1
0
forked from M-Labs/nac3

refactortherefactor

This commit is contained in:
CrescentonC 2021-07-09 13:41:31 +08:00
parent b161c026bc
commit 3dc448401b

View File

@ -5,13 +5,15 @@ use crate::typecheck::typedef::{Type, TypeEnum};
use crate::typecheck::primitives;
use rustpython_parser::ast;
use super::magic_methods;
pub struct ExpressionTypeInferencer<'a> {
ctx: InferenceContext<'a>
pub ctx: InferenceContext<'a> //FIXME: may need to remove this pub
}
impl<'a> ExpressionTypeInferencer<'a> { // NOTE: add location here in the function parameter for better error message?
fn infer_constant_val(&mut self, constant: &ast::Constant) -> Result<Option<Type>, String> {
fn infer_constant_val(&self, constant: &ast::Constant) -> Result<Option<Type>, String> {
match constant {
ast::Constant::Bool(_) =>
Ok(Some(self.ctx.get_primitive(primitives::BOOL_TYPE))),
@ -56,12 +58,12 @@ impl<'a> ExpressionTypeInferencer<'a>{ // NOTE: add location here in the functio
}
fn infer_list_val(&mut self, elts: &Vec<ast::Expr<Option<Type>>>) -> Result<Option<Type>, String> {
fn infer_list_val(&self, elts: &Vec<ast::Expr<Option<Type>>>) -> Result<Option<Type>, String> {
if elts.is_empty() {
Ok(Some(TypeEnum::ParametricType(primitives::LIST_TYPE, vec![TypeEnum::BotType.into()]).into()))
} else {
let types = elts
.into_iter()
.iter()
.map(|x| &x.custom)
.collect::<Vec<_>>();
@ -75,12 +77,26 @@ impl<'a> ExpressionTypeInferencer<'a>{ // NOTE: add location here in the functio
} else {
Err("list elements must have some type".into())
}
}
}
fn infer_tuple_val(&self, elts: &Vec<ast::Expr<Option<Type>>>) -> Result<Option<Type>, String> {
let types = elts
.iter()
.map(|x| (x.custom).clone())
.collect::<Vec<_>>();
if types.iter().all(|x| x.is_some()) {
Ok(Some(TypeEnum::ParametricType(
primitives::TUPLE_TYPE,
types.into_iter().map(|x| x.unwrap()).collect()).into())) // unwrap alone should be fine after the previous check
} else {
Err("tuple elements must have some type".into())
}
}
}
// REVIEW: field custom: from None to Option<Type> or just Option<Type> ?
// REVIEW: field custom: from () to Option<Type> or just Option<Type>?
impl<'a> ast::fold::Fold<Option<Type>> for ExpressionTypeInferencer<'a> {
type TargetU = Option<Type>;
type Error = String;
@ -90,7 +106,7 @@ impl<'a> ast::fold::Fold<Option<Type>> for ExpressionTypeInferencer<'a> {
}
fn fold_expr(&mut self, expr: ast::Expr<Option<Type>>) -> Result<ast::Expr<Self::TargetU>, Self::Error> {
let ast::Expr {location, custom: cus, node} = expr;
let ast::Expr {location, custom, node} = expr;
match node {
ast::ExprKind::Constant {value, kind} =>
Ok(ast::Expr {
@ -107,6 +123,20 @@ impl<'a> ast::fold::Fold<Option<Type>> for ExpressionTypeInferencer<'a> {
}),
ast::ExprKind::List {elts, ctx} => {
/* let folded = ast::fold::fold_expr(
self,
ast::Expr {location, custom, node: ast::ExprKind::List {elts, ctx}})?;
if let ast::Expr {location: _, custom: _, node: ast::ExprKind::List {elts, ctx}} = folded {
Ok(ast::Expr {
location,
custom: self.infer_list_val(&elts)?,
node: ast::ExprKind::List {elts, ctx}
})
} else {
Err("something wrong here".into())
} */
let elts = elts
.into_iter()
.map(|x| self.fold_expr(x))
@ -119,19 +149,184 @@ impl<'a> ast::fold::Fold<Option<Type>> for ExpressionTypeInferencer<'a> {
})
}
ast::ExprKind::Tuple {elts, ctx} => {
// let folded_tup_expr = ast::fold::fold_expr(self, ast::Expr {location, custom, node})?;
let elts= elts
.into_iter()
.map(|x| self.fold_expr(x))
.collect::<Result<Vec<ast::Expr<Option<Type>>>, _>>()?; // elements inside the vector should now have type info
Ok(ast::Expr {
location,
custom: self.infer_tuple_val(&elts)?,
node: ast::ExprKind::Tuple {elts, ctx}
})
}
ast::ExprKind::Attribute {value, attr, ctx} => {
let folded_val = self.fold_expr(*value)?;
match folded_val.custom {
Some(ref ty) => {
if let TypeEnum::TypeVariable(_) = ty.as_ref() {
Err("no fields for type variable".into())
} else {
ty
.clone()
.get_base(&self.ctx)
.and_then(|b| b.fields.get(&*attr).clone())
.map_or_else(
|| Err("no such field".into()),
|v| Ok(ast::Expr {
location,
custom: Some(v.clone()),
node: ast::ExprKind::Attribute {value: Box::new(folded_val), attr, ctx}
}))
}
},
None => Err("no value".into())
}
}
ast::ExprKind::BoolOp {op, values} => {
assert_eq!(values.len(), 2); // NOTE: should panic
let folded = values
.into_iter()
.map(|x| self.fold_expr(x))
.collect::<Result<Vec<ast::Expr<Option<Type>>>, _>>()?;
if (&folded)
.iter()
.all(|x| x.custom == Some(self.ctx.get_primitive(primitives::BOOL_TYPE))) {
Ok(ast::Expr {
location,
node: ast::ExprKind::BoolOp {op, values: folded},
custom: Some(self.ctx.get_primitive(primitives::BOOL_TYPE))
})
} else {
Err("bool operands must be bool".into())
}
}
ast::ExprKind::BinOp {op, left, right} => {
let folded_left = self.fold_expr(*left)?;
let folded_right = self.fold_expr(*right)?;
let fun = magic_methods::binop_name(&op);
let left_type = folded_left.custom.clone().ok_or_else(|| "no value".to_string())?;
let right_type = folded_right.custom.clone().ok_or_else(|| "no value".to_string())?;
let result = crate::typecheck::inference_core::resolve_call(
&self.ctx,
Some(left_type),
fun,
&[right_type])?;
Ok(ast::Expr {
location,
custom: result,
node: ast::ExprKind::BinOp {op, left: Box::new(folded_left), right: Box::new(folded_right)}
})
}
ast::ExprKind::UnaryOp {op, operand} => {
let folded = self.fold_expr(*operand)?;
let ty = folded.custom.clone().ok_or_else(|| "no value".to_string())?;
if let ast::Unaryop::Not = op {
if ty == self.ctx.get_primitive(primitives::BOOL_TYPE) {
Ok(ast::Expr {
location,
node: ast::ExprKind::UnaryOp {op, operand: Box::new(folded)},
custom: Some(self.ctx.get_primitive(primitives::BOOL_TYPE))
})
} else {
Err("logical not must be applied to bool".into())
}
} else {
Ok(ast::Expr {
location,
custom: crate::typecheck::inference_core::resolve_call(
&self.ctx,
Some(ty),
magic_methods::unaryop_name(&op),
&[])?,
node: ast::ExprKind::UnaryOp {op, operand: Box::new(folded)},
})
}
}
ast::ExprKind::Compare {left, ops, comparators} => {
Err("not sure".into()) // FIXME: what is the `left` field here?
}
ast::ExprKind::Call {func, args, keywords} => {
if !keywords.is_empty() {
Err("keyword is not supported yet".into())
} else {
let folded_args = args
.into_iter()
.map(|x| self.fold_expr(x))
.collect::<Result<Vec<ast::Expr<Option<Type>>>, _>>()?;
if !folded_args.iter().all(|x| x.custom.is_some()) {
Err("function params must have type".into())
} else {
match &func.node {
ast::ExprKind::Name {id, ctx} => {
Ok(ast::Expr {
location,
custom: crate::typecheck::inference_core::resolve_call(
&self.ctx,
None,
id,
&folded_args
.iter()
.map(|x| (x.custom.clone().unwrap()))
.collect::<Vec<_>>())?,
node: ast::ExprKind::Call {func, args: folded_args, keywords}
})
}
ast::ExprKind::Attribute {value, attr, ctx} => {
// Err("sdf".into())
let folded_value = self.fold_expr(**value)?;
Ok(ast::Expr {
location,
node: ast::ExprKind::Call {func, args: folded_args, keywords},
custom: crate::typecheck::inference_core::resolve_call(
&self.ctx,
folded_value.custom,
attr,
&folded_args
.iter()
.map(|x| (x.custom.clone().unwrap()))
.collect::<Vec<_>>())?
})
}
_ => Err("not supported".into())
}
// Err("sdf".into())
}
}
}
_ =>
Ok(ast::Expr {location, custom: cus, node: node})
Ok(ast::Expr {location, custom, node})
}
}
}
mod test {
pub mod test {
use crate::typecheck::{symbol_resolver::SymbolResolver, typedef::*, symbol_resolver::*, location::*};
use rustpython_parser::ast::{self, Expr, fold::Fold};
use super::*;
fn new_ctx<'a>() -> ExpressionTypeInferencer<'a>{
pub fn new_ctx<'a>() -> ExpressionTypeInferencer<'a>{
struct S;
impl SymbolResolver for S {