forked from M-Labs/nac3
1
0
Fork 0

refactored top level parsing, need review

This commit is contained in:
ychenfo 2021-08-10 10:33:18 +08:00
parent 6ad953f877
commit 82ce816177
3 changed files with 204 additions and 93 deletions

View File

@ -15,10 +15,11 @@ pub enum SymbolValue {
} }
pub trait SymbolResolver { pub trait SymbolResolver {
fn get_symbol_type(&mut self, str: &str) -> Option<Type>; fn get_symbol_type(&self, str: &str) -> Option<Type>;
fn parse_type_name(&mut self, expr: &Expr<()>) -> Option<Type>; fn parse_type_name(&self, expr: &Expr<()>) -> Option<Type>;
fn get_function_def(&mut self, str: &str) -> DefinitionId; fn get_identifier_def(&self, str: &str) -> DefinitionId;
fn get_symbol_value(&mut self, str: &str) -> Option<SymbolValue>; fn get_symbol_value(&self, str: &str) -> Option<SymbolValue>;
fn get_symbol_location(&mut self, str: &str) -> Option<Location>; fn get_symbol_location(&self, str: &str) -> Option<Location>;
fn get_module_resolver(&self, module_name: &str) -> Option<&dyn SymbolResolver>; // NOTE: for getting imported modules' symbol resolver?
// handle function call etc. // handle function call etc.
} }

View File

@ -1,4 +1,3 @@
use std::default;
use std::{collections::HashMap, sync::Arc}; use std::{collections::HashMap, sync::Arc};
use super::typecheck::type_inferencer::PrimitiveStore; use super::typecheck::type_inferencer::PrimitiveStore;
@ -45,6 +44,9 @@ pub enum TopLevelDef {
/// rigid type variables that would be substituted when the function is instantiated. /// rigid type variables that would be substituted when the function is instantiated.
instance_to_stmt: HashMap<String, (Stmt<Option<Type>>, usize)>, instance_to_stmt: HashMap<String, (Stmt<Option<Type>>, usize)>,
}, },
Initializer {
class_id: Option<DefinitionId>,
}
} }
pub struct CodeGenTask { pub struct CodeGenTask {
@ -76,40 +78,46 @@ pub struct CodeGenContext<'ctx> {
pub loop_bb: Option<(BasicBlock<'ctx>, BasicBlock<'ctx>)>, pub loop_bb: Option<(BasicBlock<'ctx>, BasicBlock<'ctx>)>,
} }
pub struct TopLevelManager<'a> {
pub def_index: usize,
pub ctx: TopLevelContext,
pub resolver: &'a mut Box<dyn SymbolResolver>,
pub primitives: (PrimitiveStore, Unifier)
}
use rustpython_parser::ast; use rustpython_parser::ast;
impl<'a> TopLevelManager<'a> { pub struct TopLevelDefInfo<'a> { // like adding some info on top of the TopLevelDef for later parsing the class bases, method, and function sigatures
def: TopLevelDef, // the definition entry
ty: Type, // the entry in the top_level unifier
ast: Option<ast::Stmt<()>>, // the ast submitted by applications
resolver: Option<&'a dyn SymbolResolver> // the resolver
}
pub struct TopLevelComposer<'a> {
pub definition_list: Vec<TopLevelDefInfo<'a>>,
pub primitives: PrimitiveStore,
pub unifier: Unifier,
}
impl<'a> TopLevelComposer<'a> {
pub fn make_primitives() -> (PrimitiveStore, Unifier) { pub fn make_primitives() -> (PrimitiveStore, Unifier) {
let mut unifier = Unifier::new(); let mut unifier = Unifier::new();
let int32 = unifier.add_ty(TypeEnum::TObj { let int32 = unifier.add_ty(TypeEnum::TObj {
obj_id: DefinitionId(0), // NOTE: what should it be? obj_id: DefinitionId(0), // 0 should be fine
fields: HashMap::new().into(), fields: HashMap::new().into(),
params: HashMap::new(), params: HashMap::new(),
}); });
let int64 = unifier.add_ty(TypeEnum::TObj { let int64 = unifier.add_ty(TypeEnum::TObj {
obj_id: DefinitionId(1), // NOTE: what should it be? obj_id: DefinitionId(1), // 0 should be fine
fields: HashMap::new().into(), fields: HashMap::new().into(),
params: HashMap::new(), params: HashMap::new(),
}); });
let float = unifier.add_ty(TypeEnum::TObj { let float = unifier.add_ty(TypeEnum::TObj {
obj_id: DefinitionId(2), // NOTE: what should it be? obj_id: DefinitionId(2), // 0 should be fine
fields: HashMap::new().into(), fields: HashMap::new().into(),
params: HashMap::new(), params: HashMap::new(),
}); });
let bool = unifier.add_ty(TypeEnum::TObj { let bool = unifier.add_ty(TypeEnum::TObj {
obj_id: DefinitionId(3), // NOTE: what should it be? obj_id: DefinitionId(3), // 0 should be fine
fields: HashMap::new().into(), fields: HashMap::new().into(),
params: HashMap::new(), params: HashMap::new(),
}); });
let none = unifier.add_ty(TypeEnum::TObj { let none = unifier.add_ty(TypeEnum::TObj {
obj_id: DefinitionId(4), // NOTE: what should it be? obj_id: DefinitionId(4), // 0 should be fine
fields: HashMap::new().into(), fields: HashMap::new().into(),
params: HashMap::new(), params: HashMap::new(),
}); });
@ -117,90 +125,188 @@ impl<'a> TopLevelManager<'a> {
crate::typecheck::magic_methods::set_primitives_magic_methods(&primitives, &mut unifier); crate::typecheck::magic_methods::set_primitives_magic_methods(&primitives, &mut unifier);
(primitives, unifier) (primitives, unifier)
} }
pub fn new() -> Self {
pub fn new(resolver: &'a mut Box<dyn SymbolResolver>) -> Self { let primitives = Self::make_primitives();
TopLevelManager { let definition_list: Vec<TopLevelDefInfo<'a>> = vec![
def_index: 1, TopLevelDefInfo {
ctx: TopLevelContext { def: Self::make_top_level_class_def(0),
definitions: Default::default(), ast: None,
unifiers: Default::default() resolver: None,
ty: primitives.0.int32 // just arbitary picked one...
}, },
resolver, TopLevelDefInfo {
primitives: Self::make_primitives() def: Self::make_top_level_class_def(1),
ast: None,
resolver: None,
ty: primitives.0.int64 // just arbitary picked one...
},
TopLevelDefInfo {
def: Self::make_top_level_class_def(2),
ast: None,
resolver: None,
ty: primitives.0.float // just arbitary picked one...
},
TopLevelDefInfo {
def: Self::make_top_level_class_def(3),
ast: None,
resolver: None,
ty: primitives.0.bool // just arbitary picked one...
},
TopLevelDefInfo {
def: Self::make_top_level_class_def(4),
ast: None,
resolver: None,
ty: primitives.0.none // just arbitary picked one...
},
]; // the entries for primitive types
TopLevelComposer {
definition_list,
primitives: primitives.0,
unifier: primitives.1
} }
} }
pub fn register_top_level(&mut self, ast: &ast::Stmt<()>) -> Result<DefinitionId, String>{ pub fn make_top_level_class_def(index: usize) -> TopLevelDef {
TopLevelDef::Class {
object_id: DefinitionId(index),
type_vars: Default::default(),
fields: Default::default(),
methods: Default::default(),
ancestors: Default::default(),
}
}
pub fn make_top_level_function_def(name: String, ty: Type) -> TopLevelDef {
TopLevelDef::Function {
name,
signature: ty,
instance_to_symbol: Default::default(),
instance_to_stmt: Default::default()
}
}
// like to make and return a "primitive" symbol resolver? so that the symbol resolver can later figure out primitive type definitions when passed a primitive type name
pub fn get_primitives_definition(&self) -> Vec<(String, DefinitionId, Type)> {
vec![
("int32".into(), DefinitionId(0), self.primitives.int32),
("int64".into(), DefinitionId(0), self.primitives.int32),
("float".into(), DefinitionId(0), self.primitives.int32),
("bool".into(), DefinitionId(0), self.primitives.int32),
("none".into(), DefinitionId(0), self.primitives.int32),
]
}
pub fn register_top_level(&mut self, ast: ast::Stmt<()>, resolver: &'a dyn SymbolResolver) -> Result<Vec<(String, DefinitionId, Type)>, String> {
match &ast.node { match &ast.node {
ast::StmtKind::ClassDef { ast::StmtKind::ClassDef {name, body, ..} => {
name, let class_name = name.to_string();
bases, let def_id = self.definition_list.len();
keywords, // add the class to the unifier
body, let ty = self.unifier.add_ty(TypeEnum::TObj {
decorator_list obj_id: DefinitionId(def_id),
} => { fields: Default::default(),
// ancestors and type_vars are found using the `bases` field params: Default::default()
let mut class_ancestors: Vec<DefinitionId> = Default::default(); });
let mut class_type_vars: Vec<Type> = Default::default(); // add to the definition list
for base in bases { self.definition_list.push(
match &base.node { TopLevelDefInfo {
ast::ExprKind::Subscript {value, slice, ..} => { def: Self::make_top_level_class_def(def_id),
match &value.node { resolver: Some(resolver),
ast::ExprKind::Name {id, ..} if id == "Generic" => { ast: Some(ast),
match &slice.node { ty,
ast::ExprKind::Tuple {elts, ..} => {
for e in elts {
class_type_vars.push(
self.resolver.
parse_type_name(e)
.ok_or_else(|| "unkown base class type".to_string())?
); // FIXME: is it correct to use this?
}
},
_ => class_type_vars.push(
self.resolver
.parse_type_name(slice)
.ok_or_else(|| "unkown base class type".to_string())?
) // FIXME: is it correct to use this?
}
},
_ => return Err("only subscription on keyword Generic is allowed".into())
}
},
ast::ExprKind::Name {id, ..} => {
class_ancestors.push(self.resolver.get_function_def(id)) // FIXME: is it correct to use this?
}
_ => return Err("unsupported expression in the bases list".into())
} }
} );
// fields and methods are determined using the `body` field // TODO: parse class def body and register class methods into the def list?
let class_fields: Vec<(String, Type)> = Default::default(); // FIXME: module's symbol resolver would not know the name of the class methods, thus cannot return their definition_id? so we have to manage it ourselves?
let class_methods: Vec<(String, Type, DefinitionId)> = Default::default(); // or do we return the class method list of (method_name, def_id, type) to application to be used to build symbol resolver? <- current implementation
for stmt in body {
match &stmt.node {
ast::StmtKind::FunctionDef {name, .. } if name != "__init__" => {
let result = self.register_top_level(stmt)?;
unimplemented!()
},
_ => unimplemented!() Ok(vec![(class_name, DefinitionId(def_id), ty)]) // FIXME: need to add class method def
}
}
let defs = self.ctx.definitions.write();
let index = defs.len();
unimplemented!()
}, },
ast::StmtKind::FunctionDef {name, ..} => { ast::StmtKind::FunctionDef {name, ..} => {
unimplemented!() let fun_name = name.to_string();
} let def_id = self.definition_list.len();
// add to the unifier
let ty = self.unifier.add_ty(TypeEnum::TFunc(crate::typecheck::typedef::FunSignature {
args: Default::default(),
ret: self.primitives.none, // NOTE: this needs to be changed later
vars: Default::default()
}));
// add to the definition list
self.definition_list.push(
TopLevelDefInfo {
def: Self::make_top_level_function_def(
name.into(),
self.primitives.none // NOTE: this needs to be changed later
),
resolver: Some(resolver),
ast: Some(ast),
ty,
}
);
_ => Err("only expect function definition and class definition".into()) Ok(vec![(fun_name, DefinitionId(def_id), ty)])
},
_ => Err("only registrations of top level classes/functions are supprted".into())
} }
} }
/// this should be called after all top level classes are registered, and will actually fill in those fields of the previous dummy one
pub fn analyze_top_level(&mut self) -> Result<(), String> {
for mut d in &mut self.definition_list {
if let (Some(ast), Some(resolver)) = (&d.ast, d.resolver) {
match &ast.node {
ast::StmtKind::ClassDef {
name,
bases,
body,
..
} => {
// ancestors and typevars associate with the class are analyzed by looking into the `bases` ast node
for b in bases {
match &b.node {
ast::ExprKind::Name {id, ..} => { // base class, name directly available inside the module, can use this module's symbol resolver
let def_id = resolver.get_identifier_def(id);
unimplemented!()
},
ast::ExprKind::Attribute {value, attr, ..} => { // things can be like `class A(BaseModule.Base)`, here we have to get the symbol resolver of the module `BaseModule`?
unimplemented!() // need to change symbol resolver in order to get the symbol resolver of the imported module
},
ast::ExprKind::Subscript {value, slice, ..} => { // typevars bounded to the class, things like `class A(Generic[T, V])`
if let ast::ExprKind::Name {id, ..} = &value.node {
if id == "Generic" {
// TODO: get typevars
unimplemented!()
} else {
return Err("unknown type var".into())
}
}
},
_ => return Err("not supported".into())
}
}
// class method and field are analyzed by looking into the class body ast node
for stmt in body {
unimplemented!()
}
},
ast::StmtKind::FunctionDef {
name,
args,
body,
returns,
..
} => {
unimplemented!()
}
_ => return Err("only expect function and class definitions to be submitted here to be analyzed".into())
}
}
};
Ok(())
}
} }

View File

@ -15,11 +15,11 @@ struct Resolver {
} }
impl SymbolResolver for Resolver { impl SymbolResolver for Resolver {
fn get_symbol_type(&mut self, str: &str) -> Option<Type> { fn get_symbol_type(&self, str: &str) -> Option<Type> {
self.identifier_mapping.get(str).cloned() self.identifier_mapping.get(str).cloned()
} }
fn parse_type_name(&mut self, ty: &ast::Expr<()>) -> Option<Type> { fn parse_type_name(&self, ty: &ast::Expr<()>) -> Option<Type> {
if let ExprKind::Name { id, .. } = &ty.node { if let ExprKind::Name { id, .. } = &ty.node {
self.class_names.get(id).cloned() self.class_names.get(id).cloned()
} else { } else {
@ -27,15 +27,19 @@ impl SymbolResolver for Resolver {
} }
} }
fn get_symbol_value(&mut self, _: &str) -> Option<SymbolValue> { fn get_symbol_value(&self, _: &str) -> Option<SymbolValue> {
unimplemented!() unimplemented!()
} }
fn get_symbol_location(&mut self, _: &str) -> Option<Location> { fn get_symbol_location(&self, _: &str) -> Option<Location> {
unimplemented!() unimplemented!()
} }
fn get_function_def(&mut self, _: &str) -> DefinitionId { fn get_identifier_def(&self, _: &str) -> DefinitionId {
unimplemented!()
}
fn get_module_resolver(&self, _: &str) -> Option<&dyn SymbolResolver> {
unimplemented!() unimplemented!()
} }
} }