1
0
forked from M-Labs/nac3

add subkernel calling routine

This commit is contained in:
mwojcik 2024-09-04 17:39:28 +08:00
parent 27fef12545
commit 52d6121a84
2 changed files with 259 additions and 7 deletions

View File

@ -482,6 +482,9 @@ impl Nac3 {
if decorator_list.iter().any(|decorator| matches!(decorator.node, ExprKind::Name { id, .. } if id == "rpc".into())) { if decorator_list.iter().any(|decorator| matches!(decorator.node, ExprKind::Name { id, .. } if id == "rpc".into())) {
store_fun.call1(py, (def_id.0.into_py(py), module.getattr(py, name.to_string().as_str()).unwrap())).unwrap(); store_fun.call1(py, (def_id.0.into_py(py), module.getattr(py, name.to_string().as_str()).unwrap())).unwrap();
rpc_ids.push((None, def_id)); rpc_ids.push((None, def_id));
} else if decorator_list.iter().any(|decorator| matches!(decorator.node, ExprKind::Name { id, .. } if id == "subkernel".into())) {
store_fun.call1(py, (def_id.0.into_py(py), module.getattr(py, name.to_string().as_str()).unwrap())).unwrap();
//rpc_ids.push((None, def_id));
} }
} }
StmtKind::ClassDef { name, body, .. } => { StmtKind::ClassDef { name, body, .. } => {

View File

@ -58,10 +58,20 @@ impl Subkernels {
] ]
} }
fn gen_subkernel_await<'ctx>(ctx: &mut CodeGenContext<'ctx, '_>, awaited: BasicValueEnum<'ctx>, timeout: BasicValueEnum<'ctx>) { fn gen_subkernel_await<'ctx>(
ctx: &mut CodeGenContext<'ctx, '_>,
obj: &Option<(Type, ValueEnum<'ctx>)>,
fun: (&FunSignature, DefinitionId),
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
generator: &mut dyn CodeGenerator,
) {
let sid_type = ctx.ctx.i32_type(); let sid_type = ctx.ctx.i32_type();
// how to deal with optional arguments?
let timeout_type = ctx.ctx.i64_type(); let timeout_type = ctx.ctx.i64_type();
assert!(matches!(args.len(), 1..=2));
let timeout = if args.len() == 1 {
timeout_type.const_zero().to_basic_value_enum(context, generator, obj_ty)?; // ?
} else { args[0].1.clone().to_basic_value_enum(context, generator, obj_ty)?; } // ?
let subkernel_await_finish = ctx.module.get_function("subkernel_await_finish").unwrap_or_else(|| { let subkernel_await_finish = ctx.module.get_function("subkernel_await_finish").unwrap_or_else(|| {
ctx.module.add_function( ctx.module.add_function(
"subkernel_await_finish", "subkernel_await_finish",
@ -74,18 +84,257 @@ impl Subkernels {
// generate RPC for receiving return value depending on fun ret // generate RPC for receiving return value depending on fun ret
} }
fn gen_subkernel_preload<'ctx>(ctx: &mut CodeGenContext<'ctx, '_>, preloaded: BasicValueEnum<'ctx>) { fn gen_subkernel_preload<'ctx>(
ctx: &mut CodeGenContext<'ctx, '_>,
obj: &Option<(Type, ValueEnum<'ctx>)>,
fun: (&FunSignature, DefinitionId),
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
generator: &mut dyn CodeGenerator,
) {
assert_eq!(args.len(), 1);
let sid_type = ctx.ctx.i32_type(); let sid_type = ctx.ctx.i32_type();
let dest_type = ctx.ctx.i8_type(); let dest_type = ctx.ctx.i8_type();
let run_type = ctx.ctx.i1_type(); let run_type = ctx.ctx.bool_type();
let subkernel_load_run = ctx.module.get_function("subkernel_load_run").unwrap_or_else(|| { let subkernel_load_run = ctx.module.get_function("subkernel_load_run").unwrap_or_else(|| {
ctx.module.add_function( ctx.module.add_function(
"subkernel_load_run", "subkernel_load_run",
ctx.ctx.void_type().fn_type(&[sid_type.into(), dest_type, run_type], false), ctx.ctx.void_type().fn_type(&[sid_type.into(), dest_type.into(), run_type.into()], false),
None, None,
) )
}); });
// retrieve destination and sid from the fn (?)
// call or invoke let subkernel_id = int32.const_int(fun.1 .0 as u64, false);
let destination = int32.const_int(fun.? as u64, false); // TODO
ctx.builder
.build_call_or_invoke(subkernel_load_run, &[subkernel_id.into(), destination.into(), run_type.const_zero()], "subkernel.preload")
.unwrap();
}
fn subkernel_callback_fn<'ctx>(
ctx: &mut CodeGenContext<'ctx, '_>,
obj: Option<(Type, ValueEnum<'ctx>)>,
fun: (&FunSignature, DefinitionId),
args: Vec<(Option<StrRef>, ValueEnum<'ctx>)>,
generator: &mut dyn CodeGenerator,
) -> Result<Option<BasicValueEnum<'ctx>>, String> {
let int8 = ctx.ctx.i8_type();
let int32 = ctx.ctx.i32_type();
let size_type = generator.get_size_type(ctx.ctx);
let ptr_type = int8.ptr_type(AddressSpace::default());
let tag_ptr_type = ctx.ctx.struct_type(&[ptr_type.into(), size_type.into()], false);
let subkernel_id = int32.const_int(fun.1 .0 as u64, false);
let destination = int32.const_int(fun.? as u64, false); // TODO
// -- start the subkernel
let sid_type = ctx.ctx.i32_type();
let dest_type = ctx.ctx.i8_type();
let run_type = ctx.ctx.i1_type();
let subkernel_start = ctx.module.get_function("subkernel_load_run").unwrap_or_else(|| {
ctx.module.add_function(
"subkernel_load_run",
ctx.ctx.void_type().fn_type(
&[
ctx.ctx.void_type().fn_type(&[sid_type.into(), dest_type.into(), run_type.into()], false),
],
false,
),
None,
)
});
ctx.builder
.build_call_or_invoke(subkernel_start, &[subkernel_id.into(), destination.into(), run_type.const_int(1, false)], "subkernel.run")
.unwrap();
// -- setup rpc tags
let mut tag = Vec::new();
if obj.is_some() {
tag.push(b'O');
}
for arg in &fun.0.args {
gen_rpc_tag(ctx, arg.ty, &mut tag)?;
}
tag.push(b':');
gen_rpc_tag(ctx, fun.0.ret, &mut tag)?;
let mut hasher = DefaultHasher::new();
tag.hash(&mut hasher);
let hash = format!("{}", hasher.finish());
let tag_ptr = ctx
.module
.get_global(hash.as_str())
.unwrap_or_else(|| {
let tag_arr_ptr = ctx.module.add_global(
int8.array_type(tag.len() as u32),
None,
format!("tagptr{}", fun.1 .0).as_str(),
);
tag_arr_ptr.set_initializer(&int8.const_array(
&tag.iter().map(|v| int8.const_int(u64::from(*v), false)).collect::<Vec<_>>(),
));
tag_arr_ptr.set_linkage(Linkage::Private);
let tag_ptr = ctx.module.add_global(tag_ptr_type, None, &hash);
tag_ptr.set_linkage(Linkage::Private);
tag_ptr.set_initializer(&ctx.ctx.const_struct(
&[
tag_arr_ptr.as_pointer_value().const_cast(ptr_type).into(),
size_type.const_int(tag.len() as u64, false).into(),
],
false,
));
tag_ptr
})
.as_pointer_value();
let arg_length = args.len() + usize::from(obj.is_some());
let stackptr = call_stacksave(ctx, Some("rpc.stack"));
let args_ptr = ctx
.builder
.build_array_alloca(
ptr_type,
ctx.ctx.i32_type().const_int(arg_length as u64, false),
"argptr",
)
.unwrap();
// -- rpc args handling
let mut keys = fun.0.args.clone();
let mut mapping = HashMap::new();
for (key, value) in args {
mapping.insert(key.unwrap_or_else(|| keys.remove(0).name), value);
}
// default value handling
for k in keys {
mapping
.insert(k.name, ctx.gen_symbol_val(generator, &k.default_value.unwrap(), k.ty).into());
}
// reorder the parameters
let mut real_params = fun
.0
.args
.iter()
.map(|arg| {
mapping
.remove(&arg.name)
.unwrap()
.to_basic_value_enum(ctx, generator, arg.ty)
.map(|llvm_val| (llvm_val, arg.ty))
})
.collect::<Result<Vec<(_, _)>, _>>()?;
if let Some(obj) = obj {
if let ValueEnum::Static(obj_val) = obj.1 {
real_params.insert(0, (obj_val.get_const_obj(ctx, generator), obj.0));
} else {
// should be an error here...
panic!("only host object is allowed");
}
}
for (i, (arg, arg_ty)) in real_params.iter().enumerate() {
let arg_slot = format_rpc_arg(generator, ctx, (*arg, *arg_ty, i));
let arg_ptr = unsafe {
ctx.builder.build_gep(
args_ptr,
&[int32.const_int(i as u64, false)],
&format!("rpc.arg{i}"),
)
}
.unwrap();
ctx.builder.build_store(arg_ptr, arg_slot).unwrap();
}
// send the message
let subkernel_send = ctx.module.get_function("subkernel_send_message").unwrap_or_else(|| {
ctx.module.add_function(
"subkernel_send_message",
ctx.ctx.void_type().fn_type(
&[
int32.into(),
tag_ptr_type.ptr_type(AddressSpace::default()).into(),
ptr_type.ptr_type(AddressSpace::default()).into(),
],
false,
),
None,
)
});
ctx.builder
.build_call_or_invoke(subkernel_send, &[service_id.into(), tag_ptr.into(), args_ptr.into()], "rpc.send")
.unwrap();
// reclaim stack space used by arguments
call_stackrestore(ctx, stackptr);
}
pub fn subkernel_codegen_callback() -> Arc<GenCall> {
Arc::new(GenCall::new(Box::new(|ctx, obj, fun, args, generator| {
subkernel_codegen_callback_fn(ctx, obj, fun, args, generator)
})))
}
fn subkernel_recv_message<'ctx>(
ctx: &mut CodeGenContext<'ctx, '_>,
obj: Option<(Type, ValueEnum<'ctx>)>,
fun: (&FunSignature, DefinitionId),
args: Vec<(Option<StrRef>, ValueEnum<'ctx>)>,
generator: &mut dyn CodeGenerator,
) -> Result<Option<BasicValueEnum<'ctx>>, String> {
// -- receive value:
// T result = {
// void *ret_ptr = alloca(sizeof(T));
// void *ptr = ret_ptr;
// loop: int size = rpc_recv(ptr);
// // Non-zero: Provide `size` bytes of extra storage for variable-length data.
// if(size) { ptr = alloca(size); goto loop; }
// else *(T*)ret_ptr
// }
let rpc_recv = ctx.module.get_function("rpc_recv").unwrap_or_else(|| {
ctx.module.add_function("rpc_recv", int32.fn_type(&[ptr_type.into()], false), None)
});
if ctx.unifier.unioned(fun.0.ret, ctx.primitives.none) {
ctx.build_call_or_invoke(rpc_recv, &[ptr_type.const_null().into()], "rpc_recv");
return Ok(None);
}
let prehead_bb = ctx.builder.get_insert_block().unwrap();
let current_function = prehead_bb.get_parent().unwrap();
let head_bb = ctx.ctx.append_basic_block(current_function, "rpc.head");
let alloc_bb = ctx.ctx.append_basic_block(current_function, "rpc.continue");
let tail_bb = ctx.ctx.append_basic_block(current_function, "rpc.tail");
let ret_ty = ctx.get_llvm_abi_type(generator, fun.0.ret);
let need_load = !ret_ty.is_pointer_type();
let slot = ctx.builder.build_alloca(ret_ty, "rpc.ret.slot").unwrap();
let slotgen = ctx.builder.build_bitcast(slot, ptr_type, "rpc.ret.ptr").unwrap();
ctx.builder.build_unconditional_branch(head_bb).unwrap();
ctx.builder.position_at_end(head_bb);
let phi = ctx.builder.build_phi(ptr_type, "rpc.ptr").unwrap();
phi.add_incoming(&[(&slotgen, prehead_bb)]);
let alloc_size = ctx
.build_call_or_invoke(rpc_recv, &[phi.as_basic_value()], "rpc.size.next")
.unwrap()
.into_int_value();
let is_done = ctx
.builder
.build_int_compare(inkwell::IntPredicate::EQ, int32.const_zero(), alloc_size, "rpc.done")
.unwrap();
ctx.builder.build_conditional_branch(is_done, tail_bb, alloc_bb).unwrap();
ctx.builder.position_at_end(alloc_bb);
let alloc_ptr = ctx.builder.build_array_alloca(ptr_type, alloc_size, "rpc.alloc").unwrap();
let alloc_ptr = ctx.builder.build_bitcast(alloc_ptr, ptr_type, "rpc.alloc.ptr").unwrap();
phi.add_incoming(&[(&alloc_ptr, alloc_bb)]);
ctx.builder.build_unconditional_branch(head_bb).unwrap();
ctx.builder.position_at_end(tail_bb);
let result = ctx.builder.build_load(slot, "rpc.result").unwrap();
if need_load {
call_stackrestore(ctx, stackptr);
}
Ok(Some(result))
} }
} }