_t = val.get_type();
let intrinsic_fn = Intrinsic::find(FN_NAME)
.and_then(|intrinsic| intrinsic.get_declaration(&ctx.module, &[llvm_float_t.into()]))
.unwrap();
ctx.builder
.build_call(intrinsic_fn, &[val.into()], name.unwrap_or_default())
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Invokes the [`llvm.fabs`](https://llvm.org/docs/LangRef.html#llvm-fabs-intrinsic) intrinsic.
pub fn call_float_fabs<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
src: FloatValue<'ctx>,
name: Option<&str>,
) -> FloatValue<'ctx> {
const FN_NAME: &str = "llvm.fabs";
let llvm_src_t = src.get_type();
let intrinsic_fn = Intrinsic::find(FN_NAME)
.and_then(|intrinsic| intrinsic.get_declaration(&ctx.module, &[llvm_src_t.into()]))
.unwrap();
ctx.builder
.build_call(intrinsic_fn, &[src.into()], name.unwrap_or_default())
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Invokes the [`llvm.minnum`](https://llvm.org/docs/LangRef.html#llvm-minnum-intrinsic) intrinsic.
pub fn call_float_minnum<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
val1: FloatValue<'ctx>,
val2: FloatValue<'ctx>,
name: Option<&str>,
) -> FloatValue<'ctx> {
const FN_NAME: &str = "llvm.minnum";
debug_assert_eq!(val1.get_type(), val2.get_type());
let llvm_float_t = val1.get_type();
let intrinsic_fn = Intrinsic::find(FN_NAME)
.and_then(|intrinsic| intrinsic.get_declaration(&ctx.module, &[llvm_float_t.into()]))
.unwrap();
ctx.builder
.build_call(intrinsic_fn, &[val1.into(), val2.into()], name.unwrap_or_default())
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Invokes the [`llvm.maxnum`](https://llvm.org/docs/LangRef.html#llvm-maxnum-intrinsic) intrinsic.
pub fn call_float_maxnum<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
val1: FloatValue<'ctx>,
val2: FloatValue<'ctx>,
name: Option<&str>,
) -> FloatValue<'ctx> {
const FN_NAME: &str = "llvm.maxnum";
debug_assert_eq!(val1.get_type(), val2.get_type());
let llvm_float_t = val1.get_type();
let intrinsic_fn = Intrinsic::find(FN_NAME)
.and_then(|intrinsic| intrinsic.get_declaration(&ctx.module, &[llvm_float_t.into()]))
.unwrap();
ctx.builder
.build_call(intrinsic_fn, &[val1.into(), val2.into()], name.unwrap_or_default())
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Invokes the [`llvm.copysign`](https://llvm.org/docs/LangRef.html#llvm-copysign-intrinsic) intrinsic.
pub fn call_float_copysign<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
mag: FloatValue<'ctx>,
sgn: FloatValue<'ctx>,
name: Option<&str>,
) -> FloatValue<'ctx> {
const FN_NAME: &str = "llvm.copysign";
debug_assert_eq!(mag.get_type(), sgn.get_type());
let llvm_float_t = mag.get_type();
let intrinsic_fn = Intrinsic::find(FN_NAME)
.and_then(|intrinsic| intrinsic.get_declaration(&ctx.module, &[llvm_float_t.into()]))
.unwrap();
ctx.builder
.build_call(intrinsic_fn, &[mag.into(), sgn.into()], name.unwrap_or_default())
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Invokes the [`llvm.floor`](https://llvm.org/docs/LangRef.html#llvm-floor-intrinsic) intrinsic.
pub fn call_float_floor<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
val: FloatValue<'ctx>,
name: Option<&str>,
) -> FloatValue<'ctx> {
const FN_NAME: &str = "llvm.floor";
let llvm_float_t = val.get_type();
let intrinsic_fn = Intrinsic::find(FN_NAME)
.and_then(|intrinsic| intrinsic.get_declaration(&ctx.module, &[llvm_float_t.into()]))
.unwrap();
ctx.builder
.build_call(intrinsic_fn, &[val.into()], name.unwrap_or_default())
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Invokes the [`llvm.ceil`](https://llvm.org/docs/LangRef.html#llvm-ceil-intrinsic) intrinsic.
pub fn call_float_ceil<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
val: FloatValue<'ctx>,
name: Option<&str>,
) -> FloatValue<'ctx> {
const FN_NAME: &str = "llvm.ceil";
let llvm_float_t = val.get_type();
let intrinsic_fn = Intrinsic::find(FN_NAME)
.and_then(|intrinsic| intrinsic.get_declaration(&ctx.module, &[llvm_float_t.into()]))
.unwrap();
ctx.builder
.build_call(intrinsic_fn, &[val.into()], name.unwrap_or_default())
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Invokes the [`llvm.round`](https://llvm.org/docs/LangRef.html#llvm-round-intrinsic) intrinsic.
pub fn call_float_round<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
val: FloatValue<'ctx>,
name: Option<&str>,
) -> FloatValue<'ctx> {
const FN_NAME: &str = "llvm.round";
let llvm_float_t = val.get_type();
let intrinsic_fn = Intrinsic::find(FN_NAME)
.and_then(|intrinsic| intrinsic.get_declaration(&ctx.module, &[llvm_float_t.into()]))
.unwrap();
ctx.builder
.build_call(intrinsic_fn, &[val.into()], name.unwrap_or_default())
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Invokes the
/// [`llvm.roundeven`](https://llvm.org/docs/LangRef.html#llvm-roundeven-intrinsic) intrinsic.
pub fn call_float_roundeven<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
val: FloatValue<'ctx>,
name: Option<&str>,
) -> FloatValue<'ctx> {
const FN_NAME: &str = "llvm.roundeven";
let llvm_float_t = val.get_type();
let intrinsic_fn = Intrinsic::find(FN_NAME)
.and_then(|intrinsic| intrinsic.get_declaration(&ctx.module, &[llvm_float_t.into()]))
.unwrap();
ctx.builder
.build_call(intrinsic_fn, &[val.into()], name.unwrap_or_default())
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Invokes the [`llvm.expect`](https://llvm.org/docs/LangRef.html#llvm-expect-intrinsic) intrinsic.
pub fn call_expect<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
val: IntValue<'ctx>,
expected_val: IntValue<'ctx>,
name: Option<&str>,
) -> IntValue<'ctx> {
const FN_NAME: &str = "llvm.expect";
debug_assert_eq!(val.get_type().get_bit_width(), expected_val.get_type().get_bit_width());
let llvm_int_t = val.get_type();
let intrinsic_fn = Intrinsic::find(FN_NAME)
.and_then(|intrinsic| intrinsic.get_declaration(&ctx.module, &[llvm_int_t.into()]))
.unwrap();
ctx.builder
.build_call(intrinsic_fn, &[val.into(), expected_val.into()], name.unwrap_or_default())
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap()
}

View File

@ -1,7 +1,7 @@
use crate::{
codegen::classes::{ListType, NDArrayType, ProxyType, RangeType},
symbol_resolver::{StaticValue, SymbolResolver},
toplevel::{helper::PrimDef, numpy::unpack_ndarray_var_tys, TopLevelContext, TopLevelDef},
toplevel::{helper::PrimDef, TopLevelContext, TopLevelDef},
typecheck::{
type_inferencer::{CodeLocation, PrimitiveStore},
typedef::{CallId, FuncArg, Type, TypeEnum, Unifier},
@ -47,6 +47,9 @@ pub mod stmt;
#[cfg(test)]
mod test;
use crate::toplevel::primitive_type;
use crate::toplevel::primitive_type::OptionType;
use crate::typecheck::typedef::GenericObjectType;
use concrete_type::{ConcreteType, ConcreteTypeEnum, ConcreteTypeStore};
pub use generator::{CodeGenerator, DefaultCodeGenerator};
@ -68,16 +71,6 @@ pub struct CodeGenLLVMOptions {
pub target: CodeGenTargetMachineOptions,
}
impl CodeGenLLVMOptions {
/// Creates a [`TargetMachine`] using the target options specified by this struct.
///
/// See [`Target::create_target_machine`].
#[must_use]
pub fn create_target_machine(&self) -> Option<TargetMachine> {
self.target.create_target_machine(self.opt_level)
}
}
/// Additional options for code generation for the target machine.
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct CodeGenTargetMachineOptions {
@ -348,10 +341,6 @@ impl WorkerRegistry {
let mut builder = context.create_builder();
let mut module = context.create_module(generator.get_name());
let target_machine = self.llvm_options.create_target_machine().unwrap();
module.set_data_layout(&target_machine.get_target_data().get_data_layout());
module.set_triple(&target_machine.get_triple());
module.add_basic_value_flag(
"Debug Info Version",
inkwell::module::FlagBehavior::Warning,
@ -375,10 +364,6 @@ impl WorkerRegistry {
errors.insert(e);
// create a new empty module just to continue codegen and collect errors
module = context.create_module(&format!("{}_recover", generator.get_name()));
let target_machine = self.llvm_options.create_target_machine().unwrap();
module.set_data_layout(&target_machine.get_target_data().get_data_layout());
module.set_triple(&target_machine.get_triple());
}
}
*self.task_count.lock() -= 1;
@ -444,7 +429,7 @@ pub struct CodeGenTask {
fn get_llvm_type<'ctx, G: CodeGenerator + ?Sized>(
ctx: &'ctx Context,
module: &Module<'ctx>,
generator: &G,
generator: &mut G,
unifier: &mut Unifier,
top_level: &TopLevelContext,
type_cache: &mut HashMap<Type, BasicTypeEnum<'ctx>>,
@ -474,22 +459,10 @@ fn get_llvm_type<'ctx, G: CodeGenerator + ?Sized>(
.into()
}
TObj { obj_id, params, .. } if *obj_id == PrimDef::List.id() => {
let element_type = get_llvm_type(
ctx,
module,
generator,
unifier,
top_level,
type_cache,
*params.iter().next().unwrap().1,
);
ListType::new(generator, ctx, element_type).as_base_type().into()
}
TObj { obj_id, .. } if *obj_id == PrimDef::NDArray.id() => {
let (dtype, _) = unpack_ndarray_var_tys(unifier, ty);
let dtype = primitive_type::NDArrayType::create(ty, unifier)
.dtype_tvar(unifier)
.ty;
let element_type = get_llvm_type(
ctx, module, generator, unifier, top_level, type_cache, dtype,
);
@ -538,10 +511,8 @@ fn get_llvm_type<'ctx, G: CodeGenerator + ?Sized>(
};
return ty;
}
TTuple { ty, is_vararg_ctx } => {
TTuple { ty } => {
// a struct with fields in the order present in the tuple
assert!(!is_vararg_ctx, "Tuples in vararg context must be instantiated with the correct number of arguments before calling get_llvm_type");
let fields = ty
.iter()
.map(|ty| {
@ -550,6 +521,12 @@ fn get_llvm_type<'ctx, G: CodeGenerator + ?Sized>(
.collect_vec();
ctx.struct_type(&fields, false).into()
}
TList { ty } => {
let element_type =
get_llvm_type(ctx, module, generator, unifier, top_level, type_cache, *ty);
ListType::new(generator, ctx, element_type).as_base_type().into()
}
TVirtual { .. } => unimplemented!(),
_ => unreachable!("{}", ty_enum.get_type_name()),
};
@ -571,7 +548,7 @@ fn get_llvm_type<'ctx, G: CodeGenerator + ?Sized>(
fn get_llvm_abi_type<'ctx, G: CodeGenerator + ?Sized>(
ctx: &'ctx Context,
module: &Module<'ctx>,
generator: &G,
generator: &mut G,
unifier: &mut Unifier,
top_level: &TopLevelContext,
type_cache: &mut HashMap<Type, BasicTypeEnum<'ctx>>,
@ -609,40 +586,6 @@ fn need_sret(ty: BasicTypeEnum) -> bool {
need_sret_impl(ty, true)
}
/// Returns the [`BasicTypeEnum`] representing a `va_list` struct for variadic arguments.
fn get_llvm_valist_type<'ctx>(ctx: &'ctx Context, triple: &TargetTriple) -> BasicTypeEnum<'ctx> {
let triple = TargetMachine::normalize_triple(triple);
let triple = triple.as_str().to_str().unwrap();
let arch = triple.split('-').next().unwrap();
let llvm_pi8 = ctx.i8_type().ptr_type(AddressSpace::default());
// Referenced from parseArch() in llvm/lib/Support/Triple.cpp
match arch {
"i386" | "i486" | "i586" | "i686" | "riscv32" => {
ctx.i8_type().ptr_type(AddressSpace::default()).into()
}
"amd64" | "x86_64" | "x86_64h" => {
let llvm_i32 = ctx.i32_type();
let va_list_tag = ctx.opaque_struct_type("struct.__va_list_tag");
va_list_tag.set_body(
&[llvm_i32.into(), llvm_i32.into(), llvm_pi8.into(), llvm_pi8.into()],
false,
);
va_list_tag.into()
}
"armv7" => {
let va_list = ctx.opaque_struct_type("struct.__va_list");
va_list.set_body(&[llvm_pi8.into()], false);
va_list.into()
}
triple => {
todo!("Unsupported platform for varargs: {triple}")
}
}
}
/// Implementation for generating LLVM IR for a function.
pub fn gen_func_impl<
'ctx,
@ -696,7 +639,10 @@ pub fn gen_func_impl<
range: unifier.get_representative(primitives.range),
str: unifier.get_representative(primitives.str),
exception: unifier.get_representative(primitives.exception),
option: unifier.get_representative(primitives.option),
option: OptionType::create(
unifier.get_representative(primitives.option.into()),
&mut unifier,
),
..primitives
};
@ -754,7 +700,6 @@ pub fn gen_func_impl<
name: arg.name,
ty: task.store.to_unifier_type(&mut unifier, &primitives, arg.ty, &mut cache),
default_value: arg.default_value.clone(),
is_vararg: arg.is_vararg,
})
.collect_vec(),
task.store.to_unifier_type(&mut unifier, &primitives, *ret, &mut cache),
@ -777,10 +722,7 @@ pub fn gen_func_impl<
let has_sret = ret_type.map_or(false, |ty| need_sret(ty));
let mut params = args
.iter()
.filter(|arg| !arg.is_vararg)
.map(|arg| {
debug_assert!(!arg.is_vararg);
get_llvm_abi_type(
context,
&module,
@ -799,12 +741,9 @@ pub fn gen_func_impl<
params.insert(0, ret_type.unwrap().ptr_type(AddressSpace::default()).into());
}
debug_assert!(matches!(args.iter().filter(|arg| arg.is_vararg).count(), 0..=1));
let vararg_arg = args.iter().find(|arg| arg.is_vararg);
let fn_type = match ret_type {
Some(ret_type) if !has_sret => ret_type.fn_type(&params, vararg_arg.is_some()),
_ => context.void_type().fn_type(&params, vararg_arg.is_some()),
Some(ret_type) if !has_sret => ret_type.fn_type(&params, false),
_ => context.void_type().fn_type(&params, false),
};
let symbol = &task.symbol_name;
@ -834,9 +773,7 @@ pub fn gen_func_impl<
let mut var_assignment = HashMap::new();
let offset = u32::from(has_sret);
// Store non-vararg argument values into local variables
for (n, arg) in args.iter().enumerate().filter(|(_, arg)| !arg.is_vararg) {
for (n, arg) in args.iter().enumerate() {
let param = fn_val.get_nth_param((n as u32) + offset).unwrap();
let local_type = get_llvm_type(
context,
@ -869,8 +806,6 @@ pub fn gen_func_impl<
var_assignment.insert(arg.name, (alloca, None, 0));
}
// TODO: Save vararg parameters as list
let return_buffer = if has_sret {
Some(fn_val.get_nth_param(0).unwrap().into_pointer_value())
} else {
@ -1093,9 +1028,3 @@ fn gen_in_range_check<'ctx>(
ctx.builder.build_int_compare(IntPredicate::SLT, lo, hi, "cmp").unwrap()
}
/// Returns the internal name for the `va_count` argument, used to indicate the number of arguments
/// passed to the variadic function.
fn get_va_count_arg_name(arg_name: StrRef) -> StrRef {
format!("__{}_va_count", &arg_name).into()
}

View File

@ -11,30 +11,21 @@ use crate::{
call_ndarray_calc_broadcast_index, call_ndarray_calc_nd_indices,
call_ndarray_calc_size,
},
llvm_intrinsics::{self, call_memcpy_generic},
llvm_intrinsics,
llvm_intrinsics::call_memcpy_generic,
stmt::{gen_for_callback_incrementing, gen_for_range_callback, gen_if_else_expr_callback},
CodeGenContext, CodeGenerator,
},
symbol_resolver::ValueEnum,
toplevel::{
helper::PrimDef,
numpy::{make_ndarray_ty, unpack_ndarray_var_tys},
DefinitionId,
},
typecheck::{
magic_methods::Binop,
typedef::{FunSignature, Type, TypeEnum},
},
toplevel::{helper::PrimDef, primitive_type, DefinitionId},
typecheck::typedef::{FunSignature, GenericObjectType, Type, TypeEnum},
};
use inkwell::types::{AnyTypeEnum, BasicTypeEnum, PointerType};
use inkwell::{
types::BasicType,
values::{BasicValueEnum, IntValue, PointerValue},
AddressSpace, IntPredicate, OptimizationLevel,
};
use inkwell::{
types::{AnyTypeEnum, BasicTypeEnum, PointerType},
values::BasicValue,
};
use nac3parser::ast::{Operator, StrRef};
/// Creates an uninitialized `NDArray` instance.
@ -43,12 +34,17 @@ fn create_ndarray_uninitialized<'ctx, G: CodeGenerator + ?Sized>(
ctx: &mut CodeGenContext<'ctx, '_>,
elem_ty: Type,
) -> Result<NDArrayValue<'ctx>, String> {
let ndarray_ty = make_ndarray_ty(&mut ctx.unifier, &ctx.primitives, Some(elem_ty), None);
let ndarray_ty = primitive_type::NDArrayType::from_primitive(
&mut ctx.unifier,
&ctx.primitives,
Some(elem_ty),
None,
);
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_ndarray_t = ctx
.get_llvm_type(generator, ndarray_ty)
.get_llvm_type(generator, ndarray_ty.into())
.into_pointer_type()
.get_element_type()
.into_struct_type();
@ -89,10 +85,9 @@ where
gen_for_callback_incrementing(
generator,
ctx,
None,
llvm_usize.const_zero(),
(shape_len, false),
|generator, ctx, _, i| {
|generator, ctx, i| {
let shape_dim = shape_data_fn(generator, ctx, shape, i)?;
debug_assert!(shape_dim.get_type().get_bit_width() <= llvm_usize.get_bit_width());
@ -135,10 +130,9 @@ where
gen_for_callback_incrementing(
generator,
ctx,
None,
llvm_usize.const_zero(),
(shape_len, false),
|generator, ctx, _, i| {
|generator, ctx, i| {
let shape_dim = shape_data_fn(generator, ctx, shape, i)?;
debug_assert!(shape_dim.get_type().get_bit_width() <= llvm_usize.get_bit_width());
let shape_dim = ctx.builder.build_int_z_extend(shape_dim, llvm_usize, "").unwrap();
@ -162,7 +156,7 @@ where
///
/// * `elem_ty` - The element type of the `NDArray`.
/// * `shape` - The shape of the `NDArray`, represented am array of [`IntValue`]s.
pub fn create_ndarray_const_shape<'ctx, G: CodeGenerator + ?Sized>(
fn create_ndarray_const_shape<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
elem_ty: Type,
@ -387,10 +381,9 @@ where
gen_for_callback_incrementing(
generator,
ctx,
None,
llvm_usize.const_zero(),
(ndarray_num_elems, false),
|generator, ctx, _, i| {
|generator, ctx, i| {
let elem = unsafe { ndarray.data().ptr_offset_unchecked(ctx, generator, &i, None) };
let value = value_fn(generator, ctx, i)?;
@ -709,12 +702,11 @@ fn ndarray_from_ndlist_impl<'ctx, G: CodeGenerator + ?Sized>(
gen_for_range_callback(
generator,
ctx,
None,
true,
|_, _| Ok(llvm_usize.const_zero()),
(|_, ctx| Ok(src_lst.load_size(ctx, None)), false),
|_, _| Ok(llvm_usize.const_int(1, false)),
|generator, ctx, _, i| {
|generator, ctx, i| {
let offset = ctx.builder.build_int_mul(stride, i, "").unwrap();
let dst_ptr =
@ -748,8 +740,6 @@ fn ndarray_from_ndlist_impl<'ctx, G: CodeGenerator + ?Sized>(
_ => {
let lst_len = src_lst.load_size(ctx, None);
let sizeof_elem = ctx.get_llvm_type(generator, elem_ty).size_of().unwrap();
let sizeof_elem = ctx.builder.build_int_cast(sizeof_elem, llvm_usize, "").unwrap();
let cpy_len = ctx
.builder
.build_int_mul(
@ -950,12 +940,11 @@ fn call_ndarray_array_impl<'ctx, G: CodeGenerator + ?Sized>(
gen_for_range_callback(
generator,
ctx,
None,
true,
|_, _| Ok(llvm_usize.const_zero()),
(|_, _| Ok(stop), false),
|_, _| Ok(llvm_usize.const_int(1, false)),
|generator, ctx, _, _| {
|generator, ctx, _| {
let plist_plist_i8 = make_llvm_list(llvm_plist_i8.into())
.ptr_type(AddressSpace::default());
@ -1094,17 +1083,13 @@ fn ndarray_sliced_copyto_impl<'ctx, G: CodeGenerator + ?Sized>(
// If there are no (remaining) slice expressions, memcpy the entire dimension
if slices.is_empty() {
let sizeof_elem = ctx.get_llvm_type(generator, elem_ty).size_of().unwrap();
let stride = call_ndarray_calc_size(
generator,
ctx,
&src_arr.dim_sizes(),
(Some(llvm_usize.const_int(dim, false)), None),
);
let stride =
ctx.builder.build_int_z_extend_or_bit_cast(stride, sizeof_elem.get_type(), "").unwrap();
let sizeof_elem = ctx.get_llvm_type(generator, elem_ty).size_of().unwrap();
let cpy_len = ctx.builder.build_int_mul(stride, sizeof_elem, "").unwrap();
call_memcpy_generic(ctx, dst_slice_ptr, src_slice_ptr, cpy_len, llvm_i1.const_zero());
@ -1138,12 +1123,11 @@ fn ndarray_sliced_copyto_impl<'ctx, G: CodeGenerator + ?Sized>(
gen_for_range_callback(
generator,
ctx,
None,
false,
|_, _| Ok(start),
(|_, _| Ok(stop), true),
|_, _| Ok(step),
|generator, ctx, _, src_i| {
|generator, ctx, src_i| {
// Calculate the offset of the active slice
let src_data_offset = ctx.builder.build_int_mul(src_stride, src_i, "").unwrap();
let dst_i =
@ -1256,10 +1240,9 @@ pub fn ndarray_sliced_copy<'ctx, G: CodeGenerator + ?Sized>(
gen_for_callback_incrementing(
generator,
ctx,
None,
llvm_usize.const_int(slices.len() as u64, false),
(this.load_ndims(ctx), false),
|generator, ctx, _, idx| {
|generator, ctx, idx| {
unsafe {
let dim_sz = this.dim_sizes().get_typed_unchecked(ctx, generator, &idx, None);
ndarray.dim_sizes().set_typed_unchecked(ctx, generator, &idx, dim_sz);
@ -1661,10 +1644,9 @@ pub fn ndarray_matmul_2d<'ctx, G: CodeGenerator>(
gen_for_callback_incrementing(
generator,
ctx,
None,
llvm_i32.const_zero(),
(common_dim, false),
|generator, ctx, _, i| {
|generator, ctx, i| {
let i = ctx.builder.build_int_truncate(i, llvm_i32, "").unwrap();
let ab_idx = generator.gen_array_var_alloc(
@ -1696,9 +1678,10 @@ pub fn ndarray_matmul_2d<'ctx, G: CodeGenerator>(
generator,
ctx,
(&Some(elem_ty), a),
Binop::normal(Operator::Mult),
Operator::Mult,
(&Some(elem_ty), b),
ctx.current_loc,
false,
)?
.unwrap()
.to_basic_value_enum(ctx, generator, elem_ty)?;
@ -1708,9 +1691,10 @@ pub fn ndarray_matmul_2d<'ctx, G: CodeGenerator>(
generator,
ctx,
(&Some(elem_ty), result),
Binop::normal(Operator::Add),
Operator::Add,
(&Some(elem_ty), a_mul_b),
ctx.current_loc,
false,
)?
.unwrap()
.to_basic_value_enum(ctx, generator, elem_ty)?;
@ -1816,18 +1800,15 @@ pub fn gen_ndarray_array<'ctx>(
let obj_ty = fun.0.args[0].ty;
let obj_elem_ty = match &*context.unifier.get_ty(obj_ty) {
TypeEnum::TObj { obj_id, .. } if *obj_id == PrimDef::NDArray.id() => {
unpack_ndarray_var_tys(&mut context.unifier, obj_ty).0
primitive_type::NDArrayType::create(obj_ty, &mut context.unifier)
.dtype_tvar(&mut context.unifier)
.ty
}
TypeEnum::TObj { obj_id, params, .. } if *obj_id == PrimDef::List.id() => {
let mut ty = *params.iter().next().unwrap().1;
while let TypeEnum::TObj { obj_id, params, .. } = &*context.unifier.get_ty_immutable(ty)
{
if *obj_id != PrimDef::List.id() {
break;
}
ty = *params.iter().next().unwrap().1;
TypeEnum::TList { ty } => {
let mut ty = *ty;
while let TypeEnum::TList { ty: elem_ty } = &*context.unifier.get_ty_immutable(ty) {
ty = *elem_ty;
}
ty
}
@ -1961,7 +1942,9 @@ pub fn gen_ndarray_copy<'ctx>(
let llvm_usize = generator.get_size_type(context.ctx);
let this_ty = obj.as_ref().unwrap().0;
let (this_elem_ty, _) = unpack_ndarray_var_tys(&mut context.unifier, this_ty);
let this_elem_ty = primitive_type::NDArrayType::create(this_ty, &mut context.unifier)
.dtype_tvar(&mut context.unifier)
.ty;
let this_arg =
obj.as_ref().unwrap().1.clone().to_basic_value_enum(context, generator, this_ty)?;
@ -2029,493 +2012,3 @@ pub fn gen_ndarray_fill<'ctx>(
Ok(())
}
/// Generates LLVM IR for `ndarray.transpose`.
pub fn ndarray_transpose<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
x1: (Type, BasicValueEnum<'ctx>),
) -> Result<BasicValueEnum<'ctx>, String> {
const FN_NAME: &str = "ndarray_transpose";
let (x1_ty, x1) = x1;
let llvm_usize = generator.get_size_type(ctx.ctx);
if let BasicValueEnum::PointerValue(n1) = x1 {
let (elem_ty, _) = unpack_ndarray_var_tys(&mut ctx.unifier, x1_ty);
let n1 = NDArrayValue::from_ptr_val(n1, llvm_usize, None);
let n_sz = call_ndarray_calc_size(generator, ctx, &n1.dim_sizes(), (None, None));
// Dimensions are reversed in the transposed array
let out = create_ndarray_dyn_shape(
generator,
ctx,
elem_ty,
&n1,
|_, ctx, n| Ok(n.load_ndims(ctx)),
|generator, ctx, n, idx| {
let new_idx = ctx.builder.build_int_sub(n.load_ndims(ctx), idx, "").unwrap();
let new_idx = ctx
.builder
.build_int_sub(new_idx, new_idx.get_type().const_int(1, false), "")
.unwrap();
unsafe { Ok(n.dim_sizes().get_typed_unchecked(ctx, generator, &new_idx, None)) }
},
)
.unwrap();
gen_for_callback_incrementing(
generator,
ctx,
None,
llvm_usize.const_zero(),
(n_sz, false),
|generator, ctx, _, idx| {
let elem = unsafe { n1.data().get_unchecked(ctx, generator, &idx, None) };
let new_idx = generator.gen_var_alloc(ctx, llvm_usize.into(), None)?;
let rem_idx = generator.gen_var_alloc(ctx, llvm_usize.into(), None)?;
ctx.builder.build_store(new_idx, llvm_usize.const_zero()).unwrap();
ctx.builder.build_store(rem_idx, idx).unwrap();
// Incrementally calculate the new index in the transposed array
// For each index, we first decompose it into the n-dims and use those to reconstruct the new index
// The formula used for indexing is:
// idx = dim_n * ( ... (dim2 * (dim0 * dim1) + dim1) + dim2 ... ) + dim_n
gen_for_callback_incrementing(
generator,
ctx,
None,
llvm_usize.const_zero(),
(n1.load_ndims(ctx), false),
|generator, ctx, _, ndim| {
let ndim_rev =
ctx.builder.build_int_sub(n1.load_ndims(ctx), ndim, "").unwrap();
let ndim_rev = ctx
.builder
.build_int_sub(ndim_rev, llvm_usize.const_int(1, false), "")
.unwrap();
let dim = unsafe {
n1.dim_sizes().get_typed_unchecked(ctx, generator, &ndim_rev, None)
};
let rem_idx_val =
ctx.builder.build_load(rem_idx, "").unwrap().into_int_value();
let new_idx_val =
ctx.builder.build_load(new_idx, "").unwrap().into_int_value();
let add_component =
ctx.builder.build_int_unsigned_rem(rem_idx_val, dim, "").unwrap();
let rem_idx_val =
ctx.builder.build_int_unsigned_div(rem_idx_val, dim, "").unwrap();
let new_idx_val = ctx.builder.build_int_mul(new_idx_val, dim, "").unwrap();
let new_idx_val =
ctx.builder.build_int_add(new_idx_val, add_component, "").unwrap();
ctx.builder.build_store(rem_idx, rem_idx_val).unwrap();
ctx.builder.build_store(new_idx, new_idx_val).unwrap();
Ok(())
},
llvm_usize.const_int(1, false),
)?;
let new_idx_val = ctx.builder.build_load(new_idx, "").unwrap().into_int_value();
unsafe { out.data().set_unchecked(ctx, generator, &new_idx_val, elem) };
Ok(())
},
llvm_usize.const_int(1, false),
)?;
Ok(out.as_base_value().into())
} else {
unreachable!(
"{FN_NAME}() not supported for '{}'",
format!("'{}'", ctx.unifier.stringify(x1_ty))
)
}
}
/// LLVM-typed implementation for generating the implementation for `ndarray.reshape`.
///
/// * `x1` - `NDArray` to reshape.
/// * `shape` - The `shape` parameter used to construct the new `NDArray`.
/// Just like numpy, the `shape` argument can be:
/// 1. A list of `int32`; e.g., `np.reshape(arr, [600, -1, 3])`
/// 2. A tuple of `int32`; e.g., `np.reshape(arr, (-1, 800, 3))`
/// 3. A scalar `int32`; e.g., `np.reshape(arr, 3)`
/// Note that unlike other generating functions, one of the dimesions in the shape can be negative
pub fn ndarray_reshape<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
x1: (Type, BasicValueEnum<'ctx>),
shape: (Type, BasicValueEnum<'ctx>),
) -> Result<BasicValueEnum<'ctx>, String> {
const FN_NAME: &str = "ndarray_reshape";
let (x1_ty, x1) = x1;
let (_, shape) = shape;
let llvm_usize = generator.get_size_type(ctx.ctx);
if let BasicValueEnum::PointerValue(n1) = x1 {
let (elem_ty, _) = unpack_ndarray_var_tys(&mut ctx.unifier, x1_ty);
let n1 = NDArrayValue::from_ptr_val(n1, llvm_usize, None);
let n_sz = call_ndarray_calc_size(generator, ctx, &n1.dim_sizes(), (None, None));
let acc = generator.gen_var_alloc(ctx, llvm_usize.into(), None)?;
let num_neg = generator.gen_var_alloc(ctx, llvm_usize.into(), None)?;
ctx.builder.build_store(acc, llvm_usize.const_int(1, false)).unwrap();
ctx.builder.build_store(num_neg, llvm_usize.const_zero()).unwrap();
let out = match shape {
BasicValueEnum::PointerValue(shape_list_ptr)
if ListValue::is_instance(shape_list_ptr, llvm_usize).is_ok() =>
{
// 1. A list of ints; e.g., `np.reshape(arr, [int64(600), int64(800, -1])`
let shape_list = ListValue::from_ptr_val(shape_list_ptr, llvm_usize, None);
// Check for -1 in dimensions
gen_for_callback_incrementing(
generator,
ctx,
None,
llvm_usize.const_zero(),
(shape_list.load_size(ctx, None), false),
|generator, ctx, _, idx| {
let ele =
shape_list.data().get(ctx, generator, &idx, None).into_int_value();
let ele = ctx.builder.build_int_s_extend(ele, llvm_usize, "").unwrap();
gen_if_else_expr_callback(
generator,
ctx,
|_, ctx| {
Ok(ctx
.builder
.build_int_compare(
IntPredicate::SLT,
ele,
llvm_usize.const_zero(),
"",
)
.unwrap())
},
|_, ctx| -> Result<Option<IntValue>, String> {
let num_neg_value =
ctx.builder.build_load(num_neg, "").unwrap().into_int_value();
let num_neg_value = ctx
.builder
.build_int_add(
num_neg_value,
llvm_usize.const_int(1, false),
"",
)
.unwrap();
ctx.builder.build_store(num_neg, num_neg_value).unwrap();
Ok(None)
},
|_, ctx| {
let acc_value =
ctx.builder.build_load(acc, "").unwrap().into_int_value();
let acc_value =
ctx.builder.build_int_mul(acc_value, ele, "").unwrap();
ctx.builder.build_store(acc, acc_value).unwrap();
Ok(None)
},
)?;
Ok(())
},
llvm_usize.const_int(1, false),
)?;
let acc_val = ctx.builder.build_load(acc, "").unwrap().into_int_value();
let rem = ctx.builder.build_int_unsigned_div(n_sz, acc_val, "").unwrap();
// Generate the output shape by filling -1 with `rem`
create_ndarray_dyn_shape(
generator,
ctx,
elem_ty,
&shape_list,
|_, ctx, _| Ok(shape_list.load_size(ctx, None)),
|generator, ctx, shape_list, idx| {
let dim =
shape_list.data().get(ctx, generator, &idx, None).into_int_value();
let dim = ctx.builder.build_int_s_extend(dim, llvm_usize, "").unwrap();
Ok(gen_if_else_expr_callback(
generator,
ctx,
|_, ctx| {
Ok(ctx
.builder
.build_int_compare(
IntPredicate::SLT,
dim,
llvm_usize.const_zero(),
"",
)
.unwrap())
},
|_, _| Ok(Some(rem)),
|_, _| Ok(Some(dim)),
)?
.unwrap()
.into_int_value())
},
)
}
BasicValueEnum::StructValue(shape_tuple) => {
// 2. A tuple of `int32`; e.g., `np.reshape(arr, (-1, 800, 3))`
let ndims = shape_tuple.get_type().count_fields();
// Check for -1 in dims
for dim_i in 0..ndims {
let dim = ctx
.builder
.build_extract_value(shape_tuple, dim_i, "")
.unwrap()
.into_int_value();
let dim = ctx.builder.build_int_s_extend(dim, llvm_usize, "").unwrap();
gen_if_else_expr_callback(
generator,
ctx,
|_, ctx| {
Ok(ctx
.builder
.build_int_compare(
IntPredicate::SLT,
dim,
llvm_usize.const_zero(),
"",
)
.unwrap())
},
|_, ctx| -> Result<Option<IntValue>, String> {
let num_negs =
ctx.builder.build_load(num_neg, "").unwrap().into_int_value();
let num_negs = ctx
.builder
.build_int_add(num_negs, llvm_usize.const_int(1, false), "")
.unwrap();
ctx.builder.build_store(num_neg, num_negs).unwrap();
Ok(None)
},
|_, ctx| {
let acc_val = ctx.builder.build_load(acc, "").unwrap().into_int_value();
let acc_val = ctx.builder.build_int_mul(acc_val, dim, "").unwrap();
ctx.builder.build_store(acc, acc_val).unwrap();
Ok(None)
},
)?;
}
let acc_val = ctx.builder.build_load(acc, "").unwrap().into_int_value();
let rem = ctx.builder.build_int_unsigned_div(n_sz, acc_val, "").unwrap();
let mut shape = Vec::with_capacity(ndims as usize);
// Reconstruct shape filling negatives with rem
for dim_i in 0..ndims {
let dim = ctx
.builder
.build_extract_value(shape_tuple, dim_i, "")
.unwrap()
.into_int_value();
let dim = ctx.builder.build_int_s_extend(dim, llvm_usize, "").unwrap();
let dim = gen_if_else_expr_callback(
generator,
ctx,
|_, ctx| {
Ok(ctx
.builder
.build_int_compare(
IntPredicate::SLT,
dim,
llvm_usize.const_zero(),
"",
)
.unwrap())
},
|_, _| Ok(Some(rem)),
|_, _| Ok(Some(dim)),
)?
.unwrap()
.into_int_value();
shape.push(dim);
}
create_ndarray_const_shape(generator, ctx, elem_ty, shape.as_slice())
}
BasicValueEnum::IntValue(shape_int) => {
// 3. A scalar `int32`; e.g., `np.reshape(arr, 3)`
let shape_int = gen_if_else_expr_callback(
generator,
ctx,
|_, ctx| {
Ok(ctx
.builder
.build_int_compare(
IntPredicate::SLT,
shape_int,
llvm_usize.const_zero(),
"",
)
.unwrap())
},
|_, _| Ok(Some(n_sz)),
|_, ctx| {
Ok(Some(ctx.builder.build_int_s_extend(shape_int, llvm_usize, "").unwrap()))
},
)?
.unwrap()
.into_int_value();
create_ndarray_const_shape(generator, ctx, elem_ty, &[shape_int])
}
_ => unreachable!(),
}
.unwrap();
// Only allow one dimension to be negative
let num_negs = ctx.builder.build_load(num_neg, "").unwrap().into_int_value();
ctx.make_assert(
generator,
ctx.builder
.build_int_compare(IntPredicate::ULT, num_negs, llvm_usize.const_int(2, false), "")
.unwrap(),
"0:ValueError",
"can only specify one unknown dimension",
[None, None, None],
ctx.current_loc,
);
// The new shape must be compatible with the old shape
let out_sz = call_ndarray_calc_size(generator, ctx, &out.dim_sizes(), (None, None));
ctx.make_assert(
generator,
ctx.builder.build_int_compare(IntPredicate::EQ, out_sz, n_sz, "").unwrap(),
"0:ValueError",
"cannot reshape array of size {0} into provided shape of size {1}",
[Some(n_sz), Some(out_sz), None],
ctx.current_loc,
);
gen_for_callback_incrementing(
generator,
ctx,
None,
llvm_usize.const_zero(),
(n_sz, false),
|generator, ctx, _, idx| {
let elem = unsafe { n1.data().get_unchecked(ctx, generator, &idx, None) };
unsafe { out.data().set_unchecked(ctx, generator, &idx, elem) };
Ok(())
},
llvm_usize.const_int(1, false),
)?;
Ok(out.as_base_value().into())
} else {
unreachable!(
"{FN_NAME}() not supported for '{}'",
format!("'{}'", ctx.unifier.stringify(x1_ty))
)
}
}
/// Generates LLVM IR for `ndarray.dot`.
/// Calculate inner product of two vectors or literals
/// For matrix multiplication use `np_matmul`
///
/// The input `NDArray` are flattened and treated as 1D
/// The operation is equivalent to `np.dot(arr1.ravel(), arr2.ravel())`
pub fn ndarray_dot<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
x1: (Type, BasicValueEnum<'ctx>),
x2: (Type, BasicValueEnum<'ctx>),
) -> Result<BasicValueEnum<'ctx>, String> {
const FN_NAME: &str = "ndarray_dot";
let (x1_ty, x1) = x1;
let (_, x2) = x2;
let llvm_usize = generator.get_size_type(ctx.ctx);
match (x1, x2) {
(BasicValueEnum::PointerValue(n1), BasicValueEnum::PointerValue(n2)) => {
let n1 = NDArrayValue::from_ptr_val(n1, llvm_usize, None);
let n2 = NDArrayValue::from_ptr_val(n2, llvm_usize, None);
let n1_sz = call_ndarray_calc_size(generator, ctx, &n1.dim_sizes(), (None, None));
let n2_sz = call_ndarray_calc_size(generator, ctx, &n1.dim_sizes(), (None, None));
ctx.make_assert(
generator,
ctx.builder.build_int_compare(IntPredicate::EQ, n1_sz, n2_sz, "").unwrap(),
"0:ValueError",
"shapes ({0}), ({1}) not aligned",
[Some(n1_sz), Some(n2_sz), None],
ctx.current_loc,
);
let identity =
unsafe { n1.data().get_unchecked(ctx, generator, &llvm_usize.const_zero(), None) };
let acc = ctx.builder.build_alloca(identity.get_type(), "").unwrap();
ctx.builder.build_store(acc, identity.get_type().const_zero()).unwrap();
gen_for_callback_incrementing(
generator,
ctx,
None,
llvm_usize.const_zero(),
(n1_sz, false),
|generator, ctx, _, idx| {
let elem1 = unsafe { n1.data().get_unchecked(ctx, generator, &idx, None) };
let elem2 = unsafe { n2.data().get_unchecked(ctx, generator, &idx, None) };
let product = match elem1 {
BasicValueEnum::IntValue(e1) => ctx
.builder
.build_int_mul(e1, elem2.into_int_value(), "")
.unwrap()
.as_basic_value_enum(),
BasicValueEnum::FloatValue(e1) => ctx
.builder
.build_float_mul(e1, elem2.into_float_value(), "")
.unwrap()
.as_basic_value_enum(),
_ => unreachable!(),
};
let acc_val = ctx.builder.build_load(acc, "").unwrap();
let acc_val = match acc_val {
BasicValueEnum::IntValue(e1) => ctx
.builder
.build_int_add(e1, product.into_int_value(), "")
.unwrap()
.as_basic_value_enum(),
BasicValueEnum::FloatValue(e1) => ctx
.builder
.build_float_add(e1, product.into_float_value(), "")
.unwrap()
.as_basic_value_enum(),
_ => unreachable!(),
};
ctx.builder.build_store(acc, acc_val).unwrap();
Ok(())
},
llvm_usize.const_int(1, false),
)?;
let acc_val = ctx.builder.build_load(acc, "").unwrap();
Ok(acc_val)
}
(BasicValueEnum::IntValue(e1), BasicValueEnum::IntValue(e2)) => {
Ok(ctx.builder.build_int_mul(e1, e2, "").unwrap().as_basic_value_enum())
}
(BasicValueEnum::FloatValue(e1), BasicValueEnum::FloatValue(e2)) => {
Ok(ctx.builder.build_float_mul(e1, e2, "").unwrap().as_basic_value_enum())
}
_ => unreachable!(
"{FN_NAME}() not supported for '{}'",
format!("'{}'", ctx.unifier.stringify(x1_ty))
),
}
}

View File

@ -4,17 +4,16 @@ use super::{
irrt::{handle_slice_indices, list_slice_assignment},
CodeGenContext, CodeGenerator,
};
use crate::toplevel::primitive_type;
use crate::typecheck::typedef::GenericObjectType;
use crate::{
codegen::{
classes::{ArrayLikeIndexer, ArraySliceValue, ListValue, RangeValue},
expr::gen_binop_expr,
gen_in_range_check,
},
toplevel::{DefinitionId, TopLevelDef},
typecheck::{
magic_methods::Binop,
typedef::{iter_type_vars, FunSignature, Type, TypeEnum},
},
toplevel::{helper::PrimDef, DefinitionId, TopLevelDef},
typecheck::typedef::{FunSignature, Type, TypeEnum},
};
use inkwell::{
attributes::{Attribute, AttributeLoc},
@ -23,10 +22,10 @@ use inkwell::{
values::{BasicValue, BasicValueEnum, FunctionValue, IntValue, PointerValue},
IntPredicate,
};
use itertools::{izip, Itertools};
use nac3parser::ast::{
Constant, ExcepthandlerKind, Expr, ExprKind, Location, Stmt, StmtKind, StrRef,
};
use std::convert::TryFrom;
/// See [`CodeGenerator::gen_var_alloc`].
pub fn gen_var<'ctx>(
@ -97,6 +96,8 @@ pub fn gen_store_target<'ctx, G: CodeGenerator>(
pattern: &Expr<Option<Type>>,
name: Option<&str>,
) -> Result<Option<PointerValue<'ctx>>, String> {
let llvm_usize = generator.get_size_type(ctx.ctx);
// very similar to gen_expr, but we don't do an extra load at the end
// and we flatten nested tuples
Ok(Some(match &pattern.node {
@ -135,6 +136,65 @@ pub fn gen_store_target<'ctx, G: CodeGenerator>(
}
.unwrap()
}
ExprKind::Subscript { value, slice, .. } => {
match ctx.unifier.get_ty_immutable(value.custom.unwrap()).as_ref() {
TypeEnum::TList { .. } => {
let v = generator
.gen_expr(ctx, value)?
.unwrap()
.to_basic_value_enum(ctx, generator, value.custom.unwrap())?
.into_pointer_value();
let v = ListValue::from_ptr_val(v, llvm_usize, None);
let len = v.load_size(ctx, Some("len"));
let raw_index = generator
.gen_expr(ctx, slice)?
.unwrap()
.to_basic_value_enum(ctx, generator, slice.custom.unwrap())?
.into_int_value();
let raw_index = ctx
.builder
.build_int_s_extend(raw_index, generator.get_size_type(ctx.ctx), "sext")
.unwrap();
// handle negative index
let is_negative = ctx
.builder
.build_int_compare(
IntPredicate::SLT,
raw_index,
generator.get_size_type(ctx.ctx).const_zero(),
"is_neg",
)
.unwrap();
let adjusted = ctx.builder.build_int_add(raw_index, len, "adjusted").unwrap();
let index = ctx
.builder
.build_select(is_negative, adjusted, raw_index, "index")
.map(BasicValueEnum::into_int_value)
.unwrap();
// unsigned less than is enough, because negative index after adjustment is
// bigger than the length (for unsigned cmp)
let bound_check = ctx
.builder
.build_int_compare(IntPredicate::ULT, index, len, "inbound")
.unwrap();
ctx.make_assert(
generator,
bound_check,
"0:IndexError",
"index {0} out of bounds 0:{1}",
[Some(raw_index), Some(len), None],
slice.location,
);
v.data().ptr_offset(ctx, generator, &index, name)
}
TypeEnum::TObj { obj_id, .. } if *obj_id == PrimDef::NDArray.id() => {
todo!()
}
_ => unreachable!(),
}
}
_ => unreachable!(),
}))
}
@ -145,20 +205,70 @@ pub fn gen_assign<'ctx, G: CodeGenerator>(
ctx: &mut CodeGenContext<'ctx, '_>,
target: &Expr<Option<Type>>,
value: ValueEnum<'ctx>,
value_ty: Type,
) -> Result<(), String> {
// See https://docs.python.org/3/reference/simple_stmts.html#assignment-statements.
let llvm_usize = generator.get_size_type(ctx.ctx);
match &target.node {
ExprKind::Subscript { value: target, slice: key, .. } => {
// Handle "slicing" or "subscription"
generator.gen_setitem(ctx, target, key, value, value_ty)?;
ExprKind::Tuple { elts, .. } => {
let BasicValueEnum::StructValue(v) =
value.to_basic_value_enum(ctx, generator, target.custom.unwrap())?
else {
unreachable!()
};
for (i, elt) in elts.iter().enumerate() {
let v = ctx
.builder
.build_extract_value(v, u32::try_from(i).unwrap(), "struct_elem")
.unwrap();
generator.gen_assign(ctx, elt, v.into())?;
}
}
ExprKind::Tuple { elts, .. } | ExprKind::List { elts, .. } => {
// Fold on `"[" [target_list] "]"` and `"(" [target_list] ")"`
generator.gen_assign_target_list(ctx, elts, value, value_ty)?;
ExprKind::Subscript { value: ls, slice, .. }
if matches!(&slice.node, ExprKind::Slice { .. }) =>
{
let ExprKind::Slice { lower, upper, step } = &slice.node else { unreachable!() };
let ls = generator
.gen_expr(ctx, ls)?
.unwrap()
.to_basic_value_enum(ctx, generator, ls.custom.unwrap())?
.into_pointer_value();
let ls = ListValue::from_ptr_val(ls, llvm_usize, None);
let Some((start, end, step)) =
handle_slice_indices(lower, upper, step, ctx, generator, ls.load_size(ctx, None))?
else {
return Ok(());
};
let value = value
.to_basic_value_enum(ctx, generator, target.custom.unwrap())?
.into_pointer_value();
let value = ListValue::from_ptr_val(value, llvm_usize, None);
let ty = match &*ctx.unifier.get_ty_immutable(target.custom.unwrap()) {
TypeEnum::TList { ty } => *ty,
TypeEnum::TObj { obj_id, .. } if *obj_id == PrimDef::NDArray.id() => {
primitive_type::NDArrayType::create(target.custom.unwrap(), &mut ctx.unifier)
.dtype_tvar(&mut ctx.unifier)
.ty
}
_ => unreachable!(),
};
let ty = ctx.get_llvm_type(generator, ty);
let Some(src_ind) = handle_slice_indices(
&None,
&None,
&None,
ctx,
generator,
value.load_size(ctx, None),
)?
else {
return Ok(());
};
list_slice_assignment(generator, ctx, ty, ls, (start, end, step), value, src_ind);
}
_ => {
// Handle attribute and direct variable assignments.
let name = if let ExprKind::Name { id, .. } = &target.node {
format!("{id}.addr")
} else {
@ -182,234 +292,6 @@ pub fn gen_assign<'ctx, G: CodeGenerator>(
Ok(())
}
/// See [`CodeGenerator::gen_assign_target_list`].
pub fn gen_assign_target_list<'ctx, G: CodeGenerator>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
targets: &Vec<Expr<Option<Type>>>,
value: ValueEnum<'ctx>,
value_ty: Type,
) -> Result<(), String> {
// Deconstruct the tuple `value`
let BasicValueEnum::StructValue(tuple) = value.to_basic_value_enum(ctx, generator, value_ty)?
else {
unreachable!()
};
// NOTE: Currently, RHS's type is forced to be a Tuple by the type inferencer.
let TypeEnum::TTuple { ty: tuple_tys, .. } = &*ctx.unifier.get_ty(value_ty) else {
unreachable!();
};
assert_eq!(tuple.get_type().count_fields() as usize, tuple_tys.len());
let tuple = (0..tuple.get_type().count_fields())
.map(|i| ctx.builder.build_extract_value(tuple, i, "item").unwrap())
.collect_vec();
// Find the starred target if it exists.
let mut starred_target_index: Option<usize> = None; // Index of the "starred" target. If it exists, there may only be one.
for (i, target) in targets.iter().enumerate() {
if matches!(target.node, ExprKind::Starred { .. }) {
assert!(starred_target_index.is_none()); // The typechecker ensures this
starred_target_index = Some(i);
}
}
if let Some(starred_target_index) = starred_target_index {
assert!(tuple_tys.len() >= targets.len() - 1); // The typechecker ensures this
let a = starred_target_index; // Number of RHS values before the starred target
let b = tuple_tys.len() - (targets.len() - 1 - starred_target_index); // Number of RHS values after the starred target
// Thus `tuple[a..b]` is assigned to the starred target.
// Handle assignment before the starred target
for (target, val, val_ty) in
izip!(&targets[..starred_target_index], &tuple[..a], &tuple_tys[..a])
{
generator.gen_assign(ctx, target, ValueEnum::Dynamic(*val), *val_ty)?;
}
// Handle assignment to the starred target
if let ExprKind::Starred { value: target, .. } = &targets[starred_target_index].node {
let vals = &tuple[a..b];
let val_tys = &tuple_tys[a..b];
// Create a sub-tuple from `value` for the starred target.
let sub_tuple_ty = ctx
.ctx
.struct_type(&vals.iter().map(BasicValueEnum::get_type).collect_vec(), false);
let psub_tuple_val =
ctx.builder.build_alloca(sub_tuple_ty, "starred_target_value_ptr").unwrap();
for (i, val) in vals.iter().enumerate() {
let pitem = ctx
.builder
.build_struct_gep(psub_tuple_val, i as u32, "starred_target_value_item")
.unwrap();
ctx.builder.build_store(pitem, *val).unwrap();
}
let sub_tuple_val =
ctx.builder.build_load(psub_tuple_val, "starred_target_value").unwrap();
// Create the typechecker type of the sub-tuple
let sub_tuple_ty =
ctx.unifier.add_ty(TypeEnum::TTuple { ty: val_tys.to_vec(), is_vararg_ctx: false });
// Now assign with that sub-tuple to the starred target.
generator.gen_assign(ctx, target, ValueEnum::Dynamic(sub_tuple_val), sub_tuple_ty)?;
} else {
unreachable!() // The typechecker ensures this
}
// Handle assignment after the starred target
for (target, val, val_ty) in
izip!(&targets[starred_target_index + 1..], &tuple[b..], &tuple_tys[b..])
{
generator.gen_assign(ctx, target, ValueEnum::Dynamic(*val), *val_ty)?;
}
} else {
assert_eq!(tuple_tys.len(), targets.len()); // The typechecker ensures this
for (target, val, val_ty) in izip!(targets, tuple, tuple_tys) {
generator.gen_assign(ctx, target, ValueEnum::Dynamic(val), *val_ty)?;
}
}
Ok(())
}
/// See [`CodeGenerator::gen_setitem`].
pub fn gen_setitem<'ctx, G: CodeGenerator>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
target: &Expr<Option<Type>>,
key: &Expr<Option<Type>>,
value: ValueEnum<'ctx>,
value_ty: Type,
) -> Result<(), String> {
let target_ty = target.custom.unwrap();
let key_ty = key.custom.unwrap();
match &*ctx.unifier.get_ty(target_ty) {
TypeEnum::TObj { obj_id, params: list_params, .. }
if *obj_id == ctx.primitives.list.obj_id(&ctx.unifier).unwrap() =>
{
// Handle list item assignment
let llvm_usize = generator.get_size_type(ctx.ctx);
let target_item_ty = iter_type_vars(list_params).next().unwrap().ty;
let target = generator
.gen_expr(ctx, target)?
.unwrap()
.to_basic_value_enum(ctx, generator, target_ty)?
.into_pointer_value();
let target = ListValue::from_ptr_val(target, llvm_usize, None);
if let ExprKind::Slice { .. } = &key.node {
// Handle assigning to a slice
let ExprKind::Slice { lower, upper, step } = &key.node else { unreachable!() };
let Some((start, end, step)) = handle_slice_indices(
lower,
upper,
step,
ctx,
generator,
target.load_size(ctx, None),
)?
else {
return Ok(());
};
let value =
value.to_basic_value_enum(ctx, generator, value_ty)?.into_pointer_value();
let value = ListValue::from_ptr_val(value, llvm_usize, None);
let target_item_ty = ctx.get_llvm_type(generator, target_item_ty);
let Some(src_ind) = handle_slice_indices(
&None,
&None,
&None,
ctx,
generator,
value.load_size(ctx, None),
)?
else {
return Ok(());
};
list_slice_assignment(
generator,
ctx,
target_item_ty,
target,
(start, end, step),
value,
src_ind,
);
} else {
// Handle assigning to an index
let len = target.load_size(ctx, Some("len"));
let index = generator
.gen_expr(ctx, key)?
.unwrap()
.to_basic_value_enum(ctx, generator, key_ty)?
.into_int_value();
let index = ctx
.builder
.build_int_s_extend(index, generator.get_size_type(ctx.ctx), "sext")
.unwrap();
// handle negative index
let is_negative = ctx
.builder
.build_int_compare(
IntPredicate::SLT,
index,
generator.get_size_type(ctx.ctx).const_zero(),
"is_neg",
)
.unwrap();
let adjusted = ctx.builder.build_int_add(index, len, "adjusted").unwrap();
let index = ctx
.builder
.build_select(is_negative, adjusted, index, "index")
.map(BasicValueEnum::into_int_value)
.unwrap();
// unsigned less than is enough, because negative index after adjustment is
// bigger than the length (for unsigned cmp)
let bound_check = ctx
.builder
.build_int_compare(IntPredicate::ULT, index, len, "inbound")
.unwrap();
ctx.make_assert(
generator,
bound_check,
"0:IndexError",
"index {0} out of bounds 0:{1}",
[Some(index), Some(len), None],
key.location,
);
// Write value to index on list
let item_ptr =
target.data().ptr_offset(ctx, generator, &index, Some("list_item_ptr"));
let value = value.to_basic_value_enum(ctx, generator, value_ty)?;
ctx.builder.build_store(item_ptr, value).unwrap();
}
}
TypeEnum::TObj { obj_id, .. }
if *obj_id == ctx.primitives.ndarray.obj_id(&ctx.unifier).unwrap() =>
{
// Handle NDArray item assignment
todo!("ndarray subscript assignment is not yet implemented");
}
_ => {
panic!("encountered unknown target type: {}", ctx.unifier.stringify(target_ty));
}
}
Ok(())
}
/// See [`CodeGenerator::gen_for`].
pub fn gen_for<G: CodeGenerator>(
generator: &mut G,
@ -432,6 +314,9 @@ pub fn gen_for<G: CodeGenerator>(
let orelse_bb =
if orelse.is_empty() { cont_bb } else { ctx.ctx.append_basic_block(current, "for.orelse") };
// Whether the iterable is a range() expression
let is_iterable_range_expr = ctx.unifier.unioned(iter.custom.unwrap(), ctx.primitives.range);
// The BB containing the increment expression
let incr_bb = ctx.ctx.append_basic_block(current, "for.incr");
// The BB containing the loop condition check
@ -440,132 +325,113 @@ pub fn gen_for<G: CodeGenerator>(
// store loop bb information and restore it later
let loop_bb = ctx.loop_target.replace((incr_bb, cont_bb));
let iter_ty = iter.custom.unwrap();
let iter_val = if let Some(v) = generator.gen_expr(ctx, iter)? {
v.to_basic_value_enum(ctx, generator, iter_ty)?
v.to_basic_value_enum(ctx, generator, iter.custom.unwrap())?
} else {
return Ok(());
};
if is_iterable_range_expr {
let iter_val = RangeValue::from_ptr_val(iter_val.into_pointer_value(), Some("range"));
// Internal variable for loop; Cannot be assigned
let i = generator.gen_var_alloc(ctx, int32.into(), Some("for.i.addr"))?;
// Variable declared in "target" expression of the loop; Can be reassigned *or* shadowed
let Some(target_i) = generator.gen_store_target(ctx, target, Some("for.target.addr"))?
else {
unreachable!()
};
let (start, stop, step) = destructure_range(ctx, iter_val);
ctx.builder.build_store(i, start).unwrap();
// Check "If step is zero, ValueError is raised."
let rangenez =
ctx.builder.build_int_compare(IntPredicate::NE, step, int32.const_zero(), "").unwrap();
ctx.make_assert(
generator,
rangenez,
"ValueError",
"range() arg 3 must not be zero",
[None, None, None],
ctx.current_loc,
);
ctx.builder.build_unconditional_branch(cond_bb).unwrap();
match &*ctx.unifier.get_ty(iter_ty) {
TypeEnum::TObj { obj_id, .. }
if *obj_id == ctx.primitives.range.obj_id(&ctx.unifier).unwrap() =>
{
let iter_val = RangeValue::from_ptr_val(iter_val.into_pointer_value(), Some("range"));
// Internal variable for loop; Cannot be assigned
let i = generator.gen_var_alloc(ctx, int32.into(), Some("for.i.addr"))?;
// Variable declared in "target" expression of the loop; Can be reassigned *or* shadowed
let Some(target_i) =
generator.gen_store_target(ctx, target, Some("for.target.addr"))?
else {
unreachable!()
};
let (start, stop, step) = destructure_range(ctx, iter_val);
ctx.builder.build_store(i, start).unwrap();
// Check "If step is zero, ValueError is raised."
let rangenez = ctx
.builder
.build_int_compare(IntPredicate::NE, step, int32.const_zero(), "")
.unwrap();
ctx.make_assert(
generator,
rangenez,
"ValueError",
"range() arg 3 must not be zero",
[None, None, None],
ctx.current_loc,
);
ctx.builder.build_unconditional_branch(cond_bb).unwrap();
{
ctx.builder.position_at_end(cond_bb);
ctx.builder
.build_conditional_branch(
gen_in_range_check(
ctx,
ctx.builder
.build_load(i, "")
.map(BasicValueEnum::into_int_value)
.unwrap(),
stop,
step,
),
body_bb,
orelse_bb,
)
.unwrap();
}
ctx.builder.position_at_end(incr_bb);
let next_i = ctx
.builder
.build_int_add(
ctx.builder.build_load(i, "").map(BasicValueEnum::into_int_value).unwrap(),
step,
"inc",
)
.unwrap();
ctx.builder.build_store(i, next_i).unwrap();
ctx.builder.build_unconditional_branch(cond_bb).unwrap();
ctx.builder.position_at_end(body_bb);
ctx.builder
.build_store(
target_i,
ctx.builder.build_load(i, "").map(BasicValueEnum::into_int_value).unwrap(),
)
.unwrap();
generator.gen_block(ctx, body.iter())?;
}
TypeEnum::TObj { obj_id, params: list_params, .. }
if *obj_id == ctx.primitives.list.obj_id(&ctx.unifier).unwrap() =>
{
let index_addr = generator.gen_var_alloc(ctx, size_t.into(), Some("for.index.addr"))?;
ctx.builder.build_store(index_addr, size_t.const_zero()).unwrap();
let len = ctx
.build_gep_and_load(
iter_val.into_pointer_value(),
&[zero, int32.const_int(1, false)],
Some("len"),
)
.into_int_value();
ctx.builder.build_unconditional_branch(cond_bb).unwrap();
ctx.builder.position_at_end(cond_bb);
let index = ctx
.builder
.build_load(index_addr, "for.index")
.map(BasicValueEnum::into_int_value)
ctx.builder
.build_conditional_branch(
gen_in_range_check(
ctx,
ctx.builder.build_load(i, "").map(BasicValueEnum::into_int_value).unwrap(),
stop,
step,
),
body_bb,
orelse_bb,
)
.unwrap();
let cmp = ctx.builder.build_int_compare(IntPredicate::SLT, index, len, "cond").unwrap();
ctx.builder.build_conditional_branch(cmp, body_bb, orelse_bb).unwrap();
ctx.builder.position_at_end(incr_bb);
let index =
ctx.builder.build_load(index_addr, "").map(BasicValueEnum::into_int_value).unwrap();
let inc = ctx.builder.build_int_add(index, size_t.const_int(1, true), "inc").unwrap();
ctx.builder.build_store(index_addr, inc).unwrap();
ctx.builder.build_unconditional_branch(cond_bb).unwrap();
ctx.builder.position_at_end(body_bb);
let arr_ptr = ctx
.build_gep_and_load(iter_val.into_pointer_value(), &[zero, zero], Some("arr.addr"))
.into_pointer_value();
let index = ctx
.builder
.build_load(index_addr, "for.index")
.map(BasicValueEnum::into_int_value)
.unwrap();
let val = ctx.build_gep_and_load(arr_ptr, &[index], Some("val"));
let val_ty = iter_type_vars(list_params).next().unwrap().ty;
generator.gen_assign(ctx, target, val.into(), val_ty)?;
generator.gen_block(ctx, body.iter())?;
}
_ => {
panic!("unsupported for loop iterator type: {}", ctx.unifier.stringify(iter_ty));
}
ctx.builder.position_at_end(incr_bb);
let next_i = ctx
.builder
.build_int_add(
ctx.builder.build_load(i, "").map(BasicValueEnum::into_int_value).unwrap(),
step,
"inc",
)
.unwrap();
ctx.builder.build_store(i, next_i).unwrap();
ctx.builder.build_unconditional_branch(cond_bb).unwrap();
ctx.builder.position_at_end(body_bb);
ctx.builder
.build_store(
target_i,
ctx.builder.build_load(i, "").map(BasicValueEnum::into_int_value).unwrap(),
)
.unwrap();
generator.gen_block(ctx, body.iter())?;
} else {
let index_addr = generator.gen_var_alloc(ctx, size_t.into(), Some("for.index.addr"))?;
ctx.builder.build_store(index_addr, size_t.const_zero()).unwrap();
let len = ctx
.build_gep_and_load(
iter_val.into_pointer_value(),
&[zero, int32.const_int(1, false)],
Some("len"),
)
.into_int_value();
ctx.builder.build_unconditional_branch(cond_bb).unwrap();
ctx.builder.position_at_end(cond_bb);
let index = ctx
.builder
.build_load(index_addr, "for.index")
.map(BasicValueEnum::into_int_value)
.unwrap();
let cmp = ctx.builder.build_int_compare(IntPredicate::SLT, index, len, "cond").unwrap();
ctx.builder.build_conditional_branch(cmp, body_bb, orelse_bb).unwrap();
ctx.builder.position_at_end(incr_bb);
let index =
ctx.builder.build_load(index_addr, "").map(BasicValueEnum::into_int_value).unwrap();
let inc = ctx.builder.build_int_add(index, size_t.const_int(1, true), "inc").unwrap();
ctx.builder.build_store(index_addr, inc).unwrap();
ctx.builder.build_unconditional_branch(cond_bb).unwrap();
ctx.builder.position_at_end(body_bb);
let arr_ptr = ctx
.build_gep_and_load(iter_val.into_pointer_value(), &[zero, zero], Some("arr.addr"))
.into_pointer_value();
let index = ctx
.builder
.build_load(index_addr, "for.index")
.map(BasicValueEnum::into_int_value)
.unwrap();
let val = ctx.build_gep_and_load(arr_ptr, &[index], Some("val"));
generator.gen_assign(ctx, target, val.into())?;
generator.gen_block(ctx, body.iter())?;
}
for (k, (_, _, counter)) in &var_assignment {
@ -600,16 +466,6 @@ pub fn gen_for<G: CodeGenerator>(
Ok(())
}
#[derive(PartialEq, Eq, Debug, Clone, Copy, Hash)]
pub struct BreakContinueHooks<'ctx> {
/// The [exit block][`BasicBlock`] to branch to when `break`-ing out of a loop.
pub exit_bb: BasicBlock<'ctx>,
/// The [latch basic block][`BasicBlock`] to branch to for `continue`-ing to the next iteration
/// of the loop.
pub latch_bb: BasicBlock<'ctx>,
}
/// Generates a C-style `for` construct using lambdas, similar to the following C code:
///
/// ```c
@ -627,7 +483,6 @@ pub struct BreakContinueHooks<'ctx> {
pub fn gen_for_callback<'ctx, 'a, G, I, InitFn, CondFn, BodyFn, UpdateFn>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, 'a>,
label: Option<&str>,
init: InitFn,
cond: CondFn,
body: BodyFn,
@ -638,20 +493,17 @@ where
I: Clone,
InitFn: FnOnce(&mut G, &mut CodeGenContext<'ctx, 'a>) -> Result<I, String>,
CondFn: FnOnce(&mut G, &mut CodeGenContext<'ctx, 'a>, I) -> Result<IntValue<'ctx>, String>,
BodyFn:
FnOnce(&mut G, &mut CodeGenContext<'ctx, 'a>, BreakContinueHooks, I) -> Result<(), String>,
BodyFn: FnOnce(&mut G, &mut CodeGenContext<'ctx, 'a>, I) -> Result<(), String>,
UpdateFn: FnOnce(&mut G, &mut CodeGenContext<'ctx, 'a>, I) -> Result<(), String>,
{
let label = label.unwrap_or("for");
let current_bb = ctx.builder.get_insert_block().unwrap();
let init_bb = ctx.ctx.insert_basic_block_after(current_bb, &format!("{label}.init"));
let init_bb = ctx.ctx.insert_basic_block_after(current_bb, "for.init");
// The BB containing the loop condition check
let cond_bb = ctx.ctx.insert_basic_block_after(init_bb, &format!("{label}.cond"));
let body_bb = ctx.ctx.insert_basic_block_after(cond_bb, &format!("{label}.body"));
let cond_bb = ctx.ctx.insert_basic_block_after(init_bb, "for.cond");
let body_bb = ctx.ctx.insert_basic_block_after(cond_bb, "for.body");
// The BB containing the increment expression
let update_bb = ctx.ctx.insert_basic_block_after(body_bb, &format!("{label}.update"));
let cont_bb = ctx.ctx.insert_basic_block_after(update_bb, &format!("{label}.end"));
let update_bb = ctx.ctx.insert_basic_block_after(body_bb, "for.update");
let cont_bb = ctx.ctx.insert_basic_block_after(update_bb, "for.end");
// store loop bb information and restore it later
let loop_bb = ctx.loop_target.replace((update_bb, cont_bb));
@ -672,8 +524,7 @@ where
}
ctx.builder.position_at_end(body_bb);
let hooks = BreakContinueHooks { exit_bb: cont_bb, latch_bb: update_bb };
body(generator, ctx, hooks, loop_var.clone())?;
body(generator, ctx, loop_var.clone())?;
if !ctx.is_terminated() {
ctx.builder.build_unconditional_branch(update_bb).unwrap();
}
@ -708,7 +559,6 @@ where
pub fn gen_for_callback_incrementing<'ctx, 'a, G, BodyFn>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, 'a>,
label: Option<&str>,
init_val: IntValue<'ctx>,
max_val: (IntValue<'ctx>, bool),
body: BodyFn,
@ -716,19 +566,13 @@ pub fn gen_for_callback_incrementing<'ctx, 'a, G, BodyFn>(
) -> Result<(), String>
where
G: CodeGenerator + ?Sized,
BodyFn: FnOnce(
&mut G,
&mut CodeGenContext<'ctx, 'a>,
BreakContinueHooks,
IntValue<'ctx>,
) -> Result<(), String>,
BodyFn: FnOnce(&mut G, &mut CodeGenContext<'ctx, 'a>, IntValue<'ctx>) -> Result<(), String>,
{
let init_val_t = init_val.get_type();
gen_for_callback(
generator,
ctx,
label,
|generator, ctx| {
let i_addr = generator.gen_var_alloc(ctx, init_val_t.into(), None)?;
ctx.builder.build_store(i_addr, init_val).unwrap();
@ -744,10 +588,10 @@ where
Ok(ctx.builder.build_int_compare(cmp_op, i, max_val, "").unwrap())
},
|generator, ctx, hooks, i_addr| {
|generator, ctx, i_addr| {
let i = ctx.builder.build_load(i_addr, "").map(BasicValueEnum::into_int_value).unwrap();
body(generator, ctx, hooks, i)
body(generator, ctx, i)
},
|_, ctx, i_addr| {
let i = ctx.builder.build_load(i_addr, "").map(BasicValueEnum::into_int_value).unwrap();
@ -780,11 +624,9 @@ where
/// - `step_fn`: A lambda of IR statements that retrieves the `step` value of the `range`-like
/// iterable. This value will be extended to the size of `start`.
/// - `body_fn`: A lambda of IR statements within the loop body.
#[allow(clippy::too_many_arguments)]
pub fn gen_for_range_callback<'ctx, 'a, G, StartFn, StopFn, StepFn, BodyFn>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, 'a>,
label: Option<&str>,
is_unsigned: bool,
start_fn: StartFn,
(stop_fn, stop_inclusive): (StopFn, bool),
@ -796,19 +638,13 @@ where
StartFn: Fn(&mut G, &mut CodeGenContext<'ctx, 'a>) -> Result<IntValue<'ctx>, String>,
StopFn: Fn(&mut G, &mut CodeGenContext<'ctx, 'a>) -> Result<IntValue<'ctx>, String>,
StepFn: Fn(&mut G, &mut CodeGenContext<'ctx, 'a>) -> Result<IntValue<'ctx>, String>,
BodyFn: FnOnce(
&mut G,
&mut CodeGenContext<'ctx, 'a>,
BreakContinueHooks,
IntValue<'ctx>,
) -> Result<(), String>,
BodyFn: FnOnce(&mut G, &mut CodeGenContext<'ctx, 'a>, IntValue<'ctx>) -> Result<(), String>,
{
let init_val_t = start_fn(generator, ctx).map(IntValue::get_type).unwrap();
gen_for_callback(
generator,
ctx,
label,
|generator, ctx| {
let i_addr = generator.gen_var_alloc(ctx, init_val_t.into(), None)?;
@ -866,10 +702,10 @@ where
Ok(cond)
},
|generator, ctx, hooks, (i_addr, _)| {
|generator, ctx, (i_addr, _)| {
let i = ctx.builder.build_load(i_addr, "").map(BasicValueEnum::into_int_value).unwrap();
body_fn(generator, ctx, hooks, i)
body_fn(generator, ctx, i)
},
|generator, ctx, (i_addr, _)| {
let i = ctx.builder.build_load(i_addr, "").map(BasicValueEnum::into_int_value).unwrap();
@ -1721,14 +1557,14 @@ pub fn gen_stmt<G: CodeGenerator>(
}
StmtKind::AnnAssign { target, value, .. } => {
if let Some(value) = value {
let Some(value_enum) = generator.gen_expr(ctx, value)? else { return Ok(()) };
generator.gen_assign(ctx, target, value_enum, value.custom.unwrap())?;
let Some(value) = generator.gen_expr(ctx, value)? else { return Ok(()) };
generator.gen_assign(ctx, target, value)?;
}
}
StmtKind::Assign { targets, value, .. } => {
let Some(value_enum) = generator.gen_expr(ctx, value)? else { return Ok(()) };
let Some(value) = generator.gen_expr(ctx, value)? else { return Ok(()) };
for target in targets {
generator.gen_assign(ctx, target, value_enum.clone(), value.custom.unwrap())?;
generator.gen_assign(ctx, target, value.clone())?;
}
}
StmtKind::Continue { .. } => {
@ -1742,16 +1578,8 @@ pub fn gen_stmt<G: CodeGenerator>(
StmtKind::For { .. } => generator.gen_for(ctx, stmt)?,
StmtKind::With { .. } => generator.gen_with(ctx, stmt)?,
StmtKind::AugAssign { target, op, value, .. } => {
let value_enum = gen_binop_expr(
generator,
ctx,
target,
Binop::aug_assign(*op),
value,
stmt.location,
)?
.unwrap();
generator.gen_assign(ctx, target, value_enum, value.custom.unwrap())?;
let value = gen_binop_expr(generator, ctx, target, *op, value, stmt.location, true)?;
generator.gen_assign(ctx, target, value.unwrap())?;
}
StmtKind::Try { .. } => gen_try(generator, ctx, stmt)?,
StmtKind::Raise { exc, .. } => {
@ -1784,7 +1612,7 @@ pub fn gen_stmt<G: CodeGenerator>(
};
ctx.make_assert_impl(
generator,
generator.bool_to_i1(ctx, test.into_int_value()),
test.into_int_value(),
"0:AssertionError",
err_msg,
[None, None, None],

View File

@ -109,18 +109,8 @@ fn test_primitives() {
let threads = vec![DefaultCodeGenerator::new("test".into(), 32).into()];
let signature = FunSignature {
args: vec![
FuncArg {
name: "a".into(),
ty: primitives.int32,
default_value: None,
is_vararg: false,
},
FuncArg {
name: "b".into(),
ty: primitives.int32,
default_value: None,
is_vararg: false,
},
FuncArg { name: "a".into(), ty: primitives.int32, default_value: None },
FuncArg { name: "b".into(), ty: primitives.int32, default_value: None },
],
ret: primitives.int32,
vars: VarMap::new(),
@ -199,8 +189,6 @@ fn test_primitives() {
let expected = indoc! {"
; ModuleID = 'test'
source_filename = \"test\"
target datalayout = \"e-m:e-p270:32:32-p271:32:32-p272:64:64-i64:64-f80:128-n8:16:32:64-S128\"
target triple = \"x86_64-unknown-linux-gnu\"
; Function Attrs: mustprogress nofree norecurse nosync nounwind readnone willreturn
define i32 @testing(i32 %0, i32 %1) local_unnamed_addr #0 !dbg !4 {
@ -265,12 +253,7 @@ fn test_simple_call() {
unifier.top_level = Some(top_level.clone());
let signature = FunSignature {
args: vec![FuncArg {
name: "a".into(),
ty: primitives.int32,
default_value: None,
is_vararg: false,
}],
args: vec![FuncArg { name: "a".into(), ty: primitives.int32, default_value: None }],
ret: primitives.int32,
vars: VarMap::new(),
};
@ -385,8 +368,6 @@ fn test_simple_call() {
let expected = indoc! {"
; ModuleID = 'test'
source_filename = \"test\"
target datalayout = \"e-m:e-p270:32:32-p271:32:32-p272:64:64-i64:64-f80:128-n8:16:32:64-S128\"
target triple = \"x86_64-unknown-linux-gnu\"
; Function Attrs: mustprogress nofree norecurse nosync nounwind readnone willreturn
define i32 @testing(i32 %0) local_unnamed_addr #0 !dbg !5 {

View File

@ -3,6 +3,7 @@ use std::rc::Rc;
use std::sync::Arc;
use std::{collections::HashMap, collections::HashSet, fmt::Display};
use crate::typecheck::typedef::GenericObjectType;
use crate::{
codegen::{CodeGenContext, CodeGenerator},
toplevel::{type_annotation::TypeAnnotation, DefinitionId, TopLevelDef},
@ -43,7 +44,7 @@ impl SymbolValue {
) -> Result<Self, String> {
match constant {
Constant::None => {
if unifier.unioned(expected_ty, primitives.option) {
if unifier.unioned(expected_ty, primitives.option.into()) {
Ok(SymbolValue::OptionNone)
} else {
Err(format!("Expected {expected_ty:?}, but got Option"))
@ -78,14 +79,14 @@ impl SymbolValue {
}
Constant::Tuple(t) => {
let expected_ty = unifier.get_ty(expected_ty);
let TypeEnum::TTuple { ty, is_vararg_ctx } = expected_ty.as_ref() else {
let TypeEnum::TTuple { ty } = expected_ty.as_ref() else {
return Err(format!(
"Expected {:?}, but got Tuple",
expected_ty.get_type_name()
));
};
assert!(*is_vararg_ctx || ty.len() == t.len());
assert_eq!(ty.len(), t.len());
let elems = t
.iter()
@ -155,9 +156,9 @@ impl SymbolValue {
SymbolValue::Bool(_) => primitives.bool,
SymbolValue::Tuple(vs) => {
let vs_tys = vs.iter().map(|v| v.get_type(primitives, unifier)).collect::<Vec<_>>();
unifier.add_ty(TypeEnum::TTuple { ty: vs_tys, is_vararg_ctx: false })
unifier.add_ty(TypeEnum::TTuple { ty: vs_tys })
}
SymbolValue::OptionSome(_) | SymbolValue::OptionNone => primitives.option,
SymbolValue::OptionSome(_) | SymbolValue::OptionNone => primitives.option.into(),
}
}
@ -183,13 +184,13 @@ impl SymbolValue {
TypeAnnotation::Tuple(vs_tys)
}
SymbolValue::OptionNone => TypeAnnotation::CustomClass {
id: primitives.option.obj_id(unifier).unwrap(),
id: primitives.option.obj_id(unifier),
params: Vec::default(),
},
SymbolValue::OptionSome(v) => {
let ty = v.get_type_annotation(primitives, unifier);
TypeAnnotation::CustomClass {
id: primitives.option.obj_id(unifier).unwrap(),
id: primitives.option.obj_id(unifier),
params: vec![ty],
}
}
@ -382,12 +383,13 @@ pub trait SymbolResolver {
}
thread_local! {
static IDENTIFIER_ID: [StrRef; 11] = [
static IDENTIFIER_ID: [StrRef; 12] = [
"int32".into(),
"int64".into(),
"float".into(),
"bool".into(),
"virtual".into(),
"list".into(),
"tuple".into(),
"str".into(),
"Exception".into(),
@ -412,12 +414,13 @@ pub fn parse_type_annotation<T>(
let float_id = ids[2];
let bool_id = ids[3];
let virtual_id = ids[4];
let tuple_id = ids[5];
let str_id = ids[6];
let exn_id = ids[7];
let uint32_id = ids[8];
let uint64_id = ids[9];
let literal_id = ids[10];
let list_id = ids[5];
let tuple_id = ids[6];
let str_id = ids[7];
let exn_id = ids[8];
let uint32_id = ids[9];
let uint64_id = ids[10];
let literal_id = ids[11];
let name_handling = |id: &StrRef, loc: Location, unifier: &mut Unifier| {
if *id == int32_id {
@ -474,6 +477,9 @@ pub fn parse_type_annotation<T>(
if *id == virtual_id {
let ty = parse_type_annotation(resolver, top_level_defs, unifier, primitives, slice)?;
Ok(unifier.add_ty(TypeEnum::TVirtual { ty }))
} else if *id == list_id {
let ty = parse_type_annotation(resolver, top_level_defs, unifier, primitives, slice)?;
Ok(unifier.add_ty(TypeEnum::TList { ty }))
} else if *id == tuple_id {
if let Tuple { elts, .. } = &slice.node {
let ty = elts
@ -482,7 +488,7 @@ pub fn parse_type_annotation<T>(
parse_type_annotation(resolver, top_level_defs, unifier, primitives, elt)
})
.collect::<Result<Vec<_>, _>>()?;
Ok(unifier.add_ty(TypeEnum::TTuple { ty, is_vararg_ctx: false }))
Ok(unifier.add_ty(TypeEnum::TTuple { ty }))
} else {
Err(HashSet::from(["Expected multiple elements for tuple".into()]))
}

File diff suppressed because it is too large Load Diff

View File

@ -766,7 +766,6 @@ impl TopLevelComposer {
let target_ty = get_type_from_type_annotation_kinds(
&temp_def_list,
unifier,
primitives,
&def,
&mut subst_list,
)?;
@ -860,73 +859,7 @@ impl TopLevelComposer {
let resolver = &**resolver;
let mut function_var_map = VarMap::new();
let vararg = args
.vararg
.as_ref()
.map(|vararg| -> Result<_, HashSet<String>> {
let vararg = vararg.as_ref();
let annotation = vararg
.node
.annotation
.as_ref()
.ok_or_else(|| {
HashSet::from([format!(
"function parameter `{}` needs type annotation at {}",
vararg.node.arg, vararg.location
)])
})?
.as_ref();
let type_annotation = parse_ast_to_type_annotation_kinds(
resolver,
temp_def_list.as_slice(),
unifier,
primitives_store,
annotation,
// NOTE: since only class need this, for function
// it should be fine to be empty map
HashMap::new(),
)?;
let type_vars_within =
get_type_var_contained_in_type_annotation(&type_annotation)
.into_iter()
.map(|x| -> Result<TypeVar, HashSet<String>> {
let TypeAnnotation::TypeVar(ty) = x else {
unreachable!("must be type var annotation kind")
};
let id = Self::get_var_id(ty, unifier)?;
Ok(TypeVar { id, ty })
})
.collect::<Result<Vec<_>, _>>()?;
for var in type_vars_within {
if let Some(prev_ty) = function_var_map.insert(var.id, var.ty) {
// if already have the type inserted, make sure they are the same thing
assert_eq!(prev_ty, var.ty);
}
}
let ty = get_type_from_type_annotation_kinds(
temp_def_list.as_ref(),
unifier,
primitives_store,
&type_annotation,
&mut None,
)?;
Ok(FuncArg {
name: vararg.node.arg,
ty,
default_value: Some(SymbolValue::Tuple(Vec::default())),
is_vararg: true,
})
})
.transpose()?;
let mut arg_types = {
let arg_types = {
// make sure no duplicate parameter
let mut defined_parameter_name: HashSet<_> = HashSet::new();
for x in &args.args {
@ -1003,7 +936,6 @@ impl TopLevelComposer {
let ty = get_type_from_type_annotation_kinds(
temp_def_list.as_ref(),
unifier,
primitives_store,
&type_annotation,
&mut None,
)?;
@ -1027,18 +959,11 @@ impl TopLevelComposer {
v
}),
},
is_vararg: false,
})
})
.collect::<Result<Vec<_>, _>>()?
};
if let Some(vararg) = vararg {
arg_types.push(vararg);
};
let arg_types = arg_types;
let return_ty = {
if let Some(returns) = returns {
let return_ty_annotation = {
@ -1077,7 +1002,6 @@ impl TopLevelComposer {
get_type_from_type_annotation_kinds(
&temp_def_list,
unifier,
primitives_store,
&return_ty_annotation,
&mut None,
)?
@ -1290,7 +1214,6 @@ impl TopLevelComposer {
})
}
},
is_vararg: false,
};
// push the dummy type and the type annotation
// into the list for later unification
@ -1699,7 +1622,6 @@ impl TopLevelComposer {
let self_type = get_type_from_type_annotation_kinds(
&def_list,
unifier,
primitives_ty,
&make_self_type_annotation(type_vars, *object_id),
&mut None,
)?;
@ -1716,25 +1638,21 @@ impl TopLevelComposer {
name: "msg".into(),
ty: string,
default_value: Some(SymbolValue::Str(String::new())),
is_vararg: false,
},
FuncArg {
name: "param0".into(),
ty: int64,
default_value: Some(SymbolValue::I64(0)),
is_vararg: false,
},
FuncArg {
name: "param1".into(),
ty: int64,
default_value: Some(SymbolValue::I64(0)),
is_vararg: false,
},
FuncArg {
name: "param2".into(),
ty: int64,
default_value: Some(SymbolValue::I64(0)),
is_vararg: false,
},
],
ret: self_type,
@ -1885,11 +1803,7 @@ impl TopLevelComposer {
let ty_ann = make_self_type_annotation(type_vars, *class_id);
let self_ty = get_type_from_type_annotation_kinds(
&def_list,
unifier,
primitives_ty,
&ty_ann,
&mut None,
&def_list, unifier, &ty_ann, &mut None,
)?;
vars.extend(type_vars.iter().map(|ty| {
let TypeEnum::TVar { id, .. } = &*unifier.get_ty(*ty) else {
@ -1944,7 +1858,6 @@ impl TopLevelComposer {
name: a.name,
ty: unifier.subst(a.ty, &subst).unwrap_or(a.ty),
default_value: a.default_value.clone(),
is_vararg: false,
})
.collect_vec()
};

View File

@ -1,18 +1,16 @@
use std::convert::TryInto;
use super::*;
use crate::symbol_resolver::SymbolValue;
use crate::toplevel::numpy::unpack_ndarray_var_tys;
use crate::typecheck::typedef::{into_var_map, iter_type_vars, Mapping, TypeVarId, VarMap};
use crate::toplevel::primitive_type::{NDArrayType, OptionType};
use crate::typecheck::typedef::{into_var_map, GenericObjectType, Mapping, TypeVarId, VarMap};
use nac3parser::ast::{Constant, Location};
use strum::IntoEnumIterator;
use strum_macros::EnumIter;
use super::*;
/// All primitive types and functions in nac3core.
#[derive(Clone, Copy, Debug, EnumIter, PartialEq, Eq)]
pub enum PrimDef {
// Classes
Int32,
Int64,
Float,
@ -24,25 +22,17 @@ pub enum PrimDef {
UInt32,
UInt64,
Option,
List,
OptionIsSome,
OptionIsNone,
OptionUnwrap,
NDArray,
// Option methods
FunOptionIsSome,
FunOptionIsNone,
FunOptionUnwrap,
// Option-related functions
FunSome,
// NDArray methods
FunNDArrayCopy,
FunNDArrayFill,
// Range methods
FunRangeInit,
// NumPy factory functions
NDArrayCopy,
NDArrayFill,
FunInt32,
FunInt64,
FunUInt32,
FunUInt64,
FunFloat,
FunNpNDArray,
FunNpEmpty,
FunNpZeros,
@ -51,17 +41,26 @@ pub enum PrimDef {
FunNpArray,
FunNpEye,
FunNpIdentity,
// Miscellaneous NumPy & SciPy functions
FunRound,
FunRound64,
FunNpRound,
FunRange,
FunStr,
FunBool,
FunFloor,
FunFloor64,
FunNpFloor,
FunCeil,
FunCeil64,
FunNpCeil,
FunLen,
FunMin,
FunNpMin,
FunNpMinimum,
FunNpArgmin,
FunMax,
FunNpMax,
FunNpMaximum,
FunNpArgmax,
FunAbs,
FunNpIsNan,
FunNpIsInf,
FunNpSin,
@ -99,46 +98,13 @@ pub enum PrimDef {
FunNpLdExp,
FunNpHypot,
FunNpNextAfter,
FunNpTranspose,
FunNpReshape,
// Linalg functions
FunNpDot,
FunNpLinalgCholesky,
FunNpLinalgQr,
FunNpLinalgSvd,
FunNpLinalgInv,
FunNpLinalgPinv,
FunNpLinalgMatrixPower,
FunNpLinalgDet,
FunSpLinalgLu,
FunSpLinalgSchur,
FunSpLinalgHessenberg,
// Miscellaneous Python & NAC3 functions
FunInt32,
FunInt64,
FunUInt32,
FunUInt64,
FunFloat,
FunRound,
FunRound64,
FunStr,
FunBool,
FunFloor,
FunFloor64,
FunCeil,
FunCeil64,
FunLen,
FunMin,
FunMax,
FunAbs,
FunSome,
}
/// Associated details of a [`PrimDef`]
pub enum PrimDefDetails {
PrimFunction { name: &'static str, simple_name: &'static str },
PrimClass { name: &'static str, get_ty_fn: fn(&PrimitiveStore) -> Type },
PrimClass { name: &'static str },
}
impl PrimDef {
@ -180,17 +146,15 @@ impl PrimDef {
#[must_use]
pub fn name(&self) -> &'static str {
match self.details() {
PrimDefDetails::PrimFunction { name, .. } | PrimDefDetails::PrimClass { name, .. } => {
name
}
PrimDefDetails::PrimFunction { name, .. } | PrimDefDetails::PrimClass { name } => name,
}
}
/// Get the associated details of this [`PrimDef`]
#[must_use]
pub fn details(self) -> PrimDefDetails {
fn class(name: &'static str, get_ty_fn: fn(&PrimitiveStore) -> Type) -> PrimDefDetails {
PrimDefDetails::PrimClass { name, get_ty_fn }
fn class(name: &'static str) -> PrimDefDetails {
PrimDefDetails::PrimClass { name }
}
fn fun(name: &'static str, simple_name: Option<&'static str>) -> PrimDefDetails {
@ -198,37 +162,28 @@ impl PrimDef {
}
match self {
// Classes
PrimDef::Int32 => class("int32", |primitives| primitives.int32),
PrimDef::Int64 => class("int64", |primitives| primitives.int64),
PrimDef::Float => class("float", |primitives| primitives.float),
PrimDef::Bool => class("bool", |primitives| primitives.bool),
PrimDef::None => class("none", |primitives| primitives.none),
PrimDef::Range => class("range", |primitives| primitives.range),
PrimDef::Str => class("str", |primitives| primitives.str),
PrimDef::Exception => class("Exception", |primitives| primitives.exception),
PrimDef::UInt32 => class("uint32", |primitives| primitives.uint32),
PrimDef::UInt64 => class("uint64", |primitives| primitives.uint64),
PrimDef::Option => class("Option", |primitives| primitives.option),
PrimDef::List => class("list", |primitives| primitives.list),
PrimDef::NDArray => class("ndarray", |primitives| primitives.ndarray),
// Option methods
PrimDef::FunOptionIsSome => fun("Option.is_some", Some("is_some")),
PrimDef::FunOptionIsNone => fun("Option.is_none", Some("is_none")),
PrimDef::FunOptionUnwrap => fun("Option.unwrap", Some("unwrap")),
// Option-related functions
PrimDef::FunSome => fun("Some", None),
// NDArray methods
PrimDef::FunNDArrayCopy => fun("ndarray.copy", Some("copy")),
PrimDef::FunNDArrayFill => fun("ndarray.fill", Some("fill")),
// Range methods
PrimDef::FunRangeInit => fun("range.__init__", Some("__init__")),
// NumPy factory functions
PrimDef::Int32 => class("int32"),
PrimDef::Int64 => class("int64"),
PrimDef::Float => class("float"),
PrimDef::Bool => class("bool"),
PrimDef::None => class("none"),
PrimDef::Range => class("range"),
PrimDef::Str => class("str"),
PrimDef::Exception => class("Exception"),
PrimDef::UInt32 => class("uint32"),
PrimDef::UInt64 => class("uint64"),
PrimDef::Option => class("Option"),
PrimDef::OptionIsSome => fun("Option.is_some", Some("is_some")),
PrimDef::OptionIsNone => fun("Option.is_none", Some("is_none")),
PrimDef::OptionUnwrap => fun("Option.unwrap", Some("unwrap")),
PrimDef::NDArray => class("ndarray"),
PrimDef::NDArrayCopy => fun("ndarray.copy", Some("copy")),
PrimDef::NDArrayFill => fun("ndarray.fill", Some("fill")),
PrimDef::FunInt32 => fun("int32", None),
PrimDef::FunInt64 => fun("int64", None),
PrimDef::FunUInt32 => fun("uint32", None),
PrimDef::FunUInt64 => fun("uint64", None),
PrimDef::FunFloat => fun("float", None),
PrimDef::FunNpNDArray => fun("np_ndarray", None),
PrimDef::FunNpEmpty => fun("np_empty", None),
PrimDef::FunNpZeros => fun("np_zeros", None),
@ -237,17 +192,26 @@ impl PrimDef {
PrimDef::FunNpArray => fun("np_array", None),
PrimDef::FunNpEye => fun("np_eye", None),
PrimDef::FunNpIdentity => fun("np_identity", None),
// Miscellaneous NumPy & SciPy functions
PrimDef::FunRound => fun("round", None),
PrimDef::FunRound64 => fun("round64", None),
PrimDef::FunNpRound => fun("np_round", None),
PrimDef::FunRange => fun("range", None),
PrimDef::FunStr => fun("str", None),
PrimDef::FunBool => fun("bool", None),
PrimDef::FunFloor => fun("floor", None),
PrimDef::FunFloor64 => fun("floor64", None),
PrimDef::FunNpFloor => fun("np_floor", None),
PrimDef::FunCeil => fun("ceil", None),
PrimDef::FunCeil64 => fun("ceil64", None),
PrimDef::FunNpCeil => fun("np_ceil", None),
PrimDef::FunLen => fun("len", None),
PrimDef::FunMin => fun("min", None),
PrimDef::FunNpMin => fun("np_min", None),
PrimDef::FunNpMinimum => fun("np_minimum", None),
PrimDef::FunNpArgmin => fun("np_argmin", None),
PrimDef::FunMax => fun("max", None),
PrimDef::FunNpMax => fun("np_max", None),
PrimDef::FunNpMaximum => fun("np_maximum", None),
PrimDef::FunNpArgmax => fun("np_argmax", None),
PrimDef::FunAbs => fun("abs", None),
PrimDef::FunNpIsNan => fun("np_isnan", None),
PrimDef::FunNpIsInf => fun("np_isinf", None),
PrimDef::FunNpSin => fun("np_sin", None),
@ -285,40 +249,7 @@ impl PrimDef {
PrimDef::FunNpLdExp => fun("np_ldexp", None),
PrimDef::FunNpHypot => fun("np_hypot", None),
PrimDef::FunNpNextAfter => fun("np_nextafter", None),
PrimDef::FunNpTranspose => fun("np_transpose", None),
PrimDef::FunNpReshape => fun("np_reshape", None),
// Linalg functions
PrimDef::FunNpDot => fun("np_dot", None),
PrimDef::FunNpLinalgCholesky => fun("np_linalg_cholesky", None),
PrimDef::FunNpLinalgQr => fun("np_linalg_qr", None),
PrimDef::FunNpLinalgSvd => fun("np_linalg_svd", None),
PrimDef::FunNpLinalgInv => fun("np_linalg_inv", None),
PrimDef::FunNpLinalgPinv => fun("np_linalg_pinv", None),
PrimDef::FunNpLinalgMatrixPower => fun("np_linalg_matrix_power", None),
PrimDef::FunNpLinalgDet => fun("np_linalg_det", None),
PrimDef::FunSpLinalgLu => fun("sp_linalg_lu", None),
PrimDef::FunSpLinalgSchur => fun("sp_linalg_schur", None),
PrimDef::FunSpLinalgHessenberg => fun("sp_linalg_hessenberg", None),
// Miscellaneous Python & NAC3 functions
PrimDef::FunInt32 => fun("int32", None),
PrimDef::FunInt64 => fun("int64", None),
PrimDef::FunUInt32 => fun("uint32", None),
PrimDef::FunUInt64 => fun("uint64", None),
PrimDef::FunFloat => fun("float", None),
PrimDef::FunRound => fun("round", None),
PrimDef::FunRound64 => fun("round64", None),
PrimDef::FunStr => fun("str", None),
PrimDef::FunBool => fun("bool", None),
PrimDef::FunFloor => fun("floor", None),
PrimDef::FunFloor64 => fun("floor64", None),
PrimDef::FunCeil => fun("ceil", None),
PrimDef::FunCeil64 => fun("ceil64", None),
PrimDef::FunLen => fun("len", None),
PrimDef::FunMin => fun("min", None),
PrimDef::FunMax => fun("max", None),
PrimDef::FunAbs => fun("abs", None),
PrimDef::FunSome => fun("Some", None),
}
}
}
@ -422,13 +353,7 @@ impl TopLevelComposer {
});
let range = unifier.add_ty(TypeEnum::TObj {
obj_id: PrimDef::Range.id(),
fields: [
("start".into(), (int32, true)),
("stop".into(), (int32, true)),
("step".into(), (int32, true)),
]
.into_iter()
.collect(),
fields: HashMap::new(),
params: VarMap::new(),
});
let str = unifier.add_ty(TypeEnum::TObj {
@ -469,14 +394,15 @@ impl TopLevelComposer {
let option = unifier.add_ty(TypeEnum::TObj {
obj_id: PrimDef::Option.id(),
fields: vec![
(PrimDef::FunOptionIsSome.simple_name().into(), (is_some_type_fun_ty, true)),
(PrimDef::FunOptionIsNone.simple_name().into(), (is_some_type_fun_ty, true)),
(PrimDef::FunOptionUnwrap.simple_name().into(), (unwrap_fun_ty, true)),
(PrimDef::OptionIsSome.simple_name().into(), (is_some_type_fun_ty, true)),
(PrimDef::OptionIsNone.simple_name().into(), (is_some_type_fun_ty, true)),
(PrimDef::OptionUnwrap.simple_name().into(), (unwrap_fun_ty, true)),
]
.into_iter()
.collect::<HashMap<_, _>>(),
params: into_var_map([option_type_var]),
});
let option = OptionType::create(option, &mut unifier);
let size_t_ty = match size_t {
32 => uint32,
@ -484,13 +410,6 @@ impl TopLevelComposer {
_ => unreachable!(),
};
let list_elem_tvar = unifier.get_fresh_var(Some("list_elem".into()), None);
let list = unifier.add_ty(TypeEnum::TObj {
obj_id: PrimDef::List.id(),
fields: Mapping::new(),
params: into_var_map([list_elem_tvar]),
});
let ndarray_dtype_tvar = unifier.get_fresh_var(Some("ndarray_dtype".into()), None);
let ndarray_ndims_tvar =
unifier.get_fresh_const_generic_var(size_t_ty, Some("ndarray_ndims".into()), None);
@ -505,7 +424,6 @@ impl TopLevelComposer {
name: "value".into(),
ty: ndarray_dtype_tvar.ty,
default_value: None,
is_vararg: false,
}],
ret: none,
vars: into_var_map([ndarray_dtype_tvar, ndarray_ndims_tvar]),
@ -513,13 +431,14 @@ impl TopLevelComposer {
let ndarray = unifier.add_ty(TypeEnum::TObj {
obj_id: PrimDef::NDArray.id(),
fields: Mapping::from([
(PrimDef::FunNDArrayCopy.simple_name().into(), (ndarray_copy_fun_ty, true)),
(PrimDef::FunNDArrayFill.simple_name().into(), (ndarray_fill_fun_ty, true)),
(PrimDef::NDArrayCopy.simple_name().into(), (ndarray_copy_fun_ty, true)),
(PrimDef::NDArrayFill.simple_name().into(), (ndarray_fill_fun_ty, true)),
]),
params: into_var_map([ndarray_dtype_tvar, ndarray_ndims_tvar]),
});
let ndarray = NDArrayType::create(ndarray, &mut unifier);
unifier.unify(ndarray_copy_fun_ret_ty.ty, ndarray).unwrap();
unifier.unify(ndarray_copy_fun_ret_ty.ty, ndarray.into()).unwrap();
let primitives = PrimitiveStore {
int32,
@ -533,7 +452,6 @@ impl TopLevelComposer {
str,
exception,
option,
list,
ndarray,
size_t,
};
@ -830,7 +748,7 @@ impl TopLevelComposer {
TypeAnnotation::CustomClass { id: e_id, params: e_param },
) => {
*f_id == *e_id
&& *f_id == primitive.option.obj_id(unifier).unwrap()
&& *f_id == primitive.option.obj_id(unifier)
&& (f_param.is_empty()
|| (f_param.len() == 1
&& e_param.len() == 1
@ -968,12 +886,10 @@ pub fn parse_parameter_default_value(
pub fn arraylike_flatten_element_type(unifier: &mut Unifier, ty: Type) -> Type {
match &*unifier.get_ty(ty) {
TypeEnum::TObj { obj_id, .. } if *obj_id == PrimDef::NDArray.id() => {
unpack_ndarray_var_tys(unifier, ty).0
NDArrayType::create(ty, unifier).dtype_tvar(unifier).ty
}
TypeEnum::TObj { obj_id, params, .. } if *obj_id == PrimDef::List.id() => {
arraylike_flatten_element_type(unifier, iter_type_vars(params).next().unwrap().ty)
}
TypeEnum::TList { ty } => arraylike_flatten_element_type(unifier, *ty),
_ => ty,
}
}
@ -982,7 +898,7 @@ pub fn arraylike_flatten_element_type(unifier: &mut Unifier, ty: Type) -> Type {
pub fn arraylike_get_ndims(unifier: &mut Unifier, ty: Type) -> u64 {
match &*unifier.get_ty(ty) {
TypeEnum::TObj { obj_id, .. } if *obj_id == PrimDef::NDArray.id() => {
let ndims = unpack_ndarray_var_tys(unifier, ty).1;
let ndims = NDArrayType::create(ty, unifier).ndims_tvar(unifier).ty;
let TypeEnum::TLiteral { values, .. } = &*unifier.get_ty_immutable(ndims) else {
panic!("Expected TLiteral for ndarray.ndims, got {}", unifier.stringify(ndims))
};
@ -994,9 +910,7 @@ pub fn arraylike_get_ndims(unifier: &mut Unifier, ty: Type) -> u64 {
u64::try_from(values[0].clone()).unwrap()
}
TypeEnum::TObj { obj_id, params, .. } if *obj_id == PrimDef::List.id() => {
arraylike_get_ndims(unifier, iter_type_vars(params).next().unwrap().ty) + 1
}
TypeEnum::TList { ty } => arraylike_get_ndims(unifier, *ty) + 1,
_ => 0,
}
}

View File

@ -30,7 +30,7 @@ pub struct DefinitionId(pub usize);
pub mod builtins;
pub mod composer;
pub mod helper;
pub mod numpy;
pub mod primitive_type;
pub mod type_annotation;
use composer::*;
use type_annotation::*;

View File

@ -1,85 +0,0 @@
use crate::{
toplevel::helper::PrimDef,
typecheck::{
type_inferencer::PrimitiveStore,
typedef::{Type, TypeEnum, TypeVarId, Unifier, VarMap},
},
};
use itertools::Itertools;
/// Creates a `ndarray` [`Type`] with the given type arguments.
///
/// * `dtype` - The element type of the `ndarray`, or [`None`] if the type variable is not
/// specialized.
/// * `ndims` - The number of dimensions of the `ndarray`, or [`None`] if the type variable is not
/// specialized.
pub fn make_ndarray_ty(
unifier: &mut Unifier,
primitives: &PrimitiveStore,
dtype: Option<Type>,
ndims: Option<Type>,
) -> Type {
subst_ndarray_tvars(unifier, primitives.ndarray, dtype, ndims)
}
/// Substitutes type variables in `ndarray`.
///
/// * `dtype` - The element type of the `ndarray`, or [`None`] if the type variable is not
/// specialized.
/// * `ndims` - The number of dimensions of the `ndarray`, or [`None`] if the type variable is not
/// specialized.
pub fn subst_ndarray_tvars(
unifier: &mut Unifier,
ndarray: Type,
dtype: Option<Type>,
ndims: Option<Type>,
) -> Type {
let TypeEnum::TObj { obj_id, params, .. } = &*unifier.get_ty_immutable(ndarray) else {
panic!("Expected `ndarray` to be TObj, but got {}", unifier.stringify(ndarray))
};
debug_assert_eq!(*obj_id, PrimDef::NDArray.id());
if dtype.is_none() && ndims.is_none() {
return ndarray;
}
let tvar_ids = params.iter().map(|(obj_id, _)| *obj_id).collect_vec();
debug_assert_eq!(tvar_ids.len(), 2);
let mut tvar_subst = VarMap::new();
if let Some(dtype) = dtype {
tvar_subst.insert(tvar_ids[0], dtype);
}
if let Some(ndims) = ndims {
tvar_subst.insert(tvar_ids[1], ndims);
}
unifier.subst(ndarray, &tvar_subst).unwrap_or(ndarray)
}
fn unpack_ndarray_tvars(unifier: &mut Unifier, ndarray: Type) -> Vec<(TypeVarId, Type)> {
let TypeEnum::TObj { obj_id, params, .. } = &*unifier.get_ty_immutable(ndarray) else {
panic!("Expected `ndarray` to be TObj, but got {}", unifier.stringify(ndarray))
};
debug_assert_eq!(*obj_id, PrimDef::NDArray.id());
debug_assert_eq!(params.len(), 2);
params
.iter()
.sorted_by_key(|(obj_id, _)| *obj_id)
.map(|(var_id, ty)| (*var_id, *ty))
.collect_vec()
}
/// Unpacks the type variable IDs of `ndarray` into a tuple. The elements of the tuple corresponds
/// to `dtype` (the element type) and `ndims` (the number of dimensions) of the `ndarray`
/// respectively.
pub fn unpack_ndarray_var_ids(unifier: &mut Unifier, ndarray: Type) -> (TypeVarId, TypeVarId) {
unpack_ndarray_tvars(unifier, ndarray).into_iter().map(|v| v.0).collect_tuple().unwrap()
}
/// Unpacks the type variables of `ndarray` into a tuple. The elements of the tuple corresponds to
/// `dtype` (the element type) and `ndims` (the number of dimensions) of the `ndarray` respectively.
pub fn unpack_ndarray_var_tys(unifier: &mut Unifier, ndarray: Type) -> (Type, Type) {
unpack_ndarray_tvars(unifier, ndarray).into_iter().map(|v| v.1).collect_tuple().unwrap()
}

View File

@ -0,0 +1,98 @@
use crate::toplevel::helper::PrimDef;
use crate::typecheck::type_inferencer::PrimitiveStore;
use crate::typecheck::typedef::{GenericObjectType, Type, TypeVar, Unifier, VarMap};
#[derive(Clone, Copy)]
pub struct OptionType(Type);
impl OptionType {
pub fn from_primitive(
unifier: &mut Unifier,
primitives: &PrimitiveStore,
type_ty: Option<Type>,
) -> Self {
primitives.option.subst(unifier, type_ty)
}
pub fn type_tvar(&self, unifier: &mut Unifier) -> TypeVar {
self.get_var_at(unifier, 0).unwrap()
}
#[must_use]
pub fn subst(&self, unifier: &mut Unifier, type_ty: Option<Type>) -> Self {
let new_vars = [(self.type_tvar(unifier).id, type_ty)]
.into_iter()
.filter_map(|(id, ty)| ty.map(|ty| (id, ty)))
.collect::<VarMap>();
let new_ty = unifier.subst(self.get_type(), &new_vars).unwrap_or(self.get_type());
OptionType(new_ty)
}
}
impl GenericObjectType for OptionType {
fn try_create(ty: Type, unifier: &mut Unifier) -> Option<Self> {
if ty.obj_id(unifier).is_some_and(|id| id == PrimDef::Option.id()) {
Some(OptionType(ty))
} else {
None
}
}
fn get_type(&self) -> Type {
self.0
}
}
#[derive(Clone, Copy)]
pub struct NDArrayType(Type);
impl NDArrayType {
pub fn from_primitive(
unifier: &mut Unifier,
primitives: &PrimitiveStore,
dtype: Option<Type>,
ndims: Option<Type>,
) -> Self {
primitives.ndarray.subst(unifier, dtype, ndims)
}
pub fn dtype_tvar(&self, unifier: &mut Unifier) -> TypeVar {
self.get_var_at(unifier, 0).unwrap()
}
pub fn ndims_tvar(&self, unifier: &mut Unifier) -> TypeVar {
self.get_var_at(unifier, 1).unwrap()
}
#[must_use]
pub fn subst(
&self,
unifier: &mut Unifier,
dtype_ty: Option<Type>,
ndims_ty: Option<Type>,
) -> Self {
let new_vars =
[(self.dtype_tvar(unifier).id, dtype_ty), (self.ndims_tvar(unifier).id, ndims_ty)]
.into_iter()
.filter_map(|(id, ty)| ty.map(|ty| (id, ty)))
.collect::<VarMap>();
let new_ty = unifier.subst(self.get_type(), &new_vars).unwrap_or(self.get_type());
NDArrayType(new_ty)
}
}
impl GenericObjectType for NDArrayType {
fn try_create(ty: Type, unifier: &mut Unifier) -> Option<Self> {
if ty.obj_id(unifier).is_some_and(|id| id == PrimDef::NDArray.id()) {
Some(NDArrayType(ty))
} else {
None
}
}
fn get_type(&self) -> Type {
self.0
}
}

View File

@ -5,7 +5,7 @@ expression: res_vec
[
"Class {\nname: \"Generic_A\",\nancestors: [\"Generic_A[V]\", \"B\"],\nfields: [\"aa\", \"a\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"foo\", \"fn[[b:T], none]\"), (\"fun\", \"fn[[a:int32], V]\")],\ntype_vars: [\"V\"]\n}\n",
"Function {\nname: \"Generic_A.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n",
"Function {\nname: \"Generic_A.fun\",\nsig: \"fn[[a:int32], V]\",\nvar_id: [TypeVarId(246)]\n}\n",
"Function {\nname: \"Generic_A.fun\",\nsig: \"fn[[a:int32], V]\",\nvar_id: [TypeVarId(240)]\n}\n",
"Class {\nname: \"B\",\nancestors: [\"B\"],\nfields: [\"aa\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"foo\", \"fn[[b:T], none]\")],\ntype_vars: []\n}\n",
"Function {\nname: \"B.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n",
"Function {\nname: \"B.foo\",\nsig: \"fn[[b:T], none]\",\nvar_id: []\n}\n",

View File

@ -7,7 +7,7 @@ expression: res_vec
"Function {\nname: \"A.__init__\",\nsig: \"fn[[t:T], none]\",\nvar_id: []\n}\n",
"Function {\nname: \"A.fun\",\nsig: \"fn[[a:int32, b:T], list[virtual[B[bool]]]]\",\nvar_id: []\n}\n",
"Function {\nname: \"A.foo\",\nsig: \"fn[[c:C], none]\",\nvar_id: []\n}\n",
"Class {\nname: \"B\",\nancestors: [\"B[typevar235]\", \"A[float]\"],\nfields: [\"a\", \"b\", \"c\", \"d\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[a:int32, b:T], list[virtual[B[bool]]]]\"), (\"foo\", \"fn[[c:C], none]\")],\ntype_vars: [\"typevar235\"]\n}\n",
"Class {\nname: \"B\",\nancestors: [\"B[typevar229]\", \"A[float]\"],\nfields: [\"a\", \"b\", \"c\", \"d\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[a:int32, b:T], list[virtual[B[bool]]]]\"), (\"foo\", \"fn[[c:C], none]\")],\ntype_vars: [\"typevar229\"]\n}\n",
"Function {\nname: \"B.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n",
"Function {\nname: \"B.fun\",\nsig: \"fn[[a:int32, b:T], list[virtual[B[bool]]]]\",\nvar_id: []\n}\n",
"Class {\nname: \"C\",\nancestors: [\"C\", \"B[bool]\", \"A[float]\"],\nfields: [\"a\", \"b\", \"c\", \"d\", \"e\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[a:int32, b:T], list[virtual[B[bool]]]]\"), (\"foo\", \"fn[[c:C], none]\")],\ntype_vars: []\n}\n",

View File

@ -5,8 +5,8 @@ expression: res_vec
[
"Function {\nname: \"foo\",\nsig: \"fn[[a:list[int32], b:tuple[T, float]], A[B, bool]]\",\nvar_id: []\n}\n",
"Class {\nname: \"A\",\nancestors: [\"A[T, V]\"],\nfields: [\"a\", \"b\"],\nmethods: [(\"__init__\", \"fn[[v:V], none]\"), (\"fun\", \"fn[[a:T], V]\")],\ntype_vars: [\"T\", \"V\"]\n}\n",
"Function {\nname: \"A.__init__\",\nsig: \"fn[[v:V], none]\",\nvar_id: [TypeVarId(248)]\n}\n",
"Function {\nname: \"A.fun\",\nsig: \"fn[[a:T], V]\",\nvar_id: [TypeVarId(253)]\n}\n",
"Function {\nname: \"A.__init__\",\nsig: \"fn[[v:V], none]\",\nvar_id: [TypeVarId(242)]\n}\n",
"Function {\nname: \"A.fun\",\nsig: \"fn[[a:T], V]\",\nvar_id: [TypeVarId(247)]\n}\n",
"Function {\nname: \"gfun\",\nsig: \"fn[[a:A[list[float], int32]], none]\",\nvar_id: []\n}\n",
"Class {\nname: \"B\",\nancestors: [\"B\"],\nfields: [],\nmethods: [(\"__init__\", \"fn[[], none]\")],\ntype_vars: []\n}\n",
"Function {\nname: \"B.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n",

View File

@ -3,7 +3,7 @@ source: nac3core/src/toplevel/test.rs
expression: res_vec
---
[
"Class {\nname: \"A\",\nancestors: [\"A[typevar234, typevar235]\"],\nfields: [\"a\", \"b\"],\nmethods: [(\"__init__\", \"fn[[a:A[float, bool], b:B], none]\"), (\"fun\", \"fn[[a:A[float, bool]], A[bool, int32]]\")],\ntype_vars: [\"typevar234\", \"typevar235\"]\n}\n",
"Class {\nname: \"A\",\nancestors: [\"A[typevar228, typevar229]\"],\nfields: [\"a\", \"b\"],\nmethods: [(\"__init__\", \"fn[[a:A[float, bool], b:B], none]\"), (\"fun\", \"fn[[a:A[float, bool]], A[bool, int32]]\")],\ntype_vars: [\"typevar228\", \"typevar229\"]\n}\n",
"Function {\nname: \"A.__init__\",\nsig: \"fn[[a:A[float, bool], b:B], none]\",\nvar_id: []\n}\n",
"Function {\nname: \"A.fun\",\nsig: \"fn[[a:A[float, bool]], A[bool, int32]]\",\nvar_id: []\n}\n",
"Class {\nname: \"B\",\nancestors: [\"B\", \"A[int64, bool]\"],\nfields: [\"a\", \"b\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[a:A[float, bool]], A[bool, int32]]\"), (\"foo\", \"fn[[b:B], B]\"), (\"bar\", \"fn[[a:A[list[B], int32]], tuple[A[virtual[A[B, int32]], bool], B]]\")],\ntype_vars: []\n}\n",

View File

@ -6,12 +6,12 @@ expression: res_vec
"Class {\nname: \"A\",\nancestors: [\"A\"],\nfields: [\"a\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[b:B], none]\"), (\"foo\", \"fn[[a:T, b:V], none]\")],\ntype_vars: []\n}\n",
"Function {\nname: \"A.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n",
"Function {\nname: \"A.fun\",\nsig: \"fn[[b:B], none]\",\nvar_id: []\n}\n",
"Function {\nname: \"A.foo\",\nsig: \"fn[[a:T, b:V], none]\",\nvar_id: [TypeVarId(254)]\n}\n",
"Function {\nname: \"A.foo\",\nsig: \"fn[[a:T, b:V], none]\",\nvar_id: [TypeVarId(248)]\n}\n",
"Class {\nname: \"B\",\nancestors: [\"B\", \"C\", \"A\"],\nfields: [\"a\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[b:B], none]\"), (\"foo\", \"fn[[a:T, b:V], none]\")],\ntype_vars: []\n}\n",
"Function {\nname: \"B.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n",
"Class {\nname: \"C\",\nancestors: [\"C\", \"A\"],\nfields: [\"a\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[b:B], none]\"), (\"foo\", \"fn[[a:T, b:V], none]\")],\ntype_vars: []\n}\n",
"Function {\nname: \"C.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n",
"Function {\nname: \"C.fun\",\nsig: \"fn[[b:B], none]\",\nvar_id: []\n}\n",
"Function {\nname: \"foo\",\nsig: \"fn[[a:A], none]\",\nvar_id: []\n}\n",
"Function {\nname: \"ff\",\nsig: \"fn[[a:T], V]\",\nvar_id: [TypeVarId(262)]\n}\n",
"Function {\nname: \"ff\",\nsig: \"fn[[a:T], V]\",\nvar_id: [TypeVarId(256)]\n}\n",
]

View File

@ -1,6 +1,3 @@
use super::*;
use crate::toplevel::helper::PrimDef;
use crate::typecheck::typedef::into_var_map;
use crate::{
codegen::CodeGenContext,
symbol_resolver::{SymbolResolver, ValueEnum},
@ -17,6 +14,8 @@ use parking_lot::Mutex;
use std::{collections::HashMap, sync::Arc};
use test_case::test_case;
use super::*;
struct ResolverInternal {
id_to_type: Mutex<HashMap<StrRef, Type>>,
id_to_def: Mutex<HashMap<StrRef, DefinitionId>>,
@ -776,15 +775,8 @@ fn make_internal_resolver_with_tvar(
unifier: &mut Unifier,
print: bool,
) -> Arc<ResolverInternal> {
let list_elem_tvar = unifier.get_fresh_var(Some("list_elem".into()), None);
let list = unifier.add_ty(TypeEnum::TObj {
obj_id: PrimDef::List.id(),
fields: HashMap::new(),
params: into_var_map([list_elem_tvar]),
});
let res: Arc<ResolverInternal> = ResolverInternal {
id_to_def: Mutex::new(HashMap::from([("list".into(), PrimDef::List.id())])),
id_to_def: Mutex::default(),
id_to_type: tvars
.into_iter()
.map(|(name, range)| {
@ -798,7 +790,7 @@ fn make_internal_resolver_with_tvar(
})
.collect::<HashMap<_, _>>()
.into(),
class_names: Mutex::new(HashMap::from([("list".into(), list)])),
class_names: Mutex::default(),
}
.into();
if print {

View File

@ -1,9 +1,8 @@
use super::*;
use crate::symbol_resolver::SymbolValue;
use crate::toplevel::helper::{PrimDef, PrimDefDetails};
use crate::typecheck::typedef::VarMap;
use crate::toplevel::helper::PrimDef;
use crate::typecheck::typedef::{GenericObjectType, VarMap};
use nac3parser::ast::Constant;
use strum::IntoEnumIterator;
#[derive(Clone, Debug)]
pub enum TypeAnnotation {
@ -19,6 +18,7 @@ pub enum TypeAnnotation {
TypeVar(Type),
/// A `Literal` allowing a subset of literals.
Literal(Vec<Constant>),
List(Box<TypeAnnotation>),
Tuple(Vec<TypeAnnotation>),
}
@ -51,6 +51,7 @@ impl TypeAnnotation {
format!("Literal({})", values.iter().map(|v| format!("{v:?}")).join(", "))
}
Virtual(ty) => format!("virtual[{}]", ty.stringify(unifier)),
List(ty) => format!("list[{}]", ty.stringify(unifier)),
Tuple(types) => {
format!(
"tuple[{}]",
@ -144,7 +145,9 @@ pub fn parse_ast_to_type_annotation_kinds<T, S: std::hash::BuildHasher + Clone>(
slice: &ast::Expr<T>,
unifier: &mut Unifier,
mut locked: HashMap<DefinitionId, Vec<Type>, S>| {
if ["virtual".into(), "Generic".into(), "tuple".into(), "Option".into()].contains(id) {
if ["virtual".into(), "Generic".into(), "list".into(), "tuple".into(), "Option".into()]
.contains(id)
{
return Err(HashSet::from([format!(
"keywords cannot be class name (at {})",
expr.location
@ -233,6 +236,23 @@ pub fn parse_ast_to_type_annotation_kinds<T, S: std::hash::BuildHasher + Clone>(
Ok(TypeAnnotation::Virtual(def.into()))
}
// list
ast::ExprKind::Subscript { value, slice, .. }
if {
matches!(&value.node, ast::ExprKind::Name { id, .. } if id == &"list".into())
} =>
{
let def_ann = parse_ast_to_type_annotation_kinds(
resolver,
top_level_defs,
unifier,
primitives,
slice.as_ref(),
locked,
)?;
Ok(TypeAnnotation::List(def_ann.into()))
}
// option
ast::ExprKind::Subscript { value, slice, .. }
if {
@ -247,12 +267,7 @@ pub fn parse_ast_to_type_annotation_kinds<T, S: std::hash::BuildHasher + Clone>(
slice.as_ref(),
locked,
)?;
let id =
if let TypeEnum::TObj { obj_id, .. } = unifier.get_ty(primitives.option).as_ref() {
*obj_id
} else {
unreachable!()
};
let id = primitives.option.obj_id(unifier);
Ok(TypeAnnotation::CustomClass { id, params: vec![def_ann] })
}
@ -358,7 +373,6 @@ pub fn parse_ast_to_type_annotation_kinds<T, S: std::hash::BuildHasher + Clone>(
pub fn get_type_from_type_annotation_kinds(
top_level_defs: &[Arc<RwLock<TopLevelDef>>],
unifier: &mut Unifier,
primitives: &PrimitiveStore,
ann: &TypeAnnotation,
subst_list: &mut Option<Vec<Type>>,
) -> Result<Type, HashSet<String>> {
@ -381,141 +395,100 @@ pub fn get_type_from_type_annotation_kinds(
let param_ty = params
.iter()
.map(|x| {
get_type_from_type_annotation_kinds(
top_level_defs,
unifier,
primitives,
x,
subst_list,
)
get_type_from_type_annotation_kinds(top_level_defs, unifier, x, subst_list)
})
.collect::<Result<Vec<_>, _>>()?;
let ty = if let Some(prim_def) = PrimDef::iter().find(|prim| prim.id() == *obj_id) {
// Primitive TopLevelDefs do not contain all fields that are present in their Type
// counterparts, so directly perform subst on the Type instead.
let PrimDefDetails::PrimClass { get_ty_fn, .. } = prim_def.details() else {
unreachable!()
};
let base_ty = get_ty_fn(primitives);
let params =
if let TypeEnum::TObj { params, .. } = &*unifier.get_ty_immutable(base_ty) {
params.clone()
} else {
unreachable!()
};
unifier
.subst(
get_ty_fn(primitives),
&params
.iter()
.zip(param_ty)
.map(|(obj_tv, param)| (*obj_tv.0, param))
.collect(),
)
.unwrap_or(base_ty)
} else {
let subst = {
// check for compatible range
// TODO: if allow type var to be applied(now this disallowed in the parse_to_type_annotation), need more check
let mut result = VarMap::new();
for (tvar, p) in type_vars.iter().zip(param_ty) {
match unifier.get_ty(*tvar).as_ref() {
TypeEnum::TVar {
id,
range,
fields: None,
name,
loc,
is_const_generic: false,
} => {
let ok: bool = {
// create a temp type var and unify to check compatibility
p == *tvar || {
let temp = unifier.get_fresh_var_with_range(
range.as_slice(),
*name,
*loc,
);
unifier.unify(temp.ty, p).is_ok()
}
};
if ok {
result.insert(*id, p);
} else {
return Err(HashSet::from([format!(
"cannot apply type {} to type variable with id {:?}",
unifier.internal_stringify(
p,
&mut |id| format!("class{id}"),
&mut |id| format!("typevar{id}"),
&mut None
),
*id
)]));
let subst = {
// check for compatible range
// TODO: if allow type var to be applied(now this disallowed in the parse_to_type_annotation), need more check
let mut result = VarMap::new();
for (tvar, p) in type_vars.iter().zip(param_ty) {
match unifier.get_ty(*tvar).as_ref() {
TypeEnum::TVar {
id,
range,
fields: None,
name,
loc,
is_const_generic: false,
} => {
let ok: bool = {
// create a temp type var and unify to check compatibility
p == *tvar || {
let temp = unifier.get_fresh_var_with_range(
range.as_slice(),
*name,
*loc,
);
unifier.unify(temp.ty, p).is_ok()
}
};
if ok {
result.insert(*id, p);
} else {
return Err(HashSet::from([format!(
"cannot apply type {} to type variable with id {:?}",
unifier.internal_stringify(
p,
&mut |id| format!("class{id}"),
&mut |id| format!("typevar{id}"),
&mut None
),
*id
)]));
}
TypeEnum::TVar {
id, range, name, loc, is_const_generic: true, ..
} => {
let ty = range[0];
let ok: bool = {
// create a temp type var and unify to check compatibility
p == *tvar || {
let temp =
unifier.get_fresh_const_generic_var(ty, *name, *loc);
unifier.unify(temp.ty, p).is_ok()
}
};
if ok {
result.insert(*id, p);
} else {
return Err(HashSet::from([format!(
"cannot apply type {} to type variable {}",
unifier.stringify(p),
name.unwrap_or_else(|| format!("typevar{id}").into()),
)]));
}
}
_ => unreachable!("must be generic type var"),
}
}
result
};
// Class Attributes keep a copy with Class Definition and are not added to objects
let mut tobj_fields = methods
.iter()
.map(|(name, ty, _)| {
let subst_ty = unifier.subst(*ty, &subst).unwrap_or(*ty);
// methods are immutable
(*name, (subst_ty, false))
})
.collect::<HashMap<_, _>>();
tobj_fields.extend(fields.iter().map(|(name, ty, mutability)| {
let subst_ty = unifier.subst(*ty, &subst).unwrap_or(*ty);
(*name, (subst_ty, *mutability))
}));
let need_subst = !subst.is_empty();
let ty = unifier.add_ty(TypeEnum::TObj {
obj_id: *obj_id,
fields: tobj_fields,
params: subst,
});
if need_subst {
if let Some(wl) = subst_list.as_mut() {
wl.push(ty);
TypeEnum::TVar { id, range, name, loc, is_const_generic: true, .. } => {
let ty = range[0];
let ok: bool = {
// create a temp type var and unify to check compatibility
p == *tvar || {
let temp = unifier.get_fresh_const_generic_var(ty, *name, *loc);
unifier.unify(temp.ty, p).is_ok()
}
};
if ok {
result.insert(*id, p);
} else {
return Err(HashSet::from([format!(
"cannot apply type {} to type variable {}",
unifier.stringify(p),
name.unwrap_or_else(|| format!("typevar{id}").into()),
)]));
}
}
_ => unreachable!("must be generic type var"),
}
}
ty
result
};
// Class Attributes keep a copy with Class Definition and are not added to objects
let mut tobj_fields = methods
.iter()
.map(|(name, ty, _)| {
let subst_ty = unifier.subst(*ty, &subst).unwrap_or(*ty);
// methods are immutable
(*name, (subst_ty, false))
})
.collect::<HashMap<_, _>>();
tobj_fields.extend(fields.iter().map(|(name, ty, mutability)| {
let subst_ty = unifier.subst(*ty, &subst).unwrap_or(*ty);
(*name, (subst_ty, *mutability))
}));
let need_subst = !subst.is_empty();
let ty = unifier.add_ty(TypeEnum::TObj {
obj_id: *obj_id,
fields: tobj_fields,
params: subst,
});
if need_subst {
if let Some(wl) = subst_list.as_mut() {
wl.push(ty);
}
}
Ok(ty)
}
TypeAnnotation::Primitive(ty) | TypeAnnotation::TypeVar(ty) => Ok(*ty),
@ -533,26 +506,28 @@ pub fn get_type_from_type_annotation_kinds(
let ty = get_type_from_type_annotation_kinds(
top_level_defs,
unifier,
primitives,
ty.as_ref(),
subst_list,
)?;
Ok(unifier.add_ty(TypeEnum::TVirtual { ty }))
}
TypeAnnotation::List(ty) => {
let ty = get_type_from_type_annotation_kinds(
top_level_defs,
unifier,
ty.as_ref(),
subst_list,
)?;
Ok(unifier.add_ty(TypeEnum::TList { ty }))
}
TypeAnnotation::Tuple(tys) => {
let tys = tys
.iter()
.map(|x| {
get_type_from_type_annotation_kinds(
top_level_defs,
unifier,
primitives,
x,
subst_list,
)
get_type_from_type_annotation_kinds(top_level_defs, unifier, x, subst_list)
})
.collect::<Result<Vec<_>, _>>()?;
Ok(unifier.add_ty(TypeEnum::TTuple { ty: tys, is_vararg_ctx: false }))
Ok(unifier.add_ty(TypeEnum::TTuple { ty: tys }))
}
}
}
@ -585,7 +560,7 @@ pub fn get_type_var_contained_in_type_annotation(ann: &TypeAnnotation) -> Vec<Ty
let mut result: Vec<TypeAnnotation> = Vec::new();
match ann {
TypeAnnotation::TypeVar(..) => result.push(ann.clone()),
TypeAnnotation::Virtual(ann) => {
TypeAnnotation::Virtual(ann) | TypeAnnotation::List(ann) => {
result.extend(get_type_var_contained_in_type_annotation(ann.as_ref()));
}
TypeAnnotation::CustomClass { params, .. } => {
@ -626,7 +601,8 @@ pub fn check_overload_type_annotation_compatible(
a == b
}
(TypeAnnotation::Virtual(a), TypeAnnotation::Virtual(b)) => {
(TypeAnnotation::Virtual(a), TypeAnnotation::Virtual(b))
| (TypeAnnotation::List(a), TypeAnnotation::List(b)) => {
check_overload_type_annotation_compatible(a.as_ref(), b.as_ref(), unifier)
}

View File

@ -1,7 +1,7 @@
use crate::toplevel::helper::PrimDef;
use crate::typecheck::typedef::TypeEnum;
use super::type_inferencer::Inferencer;
use super::typedef::{Type, TypeEnum};
use super::typedef::Type;
use nac3parser::ast::{
self, Constant, Expr, ExprKind,
Operator::{LShift, RShift},
@ -34,18 +34,13 @@ impl<'a> Inferencer<'a> {
self.should_have_value(pattern)?;
Ok(())
}
ExprKind::List { elts, .. } | ExprKind::Tuple { elts, .. } => {
ExprKind::Tuple { elts, .. } => {
for elt in elts {
self.check_pattern(elt, defined_identifiers)?;
self.should_have_value(elt)?;
}
Ok(())
}
ExprKind::Starred { value, .. } => {
self.check_pattern(value, defined_identifiers)?;
self.should_have_value(value)?;
Ok(())
}
ExprKind::Subscript { value, slice, .. } => {
self.check_expr(value, defined_identifiers)?;
self.should_have_value(value)?;
@ -74,7 +69,6 @@ impl<'a> Inferencer<'a> {
// there are some cases where the custom field is None
if let Some(ty) = &expr.custom {
if !matches!(&expr.node, ExprKind::Constant { value: Constant::Ellipsis, .. })
&& !ty.obj_id(self.unifier).is_some_and(|id| id == PrimDef::List.id())
&& !self.unifier.is_concrete(*ty, &self.function_data.bound_variables)
{
return Err(HashSet::from([format!(
@ -223,7 +217,7 @@ impl<'a> Inferencer<'a> {
]
.iter()
.any(|allowed_ty| self.unifier.unioned(ret_ty, *allowed_ty)),
TypeEnum::TTuple { ty, .. } => ty.iter().all(|t| self.check_return_value_ty(*t)),
TypeEnum::TTuple { ty } => ty.iter().all(|t| self.check_return_value_ty(*t)),
_ => false,
}
}

View File

@ -1,11 +1,11 @@
use crate::symbol_resolver::SymbolValue;
use crate::toplevel::helper::PrimDef;
use crate::toplevel::numpy::{make_ndarray_ty, unpack_ndarray_var_tys};
use crate::toplevel::primitive_type;
use crate::typecheck::{
type_inferencer::*,
typedef::{FunSignature, FuncArg, Type, TypeEnum, Unifier, VarMap},
typedef::{FunSignature, FuncArg, GenericObjectType, Type, TypeEnum, Unifier, VarMap},
};
use itertools::{iproduct, Itertools};
use itertools::Itertools;
use nac3parser::ast::StrRef;
use nac3parser::ast::{Cmpop, Operator, Unaryop};
use std::cmp::max;
@ -13,138 +13,67 @@ use std::collections::HashMap;
use std::rc::Rc;
use strum::IntoEnumIterator;
/// The variant of a binary operator.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum BinopVariant {
/// The normal variant.
/// For addition, it would be `+`.
Normal,
/// The "Augmented Assigning Operator" variant.
/// For addition, it would be `+=`.
AugAssign,
}
/// A binary operator with its variant.
#[derive(Debug, Clone, Copy)]
pub struct Binop {
/// The base [`Operator`] of this binary operator.
pub base: Operator,
/// The variant of this binary operator.
pub variant: BinopVariant,
}
impl Binop {
/// Make a [`Binop`] of the normal variant from an [`Operator`].
#[must_use]
pub fn normal(base: Operator) -> Self {
Binop { base, variant: BinopVariant::Normal }
}
/// Make a [`Binop`] of the aug assign variant from an [`Operator`].
#[must_use]
pub fn aug_assign(base: Operator) -> Self {
Binop { base, variant: BinopVariant::AugAssign }
}
}
/// Details about an operator (unary, binary, etc...) in Python
#[derive(Debug, Clone, Copy)]
pub struct OpInfo {
/// The method name of the binary operator.
/// For addition, this would be `__add__`, and `__iadd__` if
/// it is the augmented assigning variant.
pub method_name: &'static str,
/// The symbol of the binary operator.
/// For addition, this would be `+`, and `+=` if
/// it is the augmented assigning variant.
pub symbol: &'static str,
}
/// Helper macro to conveniently build an [`OpInfo`].
///
/// Example usage: `make_info("add", "+")` generates `OpInfo { name: "__add__", symbol: "+" }`
macro_rules! make_op_info {
($name:expr, $symbol:expr) => {
OpInfo { method_name: concat!("__", $name, "__"), symbol: $symbol }
};
}
pub trait HasOpInfo {
fn op_info(&self) -> OpInfo;
}
fn try_get_cmpop_info(op: Cmpop) -> Option<OpInfo> {
#[must_use]
pub fn binop_name(op: Operator) -> &'static str {
match op {
Cmpop::Lt => Some(make_op_info!("lt", "<")),
Cmpop::LtE => Some(make_op_info!("le", "<=")),
Cmpop::Gt => Some(make_op_info!("gt", ">")),
Cmpop::GtE => Some(make_op_info!("ge", ">=")),
Cmpop::Eq => Some(make_op_info!("eq", "==")),
Cmpop::NotEq => Some(make_op_info!("ne", "!=")),
Operator::Add => "__add__",
Operator::Sub => "__sub__",
Operator::Div => "__truediv__",
Operator::Mod => "__mod__",
Operator::Mult => "__mul__",
Operator::Pow => "__pow__",
Operator::BitOr => "__or__",
Operator::BitXor => "__xor__",
Operator::BitAnd => "__and__",
Operator::LShift => "__lshift__",
Operator::RShift => "__rshift__",
Operator::FloorDiv => "__floordiv__",
Operator::MatMult => "__matmul__",
}
}
#[must_use]
pub fn binop_assign_name(op: Operator) -> &'static str {
match op {
Operator::Add => "__iadd__",
Operator::Sub => "__isub__",
Operator::Div => "__itruediv__",
Operator::Mod => "__imod__",
Operator::Mult => "__imul__",
Operator::Pow => "__ipow__",
Operator::BitOr => "__ior__",
Operator::BitXor => "__ixor__",
Operator::BitAnd => "__iand__",
Operator::LShift => "__ilshift__",
Operator::RShift => "__irshift__",
Operator::FloorDiv => "__ifloordiv__",
Operator::MatMult => "__imatmul__",
}
}
#[must_use]
pub fn unaryop_name(op: Unaryop) -> &'static str {
match op {
Unaryop::UAdd => "__pos__",
Unaryop::USub => "__neg__",
Unaryop::Not => "__not__",
Unaryop::Invert => "__inv__",
}
}
#[must_use]
pub fn comparison_name(op: Cmpop) -> Option<&'static str> {
match op {
Cmpop::Lt => Some("__lt__"),
Cmpop::LtE => Some("__le__"),
Cmpop::Gt => Some("__gt__"),
Cmpop::GtE => Some("__ge__"),
Cmpop::Eq => Some("__eq__"),
Cmpop::NotEq => Some("__ne__"),
_ => None,
}
}
impl OpInfo {
#[must_use]
pub fn supports_cmpop(op: Cmpop) -> bool {
try_get_cmpop_info(op).is_some()
}
}
impl HasOpInfo for Cmpop {
fn op_info(&self) -> OpInfo {
try_get_cmpop_info(*self).expect("{self:?} is not supported")
}
}
impl HasOpInfo for Binop {
fn op_info(&self) -> OpInfo {
// Helper macro to generate both the normal variant [`OpInfo`] and the
// augmented assigning variant [`OpInfo`] for a binary operator conveniently.
macro_rules! info {
($name:literal, $symbol:literal) => {
(
make_op_info!($name, $symbol),
make_op_info!(concat!("i", $name), concat!($symbol, "=")),
)
};
}
let (normal_variant, aug_assign_variant) = match self.base {
Operator::Add => info!("add", "+"),
Operator::Sub => info!("sub", "-"),
Operator::Div => info!("truediv", "/"),
Operator::Mod => info!("mod", "%"),
Operator::Mult => info!("mul", "*"),
Operator::Pow => info!("pow", "**"),
Operator::BitOr => info!("or", "|"),
Operator::BitXor => info!("xor", "^"),
Operator::BitAnd => info!("and", "&"),
Operator::LShift => info!("lshift", "<<"),
Operator::RShift => info!("rshift", ">>"),
Operator::FloorDiv => info!("floordiv", "//"),
Operator::MatMult => info!("matmul", "@"),
};
match self.variant {
BinopVariant::Normal => normal_variant,
BinopVariant::AugAssign => aug_assign_variant,
}
}
}
impl HasOpInfo for Unaryop {
fn op_info(&self) -> OpInfo {
match self {
Unaryop::UAdd => make_op_info!("pos", "+"),
Unaryop::USub => make_op_info!("neg", "-"),
Unaryop::Not => make_op_info!("not", "not"), // i.e., `not False`, so the symbol is just `not`.
Unaryop::Invert => make_op_info!("inv", "~"),
}
}
}
pub(super) fn with_fields<F>(unifier: &mut Unifier, ty: Type, f: F)
where
F: FnOnce(&mut Unifier, &mut HashMap<StrRef, (Type, bool)>),
@ -186,9 +115,23 @@ pub fn impl_binop(
let ret_ty = ret_ty.unwrap_or_else(|| unifier.get_fresh_var(None, None).ty);
for (base_op, variant) in iproduct!(ops, [BinopVariant::Normal, BinopVariant::AugAssign]) {
let op = Binop { base: *base_op, variant };
fields.insert(op.op_info().method_name.into(), {
for op in ops {
fields.insert(binop_name(*op).into(), {
(
unifier.add_ty(TypeEnum::TFunc(FunSignature {
ret: ret_ty,
vars: function_vars.clone(),
args: vec![FuncArg {
ty: other_ty,
default_value: None,
name: "other".into(),
}],
})),
false,
)
});
fields.insert(binop_assign_name(*op).into(), {
(
unifier.add_ty(TypeEnum::TFunc(FunSignature {
ret: ret_ty,
@ -197,7 +140,6 @@ pub fn impl_binop(
ty: other_ty,
default_value: None,
name: "other".into(),
is_vararg: false,
}],
})),
false,
@ -213,7 +155,7 @@ pub fn impl_unaryop(unifier: &mut Unifier, ty: Type, ret_ty: Option<Type>, ops:
for op in ops {
fields.insert(
op.op_info().method_name.into(),
unaryop_name(*op).into(),
(
unifier.add_ty(TypeEnum::TFunc(FunSignature {
ret: ret_ty,
@ -253,7 +195,7 @@ pub fn impl_cmpop(
for op in ops {
fields.insert(
op.op_info().method_name.into(),
comparison_name(*op).unwrap().into(),
(
unifier.add_ty(TypeEnum::TFunc(FunSignature {
ret: ret_ty,
@ -262,7 +204,6 @@ pub fn impl_cmpop(
ty: other_ty,
default_value: None,
name: "other".into(),
is_vararg: false,
}],
})),
false,
@ -428,8 +369,12 @@ pub fn typeof_ndarray_broadcast(
if is_left_ndarray && is_right_ndarray {
// Perform broadcasting on two ndarray operands.
let (left_ty_dtype, left_ty_ndims) = unpack_ndarray_var_tys(unifier, left);
let (right_ty_dtype, right_ty_ndims) = unpack_ndarray_var_tys(unifier, right);
let left_ty = primitive_type::NDArrayType::create(left, unifier);
let left_ty_dtype = left_ty.dtype_tvar(unifier).ty;
let left_ty_ndims = left_ty.ndims_tvar(unifier).ty;
let right_ty = primitive_type::NDArrayType::create(right, unifier);
let right_ty_dtype = right_ty.dtype_tvar(unifier).ty;
let right_ty_ndims = right_ty.ndims_tvar(unifier).ty;
assert!(unifier.unioned(left_ty_dtype, right_ty_dtype));
@ -456,11 +401,18 @@ pub fn typeof_ndarray_broadcast(
.collect_vec();
let res_ndims = unifier.get_fresh_literal(res_ndims, None);
Ok(make_ndarray_ty(unifier, primitives, Some(left_ty_dtype), Some(res_ndims)))
Ok(primitive_type::NDArrayType::from_primitive(
unifier,
primitives,
Some(left_ty_dtype),
Some(res_ndims),
)
.into())
} else {
let (ndarray_ty, scalar_ty) = if is_left_ndarray { (left, right) } else { (right, left) };
let (ndarray_ty_dtype, _) = unpack_ndarray_var_tys(unifier, ndarray_ty);
let ndarray_ty_dtype =
primitive_type::NDArrayType::create(ndarray_ty, unifier).ndims_tvar(unifier).ty;
if unifier.unioned(ndarray_ty_dtype, scalar_ty) {
Ok(ndarray_ty)
@ -488,29 +440,12 @@ pub fn typeof_binop(
lhs: Type,
rhs: Type,
) -> Result<Option<Type>, String> {
let op = Binop { base: op, variant: BinopVariant::Normal };
let is_left_list = lhs.obj_id(unifier).is_some_and(|id| id == PrimDef::List.id());
let is_right_list = rhs.obj_id(unifier).is_some_and(|id| id == PrimDef::List.id());
let is_left_ndarray = lhs.obj_id(unifier).is_some_and(|id| id == PrimDef::NDArray.id());
let is_right_ndarray = rhs.obj_id(unifier).is_some_and(|id| id == PrimDef::NDArray.id());
Ok(Some(match op.base {
Ok(Some(match op {
Operator::Add | Operator::Sub | Operator::Mult | Operator::Mod | Operator::FloorDiv => {
if is_left_list || is_right_list {
if ![Operator::Add, Operator::Mult].contains(&op.base) {
return Err(format!(
"Binary operator {} not supported for list",
op.op_info().symbol
));
}
if is_left_list {
lhs
} else {
rhs
}
} else if is_left_ndarray || is_right_ndarray {
if is_left_ndarray || is_right_ndarray {
typeof_ndarray_broadcast(unifier, primitives, lhs, rhs)?
} else if unifier.unioned(lhs, rhs) {
lhs
@ -520,7 +455,8 @@ pub fn typeof_binop(
}
Operator::MatMult => {
let (_, lhs_ndims) = unpack_ndarray_var_tys(unifier, lhs);
let lhs_ndims =
primitive_type::NDArrayType::create(lhs, unifier).ndims_tvar(unifier).ty;
let lhs_ndims = match &*unifier.get_ty_immutable(lhs_ndims) {
TypeEnum::TLiteral { values, .. } => {
assert_eq!(values.len(), 1);
@ -528,7 +464,8 @@ pub fn typeof_binop(
}
_ => unreachable!(),
};
let (_, rhs_ndims) = unpack_ndarray_var_tys(unifier, rhs);
let rhs_ndims =
primitive_type::NDArrayType::create(rhs, unifier).ndims_tvar(unifier).ty;
let rhs_ndims = match &*unifier.get_ty_immutable(rhs_ndims) {
TypeEnum::TLiteral { values, .. } => {
assert_eq!(values.len(), 1);
@ -602,7 +539,7 @@ pub fn typeof_unaryop(
let operand_obj_id = operand.obj_id(unifier);
if op == Unaryop::Not
&& operand_obj_id.is_some_and(|id| id == primitives.ndarray.obj_id(unifier).unwrap())
&& operand_obj_id.is_some_and(|id| id == primitives.ndarray.obj_id(unifier))
{
return Err(
"The truth value of an array with more than one element is ambiguous".to_string()
@ -628,7 +565,8 @@ pub fn typeof_unaryop(
Unaryop::UAdd | Unaryop::USub => {
if operand_obj_id.is_some_and(|id| id == PrimDef::NDArray.id()) {
let (dtype, _) = unpack_ndarray_var_tys(unifier, operand);
let dtype =
primitive_type::NDArrayType::create(operand, unifier).dtype_tvar(unifier).ty;
if dtype.obj_id(unifier).is_some_and(|id| id == PrimDef::Bool.id()) {
return Err(if op == Unaryop::UAdd {
"The ufunc 'positive' cannot be applied to ndarray[bool, N]".to_string()
@ -662,9 +600,15 @@ pub fn typeof_cmpop(
Ok(Some(if is_left_ndarray || is_right_ndarray {
let brd = typeof_ndarray_broadcast(unifier, primitives, lhs, rhs)?;
let (_, ndims) = unpack_ndarray_var_tys(unifier, brd);
let ndims = primitive_type::NDArrayType::create(brd, unifier).ndims_tvar(unifier).ty;
make_ndarray_ty(unifier, primitives, Some(primitives.bool), Some(ndims))
primitive_type::NDArrayType::from_primitive(
unifier,
primitives,
Some(primitives.bool),
Some(ndims),
)
.into()
} else if unifier.unioned(lhs, rhs) {
primitives.bool
} else {
@ -680,7 +624,6 @@ pub fn set_primitives_magic_methods(store: &PrimitiveStore, unifier: &mut Unifie
bool: bool_t,
uint32: uint32_t,
uint64: uint64_t,
list: list_t,
ndarray: ndarray_t,
..
} = *store;
@ -688,69 +631,108 @@ pub fn set_primitives_magic_methods(store: &PrimitiveStore, unifier: &mut Unifie
/* int ======== */
for t in [int32_t, int64_t, uint32_t, uint64_t] {
let ndarray_int_t = make_ndarray_ty(unifier, store, Some(t), None);
impl_basic_arithmetic(unifier, store, t, &[t, ndarray_int_t], None);
impl_pow(unifier, store, t, &[t, ndarray_int_t], None);
let ndarray_int_t =
primitive_type::NDArrayType::from_primitive(unifier, store, Some(t), None);
impl_basic_arithmetic(unifier, store, t, &[t, ndarray_int_t.into()], None);
impl_pow(unifier, store, t, &[t, ndarray_int_t.into()], None);
impl_bitwise_arithmetic(unifier, store, t);
impl_bitwise_shift(unifier, store, t);
impl_div(unifier, store, t, &[t, ndarray_int_t], None);
impl_floordiv(unifier, store, t, &[t, ndarray_int_t], None);
impl_mod(unifier, store, t, &[t, ndarray_int_t], None);
impl_div(unifier, store, t, &[t, ndarray_int_t.into()], None);
impl_floordiv(unifier, store, t, &[t, ndarray_int_t.into()], None);
impl_mod(unifier, store, t, &[t, ndarray_int_t.into()], None);
impl_invert(unifier, store, t, Some(t));
impl_not(unifier, store, t, Some(bool_t));
impl_comparison(unifier, store, t, &[t, ndarray_int_t], None);
impl_eq(unifier, store, t, &[t, ndarray_int_t], None);
impl_comparison(unifier, store, t, &[t, ndarray_int_t.into()], None);
impl_eq(unifier, store, t, &[t, ndarray_int_t.into()], None);
}
for t in [int32_t, int64_t] {
impl_sign(unifier, store, t, Some(t));
}
/* float ======== */
let ndarray_float_t = make_ndarray_ty(unifier, store, Some(float_t), None);
let ndarray_int32_t = make_ndarray_ty(unifier, store, Some(int32_t), None);
impl_basic_arithmetic(unifier, store, float_t, &[float_t, ndarray_float_t], None);
impl_pow(unifier, store, float_t, &[int32_t, float_t, ndarray_int32_t, ndarray_float_t], None);
impl_div(unifier, store, float_t, &[float_t, ndarray_float_t], None);
impl_floordiv(unifier, store, float_t, &[float_t, ndarray_float_t], None);
impl_mod(unifier, store, float_t, &[float_t, ndarray_float_t], None);
let ndarray_float_t =
primitive_type::NDArrayType::from_primitive(unifier, store, Some(float_t), None);
let ndarray_int32_t =
primitive_type::NDArrayType::from_primitive(unifier, store, Some(int32_t), None);
impl_basic_arithmetic(unifier, store, float_t, &[float_t, ndarray_float_t.into()], None);
impl_pow(
unifier,
store,
float_t,
&[int32_t, float_t, ndarray_int32_t.into(), ndarray_float_t.into()],
None,
);
impl_div(unifier, store, float_t, &[float_t, ndarray_float_t.into()], None);
impl_floordiv(unifier, store, float_t, &[float_t, ndarray_float_t.into()], None);
impl_mod(unifier, store, float_t, &[float_t, ndarray_float_t.into()], None);
impl_sign(unifier, store, float_t, Some(float_t));
impl_not(unifier, store, float_t, Some(bool_t));
impl_comparison(unifier, store, float_t, &[float_t, ndarray_float_t], None);
impl_eq(unifier, store, float_t, &[float_t, ndarray_float_t], None);
impl_comparison(unifier, store, float_t, &[float_t, ndarray_float_t.into()], None);
impl_eq(unifier, store, float_t, &[float_t, ndarray_float_t.into()], None);
/* bool ======== */
let ndarray_bool_t = make_ndarray_ty(unifier, store, Some(bool_t), None);
let ndarray_bool_t =
primitive_type::NDArrayType::from_primitive(unifier, store, Some(bool_t), None);
impl_invert(unifier, store, bool_t, Some(int32_t));
impl_not(unifier, store, bool_t, Some(bool_t));
impl_sign(unifier, store, bool_t, Some(int32_t));
impl_eq(unifier, store, bool_t, &[bool_t, ndarray_bool_t], None);
/* list ======== */
impl_binop(unifier, store, list_t, &[list_t], Some(list_t), &[Operator::Add]);
impl_binop(unifier, store, list_t, &[int32_t, int64_t], Some(list_t), &[Operator::Mult]);
impl_cmpop(unifier, store, list_t, &[list_t], &[Cmpop::Eq, Cmpop::NotEq], Some(bool_t));
impl_eq(unifier, store, bool_t, &[bool_t, ndarray_bool_t.into()], None);
/* ndarray ===== */
let ndarray_usized_ndims_tvar =
unifier.get_fresh_const_generic_var(size_t, Some("ndarray_ndims".into()), None);
let ndarray_unsized_t =
make_ndarray_ty(unifier, store, None, Some(ndarray_usized_ndims_tvar.ty));
let (ndarray_dtype_t, _) = unpack_ndarray_var_tys(unifier, ndarray_t);
let (ndarray_unsized_dtype_t, _) = unpack_ndarray_var_tys(unifier, ndarray_unsized_t);
let ndarray_unsized_t = primitive_type::NDArrayType::from_primitive(
unifier,
store,
None,
Some(ndarray_usized_ndims_tvar.ty),
);
let ndarray_dtype_t = ndarray_t.dtype_tvar(unifier).ty;
let ndarray_unsized_dtype_t = ndarray_unsized_t.dtype_tvar(unifier).ty;
impl_basic_arithmetic(
unifier,
store,
ndarray_t,
&[ndarray_unsized_t, ndarray_unsized_dtype_t],
ndarray_t.into(),
&[ndarray_unsized_t.into(), ndarray_unsized_dtype_t],
None,
);
impl_pow(
unifier,
store,
ndarray_t.into(),
&[ndarray_unsized_t.into(), ndarray_unsized_dtype_t],
None,
);
impl_div(unifier, store, ndarray_t.into(), &[ndarray_t.into(), ndarray_dtype_t], None);
impl_floordiv(
unifier,
store,
ndarray_t.into(),
&[ndarray_unsized_t.into(), ndarray_unsized_dtype_t],
None,
);
impl_mod(
unifier,
store,
ndarray_t.into(),
&[ndarray_unsized_t.into(), ndarray_unsized_dtype_t],
None,
);
impl_matmul(unifier, store, ndarray_t.into(), &[ndarray_t.into()], Some(ndarray_t.into()));
impl_sign(unifier, store, ndarray_t.into(), Some(ndarray_t.into()));
impl_invert(unifier, store, ndarray_t.into(), Some(ndarray_t.into()));
impl_eq(
unifier,
store,
ndarray_t.into(),
&[ndarray_unsized_t.into(), ndarray_unsized_dtype_t],
None,
);
impl_comparison(
unifier,
store,
ndarray_t.into(),
&[ndarray_unsized_t.into(), ndarray_unsized_dtype_t],
None,
);
impl_pow(unifier, store, ndarray_t, &[ndarray_unsized_t, ndarray_unsized_dtype_t], None);
impl_div(unifier, store, ndarray_t, &[ndarray_t, ndarray_dtype_t], None);
impl_floordiv(unifier, store, ndarray_t, &[ndarray_unsized_t, ndarray_unsized_dtype_t], None);
impl_mod(unifier, store, ndarray_t, &[ndarray_unsized_t, ndarray_unsized_dtype_t], None);
impl_matmul(unifier, store, ndarray_t, &[ndarray_t], Some(ndarray_t));
impl_sign(unifier, store, ndarray_t, Some(ndarray_t));
impl_invert(unifier, store, ndarray_t, Some(ndarray_t));
impl_eq(unifier, store, ndarray_t, &[ndarray_unsized_t, ndarray_unsized_dtype_t], None);
impl_comparison(unifier, store, ndarray_t, &[ndarray_unsized_t, ndarray_unsized_dtype_t], None);
}

View File

@ -1,14 +1,11 @@
use std::collections::HashMap;
use std::fmt::Display;
use crate::typecheck::{magic_methods::HasOpInfo, typedef::TypeEnum};
use crate::typecheck::typedef::TypeEnum;
use super::{
magic_methods::Binop,
typedef::{RecordKey, Type, Unifier},
};
use super::typedef::{RecordKey, Type, Unifier};
use itertools::Itertools;
use nac3parser::ast::{Cmpop, Location, StrRef};
use nac3parser::ast::{Location, StrRef};
#[derive(Debug, Clone)]
pub enum TypeErrorKind {
@ -29,18 +26,6 @@ pub enum TypeErrorKind {
expected: Type,
got: Type,
},
UnsupportedBinaryOpTypes {
operator: Binop,
lhs_type: Type,
rhs_type: Type,
expected_rhs_type: Type,
},
UnsupportedComparsionOpTypes {
operator: Cmpop,
lhs_type: Type,
rhs_type: Type,
expected_rhs_type: Type,
},
FieldUnificationError {
field: RecordKey,
types: (Type, Type),
@ -116,26 +101,6 @@ impl<'a> Display for DisplayTypeError<'a> {
let args = missing_arg_names.iter().join(", ");
write!(f, "Missing arguments: {args}")
}
UnsupportedBinaryOpTypes { operator, lhs_type, rhs_type, expected_rhs_type } => {
let op_symbol = operator.op_info().symbol;
let lhs_type_str = self.unifier.stringify_with_notes(*lhs_type, &mut notes);
let rhs_type_str = self.unifier.stringify_with_notes(*rhs_type, &mut notes);
let expected_rhs_type_str =
self.unifier.stringify_with_notes(*expected_rhs_type, &mut notes);
write!(f, "Unsupported operand type(s) for {op_symbol}: '{lhs_type_str}' and '{rhs_type_str}' (right operand should have type {expected_rhs_type_str})")
}
UnsupportedComparsionOpTypes { operator, lhs_type, rhs_type, expected_rhs_type } => {
let op_symbol = operator.op_info().symbol;
let lhs_type_str = self.unifier.stringify_with_notes(*lhs_type, &mut notes);
let rhs_type_str = self.unifier.stringify_with_notes(*rhs_type, &mut notes);
let expected_rhs_type_str =
self.unifier.stringify_with_notes(*expected_rhs_type, &mut notes);
write!(f, "'{op_symbol}' not supported between instances of '{lhs_type_str}' and '{rhs_type_str}' (right operand should have type {expected_rhs_type_str})")
}
UnknownArgName(name) => {
write!(f, "Unknown argument name: {name}")
}
@ -183,10 +148,9 @@ impl<'a> Display for DisplayTypeError<'a> {
}
result
}
(
TypeEnum::TTuple { ty: ty1, is_vararg_ctx: is_vararg1 },
TypeEnum::TTuple { ty: ty2, is_vararg_ctx: is_vararg2 },
) if !is_vararg1 && !is_vararg2 && ty1.len() != ty2.len() => {
(TypeEnum::TTuple { ty: ty1 }, TypeEnum::TTuple { ty: ty2 })
if ty1.len() != ty2.len() =>
{
let t1 = self.unifier.stringify_with_notes(*t1, &mut notes);
let t2 = self.unifier.stringify_with_notes(*t2, &mut notes);
write!(f, "Tuple length mismatch: got {t1} and {t2}")

File diff suppressed because it is too large Load Diff

View File

@ -83,12 +83,7 @@ impl TestEnvironment {
});
with_fields(&mut unifier, int32, |unifier, fields| {
let add_ty = unifier.add_ty(TypeEnum::TFunc(FunSignature {
args: vec![FuncArg {
name: "other".into(),
ty: int32,
default_value: None,
is_vararg: false,
}],
args: vec![FuncArg { name: "other".into(), ty: int32, default_value: None }],
ret: int32,
vars: VarMap::new(),
}));
@ -144,12 +139,7 @@ impl TestEnvironment {
fields: HashMap::new(),
params: VarMap::new(),
});
let list_elem_tvar = unifier.get_fresh_var(Some("list_elem".into()), None);
let list = unifier.add_ty(TypeEnum::TObj {
obj_id: PrimDef::List.id(),
fields: HashMap::new(),
params: into_var_map([list_elem_tvar]),
});
let option = OptionType::create(option, &mut unifier);
let ndarray_dtype_tvar = unifier.get_fresh_var(Some("ndarray_dtype".into()), None);
let ndarray_ndims_tvar =
unifier.get_fresh_const_generic_var(uint64, Some("ndarray_ndims".into()), None);
@ -158,6 +148,7 @@ impl TestEnvironment {
fields: HashMap::new(),
params: into_var_map([ndarray_dtype_tvar, ndarray_ndims_tvar]),
});
let ndarray = NDArrayType::create(ndarray, &mut unifier);
let primitives = PrimitiveStore {
int32,
int64,
@ -170,7 +161,6 @@ impl TestEnvironment {
uint32,
uint64,
option,
list,
ndarray,
size_t: 64,
};
@ -229,12 +219,7 @@ impl TestEnvironment {
});
with_fields(&mut unifier, int32, |unifier, fields| {
let add_ty = unifier.add_ty(TypeEnum::TFunc(FunSignature {
args: vec![FuncArg {
name: "other".into(),
ty: int32,
default_value: None,
is_vararg: false,
}],
args: vec![FuncArg { name: "other".into(), ty: int32, default_value: None }],
ret: int32,
vars: VarMap::new(),
}));
@ -290,35 +275,17 @@ impl TestEnvironment {
fields: HashMap::new(),
params: VarMap::new(),
});
let list_elem_tvar = unifier.get_fresh_var(Some("list_elem".into()), None);
let list = unifier.add_ty(TypeEnum::TObj {
obj_id: PrimDef::List.id(),
fields: HashMap::new(),
params: into_var_map([list_elem_tvar]),
});
let option = OptionType::create(option, &mut unifier);
let ndarray = unifier.add_ty(TypeEnum::TObj {
obj_id: PrimDef::NDArray.id(),
fields: HashMap::new(),
params: VarMap::new(),
});
let ndarray = NDArrayType::create(ndarray, &mut unifier);
identifier_mapping.insert("None".into(), none);
for (i, name) in [
"int32",
"int64",
"float",
"bool",
"none",
"range",
"str",
"Exception",
"uint32",
"uint64",
"Option",
"list",
"ndarray",
]
.iter()
.enumerate()
for (i, name) in ["int32", "int64", "float", "bool", "none", "range", "str", "Exception"]
.iter()
.enumerate()
{
top_level_defs.push(
RwLock::new(TopLevelDef::Class {
@ -336,7 +303,7 @@ impl TestEnvironment {
.into(),
);
}
let defs = 12;
let defs = 7;
let primitives = PrimitiveStore {
int32,
@ -350,7 +317,6 @@ impl TestEnvironment {
uint32,
uint64,
option,
list,
ndarray,
size_t: 64,
};
@ -462,11 +428,6 @@ impl TestEnvironment {
"range".into(),
"str".into(),
"exception".into(),
"uint32".into(),
"uint64".into(),
"option".into(),
"list".into(),
"ndarray".into(),
"Foo".into(),
"Bar".into(),
"Bar2".into(),

View File

@ -1,21 +1,19 @@
use indexmap::IndexMap;
use itertools::{repeat_n, Itertools};
use nac3parser::ast::{Cmpop, Location, StrRef, Unaryop};
use itertools::Itertools;
use std::cell::RefCell;
use std::collections::HashMap;
use std::fmt::{self, Display};
use std::iter::{repeat, zip};
use std::iter::zip;
use std::rc::Rc;
use std::sync::{Arc, Mutex};
use std::{borrow::Cow, collections::HashSet};
use super::magic_methods::Binop;
use nac3parser::ast::{Location, StrRef};
use super::type_error::{TypeError, TypeErrorKind};
use super::unification_table::{UnificationKey, UnificationTable};
use crate::symbol_resolver::SymbolValue;
use crate::toplevel::helper::PrimDef;
use crate::toplevel::{DefinitionId, TopLevelContext, TopLevelDef};
use crate::typecheck::magic_methods::OpInfo;
use crate::typecheck::type_inferencer::PrimitiveStore;
#[cfg(test)]
@ -24,6 +22,40 @@ mod test;
/// Handle for a type, implemented as a key in the unification table.
pub type Type = UnificationKey;
/// Macro for generating functions related to type traits, e.g. whether the type is integral.
macro_rules! primitive_type_trait_fn {
($id:ident, $( $matches:ident ),*) => {
#[must_use]
pub fn $id(self, unifier: &mut Unifier, store: &PrimitiveStore) -> bool {
[$(store.$matches,)*].into_iter().any(|ty| unifier.unioned(self, ty))
}
};
}
impl Type {
/// Wrapper function for cleaner code so that we don't need to write this long pattern matching
/// just to get the field `obj_id`.
#[must_use]
pub fn obj_id(self, unifier: &Unifier) -> Option<DefinitionId> {
if let TypeEnum::TObj { obj_id, .. } = &*unifier.get_ty_immutable(self) {
Some(*obj_id)
} else {
None
}
}
#[must_use]
pub fn is_primitive(self, unifier: &mut Unifier, store: &PrimitiveStore) -> bool {
store.into_iter().any(|ty| unifier.unioned(self, ty))
}
primitive_type_trait_fn!(is_integral, bool, int32, int64, uint32, uint64);
primitive_type_trait_fn!(is_floating_point, float);
primitive_type_trait_fn!(is_arithmetic, int32, int64, uint32, uint64, float);
primitive_type_trait_fn!(is_signed, int32, uint32, float);
primitive_type_trait_fn!(is_unsigned, uint32, uint64);
}
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
pub struct CallId(pub(super) usize);
@ -57,6 +89,24 @@ pub struct TypeVar {
pub ty: Type,
}
impl From<(TypeVarId, Type)> for TypeVar {
fn from((id, ty): (TypeVarId, Type)) -> Self {
TypeVar { id, ty }
}
}
impl From<(&TypeVarId, &Type)> for TypeVar {
fn from((id, ty): (&TypeVarId, &Type)) -> Self {
TypeVar { id: *id, ty: *ty }
}
}
impl From<TypeVar> for (TypeVarId, Type) {
fn from(value: TypeVar) -> Self {
(value.id, value.ty)
}
}
/// The mapping between [`TypeVarId`] and [unifier type][`Type`].
pub type VarMap = IndexMapping<TypeVarId>;
@ -70,31 +120,84 @@ where
vars.into_iter().map(|var| (var.id, var.ty)).collect()
}
/// Get an iterator of [`TypeVar`]s from a [`VarMap`]
pub fn iter_type_vars(var_map: &VarMap) -> impl Iterator<Item = TypeVar> + '_ {
var_map.iter().map(|(&id, &ty)| TypeVar { id, ty })
/// A trait representing a possibly generic object type.
pub trait GenericObjectType
where
Self: Sized,
{
fn try_create(ty: Type, unifier: &mut Unifier) -> Option<Self>;
/// Creates an instance from a [`Type`].
#[must_use]
fn create(ty: Type, unifier: &mut Unifier) -> Self {
Self::try_create(ty, unifier).unwrap()
}
/// Returns the [`Type`] underlying this instance.
#[must_use]
fn get_type(&self) -> Type;
/// Similar to [`Type::obj_id`], except that the [`DefinitionId`] is not wrapped within an
/// [`Option`].
#[must_use]
fn obj_id(&self, unifier: &Unifier) -> DefinitionId {
self.get_type().obj_id(unifier).unwrap()
}
/// Returns a copy of the [`VarMap`] of this object type.
#[must_use]
fn var_map(&self, unifier: &mut Unifier) -> VarMap {
let TypeEnum::TObj { params, .. } = &*unifier.get_ty(self.get_type()) else {
unreachable!()
};
params.clone()
}
/// Creates an iterator over the [`VarMap`] of this object type, applying `iter_fn` on the
/// created [`Iterator`].
#[must_use]
fn iter_var_map<R, IterFn: FnOnce(&mut dyn Iterator<Item = TypeVar>, &mut Unifier) -> R>(
&self,
unifier: &mut Unifier,
iter_fn: IterFn,
) -> R {
let TypeEnum::TObj { params, .. } = &*unifier.get_ty(self.get_type()) else {
unreachable!()
};
let res = iter_fn(&mut params.iter().map(TypeVar::from), unifier);
res
}
/// Returns the [`TypeVar`] instance at the given index.
#[must_use]
fn get_var_at(&self, unifier: &mut Unifier, i: usize) -> Option<TypeVar> {
self.iter_var_map(unifier, |iter, _| iter.nth(i))
}
}
#[derive(Debug, Clone)]
pub enum OperatorInfo {
/// The call was written as an unary operation, e.g., `~a` or `not a`.
IsUnaryOp {
/// The [`Type`] of the `self` object
self_type: Type,
operator: Unaryop,
},
/// The call was written as a binary operation, e.g., `a + b` or `a += b`.
IsBinaryOp {
/// The [`Type`] of the `self` object
self_type: Type,
operator: Binop,
},
/// The call was written as a binary comparison operation, e.g., `a < b`.
IsComparisonOp {
/// The [`Type`] of the `self` object
self_type: Type,
operator: Cmpop,
},
impl<T: GenericObjectType> From<T> for Type {
fn from(value: T) -> Self {
value.get_type()
}
}
/// An adapter that converts [`Type`] into
pub struct GenericTypeAdapter(Type);
impl GenericObjectType for GenericTypeAdapter {
fn try_create(ty: Type, unifier: &mut Unifier) -> Option<Self> {
if let TypeEnum::TObj { .. } = &*unifier.get_ty_immutable(ty) {
Some(GenericTypeAdapter(ty))
} else {
None
}
}
fn get_type(&self) -> Type {
self.0
}
}
#[derive(Clone)]
@ -104,9 +207,6 @@ pub struct Call {
pub ret: Type,
pub fun: RefCell<Option<Type>>,
pub loc: Option<Location>,
/// Details about the associated Python user operator expression of this call, if any.
pub operator_info: Option<OperatorInfo>,
}
#[derive(Debug, Clone)]
@ -114,7 +214,6 @@ pub struct FuncArg {
pub name: StrRef,
pub ty: Type,
pub default_value: Option<SymbolValue>,
pub is_vararg: bool,
}
impl FuncArg {
@ -137,19 +236,6 @@ pub enum RecordKey {
Int(i32),
}
impl Type {
/// Wrapper function for cleaner code so that we don't need to write this long pattern matching
/// just to get the field `obj_id`.
#[must_use]
pub fn obj_id(self, unifier: &Unifier) -> Option<DefinitionId> {
if let TypeEnum::TObj { obj_id, .. } = &*unifier.get_ty_immutable(self) {
Some(*obj_id)
} else {
None
}
}
}
impl From<&RecordKey> for StrRef {
fn from(r: &RecordKey) -> Self {
match r {
@ -233,12 +319,12 @@ pub enum TypeEnum {
TTuple {
/// The types of elements present in this tuple.
ty: Vec<Type>,
},
/// Whether this tuple is used in a vararg context.
///
/// If `true`, `ty` must only contain one type, and the tuple is assumed to contain any
/// number of `ty`-typed values.
is_vararg_ctx: bool,
/// A list type.
TList {
/// The type of elements present in this list.
ty: Type,
},
/// An object type.
@ -274,6 +360,7 @@ impl TypeEnum {
TypeEnum::TVar { .. } => "TVar",
TypeEnum::TLiteral { .. } => "TConstant",
TypeEnum::TTuple { .. } => "TTuple",
TypeEnum::TList { .. } => "TList",
TypeEnum::TObj { .. } => "TObj",
TypeEnum::TVirtual { .. } => "TVirtual",
TypeEnum::TCall { .. } => "TCall",
@ -509,31 +596,13 @@ impl Unifier {
)
}
}
TypeEnum::TObj { obj_id, params, .. } if *obj_id == PrimDef::List.id() => {
let tv = iter_type_vars(params).nth(0).unwrap();
let tv_id = if let TypeEnum::TVar { id, .. } =
self.unification_table.probe_value(tv.ty).as_ref()
{
*id
} else {
tv.id
};
self.get_instantiations(tv.ty).map(|ty_insts| {
ty_insts
.iter()
.map(|&ty_inst| {
self.subst(ty, &into_var_map([TypeVar { id: tv_id, ty: ty_inst }]))
.unwrap_or(ty)
})
.collect()
})
}
TypeEnum::TList { ty } => self
.get_instantiations(*ty)
.map(|ty| ty.iter().map(|&ty| self.add_ty(TypeEnum::TList { ty })).collect_vec()),
TypeEnum::TVirtual { ty } => self.get_instantiations(*ty).map(|ty| {
ty.iter().map(|&ty| self.add_ty(TypeEnum::TVirtual { ty })).collect_vec()
}),
TypeEnum::TTuple { ty, is_vararg_ctx } => {
TypeEnum::TTuple { ty } => {
let tuples = ty
.iter()
.map(|ty| self.get_instantiations(*ty).unwrap_or_else(|| vec![*ty]))
@ -543,12 +612,7 @@ impl Unifier {
None
} else {
Some(
tuples
.into_iter()
.map(|ty| {
self.add_ty(TypeEnum::TTuple { ty, is_vararg_ctx: *is_vararg_ctx })
})
.collect(),
tuples.into_iter().map(|ty| self.add_ty(TypeEnum::TTuple { ty })).collect(),
)
}
}
@ -591,8 +655,10 @@ impl Unifier {
TVar { .. } => allowed_typevars.iter().any(|b| self.unification_table.unioned(a, *b)),
TCall { .. } => false,
TVirtual { ty } => self.is_concrete(*ty, allowed_typevars),
TTuple { ty, .. } => ty.iter().all(|ty| self.is_concrete(*ty, allowed_typevars)),
TList { ty }
| TVirtual { ty } => self.is_concrete(*ty, allowed_typevars),
TTuple { ty } => ty.iter().all(|ty| self.is_concrete(*ty, allowed_typevars)),
TObj { params: vars, .. } => {
vars.values().all(|ty| self.is_concrete(*ty, allowed_typevars))
}
@ -660,199 +726,118 @@ impl Unifier {
// Get details about the function signature/parameters.
let num_params = signature.args.len();
let is_vararg = signature.args.iter().any(|arg| arg.is_vararg);
// Force the type vars in `b` and `signature' to be up-to-date.
let b = self.instantiate_fun(b, signature);
let TypeEnum::TFunc(signature) = &*self.get_ty(b) else { unreachable!() };
// Get details about the input arguments
let Call { posargs, kwargs, ret, fun, loc, operator_info } = call;
let Call { posargs, kwargs, ret, fun, loc } = call;
let num_args = posargs.len() + kwargs.len();
// Now we check the arguments against the parameters,
// and depending on what `call_info` is, we might change how the behavior `unify_call()`
// in hopes to improve user error messages when type checking fails.
match operator_info {
Some(OperatorInfo::IsBinaryOp { self_type, operator }) => {
// The call is written in the form of (say) `a + b`.
// Technically, it is `a.__add__(b)`, and they have the following constraints:
assert_eq!(posargs.len(), 1);
assert_eq!(kwargs.len(), 0);
assert_eq!(num_params, 1);
// Now we check the arguments against the parameters
let other_type = posargs[0]; // the second operand
let expected_other_type = signature.args[0].ty;
let ok = self.unify_impl(expected_other_type, other_type, false).is_ok();
if !ok {
self.restore_snapshot();
return Err(TypeError::new(
TypeErrorKind::UnsupportedBinaryOpTypes {
operator: *operator,
lhs_type: *self_type,
rhs_type: other_type,
expected_rhs_type: expected_other_type,
},
*loc,
));
}
// Helper lambdas
let mut type_check_arg = |param_name, expected_arg_ty, arg_ty| {
let ok = self.unify_impl(expected_arg_ty, arg_ty, false).is_ok();
if ok {
Ok(())
} else {
// Typecheck failed, throw an error.
self.restore_snapshot();
Err(TypeError::new(
TypeErrorKind::IncorrectArgType {
name: param_name,
expected: expected_arg_ty,
got: arg_ty,
},
*loc,
))
}
Some(OperatorInfo::IsComparisonOp { self_type, operator })
if OpInfo::supports_cmpop(*operator) // Otherwise that comparison operator is not supported.
=>
{
// The call is written in the form of (say) `a <= b`.
// Technically, it is `a.__le__(b)`, and they have the following constraints:
assert_eq!(posargs.len(), 1);
assert_eq!(kwargs.len(), 0);
assert_eq!(num_params, 1);
};
let other_type = posargs[0]; // the second operand
let expected_other_type = signature.args[0].ty;
// Check for "too many arguments"
if num_params < posargs.len() {
let expected_min_count =
signature.args.iter().filter(|param| param.is_required()).count();
let expected_max_count = num_params;
let ok = self.unify_impl(expected_other_type, other_type, false).is_ok();
if !ok {
self.restore_snapshot();
return Err(TypeError::new(
TypeErrorKind::UnsupportedComparsionOpTypes {
operator: *operator,
lhs_type: *self_type,
rhs_type: other_type,
expected_rhs_type: expected_other_type,
},
*loc,
));
}
}
_ => {
// Handle [`CallInfo::IsNormalFunctionCall`] and other uninteresting variants
// of [`CallInfo`] (e.g, `CallInfo::IsUnaryOp` and unsupported comparison operators)
// Helper lambdas
let mut type_check_arg = |param_name, expected_arg_ty, arg_ty| {
let ok = self.unify_impl(expected_arg_ty, arg_ty, false).is_ok();
if ok {
Ok(())
} else {
// Typecheck failed, throw an error.
self.restore_snapshot();
Err(TypeError::new(
TypeErrorKind::IncorrectArgType {
name: param_name,
expected: expected_arg_ty,
got: arg_ty,
},
*loc,
))
}
};
// Check for "too many arguments"
if !is_vararg && num_params < posargs.len() {
let expected_min_count =
signature.args.iter().filter(|param| param.is_required()).count();
let expected_max_count = num_params;
self.restore_snapshot();
return Err(TypeError::new(
TypeErrorKind::TooManyArguments {
expected_min_count,
expected_max_count,
got_count: num_args,
},
*loc,
));
}
// NOTE: order of `param_info_by_name` is leveraged, so use an IndexMap
let mut param_info_by_name: IndexMap<StrRef, ParamInfo> = signature
.args
.iter()
.map(|arg| (arg.name, ParamInfo { has_been_supplied: false, param: arg }))
.collect();
// Now consume all positional arguments and typecheck them.
for (&arg_ty, param) in zip(posargs, signature.args.iter()) {
// We will also use this opportunity to mark the corresponding `param_info` as having been supplied.
let param_info = param_info_by_name.get_mut(&param.name).unwrap();
param_info.has_been_supplied = true;
// Typecheck
type_check_arg(param.name, param.ty, arg_ty)?;
}
if is_vararg {
debug_assert!(!signature.args.is_empty());
let vararg_args = posargs.iter().skip(signature.args.len());
let vararg_param = signature.args.last().unwrap();
for (&arg_ty, param) in zip(vararg_args, repeat(vararg_param)) {
// `param_info` for this argument would've already been marked as supplied
// during non-vararg posarg typecheck
type_check_arg(param.name, param.ty, arg_ty)?;
}
}
// Now consume all keyword arguments and typecheck them.
for (&param_name, &arg_ty) in kwargs {
// We will also use this opportunity to check if this keyword argument is "legal".
let Some(param_info) = param_info_by_name.get_mut(&param_name) else {
self.restore_snapshot();
return Err(TypeError::new(
TypeErrorKind::UnknownArgName(param_name),
*loc,
));
};
if param_info.has_been_supplied {
// NOTE: Duplicate keyword argument (i.e., `hello(1, 2, 3, arg = 4, arg = 5)`)
// is IMPOSSIBLE as the parser would have already failed.
// We only have to care about "got multiple values for XYZ"
self.restore_snapshot();
return Err(TypeError::new(
TypeErrorKind::GotMultipleValues { name: param_name },
*loc,
));
}
param_info.has_been_supplied = true;
// Typecheck
type_check_arg(param_name, param_info.param.ty, arg_ty)?;
}
// After checking posargs and kwargs, check if there are any
// unsupplied required parameters, and throw an error if they exist.
let missing_arg_names = param_info_by_name
.values()
.filter(|param_info| {
param_info.param.is_required() && !param_info.has_been_supplied
})
.map(|param_info| param_info.param.name)
.collect_vec();
if !missing_arg_names.is_empty() {
self.restore_snapshot();
return Err(TypeError::new(
TypeErrorKind::MissingArgs { missing_arg_names },
*loc,
));
}
// Finally, check the Call's return type
self.unify_impl(*ret, signature.ret, false).map_err(|mut err| {
self.restore_snapshot();
if err.loc.is_none() {
err.loc = *loc;
}
err
})?;
}
self.restore_snapshot();
return Err(TypeError::new(
TypeErrorKind::TooManyArguments {
expected_min_count,
expected_max_count,
got_count: num_args,
},
*loc,
));
}
// NOTE: order of `param_info_by_name` is leveraged, so use an IndexMap
let mut param_info_by_name: IndexMap<StrRef, ParamInfo> = signature
.args
.iter()
.map(|arg| (arg.name, ParamInfo { has_been_supplied: false, param: arg }))
.collect();
// Now consume all positional arguments and typecheck them.
for (&arg_ty, param) in zip(posargs, signature.args.iter()) {
// We will also use this opportunity to mark the corresponding `param_info` as having been supplied.
let param_info = param_info_by_name.get_mut(&param.name).unwrap();
param_info.has_been_supplied = true;
// Typecheck
type_check_arg(param.name, param.ty, arg_ty)?;
}
// Now consume all keyword arguments and typecheck them.
for (&param_name, &arg_ty) in kwargs {
// We will also use this opportunity to check if this keyword argument is "legal".
let Some(param_info) = param_info_by_name.get_mut(&param_name) else {
self.restore_snapshot();
return Err(TypeError::new(TypeErrorKind::UnknownArgName(param_name), *loc));
};
if param_info.has_been_supplied {
// NOTE: Duplicate keyword argument (i.e., `hello(1, 2, 3, arg = 4, arg = 5)`)
// is IMPOSSIBLE as the parser would have already failed.
// We only have to care about "got multiple values for XYZ"
self.restore_snapshot();
return Err(TypeError::new(
TypeErrorKind::GotMultipleValues { name: param_name },
*loc,
));
}
param_info.has_been_supplied = true;
// Typecheck
type_check_arg(param_name, param_info.param.ty, arg_ty)?;
}
// After checking posargs and kwargs, check if there are any
// unsupplied required parameters, and throw an error if they exist.
let missing_arg_names = param_info_by_name
.values()
.filter(|param_info| param_info.param.is_required() && !param_info.has_been_supplied)
.map(|param_info| param_info.param.name)
.collect_vec();
if !missing_arg_names.is_empty() {
self.restore_snapshot();
return Err(TypeError::new(TypeErrorKind::MissingArgs { missing_arg_names }, *loc));
}
// Finally, check the Call's return type
self.unify_impl(*ret, signature.ret, false).map_err(|mut err| {
self.restore_snapshot();
if err.loc.is_none() {
err.loc = *loc;
}
err
})?;
*fun.borrow_mut() = Some(b);
self.discard_snapshot(snapshot);
@ -984,10 +969,7 @@ impl Unifier {
self.unify_impl(x, b, false)?;
self.set_a_to_b(a, x);
}
(
TVar { fields: Some(fields), range, is_const_generic: false, .. },
TTuple { ty, .. },
) => {
(TVar { fields: Some(fields), range, is_const_generic: false, .. }, TTuple { ty }) => {
let len = i32::try_from(ty.len()).unwrap();
for (k, v) in fields {
match *k {
@ -1017,6 +999,22 @@ impl Unifier {
self.unify_impl(x, b, false)?;
self.set_a_to_b(a, x);
}
(TVar { fields: Some(fields), range, is_const_generic: false, .. }, TList { ty }) => {
for (k, v) in fields {
match *k {
RecordKey::Int(_) => {
self.unify_impl(v.ty, *ty, false).map_err(|e| e.at(v.loc))?;
}
RecordKey::Str(_) => {
return Err(TypeError::new(TypeErrorKind::NoSuchField(*k, b), v.loc))
}
}
}
let x = self.check_var_compatibility(b, range)?.unwrap_or(b);
self.unify_impl(x, b, false)?;
self.set_a_to_b(a, x);
}
(
TVar { id: id1, range: ty1, is_const_generic: true, .. },
TVar { id: id2, range: ty2, .. },
@ -1084,50 +1082,24 @@ impl Unifier {
self.set_a_to_b(a, b);
}
(
TTuple { ty: ty1, is_vararg_ctx: is_vararg1 },
TTuple { ty: ty2, is_vararg_ctx: is_vararg2 },
) => {
// Rules for Tuples:
// - ty1: is_vararg && ty2: is_vararg -> ty1[0] == ty2[0]
// - ty1: is_vararg && ty2: !is_vararg -> type error (not enough info to infer the correct number of arguments)
// - ty1: !is_vararg && ty2: is_vararg -> ty1[..] == ty2[0]
// - ty1: !is_vararg && ty2: !is_vararg -> ty1.len() == ty2.len() && ty1[i] == ty2[i]
debug_assert!(!is_vararg1 || ty1.len() == 1);
debug_assert!(!is_vararg2 || ty2.len() == 1);
match (*is_vararg1, *is_vararg2) {
(true, true) => {
if self.unify_impl(ty1[0], ty2[0], false).is_err() {
return Self::incompatible_types(a, b);
}
}
(true, false) => return Self::incompatible_types(a, b),
(false, true) => {
for y in ty2 {
if self.unify_impl(ty1[0], *y, false).is_err() {
return Self::incompatible_types(a, b);
}
}
}
(false, false) => {
if ty1.len() != ty2.len() {
return Self::incompatible_types(a, b);
}
for (x, y) in ty1.iter().zip(ty2.iter()) {
if self.unify_impl(*x, *y, false).is_err() {
return Self::incompatible_types(a, b);
}
}
(TTuple { ty: ty1 }, TTuple { ty: ty2 }) => {
if ty1.len() != ty2.len() {
return Err(TypeError::new(TypeErrorKind::IncompatibleTypes(a, b), None));
}
for (x, y) in ty1.iter().zip(ty2.iter()) {
if self.unify_impl(*x, *y, false).is_err() {
return Err(TypeError::new(TypeErrorKind::IncompatibleTypes(a, b), None));
}
}
self.set_a_to_b(a, b);
}
(TVar { fields: Some(map), range, .. }, TObj { obj_id, fields, params }) => {
(TList { ty: ty1 }, TList { ty: ty2 }) => {
if self.unify_impl(*ty1, *ty2, false).is_err() {
return Err(TypeError::new(TypeErrorKind::IncompatibleTypes(a, b), None));
}
self.set_a_to_b(a, b);
}
(TVar { fields: Some(map), range, .. }, TObj { fields, .. }) => {
for (k, field) in map {
match *k {
RecordKey::Str(s) => {
@ -1146,18 +1118,10 @@ impl Unifier {
self.unify_impl(field.ty, ty, false).map_err(|v| v.at(field.loc))?;
}
RecordKey::Int(_) => {
// Allow expressions such as list[0]
if *obj_id == PrimDef::List.id() {
let ty = iter_type_vars(params).nth(0).unwrap().ty;
self.unify_impl(field.ty, ty, false)
.map_err(|e| e.at(field.loc))?;
} else {
return Err(TypeError::new(
TypeErrorKind::NoSuchField(*k, b),
field.loc,
));
}
return Err(TypeError::new(
TypeErrorKind::NoSuchField(*k, b),
field.loc,
))
}
}
}
@ -1367,22 +1331,13 @@ impl Unifier {
TypeEnum::TLiteral { values, .. } => {
format!("const({})", values.iter().map(|v| format!("{v:?}")).join(", "))
}
TypeEnum::TTuple { ty, is_vararg_ctx } => {
if *is_vararg_ctx {
debug_assert_eq!(ty.len(), 1);
let field = self.internal_stringify(
*ty.iter().next().unwrap(),
obj_to_name,
var_to_name,
notes,
);
format!("tuple[*{field}]")
} else {
let mut fields = ty
.iter()
.map(|v| self.internal_stringify(*v, obj_to_name, var_to_name, notes));
format!("tuple[{}]", fields.join(", "))
}
TypeEnum::TTuple { ty } => {
let mut fields =
ty.iter().map(|v| self.internal_stringify(*v, obj_to_name, var_to_name, notes));
format!("tuple[{}]", fields.join(", "))
}
TypeEnum::TList { ty } => {
format!("list[{}]", self.internal_stringify(*ty, obj_to_name, var_to_name, notes))
}
TypeEnum::TVirtual { ty } => {
format!(
@ -1407,21 +1362,17 @@ impl Unifier {
.args
.iter()
.map(|arg| {
let vararg_prefix = if arg.is_vararg { "*" } else { "" };
if let Some(dv) = &arg.default_value {
format!(
"{}:{}{}={}",
"{}:{}={}",
arg.name,
vararg_prefix,
self.internal_stringify(arg.ty, obj_to_name, var_to_name, notes),
dv
)
} else {
format!(
"{}:{}{}",
"{}:{}",
arg.name,
vararg_prefix,
self.internal_stringify(arg.ty, obj_to_name, var_to_name, notes)
)
}
@ -1507,7 +1458,7 @@ impl Unifier {
match &*ty {
TypeEnum::TRigidVar { .. } | TypeEnum::TLiteral { .. } => None,
TypeEnum::TVar { id, .. } => mapping.get(id).copied(),
TypeEnum::TTuple { ty, is_vararg_ctx } => {
TypeEnum::TTuple { ty } => {
let mut new_ty = Cow::from(ty);
for (i, t) in ty.iter().enumerate() {
if let Some(t1) = self.subst_impl(*t, mapping, cache) {
@ -1515,14 +1466,14 @@ impl Unifier {
}
}
if matches!(new_ty, Cow::Owned(_)) {
Some(self.add_ty(TypeEnum::TTuple {
ty: new_ty.into_owned(),
is_vararg_ctx: *is_vararg_ctx,
}))
Some(self.add_ty(TypeEnum::TTuple { ty: new_ty.into_owned() }))
} else {
None
}
}
TypeEnum::TList { ty } => {
self.subst_impl(*ty, mapping, cache).map(|t| self.add_ty(TypeEnum::TList { ty: t }))
}
TypeEnum::TVirtual { ty } => self
.subst_impl(*ty, mapping, cache)
.map(|t| self.add_ty(TypeEnum::TVirtual { ty: t })),
@ -1533,7 +1484,6 @@ impl Unifier {
// This is also used to prevent infinite substitution...
let need_subst = params.values().any(|v| {
let ty = self.unification_table.probe_value(*v);
// TODO(Derppening): #444
if let TypeEnum::TVar { id, .. } = ty.as_ref() {
mapping.contains_key(id)
} else {
@ -1678,55 +1628,20 @@ impl Unifier {
}
}
(TVar { range, .. }, _) => self.check_var_compatibility(b, range).or(Err(())),
(
TTuple { ty: ty1, is_vararg_ctx: is_vararg1 },
TTuple { ty: ty2, is_vararg_ctx: is_vararg2 },
) => {
if *is_vararg1 && *is_vararg2 {
let isect_ty = self.get_intersection(ty1[0], ty2[0])?;
Ok(isect_ty.map(|ty| self.add_ty(TTuple { ty: vec![ty], is_vararg_ctx: true })))
(TTuple { ty: ty1 }, TTuple { ty: ty2 }) if ty1.len() == ty2.len() => {
let ty: Vec<_> = zip(ty1.iter(), ty2.iter())
.map(|(a, b)| self.get_intersection(*a, *b))
.try_collect()?;
if ty.iter().any(Option::is_some) {
Ok(Some(self.add_ty(TTuple {
ty: zip(ty, ty1.iter()).map(|(a, b)| a.unwrap_or(*b)).collect(),
})))
} else {
let zip_iter: Box<dyn Iterator<Item = (&Type, &Type)>> =
match (*is_vararg1, *is_vararg2) {
(true, _) => Box::new(repeat_n(&ty1[0], ty2.len()).zip(ty2.iter())),
(_, false) => Box::new(ty1.iter().zip(repeat_n(&ty2[0], ty1.len()))),
_ => {
if ty1.len() != ty2.len() {
return Err(());
}
Box::new(ty1.iter().zip(ty2.iter()))
}
};
let ty: Vec<_> =
zip_iter.map(|(a, b)| self.get_intersection(*a, *b)).try_collect()?;
Ok(if ty.iter().any(Option::is_some) {
Some(self.add_ty(TTuple {
ty: zip(ty, ty1.iter()).map(|(a, b)| a.unwrap_or(*b)).collect(),
is_vararg_ctx: false,
}))
} else {
None
})
Ok(None)
}
}
// TODO(Derppening): #444
(
TObj { obj_id: id1, fields, params: params1 },
TObj { obj_id: id2, params: params2, .. },
) if *id1 == PrimDef::List.id() && *id2 == PrimDef::List.id() => {
let tv_id = iter_type_vars(params1).nth(0).unwrap().id;
let ty1 = iter_type_vars(params1).nth(0).unwrap().ty;
let ty2 = iter_type_vars(params2).nth(0).unwrap().ty;
Ok(self.get_intersection(ty1, ty2)?.map(|ty| {
self.add_ty(TObj {
obj_id: *id1,
fields: fields.clone(),
params: into_var_map([TypeVar { id: tv_id, ty }]),
})
}))
(TList { ty: ty1 }, TList { ty: ty2 }) => {
Ok(self.get_intersection(*ty1, *ty2)?.map(|ty| self.add_ty(TList { ty })))
}
(TVirtual { ty: ty1 }, TVirtual { ty: ty2 }) => {
Ok(self.get_intersection(*ty1, *ty2)?.map(|ty| self.add_ty(TVirtual { ty })))

View File

@ -28,14 +28,14 @@ impl Unifier {
TypeEnum::TVar { fields: Some(map1), .. },
TypeEnum::TVar { fields: Some(map2), .. },
) => self.map_eq2(map1, map2),
(
TypeEnum::TTuple { ty: ty1, is_vararg_ctx: false },
TypeEnum::TTuple { ty: ty2, is_vararg_ctx: false },
) => {
(TypeEnum::TTuple { ty: ty1 }, TypeEnum::TTuple { ty: ty2 }) => {
ty1.len() == ty2.len()
&& ty1.iter().zip(ty2.iter()).all(|(t1, t2)| self.eq(*t1, *t2))
}
(TypeEnum::TVirtual { ty: ty1 }, TypeEnum::TVirtual { ty: ty2 }) => self.eq(*ty1, *ty2),
(TypeEnum::TList { ty: ty1 }, TypeEnum::TList { ty: ty2 })
| (TypeEnum::TVirtual { ty: ty1 }, TypeEnum::TVirtual { ty: ty2 }) => {
self.eq(*ty1, *ty2)
}
(
TypeEnum::TObj { obj_id: id1, params: params1, .. },
TypeEnum::TObj { obj_id: id2, params: params2, .. },
@ -119,15 +119,6 @@ impl TestEnvironment {
params: into_var_map([tvar]),
}),
);
let tvar = unifier.get_dummy_var();
type_mapping.insert(
"list".into(),
unifier.add_ty(TypeEnum::TObj {
obj_id: PrimDef::List.id(),
fields: HashMap::new(),
params: into_var_map([tvar]),
}),
);
TestEnvironment { unifier, type_mapping }
}
@ -142,36 +133,6 @@ impl TestEnvironment {
// for testing only, so we can just panic when the input is malformed
let end = typ.find(|c| ['[', ',', ']', '='].contains(&c)).unwrap_or(typ.len());
match &typ[..end] {
"list" => {
let mut s = &typ[end..];
assert_eq!(&s[0..1], "[");
let mut ty = Vec::new();
while &s[0..1] != "]" {
let result = self.internal_parse(&s[1..], mapping);
ty.push(result.0);
s = result.1;
}
assert_eq!(ty.len(), 1);
let list_elem_tvar = if let TypeEnum::TObj { params, .. } =
&*self.unifier.get_ty_immutable(self.type_mapping["list"])
{
iter_type_vars(params).next().unwrap()
} else {
unreachable!()
};
(
self.unifier
.subst(
self.type_mapping["list"],
&into_var_map([TypeVar { id: list_elem_tvar.id, ty: ty[0] }]),
)
.unwrap(),
&s[1..],
)
}
"tuple" => {
let mut s = &typ[end..];
assert_eq!(&s[0..1], "[");
@ -181,7 +142,13 @@ impl TestEnvironment {
ty.push(result.0);
s = result.1;
}
(self.unifier.add_ty(TypeEnum::TTuple { ty, is_vararg_ctx: false }), &s[1..])
(self.unifier.add_ty(TypeEnum::TTuple { ty }), &s[1..])
}
"list" => {
assert_eq!(&typ[end..=end], "[");
let (ty, s) = self.internal_parse(&typ[end + 1..], mapping);
assert_eq!(&s[0..1], "]");
(self.unifier.add_ty(TypeEnum::TList { ty }), &s[1..])
}
"Record" => {
let mut s = &typ[end..];
@ -307,7 +274,7 @@ fn test_unify(
("v1", "tuple[int]"),
("v2", "list[int]"),
],
(("v1", "v2"), "Incompatible types: 11[0] and tuple[0]")
(("v1", "v2"), "Incompatible types: list[0] and tuple[0]")
; "type mismatch"
)]
#[test_case(2,
@ -331,7 +298,7 @@ fn test_unify(
("v1", "Record[a=float,b=int]"),
("v2", "Foo[v3]"),
],
(("v1", "v2"), "`3[typevar5]::b` field/method does not exist")
(("v1", "v2"), "`3[typevar4]::b` field/method does not exist")
; "record obj merge"
)]
/// Test cases for invalid unifications.
@ -421,14 +388,6 @@ fn test_typevar_range() {
let int_list = env.parse("list[int]", &HashMap::new());
let float_list = env.parse("list[float]", &HashMap::new());
let list_elem_tvar = if let TypeEnum::TObj { params, .. } =
&*env.unifier.get_ty_immutable(env.type_mapping["list"])
{
iter_type_vars(params).next().unwrap()
} else {
unreachable!()
};
// unification between v and int
// where v in (int, bool)
let v = env.unifier.get_fresh_var_with_range(&[int, boolean], None, None).ty;
@ -439,7 +398,7 @@ fn test_typevar_range() {
let v = env.unifier.get_fresh_var_with_range(&[int, boolean], None, None).ty;
assert_eq!(
env.unify(int_list, v),
Err("Expected any one of these types: 0, 2, but got 11[0]".to_string())
Err("Expected any one of these types: 0, 2, but got list[0]".to_string())
);
// unification between v and float
@ -451,11 +410,7 @@ fn test_typevar_range() {
);
let v1 = env.unifier.get_fresh_var_with_range(&[int, boolean], None, None).ty;
let v1_list = env.unifier.add_ty(TypeEnum::TObj {
obj_id: env.type_mapping["list"].obj_id(&env.unifier).unwrap(),
fields: Mapping::default(),
params: into_var_map([TypeVar { id: list_elem_tvar.id, ty: v1 }]),
});
let v1_list = env.unifier.add_ty(TypeEnum::TList { ty: v1 });
let v = env.unifier.get_fresh_var_with_range(&[int, v1_list], None, None).ty;
// unification between v and int
// where v in (int, list[v1]), v1 in (int, bool)
@ -469,10 +424,9 @@ fn test_typevar_range() {
let v = env.unifier.get_fresh_var_with_range(&[int, v1_list], None, None).ty;
// unification between v and list[float]
// where v in (int, list[v1]), v1 in (int, bool)
println!("float_list: {}, v: {}", env.unifier.stringify(float_list), env.unifier.stringify(v));
assert_eq!(
env.unify(float_list, v),
Err("Expected any one of these types: 0, 11[typevar6], but got 11[1]\n\nNotes:\n typevar6 ∈ {0, 2}".to_string())
Err("Expected any one of these types: 0, list[typevar5], but got list[1]\n\nNotes:\n typevar5 ∈ {0, 2}".to_string())
);
let a = env.unifier.get_fresh_var_with_range(&[int, float], None, None).ty;
@ -487,66 +441,34 @@ fn test_typevar_range() {
let a = env.unifier.get_fresh_var_with_range(&[int, float], None, None).ty;
let b = env.unifier.get_fresh_var_with_range(&[boolean, float], None, None).ty;
let a_list = env.unifier.add_ty(TypeEnum::TObj {
obj_id: env.type_mapping["list"].obj_id(&env.unifier).unwrap(),
fields: Mapping::default(),
params: into_var_map([TypeVar { id: list_elem_tvar.id, ty: a }]),
});
let a_list = env.unifier.add_ty(TypeEnum::TList { ty: a });
let a_list = env.unifier.get_fresh_var_with_range(&[a_list], None, None).ty;
let b_list = env.unifier.add_ty(TypeEnum::TObj {
obj_id: env.type_mapping["list"].obj_id(&env.unifier).unwrap(),
fields: Mapping::default(),
params: into_var_map([TypeVar { id: list_elem_tvar.id, ty: b }]),
});
let b_list = env.unifier.add_ty(TypeEnum::TList { ty: b });
let b_list = env.unifier.get_fresh_var_with_range(&[b_list], None, None).ty;
env.unifier.unify(a_list, b_list).unwrap();
let float_list = env.unifier.add_ty(TypeEnum::TObj {
obj_id: env.type_mapping["list"].obj_id(&env.unifier).unwrap(),
fields: Mapping::default(),
params: into_var_map([TypeVar { id: list_elem_tvar.id, ty: float }]),
});
let float_list = env.unifier.add_ty(TypeEnum::TList { ty: float });
env.unifier.unify(a_list, float_list).unwrap();
// previous unifications should not affect a and b
env.unifier.unify(a, int).unwrap();
let a = env.unifier.get_fresh_var_with_range(&[int, float], None, None).ty;
let b = env.unifier.get_fresh_var_with_range(&[boolean, float], None, None).ty;
let a_list = env.unifier.add_ty(TypeEnum::TObj {
obj_id: env.type_mapping["list"].obj_id(&env.unifier).unwrap(),
fields: Mapping::default(),
params: into_var_map([TypeVar { id: list_elem_tvar.id, ty: a }]),
});
let b_list = env.unifier.add_ty(TypeEnum::TObj {
obj_id: env.type_mapping["list"].obj_id(&env.unifier).unwrap(),
fields: Mapping::default(),
params: into_var_map([TypeVar { id: list_elem_tvar.id, ty: b }]),
});
let a_list = env.unifier.add_ty(TypeEnum::TList { ty: a });
let b_list = env.unifier.add_ty(TypeEnum::TList { ty: b });
env.unifier.unify(a_list, b_list).unwrap();
let int_list = env.unifier.add_ty(TypeEnum::TObj {
obj_id: env.type_mapping["list"].obj_id(&env.unifier).unwrap(),
fields: Mapping::default(),
params: into_var_map([TypeVar { id: list_elem_tvar.id, ty: int }]),
});
let int_list = env.unifier.add_ty(TypeEnum::TList { ty: int });
assert_eq!(
env.unify(a_list, int_list),
Err("Incompatible types: 11[typevar23] and 11[0]\
\n\nNotes:\n typevar23 {1}"
Err("Incompatible types: list[typevar22] and list[0]\
\n\nNotes:\n typevar22 {1}"
.into())
);
let a = env.unifier.get_fresh_var_with_range(&[int, float], None, None).ty;
let b = env.unifier.get_dummy_var().ty;
let a_list = env.unifier.add_ty(TypeEnum::TObj {
obj_id: env.type_mapping["list"].obj_id(&env.unifier).unwrap(),
fields: Mapping::default(),
params: into_var_map([TypeVar { id: list_elem_tvar.id, ty: a }]),
});
let a_list = env.unifier.add_ty(TypeEnum::TList { ty: a });
let a_list = env.unifier.get_fresh_var_with_range(&[a_list], None, None).ty;
let b_list = env.unifier.add_ty(TypeEnum::TObj {
obj_id: env.type_mapping["list"].obj_id(&env.unifier).unwrap(),
fields: Mapping::default(),
params: into_var_map([TypeVar { id: list_elem_tvar.id, ty: b }]),
});
let b_list = env.unifier.add_ty(TypeEnum::TList { ty: b });
env.unifier.unify(a_list, b_list).unwrap();
assert_eq!(
env.unify(b, boolean),
@ -560,25 +482,16 @@ fn test_rigid_var() {
let a = env.unifier.get_fresh_rigid_var(None, None).ty;
let b = env.unifier.get_fresh_rigid_var(None, None).ty;
let x = env.unifier.get_dummy_var().ty;
let list_elem_tvar = env.unifier.get_fresh_var(Some("list_elem".into()), None);
let list_a = env.unifier.add_ty(TypeEnum::TObj {
obj_id: env.type_mapping["list"].obj_id(&env.unifier).unwrap(),
fields: Mapping::default(),
params: into_var_map([TypeVar { id: list_elem_tvar.id, ty: a }]),
});
let list_x = env.unifier.add_ty(TypeEnum::TObj {
obj_id: env.type_mapping["list"].obj_id(&env.unifier).unwrap(),
fields: Mapping::default(),
params: into_var_map([TypeVar { id: list_elem_tvar.id, ty: x }]),
});
let list_a = env.unifier.add_ty(TypeEnum::TList { ty: a });
let list_x = env.unifier.add_ty(TypeEnum::TList { ty: x });
let int = env.parse("int", &HashMap::new());
let list_int = env.parse("list[int]", &HashMap::new());
assert_eq!(env.unify(a, b), Err("Incompatible types: typevar4 and typevar3".to_string()));
assert_eq!(env.unify(a, b), Err("Incompatible types: typevar3 and typevar2".to_string()));
env.unifier.unify(list_a, list_x).unwrap();
assert_eq!(
env.unify(list_x, list_int),
Err("Incompatible types: 11[typevar3] and 11[0]".to_string())
Err("Incompatible types: list[typevar2] and list[0]".to_string())
);
env.unifier.replace_rigid_var(a, int);
@ -593,25 +506,14 @@ fn test_instantiation() {
let float = env.parse("float", &HashMap::new());
let list_int = env.parse("list[int]", &HashMap::new());
let list_elem_tvar = if let TypeEnum::TObj { params, .. } =
&*env.unifier.get_ty_immutable(env.type_mapping["list"])
{
iter_type_vars(params).next().unwrap()
} else {
unreachable!()
};
let obj_map: HashMap<_, _> = [(0usize, "int"), (1, "float"), (2, "bool"), (11, "list")].into();
let obj_map: HashMap<_, _> = [(0usize, "int"), (1, "float"), (2, "bool")].into();
let v = env.unifier.get_fresh_var_with_range(&[int, boolean], None, None).ty;
let list_v = env
.unifier
.subst(env.type_mapping["list"], &into_var_map([TypeVar { id: list_elem_tvar.id, ty: v }]))
.unwrap();
let list_v = env.unifier.add_ty(TypeEnum::TList { ty: v });
let v1 = env.unifier.get_fresh_var_with_range(&[list_v, int], None, None).ty;
let v2 = env.unifier.get_fresh_var_with_range(&[list_int, float], None, None).ty;
let t = env.unifier.get_dummy_var().ty;
let tuple = env.unifier.add_ty(TypeEnum::TTuple { ty: vec![v, v1, v2], is_vararg_ctx: false });
let tuple = env.unifier.add_ty(TypeEnum::TTuple { ty: vec![v, v1, v2] });
let v3 = env.unifier.get_fresh_var_with_range(&[tuple, t], None, None).ty;
// t = TypeVar('t')
// v = TypeVar('v', int, bool)
@ -634,7 +536,7 @@ fn test_instantiation() {
tuple[int, list[bool], list[int]]
tuple[int, list[int], float]
tuple[int, list[int], list[int]]
v6"
v5"
}
.split('\n')
.collect_vec();

View File

@ -3,55 +3,23 @@
set -e
if [ -z "$1" ]; then
echo "No argument supplied"
exit 1
echo "Requires at least one argument"
exit 1
fi
declare -a nac3args
while [ $# -ge 2 ]; do
case "$1" in
--help)
echo "Usage: check_demo.sh [-i686] -- demo [NAC3ARGS...]"
exit
;;
-i686)
i686=1
;;
--)
shift
break
;;
*)
break
;;
esac
shift
done
demo="$1"
shift
while [ $# -gt 1 ]; do
nac3args+=("$1")
shift
done
demo="$1"
echo "### Checking $demo..."
echo ">>>>>> Running $demo with the Python interpreter"
echo -n "Checking $demo... "
./interpret_demo.py "$demo" > interpreted.log
./run_demo.sh --out run.log "${nac3args[@]}" "$demo"
./run_demo.sh --lli --out run_lli.log "${nac3args[@]}" "$demo"
diff -Nau interpreted.log run.log
diff -Nau interpreted.log run_lli.log
echo "ok"
if [ -n "$i686" ]; then
echo "...... Trying NAC3's 32-bit code generator output"
./run_demo.sh -i686 --out run_32.log "${nac3args[@]}" "$demo"
diff -Nau interpreted.log run_32.log
fi
echo "...... Trying NAC3's 64-bit code generator output"
./run_demo.sh --out run_64.log "${nac3args[@]}" "$demo"
diff -Nau interpreted.log run_64.log
echo "...... OK"
rm -f interpreted.log \
run_32.log run_64.log
rm -f interpreted.log run.log run_lli.log

View File

@ -6,6 +6,8 @@
#include <stdlib.h>
#include <string.h>
#define usize size_t
double dbl_nan(void) {
return NAN;
}
@ -42,15 +44,6 @@ void output_float64(double x) {
}
}
void output_range(int32_t range[3]) {
printf("range(");
printf("%d, %d", range[0], range[1]);
if (range[2] != 1) {
printf(", %d", range[2]);
}
puts(")");
}
void output_asciiart(int32_t x) {
static const char *chars = " .,-:;i+hHM$*#@ ";
if (x < 0) {
@ -62,14 +55,14 @@ void output_asciiart(int32_t x) {
struct cslice {
void *data;
size_t len;
usize len;
};
void output_int32_list(struct cslice *slice) {
const int32_t *data = (int32_t *) slice->data;
putchar('[');
for (size_t i = 0; i < slice->len; ++i) {
for (usize i = 0; i < slice->len; ++i) {
if (i == slice->len - 1) {
printf("%d", data[i]);
} else {
@ -83,13 +76,9 @@ void output_int32_list(struct cslice *slice) {
void output_str(struct cslice *slice) {
const char *data = (const char *) slice->data;
for (size_t i = 0; i < slice->len; ++i) {
for (usize i = 0; i < slice->len; ++i) {
putchar(data[i]);
}
}
void output_strln(struct cslice *slice) {
output_str(slice);
putchar('\n');
}
@ -105,25 +94,8 @@ uint32_t __nac3_personality(uint32_t state, uint32_t exception_object, uint32_t
__builtin_unreachable();
}
// See `struct Exception<'a>` in
// https://github.com/m-labs/artiq/blob/master/artiq/firmware/libeh/eh_artiq.rs
struct Exception {
uint32_t id;
struct cslice file;
uint32_t line;
uint32_t column;
struct cslice function;
struct cslice message;
int64_t param[3];
};
uint32_t __nac3_raise(struct Exception* e) {
printf("__nac3_raise called. Exception details:\n");
printf(" ID: %"PRIu32"\n", e->id);
printf(" Location: %*s:%"PRIu32":%"PRIu32"\n" , (int) e->file.len, (const char*) e->file.data, e->line, e->column);
printf(" Function: %*s\n" , (int) e->function.len, (const char*) e->function.data);
printf(" Message: \"%*s\"\n" , (int) e->message.len, (const char*) e->message.data);
printf(" Params: {0}=%"PRId64", {1}=%"PRId64", {2}=%"PRId64"\n", e->param[0], e->param[1], e->param[2]);
uint32_t __nac3_raise(uint32_t state, uint32_t exception_object, uint32_t context) {
printf("__nac3_raise(state: %u, exception_object: %u, context: %u)\n", state, exception_object, context);
exit(101);
__builtin_unreachable();
}

View File

@ -6,7 +6,6 @@ import importlib.machinery
import math
import numpy as np
import numpy.typing as npt
import scipy as sp
import pathlib
from numpy import int32, int64, uint32, uint64
@ -108,9 +107,6 @@ def patch(module):
def output_float(x):
print("%f" % x)
def output_strln(x):
print(x, end='')
def dbg_stack_address(_):
return 0
@ -124,8 +120,6 @@ def patch(module):
return output_asciiart
elif name == "output_float64":
return output_float
elif name == "output_str":
return output_strln
elif name in {
"output_bool",
"output_int32",
@ -133,8 +127,7 @@ def patch(module):
"output_int32_list",
"output_uint32",
"output_uint64",
"output_strln",
"output_range",
"output_str",
}:
return print
elif name == "dbg_stack_address":
@ -168,7 +161,7 @@ def patch(module):
module.ceil64 = _ceil
module.np_ceil = np.ceil
# NumPy NDArray factory functions
# NumPy ndarray functions
module.ndarray = NDArray
module.np_ndarray = np.ndarray
module.np_empty = np.empty
@ -184,10 +177,8 @@ def patch(module):
module.np_isinf = np.isinf
module.np_min = np.min
module.np_minimum = np.minimum
module.np_argmin = np.argmin
module.np_max = np.max
module.np_maximum = np.maximum
module.np_argmax = np.argmax
module.np_sin = np.sin
module.np_cos = np.cos
module.np_exp = np.exp
@ -218,10 +209,8 @@ def patch(module):
module.np_ldexp = np.ldexp
module.np_hypot = np.hypot
module.np_nextafter = np.nextafter
module.np_transpose = np.transpose
module.np_reshape = np.reshape
# SciPy Math functions
# SciPy Math Functions
module.sp_spec_erf = special.erf
module.sp_spec_erfc = special.erfc
module.sp_spec_gamma = special.gamma
@ -229,19 +218,14 @@ def patch(module):
module.sp_spec_j0 = special.j0
module.sp_spec_j1 = special.j1
# Linalg functions
module.np_dot = np.dot
module.np_linalg_cholesky = np.linalg.cholesky
module.np_linalg_qr = np.linalg.qr
module.np_linalg_svd = np.linalg.svd
module.np_linalg_inv = np.linalg.inv
module.np_linalg_pinv = np.linalg.pinv
module.np_linalg_matrix_power = np.linalg.matrix_power
module.np_linalg_det = np.linalg.det
module.sp_linalg_lu = lambda x: sp.linalg.lu(x, True)
module.sp_linalg_schur = sp.linalg.schur
module.sp_linalg_hessenberg = lambda x: sp.linalg.hessenberg(x, True)
# NumPy NDArray Functions
module.np_ndarray = np.ndarray
module.np_empty = np.empty
module.np_zeros = np.zeros
module.np_ones = np.ones
module.np_full = np.full
module.np_eye = np.eye
module.np_identity = np.identity
def file_import(filename, prefix="file_import_"):
filename = pathlib.Path(filename)

View File

@ -1,114 +0,0 @@
# This file is automatically @generated by Cargo.
# It is not intended for manual editing.
version = 3
[[package]]
name = "approx"
version = "0.5.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "cab112f0a86d568ea0e627cc1d6be74a1e9cd55214684db5561995f6dad897c6"
dependencies = [
"num-traits",
]
[[package]]
name = "autocfg"
version = "1.3.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "0c4b4d0bd25bd0b74681c0ad21497610ce1b7c91b1022cd21c80c6fbdd9476b0"
[[package]]
name = "cslice"
version = "0.3.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "0f8cb7306107e4b10e64994de6d3274bd08996a7c1322a27b86482392f96be0a"
[[package]]
name = "libm"
version = "0.2.8"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "4ec2a862134d2a7d32d7983ddcdd1c4923530833c9f2ea1a44fc5fa473989058"
[[package]]
name = "linalg"
version = "0.1.0"
dependencies = [
"cslice",
"nalgebra",
]
[[package]]
name = "nalgebra"
version = "0.32.6"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "7b5c17de023a86f59ed79891b2e5d5a94c705dbe904a5b5c9c952ea6221b03e4"
dependencies = [
"approx",
"num-complex",
"num-rational",
"num-traits",
"simba",
"typenum",
]
[[package]]
name = "num-complex"
version = "0.4.6"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "73f88a1307638156682bada9d7604135552957b7818057dcef22705b4d509495"
dependencies = [
"num-traits",
]
[[package]]
name = "num-integer"
version = "0.1.46"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "7969661fd2958a5cb096e56c8e1ad0444ac2bbcd0061bd28660485a44879858f"
dependencies = [
"num-traits",
]
[[package]]
name = "num-rational"
version = "0.4.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "f83d14da390562dca69fc84082e73e548e1ad308d24accdedd2720017cb37824"
dependencies = [
"num-integer",
"num-traits",
]
[[package]]
name = "num-traits"
version = "0.2.19"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "071dfc062690e90b734c0b2273ce72ad0ffa95f0c74596bc250dcfd960262841"
dependencies = [
"autocfg",
"libm",
]
[[package]]
name = "paste"
version = "1.0.15"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "57c0d7b74b563b49d38dae00a0c37d4d6de9b432382b2892f0574ddcae73fd0a"
[[package]]
name = "simba"
version = "0.8.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "061507c94fc6ab4ba1c9a0305018408e312e17c041eb63bef8aa726fa33aceae"
dependencies = [
"approx",
"num-complex",
"num-traits",
"paste",
]
[[package]]
name = "typenum"
version = "1.17.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "42ff0bf0c66b8238c6f3b578df37d0b7848e55df8577b3f74f92a69acceeb825"

View File

@ -1,13 +0,0 @@
[package]
name = "linalg"
version = "0.1.0"
edition = "2021"
[lib]
crate-type = ["staticlib"]
[dependencies]
nalgebra = {version = "0.32.6", default-features = false, features = ["libm", "alloc"]}
cslice = "0.3.0"
[workspace]

View File

@ -1,406 +0,0 @@
// Uses `nalgebra` crate to invoke `np_linalg` and `sp_linalg` functions
// When converting between `nalgebra::Matrix` and `NDArray` following considerations are necessary
//
// * Both `nalgebra::Matrix` and `NDArray` require their content to be stored in row-major order
// * `NDArray` data pointer can be directly read and converted to `nalgebra::Matrix` (row and column number must be known)
// * `nalgebra::Matrix::as_slice` returns the content of matrix in column-major order and initial data needs to be transposed before storing it in `NDArray` data pointer
use core::slice;
use nalgebra::DMatrix;
fn report_error(
error_name: &str,
fn_name: &str,
file_name: &str,
line_num: u32,
col_num: u32,
err_msg: &str,
) -> ! {
panic!(
"Exception {} from {} in {}:{}:{}, message: {}",
error_name, fn_name, file_name, line_num, col_num, err_msg
);
}
pub struct InputMatrix {
pub ndims: usize,
pub dims: *const usize,
pub data: *mut f64,
}
impl InputMatrix {
fn get_dims(&mut self) -> Vec<usize> {
let dims = unsafe { slice::from_raw_parts(self.dims, self.ndims) };
dims.to_vec()
}
}
/// # Safety
///
/// `mat1` should point to a valid 2DArray of `f64` floats in row-major order
#[no_mangle]
pub unsafe extern "C" fn np_linalg_cholesky(mat1: *mut InputMatrix, out: *mut InputMatrix) {
let mat1 = mat1.as_mut().unwrap();
let out = out.as_mut().unwrap();
if mat1.ndims != 2 {
let err_msg = format!("expected 2D Vector Input, but received {}D input", mat1.ndims);
report_error("ValueError", "np_linalg_cholesky", file!(), line!(), column!(), &err_msg);
}
let dim1 = (*mat1).get_dims();
if dim1[0] != dim1[1] {
let err_msg =
format!("last 2 dimensions of the array must be square: {0} != {1}", dim1[0], dim1[1]);
report_error("LinAlgError", "np_linalg_cholesky", file!(), line!(), column!(), &err_msg);
}
let outdim = out.get_dims();
let out_slice = unsafe { slice::from_raw_parts_mut(out.data, outdim[0] * outdim[1]) };
let data_slice1 = unsafe { slice::from_raw_parts_mut(mat1.data, dim1[0] * dim1[1]) };
let matrix1 = DMatrix::from_row_slice(dim1[0], dim1[1], data_slice1);
let result = matrix1.cholesky();
match result {
Some(res) => {
out_slice.copy_from_slice(res.unpack().transpose().as_slice());
}
None => {
report_error(
"LinAlgError",
"np_linalg_cholesky",
file!(),
line!(),
column!(),
"Matrix is not positive definite",
);
}
};
}
/// # Safety
///
/// `mat1` should point to a valid 2DArray of `f64` floats in row-major order
#[no_mangle]
pub unsafe extern "C" fn np_linalg_qr(
mat1: *mut InputMatrix,
out_q: *mut InputMatrix,
out_r: *mut InputMatrix,
) {
let mat1 = mat1.as_mut().unwrap();
let out_q = out_q.as_mut().unwrap();
let out_r = out_r.as_mut().unwrap();
if mat1.ndims != 2 {
let err_msg = format!("expected 2D Vector Input, but received {}D input", mat1.ndims);
report_error("ValueError", "np_linalg_cholesky", file!(), line!(), column!(), &err_msg);
}
let dim1 = (*mat1).get_dims();
let outq_dim = (*out_q).get_dims();
let outr_dim = (*out_r).get_dims();
let data_slice1 = unsafe { slice::from_raw_parts_mut(mat1.data, dim1[0] * dim1[1]) };
let out_q_slice = unsafe { slice::from_raw_parts_mut(out_q.data, outq_dim[0] * outq_dim[1]) };
let out_r_slice = unsafe { slice::from_raw_parts_mut(out_r.data, outr_dim[0] * outr_dim[1]) };
// Refer to https://github.com/dimforge/nalgebra/issues/735
let matrix1 = DMatrix::from_row_slice(dim1[0], dim1[1], data_slice1);
let res = matrix1.qr();
let (q, r) = res.unpack();
// Uses different algo need to match numpy
out_q_slice.copy_from_slice(q.transpose().as_slice());
out_r_slice.copy_from_slice(r.transpose().as_slice());
}
/// # Safety
///
/// `mat1` should point to a valid 2DArray of `f64` floats in row-major order
#[no_mangle]
pub unsafe extern "C" fn np_linalg_svd(
mat1: *mut InputMatrix,
outu: *mut InputMatrix,
outs: *mut InputMatrix,
outvh: *mut InputMatrix,
) {
let mat1 = mat1.as_mut().unwrap();
let outu = outu.as_mut().unwrap();
let outs = outs.as_mut().unwrap();
let outvh = outvh.as_mut().unwrap();
if mat1.ndims != 2 {
let err_msg = format!("expected 2D Vector Input, but received {}D input", mat1.ndims);
report_error("ValueError", "np_linalg_svd", file!(), line!(), column!(), &err_msg);
}
let dim1 = (*mat1).get_dims();
let outu_dim = (*outu).get_dims();
let outs_dim = (*outs).get_dims();
let outvh_dim = (*outvh).get_dims();
let data_slice1 = unsafe { slice::from_raw_parts_mut(mat1.data, dim1[0] * dim1[1]) };
let out_u_slice = unsafe { slice::from_raw_parts_mut(outu.data, outu_dim[0] * outu_dim[1]) };
let out_s_slice = unsafe { slice::from_raw_parts_mut(outs.data, outs_dim[0]) };
let out_vh_slice =
unsafe { slice::from_raw_parts_mut(outvh.data, outvh_dim[0] * outvh_dim[1]) };
let matrix = DMatrix::from_row_slice(dim1[0], dim1[1], data_slice1);
let result = matrix.svd(true, true);
out_u_slice.copy_from_slice(result.u.unwrap().transpose().as_slice());
out_s_slice.copy_from_slice(result.singular_values.as_slice());
out_vh_slice.copy_from_slice(result.v_t.unwrap().transpose().as_slice());
}
/// # Safety
///
/// `mat1` should point to a valid 2DArray of `f64` floats in row-major order
#[no_mangle]
pub unsafe extern "C" fn np_linalg_inv(mat1: *mut InputMatrix, out: *mut InputMatrix) {
let mat1 = mat1.as_mut().unwrap();
let out = out.as_mut().unwrap();
if mat1.ndims != 2 {
let err_msg = format!("expected 2D Vector Input, but received {}D input", mat1.ndims);
report_error("ValueError", "np_linalg_inv", file!(), line!(), column!(), &err_msg);
}
let dim1 = (*mat1).get_dims();
if dim1[0] != dim1[1] {
let err_msg =
format!("last 2 dimensions of the array must be square: {0} != {1}", dim1[0], dim1[1]);
report_error("LinAlgError", "np_linalg_inv", file!(), line!(), column!(), &err_msg);
}
let outdim = out.get_dims();
let out_slice = unsafe { slice::from_raw_parts_mut(out.data, outdim[0] * outdim[1]) };
let data_slice1 = unsafe { slice::from_raw_parts_mut(mat1.data, dim1[0] * dim1[1]) };
let matrix = DMatrix::from_row_slice(dim1[0], dim1[1], data_slice1);
if !matrix.is_invertible() {
report_error(
"LinAlgError",
"np_linalg_inv",
file!(),
line!(),
column!(),
"no inverse for Singular Matrix",
);
}
let inv = matrix.try_inverse().unwrap();
out_slice.copy_from_slice(inv.transpose().as_slice());
}
/// # Safety
///
/// `mat1` should point to a valid 2DArray of `f64` floats in row-major order
#[no_mangle]
pub unsafe extern "C" fn np_linalg_pinv(mat1: *mut InputMatrix, out: *mut InputMatrix) {
let mat1 = mat1.as_mut().unwrap();
let out = out.as_mut().unwrap();
if mat1.ndims != 2 {
let err_msg = format!("expected 2D Vector Input, but received {}D input", mat1.ndims);
report_error("ValueError", "np_linalg_pinv", file!(), line!(), column!(), &err_msg);
}
let dim1 = (*mat1).get_dims();
let outdim = out.get_dims();
let out_slice = unsafe { slice::from_raw_parts_mut(out.data, outdim[0] * outdim[1]) };
let data_slice1 = unsafe { slice::from_raw_parts_mut(mat1.data, dim1[0] * dim1[1]) };
let matrix = DMatrix::from_row_slice(dim1[0], dim1[1], data_slice1);
let svd = matrix.svd(true, true);
let inv = svd.pseudo_inverse(1e-15);
match inv {
Ok(m) => {
out_slice.copy_from_slice(m.transpose().as_slice());
}
Err(err_msg) => {
report_error("LinAlgError", "np_linalg_pinv", file!(), line!(), column!(), err_msg);
}
}
}
/// # Safety
///
/// `mat1` should point to a valid 2DArray of `f64` floats in row-major order
#[no_mangle]
pub unsafe extern "C" fn np_linalg_matrix_power(
mat1: *mut InputMatrix,
mat2: *mut InputMatrix,
out: *mut InputMatrix,
) {
let mat1 = mat1.as_mut().unwrap();
let mat2 = mat2.as_mut().unwrap();
let out = out.as_mut().unwrap();
if mat1.ndims != 2 {
let err_msg = format!("expected 2D Vector Input, but received {}D", mat1.ndims);
report_error("ValueError", "np_linalg_matrix_power", file!(), line!(), column!(), &err_msg);
}
let dim1 = (*mat1).get_dims();
let power = unsafe { slice::from_raw_parts_mut(mat2.data, 1) };
let power = power[0];
let outdim = out.get_dims();
let out_slice = unsafe { slice::from_raw_parts_mut(out.data, outdim[0] * outdim[1]) };
let data_slice1 = unsafe { slice::from_raw_parts_mut(mat1.data, dim1[0] * dim1[1]) };
let abs_pow = power.abs();
let matrix1 = DMatrix::from_row_slice(dim1[0], dim1[1], data_slice1);
let mut result = matrix1.pow(abs_pow as u32);
if power < 0.0 {
if !result.is_invertible() {
report_error(
"LinAlgError",
"np_linalg_inv",
file!(),
line!(),
column!(),
"no inverse for Singular Matrix",
);
}
result = result.try_inverse().unwrap();
}
out_slice.copy_from_slice(result.transpose().as_slice());
}
/// # Safety
///
/// `mat1` should point to a valid 2DArray of `f64` floats in row-major order
#[no_mangle]
pub unsafe extern "C" fn np_linalg_det(mat1: *mut InputMatrix, out: *mut InputMatrix) {
let mat1 = mat1.as_mut().unwrap();
let out = out.as_mut().unwrap();
if mat1.ndims != 2 {
let err_msg = format!("expected 2D Vector Input, but received {}D input", mat1.ndims);
report_error("ValueError", "np_linalg_det", file!(), line!(), column!(), &err_msg);
}
let dim1 = (*mat1).get_dims();
let out_slice = unsafe { slice::from_raw_parts_mut(out.data, 1) };
let data_slice1 = unsafe { slice::from_raw_parts_mut(mat1.data, dim1[0] * dim1[1]) };
let matrix = DMatrix::from_row_slice(dim1[0], dim1[1], data_slice1);
if !matrix.is_square() {
let err_msg =
format!("last 2 dimensions of the array must be square: {0} != {1}", dim1[0], dim1[1]);
report_error("LinAlgError", "np_linalg_inv", file!(), line!(), column!(), &err_msg);
}
out_slice[0] = matrix.determinant();
}
/// # Safety
///
/// `mat1` should point to a valid 2DArray of `f64` floats in row-major order
#[no_mangle]
pub unsafe extern "C" fn sp_linalg_lu(
mat1: *mut InputMatrix,
out_l: *mut InputMatrix,
out_u: *mut InputMatrix,
) {
let mat1 = mat1.as_mut().unwrap();
let out_l = out_l.as_mut().unwrap();
let out_u = out_u.as_mut().unwrap();
if mat1.ndims != 2 {
let err_msg = format!("expected 2D Vector Input, but received {}D input", mat1.ndims);
report_error("ValueError", "sp_linalg_lu", file!(), line!(), column!(), &err_msg);
}
let dim1 = (*mat1).get_dims();
let outl_dim = (*out_l).get_dims();
let outu_dim = (*out_u).get_dims();
let data_slice1 = unsafe { slice::from_raw_parts_mut(mat1.data, dim1[0] * dim1[1]) };
let out_l_slice = unsafe { slice::from_raw_parts_mut(out_l.data, outl_dim[0] * outl_dim[1]) };
let out_u_slice = unsafe { slice::from_raw_parts_mut(out_u.data, outu_dim[0] * outu_dim[1]) };
let matrix = DMatrix::from_row_slice(dim1[0], dim1[1], data_slice1);
let (_, l, u) = matrix.lu().unpack();
out_l_slice.copy_from_slice(l.transpose().as_slice());
out_u_slice.copy_from_slice(u.transpose().as_slice());
}
/// # Safety
///
/// `mat1` should point to a valid 2DArray of `f64` floats in row-major order
#[no_mangle]
pub unsafe extern "C" fn sp_linalg_schur(
mat1: *mut InputMatrix,
out_t: *mut InputMatrix,
out_z: *mut InputMatrix,
) {
let mat1 = mat1.as_mut().unwrap();
let out_t = out_t.as_mut().unwrap();
let out_z = out_z.as_mut().unwrap();
if mat1.ndims != 2 {
let err_msg = format!("expected 2D Vector Input, but received {}D input", mat1.ndims);
report_error("ValueError", "sp_linalg_schur", file!(), line!(), column!(), &err_msg);
}
let dim1 = (*mat1).get_dims();
if dim1[0] != dim1[1] {
let err_msg =
format!("last 2 dimensions of the array must be square: {0} != {1}", dim1[0], dim1[1]);
report_error("LinAlgError", "np_linalg_schur", file!(), line!(), column!(), &err_msg);
}
let out_t_dim = (*out_t).get_dims();
let out_z_dim = (*out_z).get_dims();
let data_slice1 = unsafe { slice::from_raw_parts_mut(mat1.data, dim1[0] * dim1[1]) };
let out_t_slice = unsafe { slice::from_raw_parts_mut(out_t.data, out_t_dim[0] * out_t_dim[1]) };
let out_z_slice = unsafe { slice::from_raw_parts_mut(out_z.data, out_z_dim[0] * out_z_dim[1]) };
let matrix = DMatrix::from_row_slice(dim1[0], dim1[1], data_slice1);
let (z, t) = matrix.schur().unpack();
out_t_slice.copy_from_slice(t.transpose().as_slice());
out_z_slice.copy_from_slice(z.transpose().as_slice());
}
/// # Safety
///
/// `mat1` should point to a valid 2DArray of `f64` floats in row-major order
#[no_mangle]
pub unsafe extern "C" fn sp_linalg_hessenberg(
mat1: *mut InputMatrix,
out_h: *mut InputMatrix,
out_q: *mut InputMatrix,
) {
let mat1 = mat1.as_mut().unwrap();
let out_h = out_h.as_mut().unwrap();
let out_q = out_q.as_mut().unwrap();
if mat1.ndims != 2 {
let err_msg = format!("expected 2D Vector Input, but received {}D input", mat1.ndims);
report_error("ValueError", "sp_linalg_hessenberg", file!(), line!(), column!(), &err_msg);
}
let dim1 = (*mat1).get_dims();
if dim1[0] != dim1[1] {
let err_msg =
format!("last 2 dimensions of the array must be square: {} != {}", dim1[0], dim1[1]);
report_error("LinAlgError", "sp_linalg_hessenberg", file!(), line!(), column!(), &err_msg);
}
let out_h_dim = (*out_h).get_dims();
let out_q_dim = (*out_q).get_dims();
let data_slice1 = unsafe { slice::from_raw_parts_mut(mat1.data, dim1[0] * dim1[1]) };
let out_h_slice = unsafe { slice::from_raw_parts_mut(out_h.data, out_h_dim[0] * out_h_dim[1]) };
let out_q_slice = unsafe { slice::from_raw_parts_mut(out_q.data, out_q_dim[0] * out_q_dim[1]) };
let matrix = DMatrix::from_row_slice(dim1[0], dim1[1], data_slice1);
let (q, h) = matrix.hessenberg().unpack();
out_h_slice.copy_from_slice(h.transpose().as_slice());
out_q_slice.copy_from_slice(q.transpose().as_slice());
}

View File

@ -2,9 +2,6 @@
set -e
: "${DEMO_LINALG_STUB:=linalg/target/release/liblinalg.a}"
: "${DEMO_LINALG_STUB32:=linalg/target/i686-unknown-linux-gnu/release/liblinalg.a}"
if [ -z "$1" ]; then
echo "No argument supplied"
exit 1
@ -14,19 +11,19 @@ declare -a nac3args
while [ $# -ge 1 ]; do
case "$1" in
--help)
echo "Usage: run_demo.sh [--help] [--out OUTFILE] [--debug] [-i686] -- [NAC3ARGS...]"
echo "Usage: run_demo.sh [--help] [--out OUTFILE] [--lli] [--debug] -- [NAC3ARGS...]"
exit
;;
--out)
shift
outfile="$1"
;;
--lli)
use_lli=1
;;
--debug)
debug=1
;;
-i686)
i686=1
;;
--)
shift
break
@ -53,19 +50,29 @@ else
fi
rm -f ./*.o ./*.bc demo
if [ -z "$i686" ]; then
if [ -z "$use_lli" ]; then
$nac3standalone "${nac3args[@]}"
clang -c -std=gnu11 -Wall -Wextra -O3 -o demo.o demo.c
clang -o demo module.o demo.o $DEMO_LINALG_STUB -lm -Wl,--no-warn-search-mismatch
else
$nac3standalone --triple i686-unknown-linux-gnu "${nac3args[@]}"
clang -m32 -c -std=gnu11 -Wall -Wextra -O3 -msse2 -o demo.o demo.c
clang -m32 -o demo module.o demo.o $DEMO_LINALG_STUB32 -lm -Wl,--no-warn-search-mismatch
fi
if [ -z "$outfile" ]; then
./demo
clang -c -std=gnu11 -Wall -Wextra -O3 -o demo.o demo.c
clang -lm -o demo module.o demo.o
if [ -z "$outfile" ]; then
./demo
else
./demo > "$outfile"
fi
else
./demo > "$outfile"
$nac3standalone --emit-llvm "${nac3args[@]}"
clang -c -std=gnu11 -Wall -Wextra -O3 -emit-llvm -o demo.bc demo.c
shopt -s nullglob
llvm-link -o nac3out.bc module*.bc main.bc
shopt -u nullglob
if [ -z "$outfile" ]; then
lli --extra-module demo.bc --extra-module irrt.bc nac3out.bc
else
lli --extra-module demo.bc --extra-module irrt.bc nac3out.bc > "$outfile"
fi
fi

View File

@ -1,66 +0,0 @@
@extern
def output_int32(x: int32):
...
@extern
def output_bool(x: bool):
...
def example1():
x, *ys, z = (1, 2, 3, 4, 5)
output_int32(x)
output_int32(ys[0])
output_int32(ys[1])
output_int32(ys[2])
output_int32(z)
def example2():
x, y, *zs = (1, 2, 3, 4, 5)
output_int32(x)
output_int32(y)
output_int32(zs[0])
output_int32(zs[1])
output_int32(zs[2])
def example3():
*xs, y, z = (1, 2, 3, 4, 5)
output_int32(xs[0])
output_int32(xs[1])
output_int32(xs[2])
output_int32(y)
output_int32(z)
def example4():
# Example from: https://docs.python.org/3/reference/simple_stmts.html#assignment-statements
x = [0, 1]
i = 0
i, x[i] = 1, 2 # i is updated, then x[i] is updated
output_int32(i)
output_int32(x[0])
output_int32(x[1])
class A:
value: int32
def __init__(self):
self.value = 1000
def example5():
ws = [88, 7, 8]
a = A()
x, [y, *ys, a.value], ws[0], (ws[0],) = 1, (2, False, 4, 5), 99, (6,)
output_int32(x)
output_int32(y)
output_bool(ys[0])
output_int32(ys[1])
output_int32(a.value)
output_int32(ws[0])
output_int32(ws[1])
output_int32(ws[2])
def run() -> int32:
example1()
example2()
example3()
example4()
example5()
return 0

View File

@ -7,7 +7,7 @@ def output_int64(x: int64):
...
@extern
def output_strln(x: str):
def output_str(x: str):
...
@ -33,7 +33,7 @@ class A:
class Initless:
def foo(self):
output_strln("hello")
output_str("hello")
def run() -> int32:
a = A(10)

View File

@ -22,10 +22,6 @@ def output_uint64(x: uint64):
def output_float64(x: float):
...
@extern
def output_range(x: range):
...
@extern
def output_int32_list(x: list[int32]):
...
@ -38,10 +34,6 @@ def output_asciiart(x: int32):
def output_str(x: str):
...
@extern
def output_strln(x: str):
...
def test_output_bool():
output_bool(True)
output_bool(False)
@ -67,15 +59,6 @@ def test_output_float64():
output_float64(16.25)
output_float64(-16.25)
def test_output_range():
r = range(1, 100, 5)
output_int32(r.start)
output_int32(r.stop)
output_int32(r.step)
output_range(range(10))
output_range(range(1, 10))
output_range(range(1, 10, 2))
def test_output_asciiart():
for i in range(17):
output_asciiart(i)
@ -85,8 +68,7 @@ def test_output_int32_list():
output_int32_list([0, 1, 3, 5, 10])
def test_output_str_family():
output_str("hello")
output_strln(" world")
output_str("hello world")
def run() -> int32:
test_output_bool()
@ -95,7 +77,6 @@ def run() -> int32:
test_output_uint32()
test_output_uint64()
test_output_float64()
test_output_range()
test_output_asciiart()
test_output_int32_list()
test_output_str_family()

View File

@ -1,7 +1,3 @@
@extern
def output_bool(x: bool):
...
@extern
def output_int32_list(x: list[int32]):
...
@ -34,32 +30,6 @@ def run() -> int32:
get_list_slice()
list_slice_assignment()
output_int32_list([1, 2, 3] + [4, 5, 6])
output_int32_list([1, 2, 3] * 3)
output_bool([] == [])
output_bool([0] == [])
output_bool([0] == [0])
output_bool([0, 1] == [0])
output_bool([0, 1] == [0, 1])
output_bool([] != [])
output_bool([0] != [])
output_bool([0] != [0])
output_bool([0] != [0, 1])
output_bool([0, 1] != [0, 1])
output_bool([] == [] == [])
output_bool([0] == [0] == [0])
output_bool([0, 1] == [0] == [0, 1])
output_bool([0, 1] == [0, 1] == [0])
output_bool([0] == [0, 1] == [0, 1])
output_bool([0, 1] == [0, 1] == [0, 1])
output_bool([] != [] != [])
output_bool([0] != [0] != [0])
output_bool([0, 1] != [0] != [0, 1])
output_bool([0, 1] != [0, 1] != [0])
output_bool([0] != [0, 1] != [0, 1])
output_bool([0, 1] != [0, 1] != [0, 1])
return 0
def get_list_slice():

View File

@ -23,12 +23,11 @@ def run() -> int32:
output_int32(x)
output_str(" * ")
output_float64(n / x)
output_str("\n")
except: # Assume this is intended to catch x == 0
break
else:
# loop fell through without finding a factor
output_int32(n)
output_str(" is a prime number\n")
output_str(" is a prime number")
return 0

View File

@ -37,7 +37,7 @@ def test_round64():
output_int64(round64(x))
def test_np_round():
for x in [-1.5, -0.5, 0.5, 1.5, dbl_inf(), -dbl_inf(), dbl_nan(), 0.0, -0.0, 1.6, 1.4, -1.4, -1.6]:
for x in [-1.5, -0.5, 0.5, 1.5, dbl_inf(), -dbl_inf(), dbl_nan()]:
output_float64(np_round(x))
def test_np_isnan():

View File

@ -867,13 +867,6 @@ def test_ndarray_minimum_broadcast_rhs_scalar():
output_ndarray_float_2(min_x_zeros)
output_ndarray_float_2(min_x_ones)
def test_ndarray_argmin():
x = np_array([[1., 2.], [3., 4.]])
y = np_argmin(x)
output_ndarray_float_2(x)
output_int64(y)
def test_ndarray_max():
x = np_identity(2)
y = np_max(x)
@ -917,13 +910,6 @@ def test_ndarray_maximum_broadcast_rhs_scalar():
output_ndarray_float_2(max_x_zeros)
output_ndarray_float_2(max_x_ones)
def test_ndarray_argmax():
x = np_array([[1., 2.], [3., 4.]])
y = np_argmax(x)
output_ndarray_float_2(x)
output_int64(y)
def test_ndarray_abs():
x = np_identity(2)
y = abs(x)
@ -1429,142 +1415,6 @@ def test_ndarray_nextafter_broadcast_rhs_scalar():
output_ndarray_float_2(nextafter_x_zeros)
output_ndarray_float_2(nextafter_x_ones)
def test_ndarray_transpose():
x: ndarray[float, 2] = np_array([[1., 2., 3.], [4., 5., 6.]])
y = np_transpose(x)
z = np_transpose(y)
output_ndarray_float_2(x)
output_ndarray_float_2(y)
def test_ndarray_reshape():
w: ndarray[float, 1] = np_array([1., 2., 3., 4., 5., 6., 7., 8., 9., 10.])
x = np_reshape(w, (1, 2, 1, -1))
y = np_reshape(x, [2, -1])
z = np_reshape(y, 10)
x1: ndarray[int32, 1] = np_array([1, 2, 3, 4])
x2: ndarray[int32, 2] = np_reshape(x1, (2, 2))
output_ndarray_float_1(w)
output_ndarray_float_2(y)
output_ndarray_float_1(z)
def test_ndarray_dot():
x1: ndarray[float, 1] = np_array([5.0, 1.0, 4.0, 2.0])
y1: ndarray[float, 1] = np_array([5.0, 1.0, 6.0, 6.0])
z1 = np_dot(x1, y1)
x2: ndarray[int32, 1] = np_array([5, 1, 4, 2])
y2: ndarray[int32, 1] = np_array([5, 1, 6, 6])
z2 = np_dot(x2, y2)
x3: ndarray[bool, 1] = np_array([True, True, True, True])
y3: ndarray[bool, 1] = np_array([True, True, True, True])
z3 = np_dot(x3, y3)
z4 = np_dot(2, 3)
z5 = np_dot(2., 3.)
z6 = np_dot(True, False)
output_float64(z1)
output_int32(z2)
output_bool(z3)
output_int32(z4)
output_float64(z5)
output_bool(z6)
def test_ndarray_cholesky():
x: ndarray[float, 2] = np_array([[5.0, 1.0], [1.0, 4.0]])
y = np_linalg_cholesky(x)
output_ndarray_float_2(x)
output_ndarray_float_2(y)
def test_ndarray_qr():
x: ndarray[float, 2] = np_array([[-5.0, -1.0, 2.0], [-1.0, 4.0, 7.5], [-1.0, 8.0, -8.5]])
y, z = np_linalg_qr(x)
output_ndarray_float_2(x)
# QR Factorization is not unique and gives different results in numpy and nalgebra
# Reverting the decomposition to compare the initial arrays
a = y @ z
output_ndarray_float_2(a)
def test_ndarray_linalg_inv():
x: ndarray[float, 2] = np_array([[-5.0, -1.0, 2.0], [-1.0, 4.0, 7.5], [-1.0, 8.0, -8.5]])
y = np_linalg_inv(x)
output_ndarray_float_2(x)
output_ndarray_float_2(y)
def test_ndarray_pinv():
x: ndarray[float, 2] = np_array([[-5.0, -1.0, 2.0], [-1.0, 4.0, 7.5]])
y = np_linalg_pinv(x)
output_ndarray_float_2(x)
output_ndarray_float_2(y)
def test_ndarray_matrix_power():
x: ndarray[float, 2] = np_array([[-5.0, -1.0, 2.0], [-1.0, 4.0, 7.5], [-1.0, 8.0, -8.5]])
y = np_linalg_matrix_power(x, -9)
output_ndarray_float_2(x)
output_ndarray_float_2(y)
def test_ndarray_det():
x: ndarray[float, 2] = np_array([[-5.0, -1.0, 2.0], [-1.0, 4.0, 7.5], [-1.0, 8.0, -8.5]])
y = np_linalg_det(x)
output_ndarray_float_2(x)
output_float64(y)
def test_ndarray_schur():
x: ndarray[float, 2] = np_array([[-5.0, -1.0, 2.0], [-1.0, 4.0, 7.5], [-1.0, 8.0, -8.5]])
t, z = sp_linalg_schur(x)
output_ndarray_float_2(x)
# Schur Factorization is not unique and gives different results in scipy and nalgebra
# Reverting the decomposition to compare the initial arrays
a = (z @ t) @ np_linalg_inv(z)
output_ndarray_float_2(a)
def test_ndarray_hessenberg():
x: ndarray[float, 2] = np_array([[-5.0, -1.0, 2.0], [-1.0, 4.0, 7.5], [-1.0, 5.0, 8.5]])
h, q = sp_linalg_hessenberg(x)
output_ndarray_float_2(x)
# Hessenberg Factorization is not unique and gives different results in scipy and nalgebra
# Reverting the decomposition to compare the initial arrays
a = (q @ h) @ np_linalg_inv(q)
output_ndarray_float_2(a)
def test_ndarray_lu():
x: ndarray[float, 2] = np_array([[-5.0, -1.0, 2.0], [-1.0, 4.0, 7.5]])
l, u = sp_linalg_lu(x)
output_ndarray_float_2(x)
output_ndarray_float_2(l)
output_ndarray_float_2(u)
def test_ndarray_svd():
w: ndarray[float, 2] = np_array([[-5.0, -1.0, 2.0], [-1.0, 4.0, 7.5], [-1.0, 8.0, -8.5]])
x, y, z = np_linalg_svd(w)
output_ndarray_float_2(w)
# SVD Factorization is not unique and gives different results in numpy and nalgebra
# Reverting the decomposition to compare the initial arrays
a = x @ z
output_ndarray_float_2(a)
output_ndarray_float_1(y)
def run() -> int32:
test_ndarray_ctor()
test_ndarray_empty()
@ -1674,13 +1524,11 @@ def run() -> int32:
test_ndarray_minimum_broadcast()
test_ndarray_minimum_broadcast_lhs_scalar()
test_ndarray_minimum_broadcast_rhs_scalar()
test_ndarray_argmin()
test_ndarray_max()
test_ndarray_maximum()
test_ndarray_maximum_broadcast()
test_ndarray_maximum_broadcast_lhs_scalar()
test_ndarray_maximum_broadcast_rhs_scalar()
test_ndarray_argmax()
test_ndarray_abs()
test_ndarray_isnan()
test_ndarray_isinf()
@ -1743,18 +1591,5 @@ def run() -> int32:
test_ndarray_nextafter_broadcast()
test_ndarray_nextafter_broadcast_lhs_scalar()
test_ndarray_nextafter_broadcast_rhs_scalar()
test_ndarray_transpose()
test_ndarray_reshape()
test_ndarray_dot()
test_ndarray_cholesky()
test_ndarray_qr()
test_ndarray_svd()
test_ndarray_linalg_inv()
test_ndarray_pinv()
test_ndarray_matrix_power()
test_ndarray_det()
test_ndarray_lu()
test_ndarray_schur()
test_ndarray_hessenberg()
return 0

View File

@ -1,11 +0,0 @@
def f(*args: int32):
pass
def run() -> int32:
f()
f(1)
f(1, 2)
f(1, 2, 3)
return 0

View File

@ -9,11 +9,15 @@
#![allow(clippy::too_many_lines, clippy::wildcard_imports)]
use clap::Parser;
use inkwell::context::Context;
use inkwell::{
memory_buffer::MemoryBuffer, passes::PassBuilderOptions, support::is_multithreaded, targets::*,
OptimizationLevel,
};
use parking_lot::{Mutex, RwLock};
use std::collections::HashSet;
use std::num::NonZeroUsize;
use std::{collections::HashMap, fs, path::Path, sync::Arc};
use nac3core::{
codegen::{
concrete_type::ConcreteTypeStore, irrt::load_irrt, CodeGenLLVMOptions,
@ -35,10 +39,6 @@ use nac3parser::{
ast::{Constant, Expr, ExprKind, StmtKind, StrRef},
parser,
};
use parking_lot::{Mutex, RwLock};
use std::collections::HashSet;
use std::num::NonZeroUsize;
use std::{collections::HashMap, fs, path::Path, sync::Arc};
mod basic_symbol_resolver;
use basic_symbol_resolver::*;
@ -113,9 +113,7 @@ fn handle_typevar_definition(
x,
HashMap::new(),
)?;
get_type_from_type_annotation_kinds(
def_list, unifier, primitives, &ty, &mut None,
)
get_type_from_type_annotation_kinds(def_list, unifier, &ty, &mut None)
})
.collect::<Result<Vec<_>, _>>()?;
let loc = func.location;
@ -154,7 +152,7 @@ fn handle_typevar_definition(
HashMap::new(),
)?;
let constraint =
get_type_from_type_annotation_kinds(def_list, unifier, primitives, &ty, &mut None)?;
get_type_from_type_annotation_kinds(def_list, unifier, &ty, &mut None)?;
let loc = func.location;
Ok(unifier.get_fresh_const_generic_var(constraint, Some(generic_name), Some(loc)).ty)
@ -241,6 +239,8 @@ fn handle_assignment_pattern(
}
fn main() {
const SIZE_T: u32 = usize::BITS;
let cli = CommandLineArgs::parse();
let CommandLineArgs { file_name, threads, opt_level, emit_llvm, triple, mcpu, target_features } =
cli;
@ -273,24 +273,6 @@ fn main() {
_ => OptimizationLevel::Aggressive,
};
let target_machine_options = CodeGenTargetMachineOptions {
triple,
cpu: mcpu,
features: target_features,
reloc_mode: RelocMode::PIC,
..host_target_machine
};
let size_t = Context::create()
.ptr_sized_int_type(
&target_machine_options
.create_target_machine(opt_level)
.map(|tm| tm.get_target_data())
.unwrap(),
None,
)
.get_bit_width();
let program = match fs::read_to_string(file_name.clone()) {
Ok(program) => program,
Err(err) => {
@ -299,9 +281,9 @@ fn main() {
}
};
let primitive: PrimitiveStore = TopLevelComposer::make_primitives(size_t).0;
let primitive: PrimitiveStore = TopLevelComposer::make_primitives(SIZE_T).0;
let (mut composer, builtins_def, builtins_ty) =
TopLevelComposer::new(vec![], ComposerConfig::default(), size_t);
TopLevelComposer::new(vec![], ComposerConfig::default(), SIZE_T);
let internal_resolver: Arc<ResolverInternal> = ResolverInternal {
id_to_type: builtins_ty.into(),
@ -389,7 +371,16 @@ fn main() {
instance_to_stmt[""].clone()
};
let llvm_options = CodeGenLLVMOptions { opt_level, target: target_machine_options };
let llvm_options = CodeGenLLVMOptions {
opt_level,
target: CodeGenTargetMachineOptions {
triple,
cpu: mcpu,
features: target_features,
reloc_mode: RelocMode::PIC,
..host_target_machine
},
};
let task = CodeGenTask {
subst: Vec::default(),
@ -412,7 +403,7 @@ fn main() {
membuffer.lock().push(buffer);
})));
let threads = (0..threads)
.map(|i| Box::new(DefaultCodeGenerator::new(format!("module{i}"), size_t)))
.map(|i| Box::new(DefaultCodeGenerator::new(format!("module{i}"), SIZE_T)))
.collect();
let (registry, handles) = WorkerRegistry::create_workers(threads, top_level, &llvm_options, &f);
registry.add_task(task);

View File

@ -1,15 +1,15 @@
{ pkgs } : [
(pkgs.fetchurl {
url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-libunwind-18.1.8-1-any.pkg.tar.zst";
sha256 = "1v8zkfcbf1ga2ndpd1j0dwv5s1rassxs2b5pjhcsmqwjcvczba1m";
name = "mingw-w64-clang-x86_64-libunwind-18.1.8-1-any.pkg.tar.zst";
url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-libunwind-18.1.2-1-any.pkg.tar.zst";
sha256 = "0ksz7xz1lbwsmdr9sa1444k0dlfkbd8k11pq7w08ir7r1wjy6fid";
name = "mingw-w64-clang-x86_64-libunwind-18.1.2-1-any.pkg.tar.zst";
})
(pkgs.fetchurl {
url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-libc++-18.1.8-1-any.pkg.tar.zst";
sha256 = "0mfd8wrmgx12j5gf354j7pk1l3lg9ykxvq75xdk3jipsr6hbn846";
name = "mingw-w64-clang-x86_64-libc++-18.1.8-1-any.pkg.tar.zst";
url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-libc++-18.1.2-1-any.pkg.tar.zst";
sha256 = "0r8skyjqv4cpkqif0niakx4hdpkscil1zf6mzj34pqna0j5gdnq2";
name = "mingw-w64-clang-x86_64-libc++-18.1.2-1-any.pkg.tar.zst";
})
(pkgs.fetchurl {
@ -31,9 +31,9 @@
})
(pkgs.fetchurl {
url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-xz-5.6.2-2-any.pkg.tar.zst";
sha256 = "0phb9hwqksk1rg29yhwlc7si78zav19c2kac0i841pc7mc2n9gzx";
name = "mingw-w64-clang-x86_64-xz-5.6.2-2-any.pkg.tar.zst";
url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-xz-5.6.1-1-any.pkg.tar.zst";
sha256 = "14p4xxaxjjy6j1ingji82xhai1mc1gls5ali6z40fbb2ylxkaggs";
name = "mingw-w64-clang-x86_64-xz-5.6.1-1-any.pkg.tar.zst";
})
(pkgs.fetchurl {
@ -43,81 +43,81 @@
})
(pkgs.fetchurl {
url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-libxml2-2.12.8-1-any.pkg.tar.zst";
sha256 = "1imipb0dz4w6x4n9arn22imyzzcwdlf2cqxvn7irqq7w9by6fy0b";
name = "mingw-w64-clang-x86_64-libxml2-2.12.8-1-any.pkg.tar.zst";
url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-libxml2-2.12.6-1-any.pkg.tar.zst";
sha256 = "177b3rmsknqq6hf0zqwva71s3avh20ca7vzznp2ls2z5qm8vhhlp";
name = "mingw-w64-clang-x86_64-libxml2-2.12.6-1-any.pkg.tar.zst";
})
(pkgs.fetchurl {
url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-zstd-1.5.6-2-any.pkg.tar.zst";
sha256 = "02cp5ci8w50k7xn38mpkwnr8sn898v18wcc07y8f9sfla7vcyfix";
name = "mingw-w64-clang-x86_64-zstd-1.5.6-2-any.pkg.tar.zst";
url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-zstd-1.5.5-1-any.pkg.tar.zst";
sha256 = "07739wmwgxf0d6db4p8w302a6jwcm01aafr1s8jvcl5k1h5a1m2m";
name = "mingw-w64-clang-x86_64-zstd-1.5.5-1-any.pkg.tar.zst";
})
(pkgs.fetchurl {
url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-llvm-libs-18.1.8-1-any.pkg.tar.zst";
sha256 = "0rpbgvvinsqflhd3nhfxk0g0yy8j80zzw5yx6573ak0m78a9fa06";
name = "mingw-w64-clang-x86_64-llvm-libs-18.1.8-1-any.pkg.tar.zst";
url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-llvm-libs-18.1.2-1-any.pkg.tar.zst";
sha256 = "0ibiy01v16naik9pj32ch7a9pkbw4yrn3gyq7p0y6kcc63fkjazy";
name = "mingw-w64-clang-x86_64-llvm-libs-18.1.2-1-any.pkg.tar.zst";
})
(pkgs.fetchurl {
url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-llvm-18.1.8-1-any.pkg.tar.zst";
sha256 = "185g5h8q3x3rav9lp2njln58ny2idh2067fd02j3nsbik6glshpf";
name = "mingw-w64-clang-x86_64-llvm-18.1.8-1-any.pkg.tar.zst";
url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-llvm-18.1.2-1-any.pkg.tar.zst";
sha256 = "1hcfz6nb6svmmcqzfrdi96az2x7mzj0cispdv2ssbgn7nkf19pi0";
name = "mingw-w64-clang-x86_64-llvm-18.1.2-1-any.pkg.tar.zst";
})
(pkgs.fetchurl {
url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-clang-libs-18.1.8-1-any.pkg.tar.zst";
sha256 = "089hji3yd7wsd03v9mdfgc99l5k1dql8kg7p3hy13vrbgfsabxhc";
name = "mingw-w64-clang-x86_64-clang-libs-18.1.8-1-any.pkg.tar.zst";
url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-clang-libs-18.1.2-1-any.pkg.tar.zst";
sha256 = "1k17d18g7rmq2ph4kq1mf84vs8133jzf52nkv6syh39ypjga67wa";
name = "mingw-w64-clang-x86_64-clang-libs-18.1.2-1-any.pkg.tar.zst";
})
(pkgs.fetchurl {
url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-compiler-rt-18.1.8-1-any.pkg.tar.zst";
sha256 = "1dwcxnv1k5ljim5ys4h1c3jlrdpi0054z094ynav7if65i8zjj4a";
name = "mingw-w64-clang-x86_64-compiler-rt-18.1.8-1-any.pkg.tar.zst";
url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-compiler-rt-18.1.2-1-any.pkg.tar.zst";
sha256 = "1w2j0vs888haz9shjr1l8dc4j957sk1p0377zzipkbqnzqwjf1z8";
name = "mingw-w64-clang-x86_64-compiler-rt-18.1.2-1-any.pkg.tar.zst";
})
(pkgs.fetchurl {
url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-headers-git-12.0.0.r81.g90abf784a-1-any.pkg.tar.zst";
sha256 = "1h3cdcajz29iq7vja908kkijz1vb9xn0f7w1lw1ima0q0zhinv4q";
name = "mingw-w64-clang-x86_64-headers-git-12.0.0.r81.g90abf784a-1-any.pkg.tar.zst";
url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-headers-git-11.0.0.r655.gdbfdf8025-1-any.pkg.tar.zst";
sha256 = "18csfwlk2h9pr4411crx1b41qjzn5jgbssm3h109nzwbdizkp62h";
name = "mingw-w64-clang-x86_64-headers-git-11.0.0.r655.gdbfdf8025-1-any.pkg.tar.zst";
})
(pkgs.fetchurl {
url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-crt-git-12.0.0.r81.g90abf784a-1-any.pkg.tar.zst";
sha256 = "15kamyi3b0j6f5zxin4i2jgzjc7lzvwl4z5cz3dx0i8hg91aq0n7";
name = "mingw-w64-clang-x86_64-crt-git-12.0.0.r81.g90abf784a-1-any.pkg.tar.zst";
url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-crt-git-11.0.0.r655.gdbfdf8025-1-any.pkg.tar.zst";
sha256 = "03l1zkrxgxxssp430xcv2gch1d03rbnbk1c0vgiqxigcs8lljh2g";
name = "mingw-w64-clang-x86_64-crt-git-11.0.0.r655.gdbfdf8025-1-any.pkg.tar.zst";
})
(pkgs.fetchurl {
url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-lld-18.1.8-1-any.pkg.tar.zst";
sha256 = "1vpij5d06m4kjy3qv8bizwlkl21gcv6fv0r2f1j9bclgm6k3144x";
name = "mingw-w64-clang-x86_64-lld-18.1.8-1-any.pkg.tar.zst";
url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-lld-18.1.2-1-any.pkg.tar.zst";
sha256 = "1ai4gl7ybpk9n10jmbpf3zzfa893m1krj5qhf44ajln0jabdfnbn";
name = "mingw-w64-clang-x86_64-lld-18.1.2-1-any.pkg.tar.zst";
})
(pkgs.fetchurl {
url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-libwinpthread-git-12.0.0.r81.g90abf784a-1-any.pkg.tar.zst";
sha256 = "0qdvgs1rmjjhn9klf9kpw7l0ydz36rr5fasn4q9gpby2lgl11bkb";
name = "mingw-w64-clang-x86_64-libwinpthread-git-12.0.0.r81.g90abf784a-1-any.pkg.tar.zst";
url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-libwinpthread-git-11.0.0.r655.gdbfdf8025-1-any.pkg.tar.zst";
sha256 = "1svhjzwhvl4ldl439jhgfy47g05y2af1cjqvydgijn1dd4g8y8vq";
name = "mingw-w64-clang-x86_64-libwinpthread-git-11.0.0.r655.gdbfdf8025-1-any.pkg.tar.zst";
})
(pkgs.fetchurl {
url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-winpthreads-git-12.0.0.r81.g90abf784a-1-any.pkg.tar.zst";
sha256 = "0rh2mn078cifcmr4as4k57jxjln5lbnsmpx47h9d0s5d2i8sf2rc";
name = "mingw-w64-clang-x86_64-winpthreads-git-12.0.0.r81.g90abf784a-1-any.pkg.tar.zst";
url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-winpthreads-git-11.0.0.r655.gdbfdf8025-1-any.pkg.tar.zst";
sha256 = "0jxdhkl256vnr13xf1x3fyjrdf764zg70xcs3gki3rg109f0a6xk";
name = "mingw-w64-clang-x86_64-winpthreads-git-11.0.0.r655.gdbfdf8025-1-any.pkg.tar.zst";
})
(pkgs.fetchurl {
url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-clang-18.1.8-1-any.pkg.tar.zst";
sha256 = "1qny934nv4g75k9gb5sf31v24bgafkg6qw7r35xv3in491w6annq";
name = "mingw-w64-clang-x86_64-clang-18.1.8-1-any.pkg.tar.zst";
url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-clang-18.1.2-1-any.pkg.tar.zst";
sha256 = "0ahfic7vdfv96k5v7fdkgk1agk28l833xjn2igrmbvqg96ak0w6n";
name = "mingw-w64-clang-x86_64-clang-18.1.2-1-any.pkg.tar.zst";
})
(pkgs.fetchurl {
url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-c-ares-1.29.0-1-any.pkg.tar.zst";
sha256 = "01xg1h1a8kda0kq2921w25ybvm1ms7lfdzday0hv93f3myq7briq";
name = "mingw-w64-clang-x86_64-c-ares-1.29.0-1-any.pkg.tar.zst";
url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-c-ares-1.27.0-1-any.pkg.tar.zst";
sha256 = "06y3sgqv6a0gr3dsbzs36jrj8adklssgjqi2ms5clsyq6ay4f91r";
name = "mingw-w64-clang-x86_64-c-ares-1.27.0-1-any.pkg.tar.zst";
})
(pkgs.fetchurl {
@ -127,9 +127,9 @@
})
(pkgs.fetchurl {
url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-libunistring-1.2-1-any.pkg.tar.zst";
sha256 = "13nz49li39z1zgfx1q9jg4vrmyrmqb6qdq0nqshidaqc6zr16k3g";
name = "mingw-w64-clang-x86_64-libunistring-1.2-1-any.pkg.tar.zst";
url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-libunistring-1.1-1-any.pkg.tar.zst";
sha256 = "16myvbg33q5s7jl30w5qd8n8f1r05335ms8r61234vn52n32l2c4";
name = "mingw-w64-clang-x86_64-libunistring-1.1-1-any.pkg.tar.zst";
})
(pkgs.fetchurl {
@ -151,9 +151,9 @@
})
(pkgs.fetchurl {
url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-p11-kit-0.25.5-1-any.pkg.tar.zst";
sha256 = "00yz6cmr1ldlrskv811n345xcia88mj7w4fyx4m9z5848jxgsabd";
name = "mingw-w64-clang-x86_64-p11-kit-0.25.5-1-any.pkg.tar.zst";
url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-p11-kit-0.25.3-2-any.pkg.tar.zst";
sha256 = "1jrwkc4lvw5hm5rqmi5gqh7mfkbqfa5gi81zjij0krnl0gaxw3c8";
name = "mingw-w64-clang-x86_64-p11-kit-0.25.3-2-any.pkg.tar.zst";
})
(pkgs.fetchurl {
@ -163,9 +163,9 @@
})
(pkgs.fetchurl {
url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-openssl-3.3.1-1-any.pkg.tar.zst";
sha256 = "0ywhwm4kw3qjzv0872qwabnsq2rzbmqjb9m69q3fykjl0m9gigsa";
name = "mingw-w64-clang-x86_64-openssl-3.3.1-1-any.pkg.tar.zst";
url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-openssl-3.2.1-1-any.pkg.tar.zst";
sha256 = "0ix2r4ll09m2z5vz2k94gmwfs0pp3ipvjdimwzx7v6xhcs2l25lz";
name = "mingw-w64-clang-x86_64-openssl-3.2.1-1-any.pkg.tar.zst";
})
(pkgs.fetchurl {
@ -175,33 +175,27 @@
})
(pkgs.fetchurl {
url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-nghttp2-1.61.0-2-any.pkg.tar.zst";
sha256 = "07bkk98126gy4k6lb9rrqqnzjfz9j2rsr5dzr2djmzdkw0h4dr95";
name = "mingw-w64-clang-x86_64-nghttp2-1.61.0-2-any.pkg.tar.zst";
url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-nghttp2-1.60.0-1-any.pkg.tar.zst";
sha256 = "0wxw8266hf4qd2m4zpgb1wvlrnaksmcrs0kh5y9zpf2y5sy8f2bq";
name = "mingw-w64-clang-x86_64-nghttp2-1.60.0-1-any.pkg.tar.zst";
})
(pkgs.fetchurl {
url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-nghttp3-1.4.0-1-any.pkg.tar.zst";
sha256 = "007w2252nzn274j4wjc1vf56xyzzh5vg3blj1hil7mlmffgvc923";
name = "mingw-w64-clang-x86_64-nghttp3-1.4.0-1-any.pkg.tar.zst";
url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-curl-8.6.0-1-any.pkg.tar.zst";
sha256 = "1racc7cyzj22kink9w8m8jv73ji5hfg6r6d1ka9dqmvcbx04r8p0";
name = "mingw-w64-clang-x86_64-curl-8.6.0-1-any.pkg.tar.zst";
})
(pkgs.fetchurl {
url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-curl-8.8.0-10-any.pkg.tar.zst";
sha256 = "024z5b1achkf448gxqy1i3gcw371x54kfl6igv08b5wb3rrw35a4";
name = "mingw-w64-clang-x86_64-curl-8.8.0-10-any.pkg.tar.zst";
url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-rust-1.76.0-1-any.pkg.tar.zst";
sha256 = "0ny3bvwvn5wmqrxzhdfw34akr0kj0m7rg9lg3w5yibqz2mkqhk11";
name = "mingw-w64-clang-x86_64-rust-1.76.0-1-any.pkg.tar.zst";
})
(pkgs.fetchurl {
url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-rust-1.79.0-1-any.pkg.tar.zst";
sha256 = "0i7s88hj8m4920xifkj7i4b4sq8cqq7p5cypp3jqx3dc44pwm19a";
name = "mingw-w64-clang-x86_64-rust-1.79.0-1-any.pkg.tar.zst";
})
(pkgs.fetchurl {
url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-pkgconf-1~2.2.0-1-any.pkg.tar.zst";
sha256 = "1y44ijg3y8p80f1yn9972nshrnyrd06a9sh984ajhxg8bi8s5xyl";
name = "mingw-w64-clang-x86_64-pkgconf-12.2.0-1-any.pkg.tar.zst";
url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-pkgconf-1~2.1.1-1-any.pkg.tar.zst";
sha256 = "00kxqg9ds4q74lxrzjh8z0858smqbi1j9r06s0zjadsql0ln98cq";
name = "mingw-w64-clang-x86_64-pkgconf-12.1.1-1-any.pkg.tar.zst";
})
(pkgs.fetchurl {
@ -247,9 +241,9 @@
})
(pkgs.fetchurl {
url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-libarchive-3.7.4-1-any.pkg.tar.zst";
sha256 = "1ykw6imllgxv6lsgwxx1miqjr4l1iryqkrj286jcbfrb8ghpzhv5";
name = "mingw-w64-clang-x86_64-libarchive-3.7.4-1-any.pkg.tar.zst";
url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-libarchive-3.7.2-1-any.pkg.tar.zst";
sha256 = "1p84yh6yzkdpmr02vyvgz16x5gycckah25jkdc2py09l7iw96bmw";
name = "mingw-w64-clang-x86_64-libarchive-3.7.2-1-any.pkg.tar.zst";
})
(pkgs.fetchurl {
@ -259,9 +253,9 @@
})
(pkgs.fetchurl {
url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-ninja-1.12.1-1-any.pkg.tar.zst";
sha256 = "1vj9qaa43v316daz8k4ricmz3f33nhjpj7r0vn979nwmy7hzs7jx";
name = "mingw-w64-clang-x86_64-ninja-1.12.1-1-any.pkg.tar.zst";
url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-ninja-1.11.1-3-any.pkg.tar.zst";
sha256 = "13wjfmyfr952n3ydpldjlwx1nla5xpyvr96ng8pfbyw4z900v5ms";
name = "mingw-w64-clang-x86_64-ninja-1.11.1-3-any.pkg.tar.zst";
})
(pkgs.fetchurl {
@ -271,9 +265,9 @@
})
(pkgs.fetchurl {
url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-cmake-3.30.0-1-any.pkg.tar.zst";
sha256 = "07b7132hwhiqrf0l2lgw3g4zw9i2lln3kqc9kg2qijvkapbkmwqb";
name = "mingw-w64-clang-x86_64-cmake-3.30.0-1-any.pkg.tar.zst";
url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-cmake-3.29.0-1-any.pkg.tar.zst";
sha256 = "0l79lf6zihn0k8hz93qnjnq259y45yq19235g9c444jc2w093si1";
name = "mingw-w64-clang-x86_64-cmake-3.29.0-1-any.pkg.tar.zst";
})
(pkgs.fetchurl {
@ -307,15 +301,15 @@
})
(pkgs.fetchurl {
url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-sqlite3-3.46.0-1-any.pkg.tar.zst";
sha256 = "0q676i2z5nr4c71jnd4z5qz9xa1xryl0cpi84w74yvd0p4qiz7y2";
name = "mingw-w64-clang-x86_64-sqlite3-3.46.0-1-any.pkg.tar.zst";
url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-sqlite3-3.45.2-1-any.pkg.tar.zst";
sha256 = "1icvw3f08cgi94p0177i46v72wgpsxw95p6kd0sm2w3vj0qlqbcw";
name = "mingw-w64-clang-x86_64-sqlite3-3.45.2-1-any.pkg.tar.zst";
})
(pkgs.fetchurl {
url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-tk-8.6.13-1-any.pkg.tar.zst";
sha256 = "12f6lqx1sglczcnz2ns6sxw9cxwm1klxajqzcrbnfwln1nllz2nd";
name = "mingw-w64-clang-x86_64-tk-8.6.13-1-any.pkg.tar.zst";
url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-tk-8.6.12-2-any.pkg.tar.zst";
sha256 = "0pi74q91vl6vw8vvmmwnvrgai3b1aanp0zhca5qsmv8ljh2wdgzx";
name = "mingw-w64-clang-x86_64-tk-8.6.12-2-any.pkg.tar.zst";
})
(pkgs.fetchurl {
@ -325,21 +319,21 @@
})
(pkgs.fetchurl {
url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-python-3.11.9-1-any.pkg.tar.zst";
sha256 = "0ah1idjqxg7jc07a1gz9z766rjjd0f0c6ri4hpcsimsrbj1zjd3c";
name = "mingw-w64-clang-x86_64-python-3.11.9-1-any.pkg.tar.zst";
url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-python-3.11.8-1-any.pkg.tar.zst";
sha256 = "0djpf4k8s25nys6nrm2x2v134lcgzhhbjs37ihkg0b3sxmmc3b0p";
name = "mingw-w64-clang-x86_64-python-3.11.8-1-any.pkg.tar.zst";
})
(pkgs.fetchurl {
url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-llvm-openmp-18.1.8-1-any.pkg.tar.zst";
sha256 = "0cy2v0l4af24j34mzj5q5nlzcqhackfajlfj1rpf6mb3rbz23qw9";
name = "mingw-w64-clang-x86_64-llvm-openmp-18.1.8-1-any.pkg.tar.zst";
url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-openmp-18.1.2-1-any.pkg.tar.zst";
sha256 = "1v9wm3ja3a7a7yna2bpqky481qf244wc98kfdl7l03k7rkvvydpl";
name = "mingw-w64-clang-x86_64-openmp-18.1.2-1-any.pkg.tar.zst";
})
(pkgs.fetchurl {
url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-openblas-0.3.27-1-any.pkg.tar.zst";
sha256 = "06ygz1wa488wqvmxbn74b0fyan4wf3lb6kbwfampgikd1gijww2k";
name = "mingw-w64-clang-x86_64-openblas-0.3.27-1-any.pkg.tar.zst";
url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-openblas-0.3.26-1-any.pkg.tar.zst";
sha256 = "0kdr72y5lc9dl9s1bjrw8g21qmv2iwd1xvn1r21170i277wsmqiv";
name = "mingw-w64-clang-x86_64-openblas-0.3.26-1-any.pkg.tar.zst";
})
(pkgs.fetchurl {
@ -349,8 +343,8 @@
})
(pkgs.fetchurl {
url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-python-setuptools-70.2.0-1-any.pkg.tar.zst";
sha256 = "1q4r9bg2hn3jmshvq81xm5zvy9wn35yf0z2ayksrkwph1zzdkvkm";
name = "mingw-w64-clang-x86_64-python-setuptools-70.2.0-1-any.pkg.tar.zst";
url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-python-setuptools-69.1.1-1-any.pkg.tar.zst";
sha256 = "1mc56anasj0v92nlg84m3pa7dbqgjakxw0b4ibqlrr9cq0xzsg4b";
name = "mingw-w64-clang-x86_64-python-setuptools-69.1.1-1-any.pkg.tar.zst";
})
]