forked from M-Labs/nac3
[core] codegen/ndarray: Make ndims non-optional
Now that everything is ported to use strided impl, dynamic-ndim ndarray instances do not exist anymore.
This commit is contained in:
parent
3ac1083734
commit
12fddc3533
@ -464,7 +464,7 @@ fn format_rpc_arg<'ctx>(
|
||||
let (elem_ty, ndims) = unpack_ndarray_var_tys(&mut ctx.unifier, arg_ty);
|
||||
let ndims = extract_ndims(&ctx.unifier, ndims);
|
||||
let dtype = ctx.get_llvm_type(generator, elem_ty);
|
||||
let ndarray = NDArrayType::new(generator, ctx.ctx, dtype, Some(ndims))
|
||||
let ndarray = NDArrayType::new(generator, ctx.ctx, dtype, ndims)
|
||||
.map_value(arg.into_pointer_value(), None);
|
||||
|
||||
let ndims = llvm_usize.const_int(ndims, false);
|
||||
@ -597,7 +597,7 @@ fn format_rpc_ret<'ctx>(
|
||||
let (dtype, ndims) = unpack_ndarray_var_tys(&mut ctx.unifier, ret_ty);
|
||||
let dtype_llvm = ctx.get_llvm_type(generator, dtype);
|
||||
let ndims = extract_ndims(&ctx.unifier, ndims);
|
||||
let ndarray = NDArrayType::new(generator, ctx.ctx, dtype_llvm, Some(ndims))
|
||||
let ndarray = NDArrayType::new(generator, ctx.ctx, dtype_llvm, ndims)
|
||||
.construct_uninitialized(generator, ctx, None);
|
||||
|
||||
// NOTE: Current content of `ndarray`:
|
||||
|
@ -1107,7 +1107,7 @@ impl InnerResolver {
|
||||
self.global_value_ids.write().insert(id, obj.into());
|
||||
}
|
||||
|
||||
let ndims = llvm_ndarray.ndims().unwrap();
|
||||
let ndims = llvm_ndarray.ndims();
|
||||
|
||||
// Obtain the shape of the ndarray
|
||||
let shape_tuple: &PyTuple = obj.getattr("shape")?.downcast()?;
|
||||
|
@ -1652,7 +1652,7 @@ pub fn call_np_linalg_cholesky<'ctx, G: CodeGenerator + ?Sized>(
|
||||
unsupported_type(ctx, FN_NAME, &[x1_ty]);
|
||||
}
|
||||
|
||||
let out = NDArrayType::new(generator, ctx.ctx, ctx.ctx.f64_type().into(), Some(2))
|
||||
let out = NDArrayType::new(generator, ctx.ctx, ctx.ctx.f64_type().into(), 2)
|
||||
.construct_uninitialized(generator, ctx, None);
|
||||
out.copy_shape_from_ndarray(generator, ctx, x1);
|
||||
unsafe { out.create_data(generator, ctx) };
|
||||
@ -1694,7 +1694,7 @@ pub fn call_np_linalg_qr<'ctx, G: CodeGenerator + ?Sized>(
|
||||
};
|
||||
let dk = llvm_intrinsics::call_int_smin(ctx, d0, d1, None);
|
||||
|
||||
let out_ndarray_ty = NDArrayType::new(generator, ctx.ctx, ctx.ctx.f64_type().into(), Some(2));
|
||||
let out_ndarray_ty = NDArrayType::new(generator, ctx.ctx, ctx.ctx.f64_type().into(), 2);
|
||||
let q = out_ndarray_ty.construct_dyn_shape(generator, ctx, &[d0, dk], None);
|
||||
unsafe { q.create_data(generator, ctx) };
|
||||
|
||||
@ -1746,8 +1746,8 @@ pub fn call_np_linalg_svd<'ctx, G: CodeGenerator + ?Sized>(
|
||||
};
|
||||
let dk = llvm_intrinsics::call_int_smin(ctx, d0, d1, None);
|
||||
|
||||
let out_ndarray1_ty = NDArrayType::new(generator, ctx.ctx, ctx.ctx.f64_type().into(), Some(1));
|
||||
let out_ndarray2_ty = NDArrayType::new(generator, ctx.ctx, ctx.ctx.f64_type().into(), Some(2));
|
||||
let out_ndarray1_ty = NDArrayType::new(generator, ctx.ctx, ctx.ctx.f64_type().into(), 1);
|
||||
let out_ndarray2_ty = NDArrayType::new(generator, ctx.ctx, ctx.ctx.f64_type().into(), 2);
|
||||
|
||||
let u = out_ndarray2_ty.construct_dyn_shape(generator, ctx, &[d0, d0], None);
|
||||
unsafe { u.create_data(generator, ctx) };
|
||||
@ -1796,7 +1796,7 @@ pub fn call_np_linalg_inv<'ctx, G: CodeGenerator + ?Sized>(
|
||||
unsupported_type(ctx, FN_NAME, &[x1_ty]);
|
||||
}
|
||||
|
||||
let out = NDArrayType::new(generator, ctx.ctx, ctx.ctx.f64_type().into(), Some(2))
|
||||
let out = NDArrayType::new(generator, ctx.ctx, ctx.ctx.f64_type().into(), 2)
|
||||
.construct_uninitialized(generator, ctx, None);
|
||||
out.copy_shape_from_ndarray(generator, ctx, x1);
|
||||
unsafe { out.create_data(generator, ctx) };
|
||||
@ -1838,7 +1838,7 @@ pub fn call_np_linalg_pinv<'ctx, G: CodeGenerator + ?Sized>(
|
||||
x1_shape.get_typed_unchecked(ctx, generator, &llvm_usize.const_int(1, false), None)
|
||||
};
|
||||
|
||||
let out = NDArrayType::new(generator, ctx.ctx, ctx.ctx.f64_type().into(), Some(2))
|
||||
let out = NDArrayType::new(generator, ctx.ctx, ctx.ctx.f64_type().into(), 2)
|
||||
.construct_dyn_shape(generator, ctx, &[d0, d1], None);
|
||||
unsafe { out.create_data(generator, ctx) };
|
||||
|
||||
@ -1880,7 +1880,7 @@ pub fn call_sp_linalg_lu<'ctx, G: CodeGenerator + ?Sized>(
|
||||
};
|
||||
let dk = llvm_intrinsics::call_int_smin(ctx, d0, d1, None);
|
||||
|
||||
let out_ndarray_ty = NDArrayType::new(generator, ctx.ctx, ctx.ctx.f64_type().into(), Some(2));
|
||||
let out_ndarray_ty = NDArrayType::new(generator, ctx.ctx, ctx.ctx.f64_type().into(), 2);
|
||||
|
||||
let l = out_ndarray_ty.construct_dyn_shape(generator, ctx, &[d0, dk], None);
|
||||
unsafe { l.create_data(generator, ctx) };
|
||||
@ -1924,7 +1924,7 @@ pub fn call_np_linalg_matrix_power<'ctx, G: CodeGenerator + ?Sized>(
|
||||
let (elem_ty, ndims) = unpack_ndarray_var_tys(&mut ctx.unifier, x1_ty);
|
||||
let ndims = extract_ndims(&ctx.unifier, ndims);
|
||||
let x1_elem_ty = ctx.get_llvm_type(generator, elem_ty);
|
||||
let x1 = NDArrayValue::from_pointer_value(x1, x1_elem_ty, Some(ndims), llvm_usize, None);
|
||||
let x1 = NDArrayValue::from_pointer_value(x1, x1_elem_ty, ndims, llvm_usize, None);
|
||||
|
||||
if !x1.get_type().element_type().is_float_type() {
|
||||
unsupported_type(ctx, FN_NAME, &[x1_ty]);
|
||||
@ -1940,7 +1940,7 @@ pub fn call_np_linalg_matrix_power<'ctx, G: CodeGenerator + ?Sized>(
|
||||
.construct_unsized(generator, ctx, &x2, None); // x2.shape == []
|
||||
let x2 = x2.atleast_nd(generator, ctx, 1); // x2.shape == [1]
|
||||
|
||||
let out = NDArrayType::new(generator, ctx.ctx, ctx.ctx.f64_type().into(), Some(2))
|
||||
let out = NDArrayType::new(generator, ctx.ctx, ctx.ctx.f64_type().into(), 2)
|
||||
.construct_uninitialized(generator, ctx, None);
|
||||
out.copy_shape_from_ndarray(generator, ctx, x1);
|
||||
unsafe { out.create_data(generator, ctx) };
|
||||
@ -1979,7 +1979,7 @@ pub fn call_np_linalg_det<'ctx, G: CodeGenerator + ?Sized>(
|
||||
}
|
||||
|
||||
// The output is a float64, but we are using an ndarray (shape == [1]) for uniformity in function call.
|
||||
let det = NDArrayType::new(generator, ctx.ctx, ctx.ctx.f64_type().into(), Some(1))
|
||||
let det = NDArrayType::new(generator, ctx.ctx, ctx.ctx.f64_type().into(), 1)
|
||||
.construct_const_shape(generator, ctx, &[1], None);
|
||||
unsafe { det.create_data(generator, ctx) };
|
||||
|
||||
@ -2008,13 +2008,13 @@ pub fn call_sp_linalg_schur<'ctx, G: CodeGenerator + ?Sized>(
|
||||
let BasicValueEnum::PointerValue(x1) = x1 else { unsupported_type(ctx, FN_NAME, &[x1_ty]) };
|
||||
|
||||
let x1 = NDArrayType::from_unifier_type(generator, ctx, x1_ty).map_value(x1, None);
|
||||
assert_eq!(x1.get_type().ndims(), Some(2));
|
||||
assert_eq!(x1.get_type().ndims(), 2);
|
||||
|
||||
if !x1.get_type().element_type().is_float_type() {
|
||||
unsupported_type(ctx, FN_NAME, &[x1_ty]);
|
||||
}
|
||||
|
||||
let out_ndarray_ty = NDArrayType::new(generator, ctx.ctx, ctx.ctx.f64_type().into(), Some(2));
|
||||
let out_ndarray_ty = NDArrayType::new(generator, ctx.ctx, ctx.ctx.f64_type().into(), 2);
|
||||
|
||||
let t = out_ndarray_ty.construct_uninitialized(generator, ctx, None);
|
||||
t.copy_shape_from_ndarray(generator, ctx, x1);
|
||||
@ -2053,13 +2053,13 @@ pub fn call_sp_linalg_hessenberg<'ctx, G: CodeGenerator + ?Sized>(
|
||||
let BasicValueEnum::PointerValue(x1) = x1 else { unsupported_type(ctx, FN_NAME, &[x1_ty]) };
|
||||
|
||||
let x1 = NDArrayType::from_unifier_type(generator, ctx, x1_ty).map_value(x1, None);
|
||||
assert_eq!(x1.get_type().ndims(), Some(2));
|
||||
assert_eq!(x1.get_type().ndims(), 2);
|
||||
|
||||
if !x1.get_type().element_type().is_float_type() {
|
||||
unsupported_type(ctx, FN_NAME, &[x1_ty]);
|
||||
}
|
||||
|
||||
let out_ndarray_ty = NDArrayType::new(generator, ctx.ctx, ctx.ctx.f64_type().into(), Some(2));
|
||||
let out_ndarray_ty = NDArrayType::new(generator, ctx.ctx, ctx.ctx.f64_type().into(), 2);
|
||||
|
||||
let h = out_ndarray_ty.construct_uninitialized(generator, ctx, None);
|
||||
h.copy_shape_from_ndarray(generator, ctx, x1);
|
||||
|
@ -520,7 +520,7 @@ fn get_llvm_type<'ctx, G: CodeGenerator + ?Sized>(
|
||||
ctx, module, generator, unifier, top_level, type_cache, dtype,
|
||||
);
|
||||
|
||||
NDArrayType::new(generator, ctx, element_type, Some(ndims)).as_base_type().into()
|
||||
NDArrayType::new(generator, ctx, element_type, ndims).as_base_type().into()
|
||||
}
|
||||
|
||||
_ => unreachable!(
|
||||
|
@ -42,7 +42,7 @@ pub fn gen_ndarray_empty<'ctx>(
|
||||
|
||||
let shape = parse_numpy_int_sequence(generator, context, (shape_ty, shape_arg));
|
||||
|
||||
let ndarray = NDArrayType::new(generator, context.ctx, llvm_dtype, Some(ndims))
|
||||
let ndarray = NDArrayType::new(generator, context.ctx, llvm_dtype, ndims)
|
||||
.construct_numpy_empty(generator, context, &shape, None);
|
||||
Ok(ndarray.as_base_value())
|
||||
}
|
||||
@ -67,7 +67,7 @@ pub fn gen_ndarray_zeros<'ctx>(
|
||||
|
||||
let shape = parse_numpy_int_sequence(generator, context, (shape_ty, shape_arg));
|
||||
|
||||
let ndarray = NDArrayType::new(generator, context.ctx, llvm_dtype, Some(ndims))
|
||||
let ndarray = NDArrayType::new(generator, context.ctx, llvm_dtype, ndims)
|
||||
.construct_numpy_zeros(generator, context, dtype, &shape, None);
|
||||
Ok(ndarray.as_base_value())
|
||||
}
|
||||
@ -92,7 +92,7 @@ pub fn gen_ndarray_ones<'ctx>(
|
||||
|
||||
let shape = parse_numpy_int_sequence(generator, context, (shape_ty, shape_arg));
|
||||
|
||||
let ndarray = NDArrayType::new(generator, context.ctx, llvm_dtype, Some(ndims))
|
||||
let ndarray = NDArrayType::new(generator, context.ctx, llvm_dtype, ndims)
|
||||
.construct_numpy_ones(generator, context, dtype, &shape, None);
|
||||
Ok(ndarray.as_base_value())
|
||||
}
|
||||
@ -120,8 +120,13 @@ pub fn gen_ndarray_full<'ctx>(
|
||||
|
||||
let shape = parse_numpy_int_sequence(generator, context, (shape_ty, shape_arg));
|
||||
|
||||
let ndarray = NDArrayType::new(generator, context.ctx, llvm_dtype, Some(ndims))
|
||||
.construct_numpy_full(generator, context, &shape, fill_value_arg, None);
|
||||
let ndarray = NDArrayType::new(generator, context.ctx, llvm_dtype, ndims).construct_numpy_full(
|
||||
generator,
|
||||
context,
|
||||
&shape,
|
||||
fill_value_arg,
|
||||
None,
|
||||
);
|
||||
Ok(ndarray.as_base_value())
|
||||
}
|
||||
|
||||
@ -218,7 +223,7 @@ pub fn gen_ndarray_eye<'ctx>(
|
||||
.build_int_s_extend_or_bit_cast(offset_arg.into_int_value(), llvm_usize, "")
|
||||
.unwrap();
|
||||
|
||||
let ndarray = NDArrayType::new(generator, context.ctx, llvm_dtype, Some(2))
|
||||
let ndarray = NDArrayType::new(generator, context.ctx, llvm_dtype, 2)
|
||||
.construct_numpy_eye(generator, context, dtype, nrows, ncols, offset, None);
|
||||
Ok(ndarray.as_base_value())
|
||||
}
|
||||
@ -246,7 +251,7 @@ pub fn gen_ndarray_identity<'ctx>(
|
||||
.builder
|
||||
.build_int_s_extend_or_bit_cast(n_arg.into_int_value(), llvm_usize, "")
|
||||
.unwrap();
|
||||
let ndarray = NDArrayType::new(generator, context.ctx, llvm_dtype, Some(2))
|
||||
let ndarray = NDArrayType::new(generator, context.ctx, llvm_dtype, 2)
|
||||
.construct_numpy_identity(generator, context, dtype, n, None);
|
||||
Ok(ndarray.as_base_value())
|
||||
}
|
||||
@ -315,8 +320,8 @@ pub fn ndarray_dot<'ctx, G: CodeGenerator + ?Sized>(
|
||||
let b = NDArrayType::from_unifier_type(generator, ctx, x2_ty).map_value(n2, None);
|
||||
|
||||
// TODO: General `np.dot()` https://numpy.org/doc/stable/reference/generated/numpy.dot.html.
|
||||
assert!(a.get_type().ndims().is_some_and(|ndims| ndims == 1));
|
||||
assert!(b.get_type().ndims().is_some_and(|ndims| ndims == 1));
|
||||
assert_eq!(a.get_type().ndims(), 1);
|
||||
assert_eq!(b.get_type().ndims(), 1);
|
||||
let common_dtype = arraylike_flatten_element_type(&mut ctx.unifier, x1_ty);
|
||||
|
||||
// Check shapes.
|
||||
|
@ -447,10 +447,8 @@ pub fn gen_setitem<'ctx, G: CodeGenerator>(
|
||||
let value = ScalarOrNDArray::from_value(generator, ctx, (value_ty, value))
|
||||
.to_ndarray(generator, ctx);
|
||||
|
||||
let broadcast_ndims = [target.get_type().ndims(), value.get_type().ndims()]
|
||||
.iter()
|
||||
.filter_map(|ndims| *ndims)
|
||||
.max();
|
||||
let broadcast_ndims =
|
||||
[target.get_type().ndims(), value.get_type().ndims()].into_iter().max().unwrap();
|
||||
let broadcast_result = NDArrayType::new(
|
||||
generator,
|
||||
ctx.ctx,
|
||||
|
@ -464,6 +464,6 @@ fn test_classes_ndarray_type_new() {
|
||||
let llvm_i32 = ctx.i32_type();
|
||||
let llvm_usize = generator.get_size_type(&ctx);
|
||||
|
||||
let llvm_ndarray = NDArrayType::new(&generator, &ctx, llvm_i32.into(), None);
|
||||
let llvm_ndarray = NDArrayType::new(&generator, &ctx, llvm_i32.into(), 2);
|
||||
assert!(NDArrayType::is_representable(llvm_ndarray.as_base_type(), llvm_usize).is_ok());
|
||||
}
|
||||
|
@ -41,7 +41,7 @@ impl<'ctx> NDArrayType<'ctx> {
|
||||
name: Option<&'ctx str>,
|
||||
) -> <Self as ProxyType<'ctx>>::Value {
|
||||
let (dtype, ndims_int) = get_list_object_dtype_and_ndims(generator, ctx, list_ty);
|
||||
assert!(self.ndims.is_none_or(|self_ndims| self_ndims >= ndims_int));
|
||||
assert!(self.ndims >= ndims_int);
|
||||
assert_eq!(dtype, self.dtype);
|
||||
|
||||
let list_value = list.as_i8_list(generator, ctx);
|
||||
@ -61,7 +61,7 @@ impl<'ctx> NDArrayType<'ctx> {
|
||||
generator, ctx, list_value, ndims, &shape,
|
||||
);
|
||||
|
||||
let ndarray = Self::new(generator, ctx.ctx, dtype, Some(ndims_int))
|
||||
let ndarray = Self::new(generator, ctx.ctx, dtype, ndims_int)
|
||||
.construct_uninitialized(generator, ctx, name);
|
||||
ndarray.copy_shape_from_array(generator, ctx, shape.base_ptr(ctx, generator));
|
||||
unsafe { ndarray.create_data(generator, ctx) };
|
||||
@ -93,12 +93,12 @@ impl<'ctx> NDArrayType<'ctx> {
|
||||
if ndims == 1 {
|
||||
// `list` is not nested
|
||||
assert_eq!(ndims, 1);
|
||||
assert!(self.ndims.is_none_or(|self_ndims| self_ndims >= ndims));
|
||||
assert!(self.ndims >= ndims);
|
||||
assert_eq!(dtype, self.dtype);
|
||||
|
||||
let llvm_pi8 = ctx.ctx.i8_type().ptr_type(AddressSpace::default());
|
||||
|
||||
let ndarray = Self::new(generator, ctx.ctx, dtype, Some(1))
|
||||
let ndarray = Self::new(generator, ctx.ctx, dtype, 1)
|
||||
.construct_uninitialized(generator, ctx, name);
|
||||
|
||||
// Set data
|
||||
@ -170,7 +170,7 @@ impl<'ctx> NDArrayType<'ctx> {
|
||||
.map(BasicValueEnum::into_pointer_value)
|
||||
.unwrap();
|
||||
|
||||
NDArrayType::new(generator, ctx.ctx, dtype, Some(ndims)).map_value(ndarray, None)
|
||||
NDArrayType::new(generator, ctx.ctx, dtype, ndims).map_value(ndarray, None)
|
||||
}
|
||||
|
||||
/// Implementation of `np_array(<ndarray>, copy=copy)`.
|
||||
@ -183,9 +183,7 @@ impl<'ctx> NDArrayType<'ctx> {
|
||||
name: Option<&'ctx str>,
|
||||
) -> <Self as ProxyType<'ctx>>::Value {
|
||||
assert_eq!(ndarray.get_type().dtype, self.dtype);
|
||||
assert!(ndarray.get_type().ndims.is_none_or(|ndarray_ndims| self
|
||||
.ndims
|
||||
.is_none_or(|self_ndims| self_ndims >= ndarray_ndims)));
|
||||
assert!(self.ndims >= ndarray.get_type().ndims);
|
||||
assert_eq!(copy.get_type(), ctx.ctx.bool_type());
|
||||
|
||||
let ndarray_val = gen_if_else_expr_callback(
|
||||
|
@ -47,7 +47,7 @@ impl<'ctx> NDArrayType<'ctx> {
|
||||
NDArrayOut::NewNDArray { dtype } => {
|
||||
// Create a new ndarray based on the broadcast shape.
|
||||
let result_ndarray =
|
||||
NDArrayType::new(generator, ctx.ctx, dtype, Some(broadcast_result.ndims))
|
||||
NDArrayType::new(generator, ctx.ctx, dtype, broadcast_result.ndims)
|
||||
.construct_uninitialized(generator, ctx, None);
|
||||
result_ndarray.copy_shape_from_array(
|
||||
generator,
|
||||
|
@ -38,7 +38,7 @@ mod nditer;
|
||||
pub struct NDArrayType<'ctx> {
|
||||
ty: PointerType<'ctx>,
|
||||
dtype: BasicTypeEnum<'ctx>,
|
||||
ndims: Option<u64>,
|
||||
ndims: u64,
|
||||
llvm_usize: IntType<'ctx>,
|
||||
}
|
||||
|
||||
@ -113,7 +113,7 @@ impl<'ctx> NDArrayType<'ctx> {
|
||||
generator: &G,
|
||||
ctx: &'ctx Context,
|
||||
dtype: BasicTypeEnum<'ctx>,
|
||||
ndims: Option<u64>,
|
||||
ndims: u64,
|
||||
) -> Self {
|
||||
let llvm_usize = generator.get_size_type(ctx);
|
||||
let llvm_ndarray = Self::llvm_type(ctx, llvm_usize);
|
||||
@ -132,7 +132,7 @@ impl<'ctx> NDArrayType<'ctx> {
|
||||
) -> Self {
|
||||
assert!(!inputs.is_empty());
|
||||
|
||||
Self::new(generator, ctx, dtype, inputs.iter().filter_map(NDArrayType::ndims).max())
|
||||
Self::new(generator, ctx, dtype, inputs.iter().map(NDArrayType::ndims).max().unwrap())
|
||||
}
|
||||
|
||||
/// Creates an instance of [`NDArrayType`] with `ndims` of 0.
|
||||
@ -145,7 +145,7 @@ impl<'ctx> NDArrayType<'ctx> {
|
||||
let llvm_usize = generator.get_size_type(ctx);
|
||||
let llvm_ndarray = Self::llvm_type(ctx, llvm_usize);
|
||||
|
||||
NDArrayType { ty: llvm_ndarray, dtype, ndims: Some(0), llvm_usize }
|
||||
NDArrayType { ty: llvm_ndarray, dtype, ndims: 0, llvm_usize }
|
||||
}
|
||||
|
||||
/// Creates an [`NDArrayType`] from a [unifier type][Type].
|
||||
@ -164,7 +164,7 @@ impl<'ctx> NDArrayType<'ctx> {
|
||||
NDArrayType {
|
||||
ty: Self::llvm_type(ctx.ctx, llvm_usize),
|
||||
dtype: llvm_dtype,
|
||||
ndims: Some(ndims),
|
||||
ndims,
|
||||
llvm_usize,
|
||||
}
|
||||
}
|
||||
@ -174,7 +174,7 @@ impl<'ctx> NDArrayType<'ctx> {
|
||||
pub fn from_type(
|
||||
ptr_ty: PointerType<'ctx>,
|
||||
dtype: BasicTypeEnum<'ctx>,
|
||||
ndims: Option<u64>,
|
||||
ndims: u64,
|
||||
llvm_usize: IntType<'ctx>,
|
||||
) -> Self {
|
||||
debug_assert!(Self::is_representable(ptr_ty, llvm_usize).is_ok());
|
||||
@ -196,7 +196,7 @@ impl<'ctx> NDArrayType<'ctx> {
|
||||
|
||||
/// Returns the number of dimensions of this `ndarray` type.
|
||||
#[must_use]
|
||||
pub fn ndims(&self) -> Option<u64> {
|
||||
pub fn ndims(&self) -> u64 {
|
||||
self.ndims
|
||||
}
|
||||
|
||||
@ -286,35 +286,7 @@ impl<'ctx> NDArrayType<'ctx> {
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
name: Option<&'ctx str>,
|
||||
) -> <Self as ProxyType<'ctx>>::Value {
|
||||
assert!(self.ndims.is_some(), "NDArrayType::construct can only be called on an instance with compile-time known ndims (self.ndims = Some(ndims))");
|
||||
|
||||
let Some(ndims) = self.ndims.map(|ndims| self.llvm_usize.const_int(ndims, false)) else {
|
||||
unreachable!()
|
||||
};
|
||||
|
||||
self.construct_impl(generator, ctx, ndims, name)
|
||||
}
|
||||
|
||||
/// Allocate an [`NDArrayValue`] on the stack given its `ndims` and `dtype`.
|
||||
///
|
||||
/// `shape` and `strides` will be automatically allocated onto the stack.
|
||||
///
|
||||
/// The returned ndarray's content will be:
|
||||
/// - `data`: uninitialized.
|
||||
/// - `itemsize`: set to the size of `dtype`.
|
||||
/// - `ndims`: set to the value of `ndims`.
|
||||
/// - `shape`: allocated with an array of length `ndims` with uninitialized values.
|
||||
/// - `strides`: allocated with an array of length `ndims` with uninitialized values.
|
||||
#[deprecated = "Prefer construct_uninitialized or construct_*_shape."]
|
||||
#[must_use]
|
||||
pub fn construct_dyn_ndims<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
ndims: IntValue<'ctx>,
|
||||
name: Option<&'ctx str>,
|
||||
) -> <Self as ProxyType<'ctx>>::Value {
|
||||
assert!(self.ndims.is_none(), "NDArrayType::construct_dyn_ndims can only be called on an instance with compile-time unknown ndims (self.ndims = None)");
|
||||
let ndims = self.llvm_usize.const_int(self.ndims, false);
|
||||
|
||||
self.construct_impl(generator, ctx, ndims, name)
|
||||
}
|
||||
@ -330,9 +302,9 @@ impl<'ctx> NDArrayType<'ctx> {
|
||||
shape: &[u64],
|
||||
name: Option<&'ctx str>,
|
||||
) -> <Self as ProxyType<'ctx>>::Value {
|
||||
assert!(self.ndims.is_none_or(|ndims| shape.len() as u64 == ndims));
|
||||
assert_eq!(shape.len() as u64, self.ndims);
|
||||
|
||||
let ndarray = Self::new(generator, ctx.ctx, self.dtype, Some(shape.len() as u64))
|
||||
let ndarray = Self::new(generator, ctx.ctx, self.dtype, shape.len() as u64)
|
||||
.construct_uninitialized(generator, ctx, name);
|
||||
|
||||
let llvm_usize = generator.get_size_type(ctx.ctx);
|
||||
@ -365,9 +337,9 @@ impl<'ctx> NDArrayType<'ctx> {
|
||||
shape: &[IntValue<'ctx>],
|
||||
name: Option<&'ctx str>,
|
||||
) -> <Self as ProxyType<'ctx>>::Value {
|
||||
assert!(self.ndims.is_none_or(|ndims| shape.len() as u64 == ndims));
|
||||
assert_eq!(shape.len() as u64, self.ndims);
|
||||
|
||||
let ndarray = Self::new(generator, ctx.ctx, self.dtype, Some(shape.len() as u64))
|
||||
let ndarray = Self::new(generator, ctx.ctx, self.dtype, shape.len() as u64)
|
||||
.construct_uninitialized(generator, ctx, name);
|
||||
|
||||
let llvm_usize = generator.get_size_type(ctx.ctx);
|
||||
@ -407,7 +379,7 @@ impl<'ctx> NDArrayType<'ctx> {
|
||||
let value = value.as_basic_value_enum();
|
||||
|
||||
assert_eq!(value.get_type(), self.dtype);
|
||||
assert!(self.ndims.is_none_or(|ndims| ndims == 0));
|
||||
assert_eq!(self.ndims, 0);
|
||||
|
||||
// We have to put the value on the stack to get a data pointer.
|
||||
let data = ctx.builder.build_alloca(value.get_type(), "construct_unsized").unwrap();
|
||||
|
@ -163,13 +163,8 @@ impl<'ctx> NDIterType<'ctx> {
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
ndarray: NDArrayValue<'ctx>,
|
||||
) -> <Self as ProxyType<'ctx>>::Value {
|
||||
assert!(
|
||||
ndarray.get_type().ndims().is_some(),
|
||||
"NDIter requires ndims of NDArray to be known."
|
||||
);
|
||||
|
||||
let nditer = self.raw_alloca_var(generator, ctx, None);
|
||||
let ndims = self.llvm_usize.const_int(ndarray.get_type().ndims().unwrap(), false);
|
||||
let ndims = self.llvm_usize.const_int(ndarray.get_type().ndims(), false);
|
||||
|
||||
// The caller has the responsibility to allocate 'indices' for `NDIter`.
|
||||
let indices =
|
||||
|
@ -101,12 +101,11 @@ impl<'ctx> NDArrayValue<'ctx> {
|
||||
target_ndims: u64,
|
||||
target_shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
|
||||
) -> Self {
|
||||
assert!(self.ndims.is_none_or(|ndims| ndims <= target_ndims));
|
||||
assert!(self.ndims <= target_ndims);
|
||||
assert_eq!(target_shape.element_type(ctx, generator), self.llvm_usize.into());
|
||||
|
||||
let broadcast_ndarray =
|
||||
NDArrayType::new(generator, ctx.ctx, self.dtype, Some(target_ndims))
|
||||
.construct_uninitialized(generator, ctx, None);
|
||||
let broadcast_ndarray = NDArrayType::new(generator, ctx.ctx, self.dtype, target_ndims)
|
||||
.construct_uninitialized(generator, ctx, None);
|
||||
broadcast_ndarray.copy_shape_from_array(
|
||||
generator,
|
||||
ctx,
|
||||
@ -199,14 +198,13 @@ impl<'ctx> NDArrayType<'ctx> {
|
||||
ndarrays: &[NDArrayValue<'ctx>],
|
||||
) -> BroadcastAllResult<'ctx, G> {
|
||||
assert!(!ndarrays.is_empty());
|
||||
assert!(ndarrays.iter().all(|ndarray| ndarray.get_type().ndims().is_some()));
|
||||
|
||||
let llvm_usize = generator.get_size_type(ctx.ctx);
|
||||
|
||||
// Infer the broadcast output ndims.
|
||||
let broadcast_ndims_int =
|
||||
ndarrays.iter().map(|ndarray| ndarray.get_type().ndims().unwrap()).max().unwrap();
|
||||
assert!(self.ndims().is_none_or(|ndims| ndims >= broadcast_ndims_int));
|
||||
ndarrays.iter().map(|ndarray| ndarray.get_type().ndims()).max().unwrap();
|
||||
assert!(self.ndims() >= broadcast_ndims_int);
|
||||
|
||||
let broadcast_ndims = llvm_usize.const_int(broadcast_ndims_int, false);
|
||||
let broadcast_shape = ArraySliceValue::from_ptr_val(
|
||||
@ -223,10 +221,7 @@ impl<'ctx> NDArrayType<'ctx> {
|
||||
let shape_entries = ndarrays
|
||||
.iter()
|
||||
.map(|ndarray| {
|
||||
(
|
||||
ndarray.shape().as_slice_value(ctx, generator),
|
||||
ndarray.get_type().ndims().unwrap(),
|
||||
)
|
||||
(ndarray.shape().as_slice_value(ctx, generator), ndarray.get_type().ndims())
|
||||
})
|
||||
.collect_vec();
|
||||
broadcast_shapes(generator, ctx, &shape_entries, broadcast_ndims_int, &broadcast_shape);
|
||||
|
@ -121,9 +121,7 @@ impl<'ctx> NDArrayValue<'ctx> {
|
||||
.alloca_var(generator, ctx, self.name);
|
||||
|
||||
// Set ndims and shape.
|
||||
let ndims = self
|
||||
.ndims
|
||||
.map_or_else(|| self.load_ndims(ctx), |ndims| self.llvm_usize.const_int(ndims, false));
|
||||
let ndims = self.llvm_usize.const_int(self.ndims, false);
|
||||
result.store_ndims(ctx, ndims);
|
||||
|
||||
let shape = self.shape();
|
||||
@ -180,7 +178,7 @@ impl<'ctx> NDArrayValue<'ctx> {
|
||||
// TODO: Debug assert `ndims == carray.ndims` to catch bugs.
|
||||
|
||||
// Allocate the resulting ndarray.
|
||||
let ndarray = NDArrayType::new(generator, ctx.ctx, carray.item, Some(ndims))
|
||||
let ndarray = NDArrayType::new(generator, ctx.ctx, carray.item, ndims)
|
||||
.construct_uninitialized(generator, ctx, carray.name);
|
||||
|
||||
// Copy shape and update strides
|
||||
|
@ -98,8 +98,8 @@ impl<'ctx> From<NDIndexValue<'ctx>> for PointerValue<'ctx> {
|
||||
impl<'ctx> NDArrayValue<'ctx> {
|
||||
/// Get the expected `ndims` after indexing with `indices`.
|
||||
#[must_use]
|
||||
fn deduce_ndims_after_indexing_with(&self, indices: &[RustNDIndex<'ctx>]) -> Option<u64> {
|
||||
let mut ndims = self.ndims?;
|
||||
fn deduce_ndims_after_indexing_with(&self, indices: &[RustNDIndex<'ctx>]) -> u64 {
|
||||
let mut ndims = self.ndims;
|
||||
|
||||
for index in indices {
|
||||
match index {
|
||||
@ -113,7 +113,7 @@ impl<'ctx> NDArrayValue<'ctx> {
|
||||
}
|
||||
}
|
||||
|
||||
Some(ndims)
|
||||
ndims
|
||||
}
|
||||
|
||||
/// Index into the ndarray, and return a newly-allocated view on this ndarray.
|
||||
@ -127,8 +127,6 @@ impl<'ctx> NDArrayValue<'ctx> {
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
indices: &[RustNDIndex<'ctx>],
|
||||
) -> Self {
|
||||
assert!(self.ndims.is_some(), "NDArrayValue::index is only supported for instances with compile-time known ndims (self.ndims = Some(...))");
|
||||
|
||||
let dst_ndims = self.deduce_ndims_after_indexing_with(indices);
|
||||
let dst_ndarray = NDArrayType::new(generator, ctx.ctx, self.dtype, dst_ndims)
|
||||
.construct_uninitialized(generator, ctx, None);
|
||||
|
@ -29,16 +29,8 @@ fn matmul_at_least_2d<'ctx, G: CodeGenerator>(
|
||||
(in_a_ty, in_a): (Type, NDArrayValue<'ctx>),
|
||||
(in_b_ty, in_b): (Type, NDArrayValue<'ctx>),
|
||||
) -> NDArrayValue<'ctx> {
|
||||
assert!(
|
||||
in_a.ndims.is_some_and(|ndims| ndims >= 2),
|
||||
"in_a (which is {:?}) must be compile-time known and >= 2",
|
||||
in_a.ndims
|
||||
);
|
||||
assert!(
|
||||
in_b.ndims.is_some_and(|ndims| ndims >= 2),
|
||||
"in_b (which is {:?}) must be compile-time known and >= 2",
|
||||
in_b.ndims
|
||||
);
|
||||
assert!(in_a.ndims >= 2, "in_a (which is {}) must be >= 2", in_a.ndims);
|
||||
assert!(in_b.ndims >= 2, "in_b (which is {}) must be >= 2", in_b.ndims);
|
||||
|
||||
let lhs_dtype = arraylike_flatten_element_type(&mut ctx.unifier, in_a_ty);
|
||||
let rhs_dtype = arraylike_flatten_element_type(&mut ctx.unifier, in_b_ty);
|
||||
@ -47,13 +39,13 @@ fn matmul_at_least_2d<'ctx, G: CodeGenerator>(
|
||||
let llvm_dst_dtype = ctx.get_llvm_type(generator, dst_dtype);
|
||||
|
||||
// Deduce ndims of the result of matmul.
|
||||
let ndims_int = max(in_a.ndims.unwrap(), in_b.ndims.unwrap());
|
||||
let ndims_int = max(in_a.ndims, in_b.ndims);
|
||||
let ndims = llvm_usize.const_int(ndims_int, false);
|
||||
|
||||
// Broadcasts `in_a.shape[:-2]` and `in_b.shape[:-2]` together and allocate the
|
||||
// destination ndarray to store the result of matmul.
|
||||
let (lhs, rhs, dst) = {
|
||||
let in_lhs_ndims = llvm_usize.const_int(in_a.ndims.unwrap(), false);
|
||||
let in_lhs_ndims = llvm_usize.const_int(in_a.ndims, false);
|
||||
let in_lhs_shape = TypedArrayLikeAdapter::from(
|
||||
ArraySliceValue::from_ptr_val(
|
||||
in_a.shape().base_ptr(ctx, generator),
|
||||
@ -63,7 +55,7 @@ fn matmul_at_least_2d<'ctx, G: CodeGenerator>(
|
||||
|_, _, val| val.into_int_value(),
|
||||
|_, _, val| val.into(),
|
||||
);
|
||||
let in_rhs_ndims = llvm_usize.const_int(in_b.ndims.unwrap(), false);
|
||||
let in_rhs_ndims = llvm_usize.const_int(in_b.ndims, false);
|
||||
let in_rhs_shape = TypedArrayLikeAdapter::from(
|
||||
ArraySliceValue::from_ptr_val(
|
||||
in_b.shape().base_ptr(ctx, generator),
|
||||
@ -116,7 +108,7 @@ fn matmul_at_least_2d<'ctx, G: CodeGenerator>(
|
||||
let lhs = in_a.broadcast_to(generator, ctx, ndims_int, &lhs_shape);
|
||||
let rhs = in_b.broadcast_to(generator, ctx, ndims_int, &rhs_shape);
|
||||
|
||||
let dst = NDArrayType::new(generator, ctx.ctx, llvm_dst_dtype, Some(ndims_int))
|
||||
let dst = NDArrayType::new(generator, ctx.ctx, llvm_dst_dtype, ndims_int)
|
||||
.construct_uninitialized(generator, ctx, None);
|
||||
dst.copy_shape_from_array(generator, ctx, dst_shape.base_ptr(ctx, generator));
|
||||
unsafe {
|
||||
@ -266,10 +258,7 @@ impl<'ctx> NDArrayValue<'ctx> {
|
||||
(out_dtype, out): (Type, NDArrayOut<'ctx>),
|
||||
) -> Self {
|
||||
// Sanity check, but type inference should prevent this.
|
||||
assert!(
|
||||
self.ndims.is_some_and(|ndims| ndims > 0) && other.ndims.is_some_and(|ndims| ndims > 0),
|
||||
"np.matmul disallows scalar input"
|
||||
);
|
||||
assert!(self.ndims > 0 && other.ndims > 0, "np.matmul disallows scalar input");
|
||||
|
||||
// If both arguments are 2-D they are multiplied like conventional matrices.
|
||||
//
|
||||
@ -282,14 +271,14 @@ impl<'ctx> NDArrayValue<'ctx> {
|
||||
// If the second argument is 1-D, it is promoted to a matrix by appending a 1 to its
|
||||
// dimensions. After matrix multiplication the appended 1 is removed.
|
||||
|
||||
let new_a = if self.ndims.unwrap() == 1 {
|
||||
let new_a = if self.ndims == 1 {
|
||||
// Prepend 1 to its dimensions
|
||||
self.index(generator, ctx, &[RustNDIndex::NewAxis, RustNDIndex::Ellipsis])
|
||||
} else {
|
||||
*self
|
||||
};
|
||||
|
||||
let new_b = if other.ndims.unwrap() == 1 {
|
||||
let new_b = if other.ndims == 1 {
|
||||
// Append 1 to its dimensions
|
||||
other.index(generator, ctx, &[RustNDIndex::Ellipsis, RustNDIndex::NewAxis])
|
||||
} else {
|
||||
@ -305,12 +294,12 @@ impl<'ctx> NDArrayValue<'ctx> {
|
||||
let mut postindices = vec![];
|
||||
let zero = ctx.ctx.i32_type().const_zero();
|
||||
|
||||
if self.ndims.unwrap() == 1 {
|
||||
if self.ndims == 1 {
|
||||
// Remove the prepended 1
|
||||
postindices.push(RustNDIndex::SingleElement(zero));
|
||||
}
|
||||
|
||||
if other.ndims.unwrap() == 1 {
|
||||
if other.ndims == 1 {
|
||||
// Remove the appended 1
|
||||
postindices.push(RustNDIndex::Ellipsis);
|
||||
postindices.push(RustNDIndex::SingleElement(zero));
|
||||
|
@ -42,7 +42,7 @@ mod view;
|
||||
pub struct NDArrayValue<'ctx> {
|
||||
value: PointerValue<'ctx>,
|
||||
dtype: BasicTypeEnum<'ctx>,
|
||||
ndims: Option<u64>,
|
||||
ndims: u64,
|
||||
llvm_usize: IntType<'ctx>,
|
||||
name: Option<&'ctx str>,
|
||||
}
|
||||
@ -62,7 +62,7 @@ impl<'ctx> NDArrayValue<'ctx> {
|
||||
pub fn from_pointer_value(
|
||||
ptr: PointerValue<'ctx>,
|
||||
dtype: BasicTypeEnum<'ctx>,
|
||||
ndims: Option<u64>,
|
||||
ndims: u64,
|
||||
llvm_usize: IntType<'ctx>,
|
||||
name: Option<&'ctx str>,
|
||||
) -> Self {
|
||||
@ -245,26 +245,7 @@ impl<'ctx> NDArrayValue<'ctx> {
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
src_ndarray: NDArrayValue<'ctx>,
|
||||
) {
|
||||
if self.ndims.is_some() && src_ndarray.ndims.is_some() {
|
||||
assert_eq!(self.ndims, src_ndarray.ndims);
|
||||
} else {
|
||||
let self_ndims = self.load_ndims(ctx);
|
||||
let src_ndims = src_ndarray.load_ndims(ctx);
|
||||
|
||||
ctx.make_assert(
|
||||
generator,
|
||||
ctx.builder.build_int_compare(
|
||||
IntPredicate::EQ,
|
||||
self_ndims,
|
||||
src_ndims,
|
||||
""
|
||||
).unwrap(),
|
||||
"0:AssertionError",
|
||||
"NDArrayValue::copy_shape_from_ndarray: Expected self.ndims ({0}) == src_ndarray.ndims ({1})",
|
||||
[Some(self_ndims), Some(src_ndims), None],
|
||||
ctx.current_loc
|
||||
);
|
||||
}
|
||||
assert_eq!(self.ndims, src_ndarray.ndims);
|
||||
|
||||
let src_shape = src_ndarray.shape().base_ptr(ctx, generator);
|
||||
self.copy_shape_from_array(generator, ctx, src_shape);
|
||||
@ -296,26 +277,7 @@ impl<'ctx> NDArrayValue<'ctx> {
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
src_ndarray: NDArrayValue<'ctx>,
|
||||
) {
|
||||
if self.ndims.is_some() && src_ndarray.ndims.is_some() {
|
||||
assert_eq!(self.ndims, src_ndarray.ndims);
|
||||
} else {
|
||||
let self_ndims = self.load_ndims(ctx);
|
||||
let src_ndims = src_ndarray.load_ndims(ctx);
|
||||
|
||||
ctx.make_assert(
|
||||
generator,
|
||||
ctx.builder.build_int_compare(
|
||||
IntPredicate::EQ,
|
||||
self_ndims,
|
||||
src_ndims,
|
||||
""
|
||||
).unwrap(),
|
||||
"0:AssertionError",
|
||||
"NDArrayValue::copy_shape_from_ndarray: Expected self.ndims ({0}) == src_ndarray.ndims ({1})",
|
||||
[Some(self_ndims), Some(src_ndims), None],
|
||||
ctx.current_loc
|
||||
);
|
||||
}
|
||||
assert_eq!(self.ndims, src_ndarray.ndims);
|
||||
|
||||
let src_strides = src_ndarray.strides().base_ptr(ctx, generator);
|
||||
self.copy_strides_from_array(generator, ctx, src_strides);
|
||||
@ -380,11 +342,7 @@ impl<'ctx> NDArrayValue<'ctx> {
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
) -> Self {
|
||||
let clone = if self.ndims.is_some() {
|
||||
self.get_type().construct_uninitialized(generator, ctx, None)
|
||||
} else {
|
||||
self.get_type().construct_dyn_ndims(generator, ctx, self.load_ndims(ctx), None)
|
||||
};
|
||||
let clone = self.get_type().construct_uninitialized(generator, ctx, None);
|
||||
|
||||
let shape = self.shape();
|
||||
clone.copy_shape_from_array(generator, ctx, shape.base_ptr(ctx, generator));
|
||||
@ -437,11 +395,9 @@ impl<'ctx> NDArrayValue<'ctx> {
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
) -> TupleValue<'ctx> {
|
||||
assert!(self.ndims.is_some(), "NDArrayValue::make_shape_tuple can only be called on an instance with compile-time known ndims (self.ndims = Some(ndims))");
|
||||
|
||||
let llvm_i32 = ctx.ctx.i32_type();
|
||||
|
||||
let objects = (0..self.ndims.unwrap())
|
||||
let objects = (0..self.ndims)
|
||||
.map(|i| {
|
||||
let dim = unsafe {
|
||||
self.shape().get_typed_unchecked(
|
||||
@ -459,7 +415,7 @@ impl<'ctx> NDArrayValue<'ctx> {
|
||||
TupleType::new(
|
||||
generator,
|
||||
ctx.ctx,
|
||||
&repeat_n(llvm_i32.into(), self.ndims.unwrap() as usize).collect_vec(),
|
||||
&repeat_n(llvm_i32.into(), self.ndims as usize).collect_vec(),
|
||||
)
|
||||
.construct_from_objects(ctx, objects, None)
|
||||
}
|
||||
@ -473,11 +429,9 @@ impl<'ctx> NDArrayValue<'ctx> {
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
) -> TupleValue<'ctx> {
|
||||
assert!(self.ndims.is_some(), "NDArrayValue::make_strides_tuple can only be called on an instance with compile-time known ndims (self.ndims = Some(ndims))");
|
||||
|
||||
let llvm_i32 = ctx.ctx.i32_type();
|
||||
|
||||
let objects = (0..self.ndims.unwrap())
|
||||
let objects = (0..self.ndims)
|
||||
.map(|i| {
|
||||
let dim = unsafe {
|
||||
self.strides().get_typed_unchecked(
|
||||
@ -495,15 +449,15 @@ impl<'ctx> NDArrayValue<'ctx> {
|
||||
TupleType::new(
|
||||
generator,
|
||||
ctx.ctx,
|
||||
&repeat_n(llvm_i32.into(), self.ndims.unwrap() as usize).collect_vec(),
|
||||
&repeat_n(llvm_i32.into(), self.ndims as usize).collect_vec(),
|
||||
)
|
||||
.construct_from_objects(ctx, objects, None)
|
||||
}
|
||||
|
||||
/// Returns true if this ndarray is unsized - `ndims == 0` and only contains a scalar.
|
||||
#[must_use]
|
||||
pub fn is_unsized(&self) -> Option<bool> {
|
||||
self.ndims.map(|ndims| ndims == 0)
|
||||
pub fn is_unsized(&self) -> bool {
|
||||
self.ndims == 0
|
||||
}
|
||||
|
||||
/// Returns the element present in this `ndarray` if this is unsized.
|
||||
@ -512,11 +466,7 @@ impl<'ctx> NDArrayValue<'ctx> {
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
) -> Option<BasicValueEnum<'ctx>> {
|
||||
let Some(is_unsized) = self.is_unsized() else {
|
||||
panic!("NDArrayValue::get_unsized_element can only be called on an instance with compile-time known ndims (self.ndims = Some(ndims))");
|
||||
};
|
||||
|
||||
if is_unsized {
|
||||
if self.is_unsized() {
|
||||
// NOTE: `np.size(self) == 0` here is never possible.
|
||||
let zero = generator.get_size_type(ctx.ctx).const_zero();
|
||||
let value = unsafe { self.data().get_unchecked(ctx, generator, &zero, None) };
|
||||
@ -534,8 +484,6 @@ impl<'ctx> NDArrayValue<'ctx> {
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
) -> ScalarOrNDArray<'ctx> {
|
||||
assert!(self.ndims.is_some(), "NDArrayValue::split_unsized can only be called on an instance with compile-time known ndims (self.ndims = Some(ndims))");
|
||||
|
||||
if let Some(unsized_elem) = self.get_unsized_element(generator, ctx) {
|
||||
ScalarOrNDArray::Scalar(unsized_elem)
|
||||
} else {
|
||||
|
@ -26,9 +26,7 @@ impl<'ctx> NDArrayValue<'ctx> {
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
ndmin: u64,
|
||||
) -> Self {
|
||||
assert!(self.ndims.is_some(), "NDArrayValue::atleast_nd is only supported for instances with compile-time known ndims (self.ndims = Some(...))");
|
||||
|
||||
let ndims = self.ndims.unwrap();
|
||||
let ndims = self.ndims;
|
||||
|
||||
if ndims < ndmin {
|
||||
// Extend the dimensions with np.newaxis.
|
||||
@ -67,13 +65,13 @@ impl<'ctx> NDArrayValue<'ctx> {
|
||||
// not contiguous but could be reshaped without copying data. Look into how numpy does
|
||||
// it.
|
||||
|
||||
let dst_ndarray = NDArrayType::new(generator, ctx.ctx, self.dtype, Some(new_ndims))
|
||||
let dst_ndarray = NDArrayType::new(generator, ctx.ctx, self.dtype, new_ndims)
|
||||
.construct_uninitialized(generator, ctx, None);
|
||||
dst_ndarray.copy_shape_from_array(generator, ctx, new_shape.base_ptr(ctx, generator));
|
||||
|
||||
// Resolve negative indices
|
||||
let size = self.size(generator, ctx);
|
||||
let dst_ndims = self.llvm_usize.const_int(dst_ndarray.get_type().ndims().unwrap(), false);
|
||||
let dst_ndims = self.llvm_usize.const_int(dst_ndarray.get_type().ndims(), false);
|
||||
let dst_shape = dst_ndarray.shape();
|
||||
irrt::ndarray::call_nac3_ndarray_reshape_resolve_and_check_new_shape(
|
||||
generator,
|
||||
@ -121,7 +119,6 @@ impl<'ctx> NDArrayValue<'ctx> {
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
axes: Option<PointerValue<'ctx>>,
|
||||
) -> Self {
|
||||
assert!(self.ndims.is_some(), "NDArrayValue::transpose is only supported for instances with compile-time known ndims (self.ndims = Some(...))");
|
||||
assert!(
|
||||
axes.is_none_or(|axes| axes.get_type().get_element_type() == self.llvm_usize.into())
|
||||
);
|
||||
@ -130,7 +127,7 @@ impl<'ctx> NDArrayValue<'ctx> {
|
||||
let transposed_ndarray = self.get_type().construct_uninitialized(generator, ctx, None);
|
||||
|
||||
let axes = if let Some(axes) = axes {
|
||||
let num_axes = self.llvm_usize.const_int(self.ndims.unwrap(), false);
|
||||
let num_axes = self.llvm_usize.const_int(self.ndims, false);
|
||||
|
||||
// `axes = nullptr` if `axes` is unspecified.
|
||||
let axes = ArraySliceValue::from_ptr_val(axes, num_axes, None);
|
||||
|
Loading…
Reference in New Issue
Block a user